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ABSTRACT. We estimate an optimal stopping model for taxicab drivers’ labor supply decisions,

using a large sample of shifts for drivers of New York City taxicabs. Our results show that both

“behavioral” and “neoclassical” wage responses are present in the data, with the behavioral income-

targeting story explaining shorter shifts, and the standard neoclassical model explaining longer

shifts. Hence these findings partially reconcile the divergent reduced-form results in the existing

literature. A methodological contribution of this paper is to develop a new closed-form estimator

for dynamic discrete choice models in a semiparametric setting, in which the distribution of utility

shocks is left unspecified.
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1. INTRODUCTION

The labor supply decisions of taxicab drivers has been an ongoing area of research ever since

the seminal paper of Camerer, Babcock, Loewenstein, and Thaler (1997), who found evidence of

negative income elasticities of labor supply– that is, working fewer hours under high wage rates.

Such a finding is inconsistent with textbook neoclassical labor supply models but congruent

with behavioral models of income targeting, in which agents with flexible hours set an income

target and work until the target is reached. A large follow-up literature, using a variety of

datasets, has both confirmed and disputed these findings.

In this paper, we use a new and comprehensive dataset of New York City taxi drivers (the

world’s largest taxicab market), and take a new approach to this question. We model taxicab

drivers’ labor supply decisions as emerging from an optimal stopping problem: in a stochastically

evolving environment, drivers give rides and, after each fare, decide whether or not to continue

working or quit for the day. Their stopping rule is determined by both their cumulative income,

as well as total amount of time worked, during the day.

Our results reconcile the previous literature to a certain extent. Estimates of drivers’ optimal

stopping rules show that both “behavioral” and “neoclassical” wage responses are present in

the data, with the behavioral income-targeting story explaining shorter shifts, and the standard

neoclassical model explaining longer shifts. Since these results are consistent with what in a

static labor supply context would be called negative or positive wage elasticities, they may

offer a partial reconciliation of the divergent reduced-form results in the existing literature.

More broadly, these findings highlight how our (relatively simple) dynamic framework is

rich enough to generate behavior which resembles both negative and positive wage elasticites

from a static point of view; once the inherent dynamic optimization aspect of taxicab drivers’

labor supply decisions are accounted for, there is no need to add non-standard behavioral

parameters to the model to explain behavior – it emerges as an outcome along the optimal

dynamic decision-making path.1

This paper also makes an important methodological contribution by introducing a new

estimator for a large class of dynamic discrete choice (DDC) models (for which the optimal

1For instance, Crawford and Meng (2011) and Farber (2014) build reference dependence explicitly into the utility
specifications used in their analyses.
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stopping model of taxicab drivers is one example) which is (i) semiparametric and (ii) can be

computed in closed form. First, our semiparametric approach eschews parametric assumptions on

the distribution of the error terms in the discrete choice model; in contrast, many applications of

dynamic discrete choice models assume that these errors follow the extreme-value distribution,

leading to logit choice probabilities. Second, our closed form estimator for the structural

model parameters is non-iterative, which sidesteps computational pitfalls associated with most

existing estimators for these models, which typically involve time-consuming iterative nonlinear

optimization procedures which can be sensitive to starting values and convergence criteria.

Our closed-form estimator for dynamic discrete choice models relies on a new recursive

representation for the unknown quantile function of the utility shocks which we derive in this

paper. This leads to a representation for the conditional choice probabilities which is linear in

the utility function parameters, which permits us to apply Powell, Stock and Stoker’s (1989,PSS)

classic kernel-based estimator for static semiparametric binary choice models.

In section X we do [...]

2. LABOR SUPPLY FOR NEW YORK CITY TAXICAB DRIVERS

A growing literature has arisen aiming to estimate labor supply elasticities in markets where

labor supply is continuously adjustable. Several of these papers have studied the market for

taxi rides, because taxi drivers choose their own hours. One main contribution in this paper is

to pose and estimate a model of taxi driver’s labor supply as a dynamic discrete choice over

quitting for the day. Our model highlights the tradeoffs between working longer to earn extra

income versus incurring increasing costs of effort.

Our dynamic modeling approach contrasts with much of the existing literature on labor

supply in the taxi industry. Camerer, Babcock, Loewenstein, and Thaler (1997) found evidence

of strong negative wage elasticities; they argued that negative elasticities reflected the presence

of income-targeting on the part of drivers: for example, a labor supply policy of the form “I

will work today until I earn $200." Farber (2005, 2008, 2014) consider static models of labor

supply. The first paper develops a static stopping rule model which explores similar forces

to our model, showing that drivers stopping is most reliably predicted by hours instead of

income. The latter two papers integrate reference-dependent utility, which is the notion that
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agents’ utility is not only a function of income but also reference-points or targets, where

the marginal utility of income increases more quickly before the target is met than after it is

met. Originally, Farber (2008) finds mixed evidence for the existence of reference-dependence,

but Farber (2014) uses more comprehensive data and finds strong evidence that labor supply

behavior is driven by the standard neoclassical prediction of upward sloping supply curves, as

opposed to income-targeting and its associated negative elasticities. Crawford and Meng (2011)

specify and estimate a dynamic model of labor supply incorporating reference-dependence in

both income and hours-worked during a shift. Thakral and Tô (2017) also take up the question

of whether there are behavioral biases in drivers stopping decisions, showing that more recent

income is a stronger determinant of quitting than income earned earlier in a shift. Our approach

will somewhat reconcile this tension by treating work hours as a state variable in addition to just

income, and by modeling drivers’ stopping rules as stemming from a combination of cumulated

hours and income.

We estimate a dynamic optimal stopping model in which drivers solve a dynamic optimization

problem to determine their hours worked, as a function of cumulative earned income and

cumulative time spent working. Our model is based on the taxi labor supply model of Frechette,

Lizzeri, and Salz (2016) [FLS], in which taxi drivers decide how long to work by weighing the

utility of earning revenue against the disutility of working longer. FLS utilizes the MPEC method

to solve a dynamic entry game in an equilibrium framework, allowing the market to equilibrate

via the waiting times experienced by passengers and taxis. While we do not consider these

general equilibrium forces, we take advantage of our computationally light, semi-parametric

estimation method to estimate a dynamic optimal stopping model for taxicab drivers, which is

new in the literature.

Taxi drivers are assumed to have costs of effort that are increasing in hours-worked each

day. Each period is a fare. After each fare, drivers face a discrete decision to continue searching

for passengers or quit for the day. In this sense, their labor supply decision boils down to a

comparison between the expected profit of searching for an additional unit of time versus the

disutility of driving for that much more time.

Specifically, we consider a single–agent infinite-horizon binary decision problem. After each

fare t, the agent observes state variables Xt ∈ Sx ⊆ Rk, experiences random utility shocks εt,
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and chooses a binary decision Yt ∈ {0, 1} to maximize her current and future expected payoffs.

For the taxicab drivers’ optimal stopping problem, the state variables Xt consist of (st, ht),

the cumulative earnings and hours worked after t fares. The agent maximizes the expected

discounted sum of the per-period utilities:

max
{yt,yt+1,...}

E

{ ∞∑
s=t

βs−tus(ys, Xs, εs)|Xt, εt

}
(1)

subject to fXt+1,εt+1|Xt,εt,Yt , the Markov law of motion for the state variables (X, ε). β ∈ (0, 1)

denotes the discount factor, and u(y,X, ε) denote the single-period payoff functions.

The period payoff function for driver i depends on the decision to quit (yit = 1) or keep

working (yit = 0), and takes the following form:

ui(sit, hit, yit; θ,Xt) =

 ui1(sit) + εi(1)

ui0(hit) + εi(0)

if yit = 1

if yit = 0
. (2)

This dynamic labor supply model is an optimal stopping model, in which the taxi driver’s

dynamic problem ends once he decides to end his current shift (yit = 1). The terminal utility

from ending the shift is given in the upper prong of the utility specification above. In this

terminal utility, the term ui1(sit) captures the utility from earnings (sit) enjoyed by the taxi

driver after ending his shift. When a driver continues to drive (yit = 0), as in the lower prong of

the utility specification, he experiences (dis-)utility ui0(hit) which depends on hit, the cumulative

hours worked so far in this shift.

2.1. Data and reduced-form results. We start by introducing the dataset and presenting some

reduced-form results. In 2009, The Taxi and Limousine Commission of New York City (TLC)

initiated the Taxi Passenger Enhancement Project, which mandated the use of upgraded metering

and information technology in all New York medallion cabs. The technology includes the

automated data collection of taxi trip and fare information. We use TLC trip data on all New

York City medallion cab rides given in February, 2012. The sample analyzed here consists of

10,000 trips, or about 0.1% of the data. Data include the exact time and date of pickup and

drop-offs, trip distance, and trip time. Table 1 provides summary statistics.
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This data set represents a complete record of all trips operated by licensed New York medallion

taxis. While recent work such as Farber (2014) makes use of this data, the earlier research

(including the work devoted to explicitly measuring labor supply elasticities) employ much

smaller and less reliable taxi trip data. While there is continued debate about model specification

and the presence of behavioral biases, the TLC data obviates most lingering worries about

sample size and measurement error.2

Table 1 contains summary statistics for a random sample of all evening shifts in February

2012, as well as random subsamples broken down by weekday vs. weekend and rainy vs.

non-rainy days. The top part of table shows that there is little heterogeneity across subsamples

at the trip-level. The distribution and average of trip revenue and trip duration similar across

weekdays/weekends, and across days with rain/no-rain.

