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Abstract

A monopolist sells an object characterized by multiple attributes. A buyer can be
one of many types, differing in their willingness to pay for each attribute. The seller
can disclose to the buyer arbitrary attribute information in the form of a statistical
experiment. The seller decides how to price the object, what information to disclose,
and how to price access to the information. To screen different types, the seller offers
a menu of options that specify information prices, experiments, and object prices.

I characterize revenue-maximizing menus. If all types value the same attribute, then
the seller cannot benefit from information disclosure and price discrimination. More
generally, if each type values a single attribute and attributes are independent, then
the seller can benefit from information disclosure but not from price discrimination.
In other cases, a discriminatory menu can be profitable; however, optimal experiments
always belong to a tractable class of linear disclosure policies. The analysis informs
the operation of various intermediaries including business brokers and online recruiting
platforms.
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1 Introduction

In many important markets, sellers have considerable control over information available to
their buyers. Business brokers can control the extent of the firm investigation and documen-
tation they supply, car retailers can limit the duration of test drives and amount of technical
pre-sale support, and recruiting platforms can decide what parts of a job candidate’s profile
to reveal to employers. In all of these markets, the products (i.e., business, car, or meeting
with a job candidate) are characterized by multiple attributes that appeal to different types
of buyers. To maximize revenue, sellers need to understand what attribute information to
provide, how to price their products, and whether and how to price the information provided.
These questions require unification of information and mechanism design paradigms to allow
for joint control over information and monetary incentives.

As a concrete example, consider an operation of Ziprecruiter.com, a major online re-
cruiting platform. The platform facilitates matching between job seekers and employers.
Employers subscribe to the platform to advertise their open vacancies and obtain access to
a large database of resumes. Ziprecruiter.com is actively innovating and experimenting with
its algorithms and pricing. Just in October 2018, the platform raised $156 million invest-
ment to improve its matching technology, putting it at $1.5 billion valuation.1 Currently,
the platform employs a nonlinear pricing scheme for subscriptions, varying in the breadth
of information provided and the ability to contact preferred candidates (Dubé and Misra
(2017)).

The platform operates in the recruitment market that features substantial heterogeneity
on both sides. The candidate profiles vary along many attributes, including work experience,
education levels, technical skills, and standardized tests scores. The employers belong to
distinct types, such as tech start-ups, chain stores, investment banks, or government agencies.
Naturally, different types of employers are looking for different attributes in their candidates
and, hence, differ in their willingness to pay to contact the same candidate.

Ziprecruiter.com has access to a large amount of data about the prospective candidates
and facilitates employment matching by providing this data to employers. It can decide what
information to provide and at what price. By programming its algorithms, the platform can
deny access to some attributes in the data; alternatively, it can provide coarse statistics (e.g.,
instead of showing a full GPA, it can reveal only whether it surpasses a particular threshold).
My goal is to study the trade-offs the platform is facing, to inform the revenue-maximizing
design, and to evaluate allocation distortions introduced by the information control of the
intermediary.

1“ZipRecruiter Is Valued at $1.5 Billion in a Bet on AI Hiring,” (Carville (2018)).
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In this paper, I develop a framework to study information disclosure and pricing of multi-
attribute products. I consider a monopolist seller who has an indivisible object for sale to a
single buyer and aims to maximize her revenue. The object has several attributes, and the
buyer is uncertain about their values. The seller does not know what attributes the buyer
likes or how much. These preferences are the buyer’s private information and constitute the
buyer’s type. The seller controls pricing and, importantly, can disclose attribute information
to the buyer. The players are Bayesian decision makers.

Both the object and the information about its attributes are valuable for a buyer, and I
allow the seller to price them jointly. The seller offers a menu of options that differ in their
informativeness. Each option consists of an information price paid upfront, an attribute
information, and a strike price for the object. The attribute information is modeled as an
arbitrary statistical experiment informative about attributes. Information control enables
price discrimination. By varying the information price, the experiment, and the object price,
the seller can screen buyer types. This menu mechanism provides a natural and practical
framework for analyzing information disclosure and pricing together.

I study and characterize revenue-maximizing menus. The general revenue-maximization
problem features information design and multidimensional screening with monetary trans-
fers. As such, it entails two main methodological challenges. First, the class of all stochastic
experiments is large. Not only can each experiment send many signals, but also the un-
derlying uncertainty of the attribute vector generates a continuum of possible states, each
having multiple dimensions. To understand distortions driven by the information design, it
is important to pin down the structure of optimal experiments. Second, multidimensional
screening problems are notoriously difficult. In the absence of a single-dimensional struc-
ture, it is unclear what incentive constraints are relevant for optimal design. This difficulty is
further exacerbated by the presence of information disclosure, because different buyer types
can respond differently to the same information.

I progress in both directions in turn. In Section 3, I study the design of disclosure policies.
Providing disclosure serves two functions. First, it swings the buyer’s expectations and may
persuade him to purchase the object at a higher price. Second, providing several disclosure
options may facilitate screening because different types prefer learning about different aspects
of the object. Theorem 1 shows that an optimal way to combine these two functions is
through a specific class of experiments—linear disclosures; there exists an optimal menu that
contains only them. A linear disclosure informs whether a linear combination of attributes
is above or below some threshold. Effectively, it splits the attribute space into two half-
spaces and informs the buyer to which half-space the object belongs. A linear disclosure is
nonstochastic almost everywhere and can be seen as informing the buyer about the valuation
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of a virtual type. It is a generalization of binary monotone partitions to multidimensional
settings.2 Notably, the result requires no assumptions on distribution of types or attributes.