In contrast, the bottom part of table shows interesting heterogeneity at the shift-level. We

see that the difference between weekdays and weekends is substantially more prominent than

bnetween rainy and non-rainy days. Regardless of rain, the distributions of both shift revenue

and shift duration on weekends are higher (ie. stochastically dominate) the distributions

on weekdays. On average rainy (non-rainy) evenings, shift revenue is $228.68 ($239.23) on

weekdays, increasing to $331.15 ($310.15) on weekends. Similarly, the average shift duration

is 354 (417) mins. on weekdays, increasing to 549 (504) mins. on weekends. As we see from

the top panel, this higher revcenue and shift duration on weekends does not arise from longer

trips or higher revenue per trip; rather, as the bottom of Table 1 shows, drivers typically make

25% more trips per shift on weekends (28 vs. 20 on rainy evenings, and 26 vs. 19 on non-rainy

evenings). These big differences between weekday and weekend shifts may suggest that drivers’

preferences and motivations for driving may be different across these settings. In our empirical

work, we will estimate the model separately for the different subsamples.

Table 2 shows the results of elasticity regression of the form of Camerer, Babcock, Loewenstein,

and Thaler (1997) and further analyzed (and critiqued) in Farber (2005). Each specification

2Other recent research uses the New York TLC data set to study cab driver behavior. Buchholz (2017) studies
how pricing regulations and location-based competition among taxi drivers leads to spatial equilibrium patterns of
supply and demand. This paper focuses on the intensive-margin of how taxis choose where to search within the
city, while taking the extensive margin (how many cabs supply labor at any one time) to be exogenous. Haggag,
McManus, and Paci (2017) investigate whether drivers learn to accrue income faster over time, finding that tenure
induces modest gains in drivers’ shift earnings.
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TABLE 1. Taxi Trip and Fare Summary Statistics

Category Variable Data Sample Obs. 10%ile Mean 90%ile S.D.

Trip
Statistics

Trip Revenue ($)

Overall 10,007 6.01 12.97 22.42 9.29
M-Th, No Rain 10,011 6.13 12.86 22.00 8.85
M-Th, Rain 10,003 6.40 13.02 22.40 9.60
F-Su, No Rain 10,003 6.01 12.50 20.90 8.64
F-Su, Rain 10,025 6.10 12.91 21.86 9.19

Trip Duration (min.)

Overall 10,007 3.98 11.42 21.32 7.72
M-Th, No Rain 10,011 4.00 11.18 21.00 7.43
M-Th, Rain 10,003 4.00 12.15 22.55 8.66
F-Su, No Rain 10,003 4.00 11.52 21.00 7.52
F-Su, Rain 10,025 4.00 11.61 21.35 7.66

Shift
Statistics

Shift Revenue ($)

Overall 402 132.80 274.64 407.11 107.34
M-Th, No Rain 529 104.84 239.23 341.01 93.70
M-Th, Rain 561 152.30 228.68 287.28 73.23
F-Su, No Rain 385 151.80 310.15 438.63 115.09
F-Su, Rain 284 230.48 331.15 425.72 80.67

Shift Duration (min.)

Overall 402 237.00 463.97 651.53 173.18
M-Th, No Rain 529 183.48 417.34 608.62 163.75
M-Th, Rain 561 257.00 353.98 413.98 114.75
F-Su, No Rain 385 274.00 503.80 669.83 180.66
F-Su, Rain 284 412.08 549.05 666.00 118.81

Trips per shift

Overall - 8 21.9 34 9.6
M-Th, No Rain - 12 18.9 37 8.5
M-Th, Rain - 10 19.5 29 7.2
F-Su, No Rain - 12 25.8 37 9.8
F-Su, Rain - 16 28.0 37 8.5

Taxi trip and fare data come from New York Taxi and Limousine Commission (TLC) and refer to February
2012 data. Our sample extracts trip data from the “evening shift”, or shifts that begin after 4pm and
end before 4am. Thus, Friday evening is treated as a weekend shift. The first set of statistics relates
to individual taxi trips. The second set of statistics relate to cumulative earnings and time spent in
individual driver shifts. Samples are chosen by collecting enough driver shift series (at random) within
the overall sample of all February 2012 data, so that at least 10,000 observations are collected. “Rain”
means at least 1/10 of an inch of rain has been recorded in Central Park during the day in which the shift
begins. The “overall” sample consists of a similar collection procedure, weighed so that the rain/weekday
observations are proportional to their frequency of occurrence across the entire February 2012 period.

regresses log(hours) on log(wage), where “hours” refers to the cumulative time worked by a

driver upon quitting for the day, and “wage” refers to the average hourly earnings achieved

through the day. In these regressions, we derive a measure of labor supply elasticity as the

parameter on log(wage). Specification (1) and (2) implement a simple OLS regression. As both
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TABLE 2. Reduced Form Elasticity Regressions

Dependent variable: Log shift duration

(1) (2) (3) (4)
OLS OLS IV IV

Log Wage -0.106** -1.160** -0.485** -0.135**
(0.008) (0.007) (0.026) (.023)

Weekday Dummy -0.121** -0.115** -0.102** -0.079**
(0.002) (0.001) (0.002) (0.002)

Rain > 1/10” 0.093** 0.090** 0.065** 0.041**
(0.002) (0.002) (0.002) (0.002)

Day shift -0.127** -0.355 -0.045** -0.265**
(0.002) (0.006) (0.004) (0.008)

Driver FE x X x X
N 623,482 623,482 623,482 623,482

Taxi trip and fare data come from New York Taxi and Limousine Commission (TLC) and refer to February
2012 data. Data record the final cumulative hours and average wage earned as of the last trip of each
driver-shift. The IV specifications use the following instruments for wage: the 25th, 50th and 75th
percentile across all driver wages each day, as well as a dummy for day-of-week. Standard Errors
clustered at the driver-shift level.

of the above papers note, since wage is defined as cumulative revenue divided by cumulative

hours worked, there will be a division bias by construction, as the variable hours appears in both

the left- and right-hand sides of the regression. Specifications (3) and (4) utilize instrumental

variables to adjust for endogeneity arising from “denominator bias” in the wages. Specifications

(2) and (4) also control for driver-specific fixed effects.

We see from these regressions that, much like in the previous literature, the OLS specifications

yield negative labor supply elasticities. Instrumenting for wages yields higher elasticities

comparing (3) to (1), and less negative elasticities comparing (4) to (2). In all cases, negative

elasticities conflict with the standard view that labor supply curves slope upwards, absent

sufficiently strong income effects.

2.2. Nonparametric Choice Probabilities. As Farber (2005) cautions, conventional (static) wage

regressions, as in Table 2, are somewhat inappropriate in settings like this where marginal wages

are variable. And indeed, the differences between the OLS and IV regressions suggest that

the data do not speak with one voice regarding the wage elasticities. As a further diagnostic
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TABLE 3. Choice Probabilities by Cumulative Earnings and Hours

Cum. Hours Cumulative Income Earned
Worked $0 $50 $100 $150 $200 $250 $300 $350 $400 $450

0 0.005 0.009 0.032 0.062 0.130 0.125 0.250 1.000 0.500 0.400
1 0.006 0.004 0.009 0.024 0.026 0.035 0.050 0.250 0.000 0.000
2 0.016 0.006 0.006 0.013 0.028 0.060 0.023 0.000 0.000 0.000
3 0.033 0.012 0.009 0.009 0.017 0.035 0.078 0.089 0.000 0.125
4 0.044 0.020 0.014 0.014 0.016 0.027 0.046 0.039 0.026 0.118
5 0.075 0.030 0.022 0.021 0.025 0.031 0.044 0.060 0.054 0.027
6 0.153 0.041 0.036 0.034 0.044 0.052 0.059 0.082 0.097 0.054
7 0.232 0.076 0.061 0.060 0.068 0.081 0.083 0.090 0.106 0.104
8 0.350 0.104 0.094 0.097 0.112 0.124 0.119 0.106 0.111 0.151
9 0.304 0.141 0.136 0.133 0.161 0.179 0.177 0.154 0.145 0.155
10 0.250 0.213 0.173 0.178 0.176 0.208 0.223 0.227 0.232 0.254
11 0.400 0.389 0.145 0.162 0.151 0.165 0.184 0.201 0.242 0.305

Data from TLC Data, February 2012. Each cell shows the fraction of time drivers in each category (of
cumulative hours worked and income earned) quit for the day. Each category reflects values at or above
the category label. For example, income category $100 is read as “$100-199.99” and hour category 1 is read
as “1 hour 0 minutes - 1 hour 59 minutes”. Gray entries denote cells with fewer than 100 observations.

step, we exploit the granularity of our data to show the influence of hours and earnings non-

parametrically in the form of empirical choice probabilities. Table 3 provides a set of quitting

probabilities by cumulative hours worked and cumulative earnings over a shift. This table

reveals a broadly increasing pattern of increasing quit probabilities by both hour and income,

although there are some interesting regions of quitting probabilities decreasing in income (eg. at

$300-$400 and 8-9 hours of work).3 These patterns are similar to those revealed by the hazard

model estimates of Farber (2005).

These nonparametric choice probabilities also highlight the inherent rich variation in hours

worked, earnings, and quitting propensities, which will identify the parameters in our dynamic

optimal stopping model. Next, we describe the novel semiparametric modeling framework and

a new closed-form estimator which we propose for these models. Readers who wish to skip

these methodological details may proceed directly to Section 4.

3The pattern comes with a caveat that the more extreme off-diagonal cells have relatively few observations
despite the abundance of data, as those depicted in gray shading.
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3. SEMIPARAMETRIC DYNAMIC DISCRETE CHOICE: A NEW CLOSED FORM ESTIMATOR

In this section, we present our new closed-form estimator for dynamic discrete-choice models,

which we will use for the estimation of the model parameters for the optimal stopping model

from the previous section. Since this estimator applies to a broad class of binary dynamic discrete

choice models, we will discuss it in some degree of generality, instead of referring specifically to

the taxicab labor supply model.

Consider the single-agent dynamic optimization problem (1) from the previous section.

Following a majority of the existing applications of dynamic discrete-choice models, we assume

that the single-period payoff functions are linear functions of parameters θ:

ut(Yt, Xt, εt) =

 W1(Xt)
ᵀθ1 + ε1t, if Yt = 1;

W0(Xt)
ᵀθ0 + ε0t, if Yt = 0.

(3)

W0(Xt) ∈ Rk0 (resp. W1(Xt) ∈ Rk1) denotes known transformations of the state variables Xt

which affect the per–period utility from choosing Yt = 0 (resp. Yt = 1), and εt ≡ (ε0t, ε1t)
ᵀ ∈ R2

are the agent’s action-specific payoff shocks.4 In what follows, let W (X) ≡ {W0(X),W1(X)}

denote the full set of transformed state variables at X . For notational simplicity, we use the

shorthandWd forWd(X) (d = 0, 1) and suppress the explicit dependence upon the state variables

X when possible. The structural parameters which are of interest are θd ∈ Rkd , for d ∈ {0, 1}.5

A novel feature of our analysis, relative to much of the existing literature in dynamic discrete-

cyoice models, is that we do not assume the distribution of the utility shocks (ε0t, ε1t) to be

known, but treat their distribution as a nuisance element for the estimation of θ. In a dynamic

setting, the distribution of utility shocks also plays the role of agents’ beliefs about the future

evolution of state variables (i.e. they are a component in the transition probabilities fX′,ε′|X,ε,Y )

and hence parametric assumptions on this distribution are not innocuous.6

4The utility of action 0 is not normalized to be zero for reasons discussed in Norets and Tang (2014).
5The discount factor β is assumed to be known for purposes of estimation, which is commonplace in the applied

DDC literature. See Magnac and Thesmar (2002) and Fang and Wang (2015), among others, for discussion on the
identifiability of β.

6In a static setting, however, such flexibility may not be necessary, as a flexible specification of u(X,Y ) may be
able to accommodate any observed pattern in the choice probabilities even when the distribution of utility shocks is
parametric. McFadden and Train (2000) show such properties for the mixed logit model.
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To our knowledge, only a handful of papers consider estimation of dynamic models in which

the error distribution is left unspecified. Aguirregabiria (2010) shows the joint nonparametric

identification of utilities and the shock distribution in a class of finite-horizon dynamic binary

choice models, which may not apply to infinite-horizon models as considered in this paper.

Norets and Tang (2014) focus on the discrete state case, and derive (joint) bounds on the error

distribution and per-period utilities which are consistent with an observed vector of choice

probabilities. In contrast, with continuous state variables, we show how identification and

estimation of the error distribution is possible.

Chen (2017) considers the identification of dynamic models, and, as we do here, obtains

estimators for the model parameters which resemble familiar estimators in the semiparametric

discrete choice literature. His approach exploits exclusion restrictions (that is, that a subset of the

state variables affect only current utility, but not agents’ beliefs about future utilities). Blevins

(2014) considers very general dynamic models in which agents can make both discrete and

continuous choices, and shows, under exclusion restrictions,the nonparametric identification of

both the per-period utility functions as well as the error distribution. Our approach eschews

exclusion restrictions; rather, we exploit the optimality conditions to derive a novel recursive

characterization of the quantile function for the unobserved shocks which allows us to identify

and estimate both the model parameters as well as the shock distribution.

3.1. The value function: two different characterizations. Let V (X, ε) be the value function

given X and ε. Assuming stationarity, we drop the t subscripts and use primes (′) to denote next

period values. The Bellman equation is

V (X, ε) = maxy∈{0,1}
{

[u(y,X, ε) + βE[V (X ′, ε′)|X, ε, Y = y]
}
, (4)

Assumption A. For all s ≥ 1, E
(
‖W [s]

d ‖|X
)
<∞ a.s., where ([s]) denotes the next s period values.

Assumption B (Conditional Independence). The law of motion satisfies: FX′,ε′|X,ε,Y = Fε′×FX′|X,Y .

Moreover, Fε′ = Fε.

Assumption A is a weak assumption which holds, for instance, when Wd(·) are bounded

functions. Assumption B establishes that the shocks ε are fully independent of the observed
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state variables X .7 Under this assumption, the value function can be written as

V (X, ε) = max
{
W ᵀ

1 θ1 + ε1 +βE[V (X ′, ε′)|X,Y = 1], W ᵀ
0 θ0 + ε0 +βE[V (X ′, ε′)|X,Y = 0]

}
. (5)

Let η = ε0 − ε1. Then the equilibrium decision maximizing the value function can be written as

a cutoff rule Y = 1{η ≤ η∗(X)}, where the cutoff η∗(X) is defined as

η∗(X) ≡W ᵀ
1 θ1 −W

ᵀ
0 θ0 + β

{
E[V (X ′, ε′)|X,Y = 1]− E[V (X ′, ε′)|X,Y = 0]

}
. (6)

Taking expectations (over ε) in Eq. (5), we derive the “ex-ante” Bellman equation:

V e(X) = ue(X) + β · E[V e(X ′)|X]. (7)

where V e(X) ≡ E[V (X, ε)|X] and

ue(X) ≡ E[u(y,X, ε)|X] = E(ε0)+W
ᵀ
1 θ1·Fη

(
η∗(X)

)
+W ᵀ

0 θ0·[1−Fη
(
η∗(X)

)
]−E

{
η·1[η ≤ η∗(X)]

}
.

Mathematically, the ex-ante Bellman equation (7) is a Fredholm Integral Equation of the second

kind (FIE–2),8 a well-studied class of integral equations, for which solutions are well-known.

Srisuma and Linton (2012) pioneered the use of tools for solving type 2 integral equations for

estimating dynamic discrete-choice models, and the following Lemma builds on their findings.

Lemma 1. Suppose assumptions A and B hold. Then, ∀x ∈ SX , we solve the FIE eq. (7) to obtain

V e(x) = ue(X) +
∞∑
s=1

βs · E[ue(X [s])|X] (8)

That is, the ex-ante value function can equivalently be characterized by the Bellman equation

(7), or as the discounted sum of current and future expected utilities (8). This is essentially an ex-

ante version of Bellman’s principle of optimality. Moreover, these two equivalent representations

of the V e(· · · ) underlie the two prominent approaches for estimating parametric dynamic discrete-

choice models; namely, the Rust (1987) nested-fixed point approach iterates over Eq. (7), while

7While this rules out heteroskedasticity in the unobserved shocks, it is possible, following Blevins (2014), to
allow for some degree of heteroskedasticity by dividing the state variables into two groups X = (XA, XB) such that
ε ⊥ XB |XA. The identification and estimation procedure described in this paper follow through, with the additional
conditioning on XA at every step.

8See e.g. Zemyan (2012). Essentially, FIE–2 is a linear equation system in functional space, which is well–known
to have a unique analytic solution under some sufficient and necessary conditions.
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the two-step approaches based on on conditional choice probabilities (CCP’s) use Eq. (8) to

“forward simulate” the value function.9

Both the nested-fixed point and two-step CCP estimation approaches require the researcher

to specify Fη, the distribution of the utility shocks. The key to our semiparametric identification

approach is to show that the quantile function (the inverse of the CDF) of η also satisfies a

Fredholm type-2 integral equation. This allows us to express the distribution of η in terms of

quantities (such as the CCP’s) estimable directly from the data, as we describe next.

3.2. A “Bellman-like” characterization of the quantile function of η. Let p(x) = P(Y = 1|X =

x) denote the conditional choice probability given X .

Assumption C. η is continuously distributed with the full support R.

Assumption D. p(X) is continuously distributed with support on a closed interval, i.e., [p, p] ⊆ [0, 1].

Assumption C is a weak assumption ensuring that the choice probabilities p(X) are bounded

away from 0 and 1 for all X .10 Assumption D requires the state variables X to contain some

continuous components.11 By Assumption C, Fη(·) is strictly increasing on its support R. Hence

we can unambiguously define the quantile function Q(·) = F−1η (·).

Lemma 2. Suppose assumptions A to D hold. For each p ∈ [p, p], let z(p) = E[φ(X)|p(X) = p]. Then

we have an FIE-2 for the quantile function Q(·):

Q(p) = z(p)ᵀ · θ + β

∫ p

p
Q(τ) ·Π(τ, p;β)dτ, ∀p ∈ [p, p] (9)

where Π(τ, p;β) ≡
∑∞

s=1 β
s−1[Fp(X[s])|p(X),Y (τ |p, 1)− Fp(X[s])|p(X),Y (τ |p, 0)].

The proof of this result, given in the Appendix, follows from algebraic manipulations of

Eqs. (6) and (8). To provide intuition for Lemma 2, recall that the state variables X evolve

9(See e.g. Hotz and Miller, 1993; Bajari, Benkard, and Levin, 2007; Aguirregabiria and Mira, 2007; Pakes, Ostrovsky,
and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008; Hong and Shum, 2010).

10It is implied in parametric discrete choice models in which η follows a logistic distribution, for instance.
11Letting XD (resp. XC ) denote the discrete (resp. continuous) components of X , a more primitive statement of

Assumption D would be that, for fixed values of the discrete components (say) XD = xd, the support of p(XC , xd) is
a closed interval in [0, 1]. In contrast, when p(X) only has discrete variation (which typically arises when the state
variables X themselves have only discrete variation), Norets and Tang (2014) show that the distribution of η, even if
it is continuous, is typically only identified at a set of isolated points.
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as a first-order Markov process, along the optimal dynamic decision path. As a result, the

CCP’s p = P (Y = 1|X) likewise evolve as a first-order Markov process. Roughly speaking,

then, Π(p′, p;β) represents the difference in the Markovian laws of motions for these choice

probabilities between the two alternative choices Y = 1 and Y = 0. Since the CCP’s p(Y |X) can

be estimated directly from the data, so can the law of motion Π(p′, p;β). Then Eq. (9) expresses,

in recursive “Bellman-like” form, the quantile function Q(p) at the current choice probability p

as the sum of a current period term z(p)ᵀ · θ involving p, and a discounted term involving the

expectation of the quantile function Q(p′) at the next period’s stochastic CCP.