In Section 4, I study optimal pricing mechanisms. In Theorem 2, I establish that if all
buyer types value the same, always positive, attribute, then no information is optimally
provided and the seller posts a single price for the object. This result may look surprising.
After all, the buyer has private information and the seller can separate the buyer types by
designing complex menus. However, such menus cannot outperform a no-disclosure posted-
price mechanism. The intuition behind this result lies in the product structure of the buyer’s
valuation. When all types value the same attribute, any disclosure realization simply scales
their valuations and the corresponding demand curve. Even if the seller could condition the
price on this realization, she would charge scaled prices, serve the same types, and obtained
a scaled revenue. By the martingale property of Bayesian expectations, the seller can obtain
the same revenue by providing no information.3

The case of several attributes is qualitatively different because types can be differentiated
not only vertically but also horizontally. As a result, an optimal allocation may depend on
attribute realizations. Intuitively, the seller should allocate the object to types who value
the realized attributes the most. To guide the allocation, she should provide some attribute
information. As a result, an optimal menu can involve discriminatory pricing and disclosure.

In Section 4.3, I introduce and study the setting of a single-minded buyer. In this setting,
attributes are independently distributed, and a buyer values only one attribute, but the seller
does not know which one or how much. This setting allows for both horizontal and vertical
heterogeneity but is sufficiently tractable. I start with a simpler case of orthogonal types,
in which each type values a distinct attribute so that type valuations are independent. In
Theorem 3, I show that an optimal menu features partial disclosure but no price discrimina-
tion. Moreover, the menu can be implemented by a nondiscriminatory mechanism—posting
a single price for the object and informing the buyer whether the object is sufficiently good
along each attribute. In Theorem 4, I generalize this finding to the case of a continuum of
types valuing each attribute. I show that if the type distributions are log-concave, then the
nondiscriminatory mechanism with partial disclosure remains optimal.

I conclude with discussion of my findings in Section 5. First, I illustrate how optimal
disclosure transforms demand curves. I argue that by providing partial attribute information,
the seller can target types within a specific range of valuations and hence rotate the demand

2Chakraborty and Harbaugh (2010) use linear disclosures to construct informative equilibria in a multi-
dimensional cheap talk game.

3This intuition points in the right direction but does not consider discriminatory menus and informa-
tion pricing. I formally complete the argument and confirm the result by building on single-dimensional
mechanism-design machinery.
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curve locally. It resonates with the analysis of global demand rotations by Johnson and
Myatt (2006). Second, I show full disclosure is detrimental to the seller and, moreover, the
seller may benefit from conditioning the price on the information disclosed. These results
contrast with those of Eső and Szentes (2007) and highlight the qualitative difference between
our frameworks.

Related Literature This paper contributes to the literature on private disclosure and
pricing. One strand of this literature focuses on nondiscriminatory mechanisms—in which a
seller provides a single disclosure. Lewis and Sappington (1994) introduce these mechanisms
in a setting where a buyer has no prior information. They find optimal disclosure within a
simple parameterized class and show that it is generally extreme—either full or no disclosure.
Bergemann and Pesendorfer (2007) further observe that if there is common knowledge of
positive trade gains, then no disclosure dominates any other possible disclosure because it
allows the seller to extract the full expected surplus.4 Johnson and Myatt (2006) extend
the analysis to settings in which the buyer has prior information. They focus on disclosures
that correspond to global rotations of a demand curve and show, once again, that extreme
disclosures are optimal. My paper contributes to this literature by showing that if the
product has several attributes, then a single multipartition disclosure can dominate both
full and no disclosure, even if there is common knowledge of positive trade gains (Section
5.1).

At the same time, when the buyer has private information, it is natural to study discrim-
inatory mechanisms and how they can be used to screen the buyer types. In an influential
paper, Eső and Szentes (2007) study settings in which the attribute and the buyer’s type
enter the valuation additively. In these settings, the information disclosure can be seen
as “valuation-rank” disclosure that corresponds to statements such as, “Your valuation is
in your x-th percentile,” with x being the same for all types. The authors show that in
such settings, under certain distributional assumptions, the seller may optimally provide full
disclosure and does not benefit from conditioning the price on the information disclosed.5

However, Li and Shi (2017) show that these findings do not hold in common value settings
in which the types represent private information about the object. In those settings, the
information disclosure can be seen as “valuation-level” disclosure that corresponds to state-
ments such as, “Your valuation is above x,” with x being the same for all types. Li and Shi
(2017) establish that in such settings, the seller should withhold some information but are

4See, however, Anderson and Renault (2006), who show that optimal disclosure is partial if the purchase
is associated with search costs and the seller cannot commit to prices.