By analogy with the solution to the value function in Eq. (8) as the discounted sum of future

utilities, we expect that by solving Eq. (9), we can express Q(p), the quantile function at the

current value of p, as the discounted sum of current-period terms similar to z(·)′θ, evaluated at

a sequence of current and future values of CCP’s:
{
p, p′, p

′′
, p
′′′
, · · ·

}
. Since these terms are all

linear in θ, we expect then that Q(p) itself will be linear in θ, as Lemma 3 confirms:

Lemma 3. Suppose assumptions A to D hold, and β2 ·
∫ p
p

∫ p
p Π2(p′, p;β)dp′dp < 1 (*). Then, on [p, p],

Q(·) is a linear function of the finite dimensional parameter θ:

Q(p) =

{
z(p) + β

∫ p

p
R(p′, p;β) · z(p′)dp′

}ᵀ
· θ ≡ B(p)ᵀθ, ∀ p ∈ [p, p] (10)

whereR(p′, p;β) =
∑∞

s=1(−β)s−1Ks(p
′, p;β), in whichKs(p

′, p;β) =
∫ 1
0 Ks−1(p

′, p̃;β)·Π(p̃, p;β)dp̃

and K1(p
′, p;β) = Π(p′, p;β).

The condition (*) in Lemma 3 ensures that the mapping in eq. (9) is a contraction, so that the

solution is unique. While this is a high-level condition on the law of motion of the (endogenous)

choice probabilities structural primitives, it is testable in principle as this law of motion can be

estimated from the data.

3.3. The Closed-Form Estimator. The linearity of Q(p) in θ, as shown in Lemma 3, is critical

for deriving a closed-form estimator for θ. Recall that P(Y = 1|X) = Fη
(
Q(p(X))

)
. This leads

to the following linear (in θ) index specification for the choice probabilities in the dynamic
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discrete-choice model:12

P(Y = 1|X) = Fη
(
m(X)ᵀ · θ

)
, (11)

where

m(X) = φ(X)−
∞∑
s=1

βs

{
E
[ ∫ p(X[s])

p
B(τ)dτ

∣∣X,Y = 1
]
− E

[ ∫ p(X[s])

p
B(τ)dτ

∣∣X,Y = 0
]}

. (12)

The structure of the DDC model as given in Eq. (11) is identical to a static binary choice

model with unknown distribution of the error term, thus making available the wide array

of semiparametric estimators for this model which have been proposed in the econometrics

literature. (See, among many others, Manski (1975, 1985), Powell, Stock, and Stoker (1989),

Ichimura and Lee (1991), Horowitz (1992), Klein and Spady (1993), and Lewbel (1998).) From

these papers (see (Horowitz, 2009) for a summary), we know that θ can be estimated up to

location and scale, which is ensured by the next two assumptions.13

Assumption E. m(X) is continuously distributed with a joint probability density function, denoted by

fm(·). The matrix E[m(X)m(X)ᵀ] is invertible.

Assumption F. ‖θ‖ = 1.

The first half of Assumption E requires at least one argument of X to be continuously

distributed, and the second half is a testable rank condition. Assumption F imposes a scale

normalization on θ.

While a number of semiparametric estimators are available for the binary choice model in

Eq. (11), we utilize the Powell, Stock, and Stoker (1989) estimator, as it provides the important

advantage of being a closed-form (non-iterative) estimator for θ. PSS show that θ can be

estimated by −2EY · ∇fm(m); that is, as a weighted gradient of the density function of m(X),

the index functions in Eq. (11). Following PSS, we approximate the density function fm(·)

12This comes from plugging Eq. (9) into Eq. (17) in the Appendix.
13For notational simplicity, hereafter we assume the state vector X does not include a constant term in the

semiparametric setting. Any constant term in the utility function will be absorbed by the error term since the
distribution of the latter is left unspecified.

15



nonparametrically using kernel functions, resulting in the estimator:

θ̂ = − 2

T (T − 1)

T∑
t=1

∑
s 6=t

[
1

hkθ+1
θ

×∇Kθ

(
m̂(Xt)− m̂(Xs)

hθ

)
× Ys

]
. (13)

where m̂(X) denotes a nonparametric estimate of the m(X) functions, and Kθ and hθ denote,

respectively, a kernel function and bandwidth.

Full details of the estimation procedure, are provided in Appendix A. Despite the math-

ematical complexity of the index functions m(X) (cf. Eq. (12)), the computational curse of

dimensionality associated with our estimator is no more than that associated with the usual

CCP-based two-step estimators (as in Hotz and Miller (1993)). Specifically, the potential high-

dimensionality of the state variables X does not affect the computation of the quantile function

Q(·) at all, because X enters this function only through the choice probabilities p(X) which are

scalar quantities (cf. Eq. (10)).

In Appendix A, we also derive the asymptotic normality for this estimator of θ, which justifies

the use of bootstrap in computing the standard errors in our empirical work below. A Monte

Carlo exercise of our estimator, which is also in Appendix A, demonstrates that our estimator

works well even in moderately-sized samples.

4. ESTIMATES OF OPTIMAL STOPPING MODEL FOR NYC TAXI DRIVERS

In this section we discuss the empirical results for the dynamic optimal stopping model of

taxicab driver labor supply, which we presented in Section 2. The estimates of the structural

payoff parameters are reported in Table 4. We considered four specifications, which differ in

the nonlinear terms which we include in the model. Specification (1) allows a quadratic term in

hours to enter the (dois)utility of driving. Specification (2) includes a quadratic term in earnings

to enter the utility from quitting. Specification (3) adds quadratic terms on both hours and

earnings. Finally, specification (4) replaces the quadratic earnings of specification (2) with a

piecewise linear specification to estimate non-linear payoffs in income.

For estimation, we scaled the cumulative time variable to be in units of five-minutes. We find

that the terminal utility upon ending a shift grows with earnings, which is weighed against a

negative effect of cumulative hours worked, the latter accumulating in each period of continued

work. It is important to note that the relatively small coefficient on hours-worked is to be
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TABLE 4. Parameter Estimates

Parameter Description (1) (2) (3) (4) Logit

θu Earnings (upon quitting) 0.9907 0.7560 0.9549 0.8818 0.8450
(0.0118) (0.0463) (0.0276) (0.0658) (0.4579)

θu,03 Earnings ∗(earnings ≥ 300)
−0.2946 −0.2474 −0.0229
(0.0670) (0.0648) (0.2279)

θu,04 Earnings ∗(earnings ≥ 400)
−0.2240 −0.0264 0.2509
(0.0619) (0.0697) (0.1984)

θc,01 Cumul. hours (while working) −0.1359 −0.5399 −0.1252 −0.1821 −0.1981
(0.0759) (0.1031) (0.0778) (0.0980) (0.4149)

θc,02 Cumul. hours squared (while working) −0.0004
(0.0002)

θc,03 Cum. hours ∗(hours ≥ 7)
−0.3673 −0.2923 −0.4267
(0.0631) (0.0851) (0.2836)

θc,04 Cum. hours ∗(hours ≥ 9)
−0.0953 −0.0951 −0.0365
(0.0439) (0.0517) (0.1982)

Note: Standard errors are computed by first sampling, with replacement, from each driver-shift (on
average there are roughly 24 observations per driver-shift) to generate 200 resamples of approximately
identical size to our original sample. We re-estimate the model for each resample and report the standard
deviation of estimates. Standard errors are shown in parentheses.

expected, since this utility accrues in every period that a driver continues working, while the

utility benefit of earned income is only received once, when the driver stops working for the

day. In specifications (3) and (4), which allows the contribution of earnings and hours to utility

to change at large values, we see that the hours worked has an increasingly deterimental effect

on utility while working, which is consistent with a increase marginal disutility from driving.

On the other hand, the positive coefficient on earnings becomes smaller in magnitude at higher

levels of earnings, implying a decreasing marginal utility from income. Below we will see how

these features play out in drivers’ implied quitting rules.

The final column in Table 4 presents estimates of specification (4), assuming a logit distri-

bution for Fη and estimated using the Rust (1987) Nested Fixed Point procedure. For ease of

comparison with the semiparametric estimates, we normalized the coefficient vector for the

Logit specification to have a unitary norm, and report the normalized values. For most of the

parameters, the logit and semiparametric estimates coincide. There are big differences, though,

in the estimates of θu,03 and θu,04, with the logit estimates implying an increasing marginal utility
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from earnings; however, the standard errors for these logit estimates are quite large compared to

the semiparametric estimates, which cautions against drawing strong conclusions from them.14

TABLE 5. Parameter Estimates

Spec. Parameter Description Weekday Weekend
No Rain Rain No Rain Rain

(4)

θu Earnings (upon quitting) 0.6673 0.8416 0.7867 0.8998

θu,03 Earnings ∗(earnings ≥ 300)
−0.4715 −0.2724 −0.1781 −0.0099

θu,04 Earnings ∗(earnings ≥ 400)
−0.0742 0.4583 0.4356 −0.1411

θc,02 Cumul. hours (while working) −0.3730 −0.0260 −0.2192 −0.4058

θc,03 Cum. Hours ∗(hours ≥ 7)
−0.4219 −0.0812 −0.3170 −0.0077

θc,04 Cum. Hours ∗(hours ≥ 9)
−0.0990 −0.0105 −0.1051 −0.0753

Note: Standard errors are computed by first sampling, with replacement, from each driver-shift (on
average there are roughly 24 observations per driver-shift) to generate 200 resamples of approximately
identical size to our original sample. We re-estimate the model for each resample and report the standard
deviation of estimates. Standard errors are shown in parentheses.

In Table 5, we present the results estimated on the four subsamples broken down by week-

day/weekend and rain/no-rain, as shown in Table 1. At face value, the parameter estimates

are quantitatively quite similar across the subsamples, for each of the specifications. However,

because of the normalization ||θ|| = 1 required for the semiparametric estimation procedure,

one cannot compare the magnitudes of the parameter estimates across specifications. There are

nevertheless a few conclusions we cxan draw. Across all specifications, and all subsamples, the

coeffiient on earnings, θu, is largest in magnitude. However, for specifications (2) and (4), we

see that for the “weekday/rain” and “weekend/no-rain” subsamples, the marginal utility from

earnings is estimated to increase at higher levels of earnings.

While the empirical specifications in Table 4 are simple, the behavioral implications of the dy-

namic model, which we illustrate in Figure 1, are quite rich. Eqs. (11,12) above show thatm(X)′θ

14Furthermore, we also found that the logit estimates were quite sensitive to starting values in the optimization
proedure.
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FIGURE 1. Estimated Choice-specific Value Function Differences: V1(X)− V0(X)
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We report the estimates of the m(X)′θ functiondefined in Eqs. (11,12) for X = (hours worked, income).
For fixed values of hours-worked, we graph m(X)′θ as a function of income. Stars (*) mark average
income earned by drivers for a given hours-worked, as observed in the raw data.

corresponds to the difference in the choice-specific value functions for quitting and continuing,

m(X)′θ = V1(X) − V0(X), at each value of the state variables X = (hours worked, income).

Hence, in Figure 1, we plot the estimated m(X)′θ function at different levels of hours-worked,

where estimates come from Specification 4. At smaller values for hours worked (the bottom

three lines in Figure 1), the curves are upwardly-sloping in cumulative income. That is, holding

hours fixed, a driver is more likely to quit at higher than lower income, implying a negative

wage elasticity, which is consistent with the behavioral “income targeting” hypothesis. At

higher-values of hours worked, however, the curves begin to slope downward, implying a

positive elasticity. Figure 2 captures similar patterns by shows iso-contour lines for the difference

in choice-specific value functions (panel I) and conditional choice probabilities (panel II) over

a grid of income and hours. Again we see that by holding one dimension fixed and varying

the other, we can reproduce both positive and negative “wage elasticities”. While the model is
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FIGURE 2. Value Function Differences and Choice Probabilities

I. V1(X)− V0(X) II. P (Y |X)
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This figure depicts estimated results, showing iso-contours for the difference in choice-specific value
functions (panel I) and conditional choice probabilities (panel II) over a grid of income and hours.

agnostic about the link between wage and hours per-se, the mostly horizontal gradients to these

contours nevertheless suggest that hours are more predictive of drivers’ quitting probabilities

than incomes. Where the gradients are horizontal, incomes play a larger role.

In summary, then, we find that both “behavioral” and “neoclassical” wage responses are

present in the data, with the behavioral income-targeting story explaining shorter shifts, and the

standard neoclassical wage response explaining the longer shifts. At face value, these results

are consistent with what in a static labor supply context would be called negative or positive

wage elasticities, and hence they may offer a partial reconciliation of the divergent reduced-form

results in the existing literature. Nevertheless, a point of emphasis here is that once taxi drivers’

quitting decision are (correctly, we argued) modeled in a dynamic optimal stopping framework,

the notion of wage makes less sense than in a static model, in which the wage rate is taken to be

exogenous by the drivers and unchanging throughout the course of the day. Hence, implied

wage elasticities are not natural to compute in our modeling framework, but the results here

highlight how our (relatively simple) dynamic framework is rich enough to generate behavior

which resembles both negative and positive wage elasticites from a static point of view.

Finally, in Figure 3 we graph the implied quantile function for the difference in utility shocks

η ≡ ε1 − ε0, using our estimates from Specification 4. The density of p̂ is plotted as well, which

highlights a range over which choice probabilities are actually observed. Outside of this range,
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FIGURE 3. Estimated Quantile Function and Calibrated Parametric Approximations

0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
140

160

180

200

220

240

260

280

Es
tim

at
ed

 Q
(p

) [
so

lid
 li

ne
]

0

5

10

15

20

25

30

35

40

Ke
rn

el
 D

en
si

ty
 o

f P
 [d

as
he

d 
lin

e]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

Estimated quantile
Normal
Log-normal
Gamma
Logistic

Top panel: estimated quantile function Q(p) on the support of [0, 0.3], depicted as the solid, black line.
The dashed line is the kernel density estimate of P .
Bottom panel: estimated nonparametric quantile function from our procedure Q(p), along with the
best-fitting quantile functions from four parametric distributional families (Normal, Log-normal, Gamma,
Extreme Value).

we are unable to identify the corresponding quantile function, and in the figure the blue dotted

lines represent possible values of the quantile function outside the identified range. Using

the density of p̂ as a guide, we can recover the quantile function for the range of percentiles
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approximated by [0.01, 0.30]. The shocks take (even very large) positive values, with magnitudes

in the hundreds; this may imply that there is a large fixed positive component to the terminal

utility from quitting.15

This feature that, as shown in Figure 3, our approach only yields an incomplete estimate

of the error distribution, may be problematic for evaluating some counterfactual policies. For

certain counterfactuals, knowledge of the entire distribution of the utility shocks is required,

as this distribution feeds agents’ beliefs about the future. One possibility may be to use our

estimated quantile function, along the restricted range for which we obtain identification, to

calibrate a distribution function for η along its full unrestricted range using distributions from

parametric families.

This is illustrated in the bottom panel of Figure 3, where we plot the best-fitting quantile func-

tions from four popular parametric families: Normal, Log-Normal, Gamma, and Extreme-Value.

Apparently, all four alternative fit the estimated nonparametric quantile function reasonably

within the identified range of [0,0.3], but diverge appreciably outside of this range. It is an open

question how robust counterfactuals might be to different specifications of the utility shock

distribution at these large quantiles. It is interesting, however, that none of the fitted parametric

quantile functions are able to match the “convex” shape of the nonparametric quantile function

along its identified range.16

5. CONCLUSIONS

We develop a new closed-form estimator for semiparametric dynamic discrete-choice models.

We apply this estimator to a new and comprehensive dataset of New York City taxi drivers (the

largest single taxicab market in the United States). We take a new approach to a long-running

question of drivers’ wage elasticities by modeling taxicab drivers’ labor supply decisions as

emerging from a dynamic optimal stopping problem.

15In estimating the quantile function, we have not fixed the scale and location for the utility shock difference η;
we have this flexibility because we imposed a scale normalization on the parameter vector β. In contrast, parametric
estimation approaches for DDC models typically do not impose normalization on the parameters, but implicitly
the researcher must set the scale and location for the utility shocks (a common assumption is zero mean and unit
variance).

16This may imply that truncated versions of the parametric distribution may fit our estimated quantile function
better.
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TABLE 6. Counterfactual Choice Probabilities For Quitting

Benchmark scenario (λ = 1)
Cum. Mins Cumulative Income Earned

Worked $20 $49 $76 $104 $133 $163 $196 $232 $277 $352
20 0.0027 0.0042 0.0074 0.0129 0.0232 0.0412 0.0789 0.1597 0.5239 0.7433
65 0.0041 0.0062 0.0106 0.0175 0.0301 0.0511 0.0927 0.1779 0.5453 0.7565
110 0.0061 0.0089 0.0144 0.0229 0.0375 0.0610 0.1056 0.1938 0.5624 0.7669
155 0.0090 0.0128 0.0197 0.0298 0.0464 0.0719 0.1187 0.2088 0.5775 0.7760
204 0.0137 0.0187 0.0273 0.0391 0.0574 0.0843 0.1319 0.2219 0.5879 0.7815
255 0.0222 0.0289 0.0400 0.0542 0.0749 0.1038 0.1526 0.2428 0.6058 0.7919
310 0.0379 0.0473 0.0616 0.0788 0.1020 0.1322 0.1802 0.2677 0.6232 0.8014
370 0.0733 0.0874 0.1070 0.1287 0.1554 0.1873 0.2334 0.3131 0.6487 0.8135
445 0.1961 0.2236 0.2580 0.2927 0.3310 0.3716 0.4219 0.4969 0.7779 0.8877
565 0.1386 0.1621 0.1931 0.2254 0.2624 0.3031 0.3560 0.4374 0.7429 0.8688

Higher competition scenario (λ = 0.5)
Cum. Mins Cumulative Income Earned

Worked $20 $49 $76 $104 $133 $163 $196 $232 $277 $352
20 0.0081 0.0123 0.0204 0.0325 0.0521 0.0814 0.1327 0.2265 0.5943 0.7867
65 0.0116 0.0170 0.0271 0.0413 0.0635 0.0952 0.1485 0.2434 0.6091 0.7951
110 0.0162 0.0230 0.0352 0.0516 0.0760 0.1096 0.1642 0.2592 0.6216 0.8020
155 0.0231 0.0318 0.0466 0.0657 0.0929 0.1288 0.1850 0.2802 0.6384 0.8115
204 0.0325 0.0433 0.0610 0.0828 0.1123 0.1500 0.2068 0.3012 0.6539 0.8201
255 0.0460 0.0595 0.0804 0.1051 0.1372 0.1766 0.2339 0.3271 0.6726 0.8304
310 0.0652 0.0816 0.1057 0.1330 0.1671 0.2075 0.2644 0.3554 0.6919 0.8411
370 0.0939 0.1132 0.1398 0.1689 0.2037 0.2437 0.2983 0.3847 0.7099 0.8506
445 0.1721 0.1974 0.2295 0.2624 0.2994 0.3392 0.3898 0.4670 0.7600 0.8779
565 0.1386 0.1621 0.1931 0.2254 0.2624 0.3031 0.3560 0.4374 0.7429 0.8688