5Eső and Szentes (2017) generalize the latter finding to dynamic environments. Krähmer and Strausz
(2015a) discuss settings in which the distributional assumptions are violated.
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not able to identify optimal mechanisms.
All of this previous literature operates in single-dimensional settings. Under complete

object information, when comparing any two objects, all buyer’s types agree on their ranking.
However, in practice, many products are multidimensional with different attributes appealing
to different buyers. In this paper, I demonstrate that these settings can be successfully
studied within a framework of attribute disclosure and lead to qualitatively different results.
Despite the richness of the attribute space, optimal experiments belong to a tractable class
of linear disclosures (Section 3.4). Optimal mechanisms feature partial disclosure but can be
remarkably simple (Section 4.3). The seller can strictly benefit from conditioning the price
on the information disclosed (Section 5.2).

Information design with screening and monetary transfers appears in my previous work
(Bergemann, Bonatti, and Smolin (2018)). There, the seller offers a menu of information
products to a buyer who seeks this information to resolve an exogenous decision problem;
his action is not contractable. In contrast, in this paper, the seller’s and buyer’s problems
are intertwined and situated within a multi-attribute framework. The seller can price both
the information and the buyer’s decision to buy the object. As a result, in many settings,
the seller is willing to provide information free of charge (Section 4.3).

Finally, this paper builds on several existing frameworks. Multi-attribute buyer’s valua-
tion follows the characteristic model of Lancaster (1966). The mechanism timing is analogous
to the sequential screening of Courty and Li (2000). An unrestricted search for a disclosure
policy to optimally influence a single agent is a defining feature of Bayesian persuasion liter-
ature (Rayo and Segal (2010), Kamenica and Gentzkow (2011)). The screening analyses of
single-attribute and single-minded-buyer settings build on the mechanism design machinery
of Myerson (1981, 1982).

2 Model

A buyer decides whether to buy a single indivisible object from a seller. The object has a
finite number J of characteristics or attributes. The attribute values constitute an attribute
vector x = (x1, . . . , xj, . . . xJ) ∈ X = RJ . The buyer’s preferences towards each attribute
constitute the buyer’s type θ = (θ1, . . . , θj, . . . , θJ) ∈ Θ ⊆ RJ . The ex-post buyer’s valuation
for the object is:

v (θ, x) = θ · x =
J∑
j=1

θjxj. (1)

The buyer’s utility is quasilinear in transfers. The seller maximizes her revenue.
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Prior Information Attributes are distributed over X according to a cumulative distri-
bution function G with full support. The buyer and the seller are symmetrically informed
about them. The type space Θ can be finite or infinite. The buyer’s type is his privately
known tastes, uncorrelated with attributes. From the seller’s perspective, the types are
distributed according to a cumulative distribution function F . Until Section 4, I do not im-
pose any structural assumptions on the attribute and type distributions. The only technical
requirement is that the ex ante expectations of all attributes are finite.

Information Disclosure The seller can disclose attribute information to the buyer. This
information is modeled as a statistical experiment E = (S, π) that consists of a signal set S
and a likelihood function:

π : X → ∆ (S) . (2)

The experiment can be arbitrarily informative about the attributes. It can provide no
information, or no disclosure, E , (S, π), with S being a singleton. It can fully reveal
attributes, or provide full disclosure, E ,

(
S, π

)
, with S = X and π (x) placing probability

1 on s = x. Alternatively, it can provide partial information, for example, as illustrated in
Figure 1. In this figure, upon observing a signal s1, the buyer learns that attributes belong
to the red area but does not know to which part of it.

I highlight that attribute information affects valuation of different types differently ac-
cording to the valuation function (1). For example, if attributes are independent, then the
experiment informative about a subset of attributes is valuable only for those types who
place non-zero weights on those attributes. Consequently, attribute information cannot be
represented by an experiment that informs the buyer directly about his valuation.6 Doing
so would change the buyer incentives in his choice across experiments.

Selling Mechanism The seller has effectively two products valuable for a buyer—the
object itself and the information about its attributes. To investigate the scope of screening,
I allow the seller to price both the object and the information she provides.

The seller designs a menu of items indexed by i ∈ I:

M = (r (i) , E (i) , p (i))i∈I , (3)

to be offered to a buyer. It consists of a collection of experiments E (i) and tariff functions
r (i) ≥ 0, p (i) ≥ 0. The first tariff captures a price of information—an upfront payment
paid irrespectively of a trade. The second tariff captures a price of the object—a strike price

6This differs from the disclosure models of Eső and Szentes (2007) and Li and Shi (2017).
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Figure 1: A partially informative experiment E with the attribute set X = R2 and the
signal set S = (s1, s2, s3, s4). Colors indicate regions in which the corresponding signals are
sent.

paid only if the trade occurs.
Effectively, the menu is a collection of call options differing in monetary terms and in-

formation disclosure, designed to screen different buyer’s types. The timing is as follows.7

The seller posts a menu M . The attribute vector x and the buyer’s type θ are realized. The
buyer chooses an item i ∈ I and pays the corresponding price r (i). He observes a signal s
from the experiment E (i) and decides whether to buy the object at the strike price p (i).
The payoffs are realized. The timing is illustrated in Figure 2.