Higher fares scenario (λ = 1.5)
Cum. Mins Cumulative Income Earned

Worked $20 $49 $76 $104 $133 $163 $196 $232 $277 $352
20 0.0012 0.0018 0.0032 0.0056 0.0107 0.0209 0.0463 0.1115 0.4581 0.7000
65 0.0020 0.0029 0.0049 0.0081 0.0145 0.0267 0.0555 0.1261 0.4824 0.7172
110 0.0032 0.0046 0.0072 0.0112 0.0188 0.0324 0.0630 0.1350 0.4906 0.7209
155 0.0054 0.0074 0.0111 0.0165 0.0258 0.0416 0.0752 0.1513 0.5121 0.7349
204 0.0094 0.0124 0.0175 0.0245 0.0358 0.0537 0.0893 0.1673 0.5293 0.7456
255 0.0169 0.0214 0.0287 0.0380 0.0517 0.0716 0.1083 0.1861 0.5444 0.7538
310 0.0326 0.0399 0.0507 0.0636 0.0808 0.1035 0.1412 0.2170 0.5673 0.7661
370 0.0709 0.0836 0.1009 0.1198 0.1428 0.1699 0.2088 0.2784 0.6055 0.7836
445 0.2099 0.2392 0.2758 0.3124 0.3524 0.3944 0.4459 0.5207 0.7930 0.8961
565 0.1387 0.1622 0.1931 0.2254 0.2624 0.3031 0.3559 0.4373 0.7429 0.8687

Data from TLC Data, February 2012. Each cell shows estimates of optimal choice probabilities for model
parameters in Specification (4), and error distribution Gη given by the Logistic distribution as shown in
the bottom panel of Figure 3. 23



TABLE 7. Counterfactual Shift Durations and Revenues

λ Revenue Duration Revenue Duration Revenue Duration
Mean Mean Median Median StDev StDev

0.50 125.74 40.63 125.95 38.11 45.60 16.28
0.75 136.48 47.70 140.71 48.51 54.26 17.48
1.00 178.65 60.67 187.86 59.40 59.62 19.08
1.25 207.37 67.05 223.00 71.14 58.60 19.87
1.50 226.56 71.82 223.00 71.14 55.58 19.16

Our results reconcile debates in the previous literature to a certain extent. Estimates of drivers’

optimal stopping rules show that, holding hours worked, drivers are more likely to quit at

higher levels of cumulative income. In reduced-form, such quitting rules can generate both

“positive” and “negative” wage elasticities, depending on the specifics of the stochastic fare

process. More broadly, these findings suggest that once the inherent dynamic optimization

aspect of taxicab drivers’ labor supply decisions are accounted for, there is no need to add

non-standard behavioral parameters to the model to explain their quitting behavior.

Methodologically, the analysis in this paper has opened possibilities for the use of classic

closed-form estimators from the semiparametric literature, which were proposed for estimation

of static models, to dynamic models. We will continue exploring these possibilities in future

work.
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APPENDIX A. SEMIPARAMETRIC ESTIMATION: FULL DETAILS

In this section, we providew full details and asymptotic results for our closed-form estimator for θ

as defined in Eq. (13) of the main text. For expositional simplicity, we assume all variables in X are

continuously distributed. A mixture of continuous and discrete regressors can be accommodated at the

expense of notation. Let {(Yt, Xᵀ
t )ᵀ : t = 1, · · · , T} be our sample of the Markov decision process. Our

estimation procedure parallels the identification strategy, which takes multiple steps. Throughout, we

use K and h to denote a Parzen–Rosenblatt kernel and a bandwidth, respectively.

First, we nonparametrically estimate the choice probabilities p(·) and the generated regressor φ(·). In

particular, let

p̂(Xs) =

∑T
t=1 Yt ×Kp

(
Xt−Xs
hp

)
∑T
t=1Kp

(
Xt−Xs
hp

) , ∀s = 1, · · · , T.

As is standard, we choose an optimal bandwidth, i.e., hp = 1.06 × σ̂(X) × T−
1

2ι+k , where σ̂(X) is the

sample standard deviation of Xt and ι (ι ≥ 2) is the order of the kernel function Kp. For example, if we

choose Kp to be the pdf of the standard normal distribution, then ι = 2. In addition, the support [p, p] of

p(X) can be estimated by [min1≤s≤T p̂(Xs),max1≤s≤T p̂(Xs)].

Moreover, recall that the transformed state variables Wd(X) (d = 0, 1) are known. Then, for s =

1, · · · , ST , where ST = T − `T for some integer `T satisfying `T → +∞ and ST → +∞ as T → +∞, let

δdt =
∑`T
s=1 β

s ·Wd(Xt+s)Y
d
t+s(1− Yt+s)1−d. For s = 1, · · · , T , let further

φ̂d(Xs) = (−1)d+1Wd(Xs) +

∑ST
t=1 δdt ·Kφ

(
Xt−Xs
hφ

)
1(Yt = 1)∑ST

t=1Kφ

(
Xt−Xs
hφ

)
1(Yt = 1)

−

∑ST
t=1 δdt ·Kφ

(
Xt−Xs
hφ

)
1(Yt = 0)∑ST

t=1Kφ

(
Xt−Xs
hφ

)
1(Yt = 0)

.

Similarly, we can choose hφ in an optimal way. In above expression, the summation includes only the

first ST observations. This is because δdt is not well defined for all t > ST . In practice, we choose `T

in a way such that δdt −
∑+∞
s=1 β

sWd(Xt+s)Y
d
t+s(1− Yt+s)1−d is negligible relative to the sampling error,

which is feasible because the former converges to zero at an exponential rate.

In the second stage, we estimate z(·) and B(·) on the support [p, p]. First, let

ẑ(p) =

∑T
t=1 φ̂(Xt) ·Kz

(
p̂(Xt)−p

hz

)
∑T
t=1Kz

(
p̂(Xt)−p

hz

) , ∀ p ∈ [ min
1≤s≤T

p̂(Xs), max
1≤s≤T

p̂(Xs)].

According to Guerre, Perrigne, and Vuong (2000, Theorem 2), we choose an oversmoothing bandwidth

hz , since p(X) is nonparametrically estimated. Specifically, hz = 1.06× σ̂(p(X))× T−
1

2ι+3 .
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Let (b∗1(·), · · · , b∗kθ (·)) denote the components of B(p) in Eq. (10). For ` = 1, · · · , kθ, b∗` (·) satisfies

b`(p) + β

∫ p

p

∫ p′

p

b`(τ)dτ · π(p′, p;β)dp′ = z`(p). (14)

be the sequence of solutions supported on [p, p] To estimate b∗` (·) on the support [p, p], we note that eq.

(14) can be rewritten as

b`(p) +

∞∑
s=1

βs · E
[ ∫ p(X[s])

p

b`(τ)dτ
∣∣p(X) = p, Y = 1

]

−
∞∑
s=1

βs · E
[ ∫ p(X[s])

p

b`(τ)dτ
∣∣p(X) = p, Y = 0

]
= z`(p).

This suggests an estimator b̂∗` (·) that solves

b̂∗` (p) +

∑ST
t=1 ξt(b̂

∗
` )×Kξ

(
p̂(Xt)−p

hξ

)
× Yt∑ST

t=1Kξ

(
p̂(Xt)−p

hξ

)
× Yt

−

∑ST
t=1 ξt(b̂

∗
` )×Kξ

(
p̂(Xt)−p

hξ

)
× (1− Yt)∑ST

t=1Kξ

(
p̂(Xt)−p

hξ

)
× (1− Yt)

= ẑ`(p),

where ξt(b`) =
∑`T
s=1 β

s
∫ p̂(Xt+s)
p

b`(τ)dτ for which the integration can be computed by numerical integra-

tion. Similarly, hz = 1.06 × σ̂(p(X)) × T−
1

2ι+3 is chosen sub-optimally. A numerical solution of b̂∗` can

obtain using the iteration method: Let b̂[0]` = ẑᵀ` (p). Then we set

b̂
[1]
` (p) = ẑᵀ` (p)−


∑ST
t=1 ξt(b̂

[0]
` )×Kξ

(
p̂(Xt)−p

hξ

)
× Yt∑ST

t=1Kξ

(
p̂(Xt)−p

hξ

)
× Yt

−

∑ST
t=1 ξt(b̂

[0]
` )×Kξ

(
p̂(Xt)−p

hξ

)
× (1− Yt)∑ST

t=1Kξ

(
p̂(Xt)−p

hξ

)
× (1− Yt)

 .

Repeat such an iteration until it converges. Then we obtain b̂∗` (·) = b̂
[∞]
` (·) on [p̂, p̂].

Next, we obtain the single–index variables m(Xs) by: for ` = 1, · · · , kθ,

m̂`(Xs) = φ̂`(Xs)−


∑ST
t=1 ξt(b̂

∗
` )×Km

(
Xt−Xs
hm

)
× Yt∑ST

t=1Km

(
Xt−Xs
hm

)
× Yt

−

∑ST
t=1 ξt(b̂

∗
` )×Km

(
Xt−Xs
hm

)
× (1− Yt)∑ST

t=1Km

(
Xt−Xs
hm

)
× (1− Yt)

 .

In particular, hm = 1.06× σ̂(X)× T−
1

2ι+k is chosen optimally.

Following the standard kernel regression literature, we can show our PSS-based estimator, θ̂ (defined

in Eq. (13)) is consistent given that supx∈SX
|m̂(x)−m(x)| = op(hθ), hθ → 0 and Thkθ+1 →∞ as T →∞.

Similar to PSS, it is of particular interest to establish
√
T–consistency of θ̂. The argument follows

closely to that in PSS. In particular, we need to choose a high order kernel Kθ and an under–smoothed

bandwidth hθ. However, it is more delicate in our setting because of the generated regressor m̂(X)
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contained in the kernel function of our estimator (13). Due to the first–stage estimation error, we must

make the following additional assumptions on the convergence of m̂(X) to m(X):

Assumption G. hθ = T−
1
γ where kθ + 2 < γ < kθ + 3 + 1(kθ is even).

Assumption H. The support of the kernel function Kθ is a convex subset of Rkθ with nonempty interior, with the

origin as an interior point. Kθ is a bounded differentiable function that obeys:
∫
Kθ(u)du = 1, Kθ(u) = 0 for all

u belongs to the boundary of its support, Kθ(u) = Kθ(−u) and∫
u`11 · · ·u

`ρ′

kθ
Kθ(u)du = 0, for `1 + · · ·+ `ρ′ <

kθ + 3 + 1(kθ is even )

2
, and∫

u`11 · · ·u
`ρ′

kθ
Kθ(u)du 6= 0, for `1 + · · ·+ `ρ′ =

kθ + 3 + 1(kθ is even )

2
.

where u` is the `–th argument of u.

Assumption I. (i) E‖m̂(X)−m(X)‖2 = o(T−
1
2h3θ);

(ii) E‖E[m̂(X)|X]−m(X)‖ = o(T−
1
2h2θ);

(iii) m̂(Xt) − m̂t,−s = op(T
− 1

2h2θ), where m̂t,−s is the nonparametric estimator m̂(Xt), except for leaving the

s–th observation out of the sample in its construction.

Assumptions G and H are introduced by PSS for the choice of bandwidth and kernel, respectively, to

control the bias term in the estimation of θ.17 The restriction on the bandwidth Assumption G implies that

hθ is not an optimal bandwidth sequence (rather it is undersmoothed) such that the bias of estimating θ

goes to zero faster than
√
T .

Moreover, Assumption I encompasses high–level conditions that could be further established under

primitive conditions. In particular, Assumption I(i) requires m̂(·) to converge to m(·) faster than T−
1
4 .

By Assumption I(ii), the bias term in the estimation of m uniformly converges to zero faster than T−
1
2 .

Hence, we need to use a higher order kernel in the estimation of m(·). Assumption I(iii) is not essential,

which could be dropped if we exclude both t-th and s–th observations in the argument m̂(Xt)− m̂(Xs)

of the kernel function in (13). Assumption I is standard in the literature for the regular convergence

of finite–dimensional parameters in semiparametric models (e.g. Ai and Chen, 2003), except for the

polynomial terms of hθ in the o(·) or op(·) which arises due to the average derivate estimator in the second

stage.

Given these assumptions, we can show the following result:

17Note that we implicitly assume that Assumptions 1 – 3 in PSS hold, which impose smoothness conditions on
fm and P(Yt = 1|m(Xt) = m) as well as other regularity conditions.
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Theorem 1. Suppose assumptions G to I hold. Then, for some scalar λ > 0 specified below,
√
T (θ̂ − λ · θ) has a

limiting multivariate normal distribution defined in Powell, Stock, and Stoker (1989, Theorem 3.1):

√
T (θ̂ − λ · θ) d→ N(0,Σ)

where Σ ≡ 4 E(ζ · ζᵀ) − 4λ2 × θ · θᵀ, ζ = fm(m(X)) · fη(η∗(X)) · θ −
[
Y − Fη(η∗(X))

]
· f ′m(m(X)) and

λ = E
[
fm
(
m(X)

)
× fη(m(X)ᵀ · θ)

]
.

In the above theorem, recall P(Y = 1|X) = Fη(η∗(X)) and η∗(X) = m(X)ᵀ · θ by ??. Our estimator θ̂

(as defined in Eq. (13)) has not imposed the scale restriction in Assumption F; thus λ ∈ R in the above

theorem denotes the probability limit of ‖θ̂‖; i.e., ‖θ̂‖ = λ + Op(T
−1/2). Therefore, by rescaling our

estimator θ̂ as θ̂∗ = θ̂/λ, we obtain that

√
T (θ̂∗ − θ) d→ N(0,Σ/λ2).

Given θ̂∗, a nonparametric estimator of Q(·) directly follows from Eq. (10). Namely, let

Q̂(p) = ẑᵀ(p)× θ̂∗, ∀ p ∈ [ min
1≤s≤T

p̂(Xs), max
1≤s≤T

p̂(Xs)].

Because of the
√
T–consistency of θ̂∗, the estimator Q̂(p) is asymptotically equivalent to ẑᵀ(p)× θ, which

converges at a nonparametric rate.18 Given the asymptotic normality established in this section, bootstrap

inference is valid and we will use it for constructing standard errors in our empirical application below.

A.1. Monte Carlo. These Monte Carlo experiments illustrate the finite-sample performance of our

estimator. In our experiments, let ut(0, Xt, εt) = θ0 + ε0t and ut(1, Xt, εt) = X1tθ1 +X2tθ2 + ε1t, where

X1t, X2t are random variables and θ0, θ1, θ2 ∈ R. Moreover, we set the conditional distribution of Xt+1

given Xt and Yt as follows: for k = 1, 2

Xk,t+1 =

 Xkt + νkt, if Yt = 0

νkt if Yt = 1
,

where νkt conforms to lnN (0, 1) and ν1t⊥ν2t. Moreover, let εdt be i.i.d. across d = 0, 1 and t, and conform

to an extreme value distribution with the density function f(e) = exp(−e) exp[− exp(−e)]. We set β = 0.9

and the parameter value as follows: θ0 = −5, θ1 = −1 and θ2 = −2.

18The asymptotic properties of ẑᵀ(p) can be established by following Guerre, Perrigne, and Vuong (2000), who
use nonparametrically estimated pseudo private values to construct a kernel estimator for the density function of
bidders’ private values in an independent private value auction model.
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TABLE 8. Monte Carlo Results

Sample Obs. Parameter True Value Estimate Std. Dev. Bias

1000 θ1 −1 -1.0182 0.3636 0.0182
θ2 −2 -1.9457 0.2158 -0.0543

2000 θ1 −1 -1.0163 0.2913 0.0163
θ2 −2 -1.9618 0.1854 -0.0382

4000 θ1 −1 -0.9985 0.2344 -0.0015
θ2 −2 -1.9836 0.1176 -0.0164

This table presents Monte Carlo results for different sample sizes. For each sample size, reported estimates,
standard deviations and bias are computed as the mean across 150 simulation draws. Estimation takes
on average 6, 12, and 25 seconds respectively for each replication on a 4Ghz i7 computer.

θ0 is not identified in the semiparametric framework, so we treat it as a nuisance parameter. Let

θ = (θ1, θ2)ᵀ. Since θ is only identified up to scale in the semiparametric setting (cf. Assumption F),

for comparing the performance of the semiparametric estimators, we treat the scale of θ as known, i.e.,

‖θ‖ =
√

5, rather than imposing a different normalization, as assumption F. We present in Table 8 the

bias and standard deviation of the semiparametric estimator.

APPENDIX B. PROOFS

B.1. Proof of Lemma 1.

Proof. First, note that the resolvent kernel R∗(x′, x;β) ≡
∑∞
s=1 βs−1fX[s]|X(x′|x) is well–defined. This is

because βs−1fX[s]|X(x′|x)→ 0 as s→ +∞. Under assumption A, the solution V e(x) is also well defined.

Because it is straightforward to verify that the solution in the lemma solves eq. (7), Hence, it suffices to

show the uniqueness of the solution. Eq. (7) can be rewritten as

V e(x) = ue(x) + β ·
∫
V e(x′) · fX′|X(x′|x)dx′, ∀ x ∈ SX ,

which is an FIE–2. Then, we apply the method of Successive Approximation (see e.g. Zemyan, 2012).

Specifically, let V ∗(·) be an alternative solution to (7). Then, we have

V ∗(x) = ue(x) + β

∫
SX

V ∗(x′) · fX′|X(x′|x)dx′.
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Let ν(x) = V e(x)− V ∗(x). Then ν(x) satisfies the following equation:

ν(x) = β

∫
SX

ν(x′) · fX′|X(x′|x)dx′.

It suffices to show that ν(·) has the unique solution: ν(x) = 0. To see this, we substitute the left–hand side

as an expression of ν into the integrand:

ν(x) = β2

∫
SX

∫
SX

ν(x̃) · fX′|X(x̃|x′)dx̃ · fX′|X(x′|x)dx′ = β2

∫
SX

ν(x′) · fX[2]|X(x′|x)dx′.

Repeating this process, then we have: for all t ≥ 1

ν(x) = βt
∫

SX

ν(x′) · fX[t]|X(x′|x)dx′.

For the stationary Markov equilibrium, fX[t]|X(x′|x) converges to fX(x′) as t→∞. Hence, the right–hand

side converges to zero as t goes to infinity. It follows that ν(x) = 0 for all x ∈ SX . �

B.2. Proof of Lemma 2.

Proof. By using eq. (8), along with Lemma 1, eq. (6) becomes

η∗(X) = W ᵀ
1 θ1 −W

ᵀ
0 θ0 +

∞∑
s=1

βs
{
E[ue(X [s])|X,Y = 1]− E[ue(X [s])|X,Y = 0]

}
(15)

= φᵀ(X) · θ −
∞∑
s=1

βs
{
E
[
η[s]1(η[s] ≤ η∗

(
X [s]

)
)
∣∣X,Y = 1

]
− E

[
η[s]1(η[s] ≤ η∗

(
X [s]

)
)
∣∣X,Y = 0

]}
(16)

where φ(X) = (φᵀ0(X), φᵀ1(X))ᵀ and θ = (θᵀ0 , θ
ᵀ
1 )ᵀ and φd(X) ≡ (−1)d+1Wd+

∑∞
s=1 β

s
{
E
[
W

[s]
d 1Y [s]=d|X,Y =

1
]
− E

[
W

[s]
d 1Y [s]=d|X,Y = 0

]}
.

Moreover, using the substitution τ → Q(τ), we have

E[η · 1(η ≤ Q(p)] =

∫
τ · 1(τ ≤ Q(p))dFη(τ) =

∫ p

0

Q(τ)dτ.