The timing implies the seller commits to a menu before realization of the attributes x and
the type θ. The true attributes x and experiment realization s are not contractible.8 Sales
are deterministic—the strike price once paid guarantees possession of the object. Sequential
interactions between the players are excluded, so belief-elicitation schemes and scoring rules
are not available.9

I highlight that no analog of a revelation principle is known in the environments in
which the designer can privately provide additional information. As such, the posted-price
menu mechanisms provide a natural and practical framework for studying how information
disclosure and pricing interact in design problems. My goal is to characterize a revenue-

7The timing is analogous to that of Courty and Li (2000) and Li and Shi (2017).
8For instance, the buyer cannot claim a refund ex post. See Krähmer and Strausz (2015b), Heumann

(2018) and Bergemann et al. (2017) for recent studies on ex-post incentive constraints.
9Krähmer (2017) investigates the usefulness of such schemes in screening problems with information

design.
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Seller posts
menu M

Attributes x and
type θ are realized

Buyer chooses item
i and pays r(i)

Signal s of
E(i) is realized

Buyer decides whether to
buy object at price p(i)

Figure 2: Timeline of the selling mechanism.

maximizing menu for the seller.

3 Design of Disclosure Policies

In this section, I proceed with studying the revenue-maximizing menu design. I begin with
discussing the buyer’s incentives and formalizing his choice in an arbitrary menu. I use this
formalization to show that the design problem can be approached in two successive steps.
First, it is possible to identify the class of optimal disclosure policies without explicitly
characterizing a pricing mechanism. I show this in the current section. Second, one can
build on this result and derive optimal pricing mechanisms in the leading settings. I do that
in Section 4.

3.1 Buyer’s Problem

Consider the buyer incentives when he chooses an item from a given menu. Let his type be
θ. If he chooses an option i, then he pays the upfront price r (i). Then, a signal s is realized
according to the likelihood function π (E (i)). The realization leads to the interim valuation:

V (i, s, θ) , E [v (θ, x) | E (i) , s] . (4)

Finally, the buyer decides whether to buy the object and does so optimally if and only
if V (i, s, θ) − p (i) is greater than 0. Integrating over signal realizations, I can define the
resulting (total) trade probability as:

Q (i, θ) , Pr (V (i, s, θ)− p (i) ≥ 0 | E (i)) . (5)
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The corresponding indirect utility of choosing an option i can be written as:

U (i, θ) = −r (i) + E [max {0, V (i, s, θ)− p (i)} | E (i)] , (6)

The type θ chooses an option with the largest indirect utility. Naturally, types seek
information that most fits their interests. For example, if a type values only one of many
attributes, then that type places no information value on options that provide no information
about that attribute. As a result, the types can disagree on the experiment ranking even if
tariffs are the same. Faced with a menu, the types self-select different items. This gives the
seller an opportunity to discriminate among them by carefully designing the menu.

3.2 Responsive Menus

The seller’s problem lies at the intersection of mechanism and information design because the
seller can both control the information available to the buyer and charge monetary transfers.
In principle, she can offer complex experiments in an attempt to better discriminate among
types. However, in the next couple of subsections, I show that an optimal class of experiments
is simple and tractable.

I begin approaching this problem by binding the size of the optimal menus and signal
sets. First, I appeal to the revelation principle and focus on direct menus:

M = (r (θ) , E (θ) , p (θ)) , (7)

with the size of the type space, which effectively ask the buyer his type and assign the
experiment and the tariffs as functions of his report. Second, I follow the arguments of
Bergemann, Bonatti, and Smolin (2018) to bound the size of the signal sets. For a given
direct mechanism M , I call an experiment E (θ) responsive if S (θ) = {s+, s−} and type
θ, when choosing this experiment, purchases the object if and only if s = s+. Responsive
experiments guide the buyer action. I call the menu responsive if all of its experiments are
responsive.

Proposition 1. (Responsive Menus)
The outcome of every menu can be replicated by a direct and responsive menu.

Proof. Detailed proofs of all formal statements can be found in the Appendix.

The proof is analogous to the argument of the revelation principle of Myerson (1982).
Intuitively, an experiment should provide information minimal to guiding the decision of
a truth-telling type. If the menu contains nonresponsive experiments, then the seller can
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replace them with responsive experiments that replicate the behavior of truth-telling types.
After this modification, truth telling delivers the same payoff as before. Dishonesty, however,
becomes weakly less appealing because the modified experiments are weakly less informative
(Blackwell (1953)).

Proposition 1 puts the elementary structure on the exchange of information between the
seller and the buyer. The buyer should inform the seller about his tastes. The seller should
provide a recommendation whether to buy the object. The content of the recommendation
should be chosen such that the buyer reports his tastes truthfully and obediently follows the
recommendation.

Focus on responsive menus allows characterizing every experiment E in the menu by its
trade function:

q (x) , Pr
(
s+ | E, x

)
. (8)

The function defines a probability of the trade recommendation for each attribute realization.
The probability of the no-trade recommendation is then the complimentary 1 − q (x). A
responsive menu features a collection of trade functions, one per each buyer’s type. With a
slight abuse of notation, I will refer to the trade function of type θ by q (θ, x).