Given the above equation, we can rewrite the expression for the cutoff value η∗(X), from Eq. (16), as

Q(p(X)) = φᵀ(X) · θ −
∞∑
s=1

βs

{
E
[ ∫ p(X[s])

0

Q(τ)dτ
∣∣X,Y = 1

]
− E

[ ∫ p(X[s])

0

Q(τ)dτ
∣∣X,Y = 0

]}
(17)

Eq. (17) is almost a Fredholm type-2 integral equation, except that the function on the LHS, Q(p(X)) is

actually a composed function of X , and not a function of τ , the quantile. But it is easy to transform it into

a bona-fide FIE-2. assumption D implies that the choice probability p(X) is continuously distributed on a
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closed interval, over which we can integrate.19 Accordingly, we take the conditional expectation given

p(X) = p on both sides of eq. (17) to obtain

Q(p)− β
∫ p

p

∫ p′

p

Q(τ)dτ · π(p′, p;β)dp′ = z(p)ᵀ · θ, ∀p ∈ [p, p]. (18)

where π(p′, p;β) =
∑∞
s=1 β

s−1[fp(X[s])|p(X),Y (p′|p, 1)− fp(X[s])|p(X),Y (p′|p, 0)].

Eq. (18) is already an FIE–2. To see this, rewrite the second term as∫ p

p

∫ p′

0

Q(τ)dτ · π(p′, p;β)dp′ =

∫ 1

0

Q(τ) ·
∫ p

p

1(τ ≤ p′) · π(p′, p;β)dp′dτ

= −
∫ p

p

Q(τ) ·Π(τ, p;β)dτ,

where the second step comes from the fact
∫ p
p
π(p′, p;β)dp′ = 0 and Π(p′, p, β) = 0 for all p′ 6∈ [p, p].

Hence, we obtain Eq. (9). �

B.3. Proof of Lemma 3.

Proof. The result follows the Theorem of Successive Approximation (see e.g. Zemyan, 2012). �

B.4. Proof of Theorem 1. The estimator is defined in (13). For the consistency of θ̂, we need hθ → 0,

Thkθ+1
θ →∞ and E|m̂(X)−m(X)| = o(hθ) as T →∞. Note that the last condition ensures the estimation

error in m̂ is negligible.

Let θ̃ be the infeasible estimator

θ̃ = − 2

T (T − 1)

T∑
t=1

∑
s6=t

[
1

hkθ+1
θ

×∇Kθ

(
m(Xt)−m(Xs)

hθ

)
× Ys

]
.

The asymptotic analysis for θ̃ was done in Powell, Stock, and Stoker (1989). They show that the variance

term in θ̃ has the order T−1 if Thkθ+2
θ →∞, while the bias term has the order hPθ . Therefore, if T 1/2hpθ → 0,

then the bias term disappear faster than T−1/2. The leading term left is the variance term – the θ̃ converges

at the rate T−1/2. Our arguments piggybacks off of this argument, as we will show here that T 1/2(θ̂ − θ)

is identical to T 1/2(θ̃ − θ) by a negligible factor; that is, our estimator and the infeasible estimator have

the same limiting distribution (corresponding to that derived in Powell, Stock, and Stoker (1989)).

19This interval–support restriction can be relaxed at expositional expense. For instance, suppose Sp(X) is a
non–degenerate compact subset of [0, 1]. All of our identification arguments below still hold by replacing the integral
region [p, p] with Sp(X).
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By Taylor expansion, we have

θ̂ = θ̃ − 2

T (T − 1)

T∑
t=1

∑
s6=t

[
1

hkθ+2
θ

∇2Kθ

(
m(Xt)−m(Xs)

hθ

)
× Ys ×

(
m̂(Xt)−m(Xt)

)]

+
2

T (T − 1)

T∑
t=1

∑
s6=t

[
1

hkθ+2
θ

∇2Kθ

(
m(Xt)−m(Xs)

hθ

)
× Ys ×

(
m̂(Xs)−m(Xs)

)]

+Op(h
−3
θ · E‖m̂(X)−m(X)‖2) ≡ θ̃ + A1 + A2 + B (19)

We will show that A1 + A2 + B2 are all op(T−1/2) implying T 1/2(θ̂− θ̃) is negligible. First, by Assump-

tion I(i), we have

h−3θ × E‖m̂(X)−m(X)‖2 = h−3θ × op(T
−1/2h3θ) = op(T

−1/2). (20)

Then, B = op(T
−1/2).

Next we show A1 and A2 = op(T
−1/2). For simplicity, we only provide an argument for A1 (that for

A2 is analogous).

Define

Ã1 ≡ −
2

T (T − 1)

T∑
t=1

∑
s6=t

[
1

hkθ+2
θ

∇2Kθ

(
m(Xt)−m(Xs)

hθ

)
Ys ×

[
E[m̂(Xt)|Xt, Xs]−m(Xt)

]]

Clearly E(A1) = E(Ã1). Following Powell, Stock, and Stoker (1989), we now establish two properties:

(a) : Ã1 = op(T
−1/2);

(b) : T × Var(A1 − Ã1)→ 0,

which together imply A1 = op(T
−1/2).

For property (a), by Assumption I(iii),

E[m̂(Xt)|Xt, Xs] = E[m̂t,−s|Xt, Xs] + op(T
−1/2h2θ) = E[m̂(Xt)|Xt] + op(T

−1/2h2θ).

Then, we have

Ã1

= − 2

T (T − 1)

T∑
t=1

∑
s6=t

[
1

hkθ+2
θ

∇2Kθ

(
m(Xt)−m(Xs)

hθ

)
Ys ×

[
E[m̂(Xt)|Xt]−m(Xt)

]]
+ op(T

−1/2)

≡ C1 + op(T
−1/2).
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Because

E|C1| ≤ 2E

∣∣∣∣∣ 1

hkθ+2
θ

∇2Kθ

(
m(Xt)−m(Xs)

hθ

)
×
[
E[m̂(Xt)|Xt]−m(Xt)

]∣∣∣∣∣
≤ 2C × 1

h2θ
E ‖E[m̂(X)−m(X)|X]‖

for some positive C <∞. Hence, by Assumption I(ii), property (a) obtains.

For property (b), note that

A1 − Ã1 ≡ − 2

T (T − 1)

T∑
t=1

∑
s 6=t

φT,s,t ×
[
m̂(Xt)− E[m̂(Xt)|Xt]

]
+ op(T

−1/2) ≡ C2 + op(T
−1/2)

where φT,s,t = 1

h
kθ+2

θ

∇2Kθ

(
m(Xt)−m(Xs)

hθ

)
Ys.

Clearly,

Var(C2) =
4

T 2(T − 1)2

T∑
t=1

∑
s6=t

Var
(
φT,s,t ×

[
m̂(Xt)− E[m̂(Xt)|Xt]

])

+
4

T 2(T − 1)2

T∑
t=1

∑
s6=t

∑
s′ 6=t,s

Cov
(
φT,s,t

[
m̂(Xt)− E[m̂(Xt)|Xt]

]
, φT,s′,t

[
m̂(Xt)− E[m̂(Xt)|Xt]

])

+
4

T 2(T − 1)2

T∑
t=1

∑
s6=t

∑
t′ 6=t,s

∑
s′ 6=t,s,t′

Cov
(
φT,s,t

[
m̂(Xt)− E[m̂(Xt)|Xt]

]
, φT,s′,t′

[
m̂(Xt′)− E[m̂(Xt′)|Xt′ ]

])
= O(T−2h−kθ−4θ )× E

{
m̂(X)− E[m̂(X)|X]

}2
+

4

T
Cov

(
φT,2,1

[
m̂(X1)− E[m̂(X1)|X1]

]
, φT,3,1

[
m̂(X1)− E[m̂(X1)|X1]

])
+ 4 Cov

(
φT,2,1

[
m̂(X1)− E[m̂(X1)|X1]

]
, φT,4,3

[
m̂(X3)− E[m̂(X3)|X3]

])
.

Note that

Cov
(
φT,2,1

[
m̂(X1)− E[m̂(X1)|X1]

]
, φT,4,3

[
m̂(X3)− E[m̂(X3)|X3]

])
= E

{
φT,2,1φT,4,3

[
m̂(X1)− E[m̂(X1)|X1]

]
×
[
m̂(X3)− E[m̂(X3)|X3]

]}
− E

{
φT,2,1

[
m̂(X1)− E[m̂(X1)|X1]

]}
× E

{
φT,4,3

[
m̂(X3)− E[m̂(X3)|X3]

]}
.

By Assumption I(iii),

E
{
φT,2,1

[
m̂(X1)− E[m̂(X1)|X1]

]}
= E

{
φT,2,1

[
m̂1,−2 − E[m̂1,−2|X1]

]}
+Op(h

−2
θ )× op(T−1/2h2θ) = op(T

−1/2).
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Furthermore, by the law of iterated expectation (conditioning on the sigma algebra: F2,F4, F5,··· ,n),

E
{
φT,2,1φT,4,3

[
m̂(X1)− E[m̂(X1)|X1]

]
×
[
m̂(X3)− E[m̂(X3)|X3]

]}
= Op(h

−4
θ )× op(T−1/2h2θ)× op(T−1/2h2θ)

= op(T
−1),

where the term op(T
−1/2h2θ) is due to the differences m̂(X1)− m̂1,−3 and m̂(X3)− m̂3,−1. Therefore, the

last term in Var(C2) is op(T−1).

Moreover, because

1

T
Cov

(
φT,2,1

[
m̂(X1)− E[m̂(X1)|X1]

]
, φT,3,1

[
m̂(X1)− E[m̂(X1)|X1]

])
=

1

T
E
{
φT,2,1φT,3,1

[
m̂(X1)− E[m̂(X1)|X1]

]2}
= O(T−1h−4θ )× E {m̂(X)− E[m̂(X)|X]}2 .

Then a sufficient condition for property (b) is

E {m̂(X)− E[m̂(X)|X]}2 = o(h4θ).

Note that this condition is implied by Assumption I(i).

Hence, we have shown that our estimator θ̂ and the infeasible estimator θ̃ differ by an amount which

is op(T−1/2). Hence, the asymptotic properties for θ̂ are the same as those for the infeasible estimator θ̃,

which were previously established in Powell, Stock, and Stoker (1989).
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