3.3 Seller’s Problem

Proposition 1 allows associating each experiment with its trade function (8) and writing the
seller’s problem in a standard mechanism design form. The seller’s revenue obtained from a
particular type consists of the upfront payment r (θ) and, if the buyer decides to purchase
the object, the strike price p (θ). The seller’s problem is to maximize the total expected
revenue over the tariff and trade functions:

max
(r(θ),q(θ,x),p(θ))

∫
θ∈Θ

(
r (θ) + p (θ)

∫
x∈X

q (θ, x) dG (x)
)

dF (θ) (9)

subject to the incentive-compatibility constraints and individual rationality constraints.
The incentive-compatibility constraints require that for all θ, θ′ ∈ Θ:

∫
x∈X

(θ · x− p (θ)) q (θ, x) dG (x)− r (θ) ≥
∫
x∈X

(θ · x− p (θ′))σ (q (θ′, x) , k) dG (x)− r (θ′) ,

(10)

where σ (q (θ′, x) , k) is a deviation function equal to q (θ′, x), 1 − q (θ′, x), 1, and 0 for k =
1, . . . , 4 respectively. These incentive-compatibility constraints ensure each type prefers truth
telling to all double-deviating strategies: misreporting and following the recommendations,
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“swapping” the buying decisions, always buying, or never buying, respectively. Deviations
from θ to θ are included and ensure that the types are obedient on-path, after truth telling.

The individual-rationality constraints require that for all θ ∈ Θ:
∫
x∈X

(θ · x− p (θ)) q (θ, x) dG (x)− r (θ) ≥ 0. (11)

There are several challenges involved in the seller’s problem. First, the seller maxi-
mizes over a large class of stochastic experiments, captured by trade functions which are
arbitrary functions from a multidimensional space X. Second, the buyer’s type has no
single-dimensional structure, and multidimensional screening problems are notoriously diffi-
cult. Third, the problem features an additional multiplicity of constraints caused by double
deviations. It is a priori not clear what kinds of deviations are binding and, hence, relevant
for the design problem.

The following observation is crucial to deal with the experiment complexity: not the
whole trade function but only two coarse statistics matter for the revenue-maximizing prob-
lem. Namely, for a given responsive experiment E, say that the associated trade function q
achieves the attribute surplus:

X ,
∫
x∈X

xq (x) dG (x) ∈ RJ , (12)

and the (total) trade probability:

Q ,
∫
x∈X

q (x) dG (x) ∈ [0, 1] . (13)

It can be seen from the formulation (9), (10), (11) that these statistics are the only
economically relevant parameters of the problem. A change in the trade function q (θ, x) that
does not affect the attribute surplus and the total trade probability affects neither the buyer
incentives nor the seller’s revenue. Hence, instead of maximizing over the trade functions
q (θ, x), the seller can maximize directly over attribute surpluses and trade probabilities,
X (θ) and Q (θ).

Not all attribute surpluses and trade probabilities can be achieved by some trade function.
At one extreme, if the trade probability is nil, then the attribute surpluses must be nil as
well, because the trade never happens. At another extreme, if the trade probability is 1,
then the attribute surplus is equal to its ex ante expectation E [x], because the trade always
occurs. At the intermediate values of trade probabilities, there is more freedom of choosing
attribute surpluses, because the seller can select at what regions the trade recommendation
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Figure 3: Feasibility set F of attribute surplus X = (X1,X2) and trade probability Q for
the case of two attributes distributed uniformly over a unit square X = [0, 1]2.

is sent. Formally, define the feasibility set F ⊆ RJ+1 as:

F , {(X ,Q) | ∃ q : X → [0, 1] such that (14)

X =
∫
x∈X

xq (x) dG (x) and Q =
∫
x∈X

q (x) dG (x)
}
.

The shape of the feasibility set is determined by the attribute distribution G. Figure 3
illustrates the feasibility set for the case of two uniformly and independently distributed
attributes.

3.4 Optimal Disclosure

I begin with observing a special feature of a responsive experiment that always recommends
the buyer to buy, q (x) ≡ 1. If all attributes are strictly positive X ⊆ RJ

++, then this
experiment is a unique maximizer of the attribute surplus along all dimensions. If all types
are strictly positive, Θ ⊆ RJ

++, it means that this experiment is also a unique maximizer of
the buyer surplus. Indeed, if a buyer always positively values the object, then his surplus is
maximized if he always buys it.

Moreover, this always-trade experiment provides no information about attributes. As
such, it also maximally limits the scope for deviations. If the buyer willingly chooses an
uninformative option then he is determined to always buy the object.
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Proposition 2. (No Disclosure)
If all attributes and types are strictly positive, X ⊆ RJ

++, Θ ⊆ RJ
++, and the number of types

is finite, then in any optimal menu some type buys the object with probability one. In other
words, no disclosure, E, is a part of an optimal menu.

Proposition 2 highlights the distinctive feature of the seller’s problem that combines
information and mechanism design. In a typical information design problem, the payoff
structure is exogenously fixed and there is no guarantee that no disclosure would appear in
an optimal mechanism, irrespectively of prior distributions. Indeed, for any given prices, if
the buyer tastes are sufficiently bland, the seller has to provide some minimal information to
persuade the buyer to buy the object. In contrast, when the seller has control over monetary
incentives, she can compensate for the lack of information with lower prices.

To provide a further understanding of optimal experiments, it is useful to understand
the general properties of the feasibility set F . In fact, the set admits a clear geometric
characterization. To this end, define a key class of experiments.

Definition 1. (Linear Disclosure)
A responsive experiment E is a linear disclosure if, for some coefficients α ∈ RJ and α0 ∈ R
not all equal to zero, its trade function is:

q (x) =

1, if α · x > α0,

0, if α · x < α0.
(15)

A linear disclosure informs the buyer whether a linear combination of attributes is above
or below some threshold. Equivalently, its trade function is an indicator function of an
attribute half-space. A linear disclosure is conditionally nonstochastic almost everywhere. In
the case of a single attribute, a linear disclosure corresponds to a binary monotone partition
disclosure.

A linear disclosure can be viewed as a reference disclosure that informs the buyer whether
some “virtual” type θ̂ = α would like to buy the object at a price p = α0. If attributes are
always positive and independently distributed, a linear disclosure admits additional inter-
pretations. If elements of the coefficient vector α are positive, this disclosure can be viewed
as “level” disclosure. Observing a “trade” recommendation uniformly increases attribute
expectation, whereas observing a “no-trade” recommendation uniformly decreases it. In
contrast, if the elements of a coefficient vector α have different signs, then a linear disclosure
can be viewed as a “comparative” disclosure between the attribute groups of different signs.
A “trade” recommendation increases the attribute expectations in one group and decreases

14



10 0.5

1

0

0.5

 

 

x

x

2

1

s

s

+

-

10 0.5

1

0

0.5

 

 

x

x

2

1

s

s

+

-

Figure 4: Linear disclosure in the case of two attributes, J = 2. Colors indicate regions in
which the corresponding recommendations are sent. Left: level disclosure, α1 > 0, α2 > 0.
Right: comparative disclosure, α1 > 0, α2 < 0.

them in the other group. In Figure 4, I illustrate these two types of linear disclosure in the
case of two attributes.

Note that the likelihood function of a linear disclosure is not restricted on the defining
hyperplane, {x | α · x = α0}. Any given parameters α, α0 determine a class of linear dis-
closures that differ on the boundary. If attributes are continuously distributed, then this
indeterminacy is irrelevant as it affects a zero probability event. However, if the attribute
distribution G has a positive mass on the defining hyperplane, then the likelihood function
should be additionally specified there. Furthermore, observe that the defining hyperplane
does not exist for α ≡ 0 and α0 being strictly positive or negative. These linear disclosures
correspond to never-trade and always-trade uninformative experiments, q ≡ 0 and q ≡ 1,
respectively.

Given the standard topology on RJ+1, denote the interior of the feasibility set by int (F)
and its boundary by ∂ (F).

Proposition 3. (Feasibility)
The feasibility set F is compact and convex. Its boundary ∂ (F) is spanned by linear disclo-
sures. That is: (1) any linear disclosure achieves some boundary point of F , and (2) any
boundary point of F can be achieved by some linear disclosure.

The full proof of this central result is available in the Appendix. First, I show that the
feasibility set is compact as a continuous image of a compact set. Second, I show that the
feasibility set is convex because a convex combination of trade functions achieves a convex
combination of attribute surpluses and trade probabilities. Then, I appeal to the Supporting
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Hyperplane theorem to show that a given trade function achieves a boundary point if and
only if it maximizes a linear combination of attribute surpluses and trade functions. Any
such trade function corresponds to a linear disclosure. The result follows.

Proposition 3 establishes importance of linear disclosures for attribute surpluses and trade
probabilities. It also highlights the qualitative difference between the boundary and interior
points of the feasibility set F . Any boundary point is achieved by a linear disclosure. Any
interior point is achieved by a stochastic combination of two linear disclosures. Further-
more, one can obtain an immediate corollary relating the trade expectation and the trade
probability. To this end, for a given responsive experiment E, define the trade expectation
as:

Y , E
[
x | E, s+

]
=
∫
x∈X xq (x) dG (x)∫
x∈X q (x) dG (x) . (16)

Now, fix any Y ∈ X and consider the class of responsive experiments E (Y ) that induce
Y as their trade expectation: S = {s+, s−} and E [x | E, s+] = Y. This class is non-empty.
For example, it contains an experiment that recommends the trade only when the attribute
vector x is equal to a given expectation Y . However, under that experiment, the trade
recommendation is sent with a zero probability if attributes are continuously distributed. It
is possible to increase the likelihood of the trade recommendation by sending s+ from the
progressively larger neighborhoods of Y . It turns out that the limit of this expansion is a
linear disclosure.

Proposition 4. (Maximal Probability)
Consider any Y ∈ X and the class of responsive experiments E (Y ) that induce Y as its trade
expectation. A linear disclosure maximizes the probability of a trade recommendation among
all E ∈ E (Y ).

Proposition 4 is straightforward in the case of a single attribute. The multidimensional
extension immediately follows from Proposition 3. It suggests that a linear disclosure can be
viewed as a natural multidimensional extension of a binary monotone partition disclosure.

In general multidimensional screening problems, one cannot be sure that an optimal
bundle belongs to a boundary of a feasibility set. Indeed, optimal attribute surpluses X (θ)
might belong to an interior of their feasibility set. However, I show that the trade probability
can always be minimized to bring the bundle (X (θ) ,Q (θ)) to the boundary of F .

Say that an allocation (X (θ) ,Q (θ))θ∈Θ is implementable if there exist tariff functions
r (θ), p (θ) such that each buyer’s type θ ∈ Θ reports his type truthfully.

16



Proposition 5. (Implementability)
For any implementable allocation (X (θ) ,Q (θ))θ∈Θ there exists an implementable allocation
(X (θ) ,Q′ (θ))θ∈Θ such that: (1) it delivers the same revenue and the same payoffs for all
types and (2) for all θ ∈ Θ, (X (θ) ,Q′ (θ)) ∈ ∂ (F) and Q′ (θ) ≤ Q (θ).

Intuitively, if (X (θ) ,Q (θ)) lies in the interior of F , the seller can always reduce the total
trade probability while keeping the attribute surplus the same. If the seller accompanies
this change with a revenue-preserving increase in the object price, then the on-path payoff
of type θ remains the same. However, the higher object price makes deviations to this type’s
item less appealing and, in fact, strictly so whenever the deviating types intend to always
buy the object or swap their decisions with recommendations.

As an immediate corollary of Propositions 3 and 5, I obtain a tractable characterization
of a class of optimal disclosures.

Theorem 1. (Linear Disclosure)
There exists an optimal responsive menu with every experiment in it being a linear disclosure.

Despite the complexity of the seller’s problem, and in the absence of any assumptions
on attribute and types distributions, all optimal experiments belong to a tractable class of
linear disclosures. Note that Theorem 1 does not say which linear disclosures should be
employed in an optimal menu; the optimal choice clearly depends on the problem at hand.
However, the theorem identifies linear disclosures as an optimal way to screen buyer’s types.

At this point, it is instructive to compare allocation distortions driven by the monopoly
power in the cases of complete and incomplete information about the object. First, consider
the situation with complete information so that the object’s attributes are commonly known
to be x0. In this case, there is no scope for information control. The buyer’s type θ matters
only insofar as it affects the valuation v (θ) = θ · x0. If the seller could observe the type,
she would engage in perfect price discrimination. She would allocate the object efficiently,
selling it if and only if v (θ) ≥ 0, and extract full surplus. If the seller could not observe the
type, she could try to screen different types by designing a menu of items varying in sale
probabilities and prices. This screening problem was famously resolved by Myerson (1981).
An optimal mechanism does not feature price discrimination. Each type θ is assigned a
virtual valuation v̂ (θ) ≤ v (θ) that accounts for his private information. Under standard
regularity conditions, an object is sold if and only if the virtual valuation is positive:

v̂ (θ) ≥ 0. (17)

This allocation is typically inefficient. The seller does not extract all surplus generated by
the transaction—the buyer obtains information rents.
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Compare it to the current situation in which the object’s attributes are uncertain and
the seller can provide information about them. If the seller could observe the type θ, then
she would profitably engage in information and price discrimination. By the argument of
Bergemann and Pesendorfer (2007), the seller would inform type θ whether his valuation
v (θ) = θ ·x is positive and charge him a price E [v (θ) | v (θ) ≥ 0]. As in the case of complete
information, the object would be allocated efficiently and the seller would extract full surplus.
If the seller could not observe the type, she could design a menu varying in information
content and prices. By Theorem 1, the optimal allocation distortions would be remarkably
similar to the case of complete information about the object. Each type θ is assigned a
virtual type θ̂ (θ) with the corresponding virtual valuation v̂ (θ) = θ̂ (θ) ·x. An object is sold
whenever the buyer virtual valuation is above some threshold, possibly with randomization
on the boundary:

v̂ (θ) ≥ α0 (θ) . (18)

This allocation is also typically inefficient with two sources of inefficiencies. First, the virtual
type θ̂ may differ from the true type θ. Second, the threshold α0 may differ from 0. Again,
the seller does not extract full generated surplus and the buyer obtains information rents.

3.5 General Payoffs

Importantly, Theorem 1 places no structural assumptions on the attribute distribution. This
allows careful definition of attributes and extension of the optimal disclosure characterization
beyond the linear ex post valuation formulation (1). In particular, for a general valuation
function v (θ, x), one can define auxiliary attributes to coincide with valuations of differ-
ent buyer’s types. In this auxiliary formulation, Theorem 1 can be applied to obtain the
characterization of optimal disclosures as linear forms of type valuations.

Proposition 6. (General Payoffs)
Let the number of types be finite, |Θ| < ∞, and the valuation function take a general form
v (θ, x) for an arbitrary attribute set X. Then there exists an optimal menu with every
experiment in it being a linear form, i.e., for every experiment in the menu, there exist
α : Θ→ R and α0 ∈ R, not all zeros, such that:

q (x) =

1, if ∑θ∈Θ α (θ) v (θ, x) > α0,

0, if ∑θ∈Θ α (θ) v (θ, x) < α0.
(19)

Proposition 6 allows characterization of the classes of optimal disclosures in alternative
environments in which the buyer’s type captures general preferences such as bliss points or
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degrees of risk aversion. To illustrate it, consider the following example.

Example 1. (Location Payoffs)
Consider the case of location payoffs with the buyer’s type capturing his bliss point in

the attribute space: X ⊆ RJ , Θ ⊆ RJ , v0 > 0, and

v (θ, x) = v0 − (x− θ)2 . (20)

Let there be two types θ1, θ2 ∈ RJ . Assume that X is bounded and v0 is sufficiently high so
that for all x ∈ X, the types’ valuations are positive. In this case, optimal disclosures in the
menu can be identified as follows: First, Proposition 2 can be applied to establish that one
type is offered no disclosure and always buys. Second, by Proposition 6, the other type is
offered a linear form (19) that informs whether a linear combination of valuations v (θ1, x)
and v (θ2, x) is above or below some threshold:

q (x) =

1, if α1v (θ1, x) + α2v (θ2, x) > α0,

0, if α1v (θ1, x) + α2v (θ2, x) < α0.
(21)

Plugging the location valuation function (20) into (21) provides a tractable characterization
of optimal experiments. Generically, these experiments are neighborhood disclosures that
inform whether the attribute vector lies in a neighborhood of a virtual type θ̂:

q (x) =

1, if −
(
x− θ̂

)2
≷ α′0,

0, if −
(
x− θ̂

)2
≶ α′0.

(22)

where α′0 ∈ R and the uncertain inequality sign allows the trade to happen in any of the
disclosed regions. Moreover, the virtual type lies on the line connecting the types: θ̂ =
γθ1 +(1− γ) θ2 for some γ ∈ R. That is, the class of optimal disclosures is rich but tractable.
Coincidentally, as in the case of a linear ex post valuation (1), the disclosure informs about
the valuation of a virtual type. �

4 Design of Pricing Mechanisms

I proceed with studying revenue-maximizing mechanisms. In the previous section, I identi-
fied a class of optimal disclosures without placing any assumptions on the distributions of
types or attributes. In this section, I similarly am able to identify a general class of optimal
pricing mechanisms in the case of a single attribute. Obtaining the same level of general-
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ity with many attributes is problematic—the associated problem involves multidimensional
screening, which is notoriously intractable. Nevertheless, I am able to identify key trade-
offs and characterize optimal mechanisms for specific classes of buyer types. First, I study
the setting in which different types value different and independently distributed attributes.
Second, I enrich the setting with vertical heterogeneity by allowing several types to value the
same attribute with different intensities. Optimal mechanisms turn out to be remarkably
simple and do not involve price discrimination.

From now on, I assume that all types and attributes are positive, X ⊆ RJ
+, Θ ⊆ RJ

+. In
this case, the buyer and the seller commonly know that there are positive gains from trade.
It allows ignoring the efficiency role of disclosure and focusing solely on its screening effects.

4.1 Single Attribute

I begin with the basic case of a single attribute, J = 1, X ⊆ R+. The buyer’s type is one
dimensional, Θ ⊆ R+, and the buyer’s ex post valuation is

v (θ, x) = θx. (23)

This setting features only vertical type heterogeneity. I establish that providing no at-
tribute information is optimal in this case. The argument starts by considering a more
beneficial setting for the seller in which she can condition payment and allocation directly
on the attribute realization. In this case, the revelation principle applies and implies that I
can focus on direct mechanisms in which all payments are front loaded: the buyer reports
his type θ, pays the upfront payment r (θ), and the trade happens with probability q (x, θ).
The terms of trade determine the single-dimensional attribute surplus:

X (θ) =
∫
x∈X

xq (x, θ) dG (x) (24)

that can be anywhere between 0 and E [x]. I can then rewrite the seller’s problem as maxi-
mizing the revenue directly over the payments r (θ) and the surpluses X (θ) as:

max
r(θ),0≤X (θ)≤E[x]

∫
θ∈Θ

r (θ) dF (θ) , (25)

subject to incentive-compatibility and individual-rationality constraints:

θX (θ)− r (θ) ≥ θX (θ′)− r (θ′) , ∀ θ, θ′ ∈ Θ, (26)

θX (θ)− r (θ) ≥ 0, ∀ θ ∈ Θ. (27)
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This problem is analogous to a canonical mechanism design problem of Myerson (1981),
with the attribute surplus taking the place of allocation probability. The optimal allocation
X (θ) is a step function, equal to 0 for θ < θ∗ and to E [x] for θ ≥ θ∗. The corresponding
optimal upfront payment r (θ) is equal to 0 for θ < θ∗ and equal to r∗ = θ∗E [x] for θ ≥ θ∗.

The argument concludes by noting the optimal mechanism can be implemented by provid-
ing no disclosure and charging a strike price r∗ for the object. This posted price mechanism
can be implemented in the original, more restricted, problem and hence is optimal there as
well.

Theorem 2. (Single Attribute)
If there is only one attribute, J = 1, and the buyer’s valuation is always positive, X ⊆ R+,
Θ ⊆ R+, then an optimal menu is a posted price mechanism with no disclosure, i.e., it
contains a single item with zero upfront payment, r = 0, and uninformative experiment,
E = E.

There is a simple intuition behind the optimality of no disclosure if the seller can only
use a nondiscriminatory mechanism consisting of a single disclosure followed by a posted
price. Consider an arbitrary disclosure. Any signal realization s scales the demand with
the proportionality coefficient equal to the expected attribute E [x | s]. If the seller could
observe this realization, she would optimally charge a scaled price and obtained a scaled
revenue. Importantly, the seller would sell the object to the same types irrespectively of the
realization. Since any expectation under an information disclosure is a martingale, the seller
would serve the same population and charge, on average, the same price. The seller can do
just as well by using a posted price with no disclosure.

Figure 5 illustrates this argument. Consider the attribute and type distributions F , G
such that under no additional information, the expected attribute value is E [x] = x0, the
demand curve is Q0 (p), the optimal price is p0, and the optimal trade probability is Q∗.
Consider an experiment that sends two signals s1, s2, inducing the posterior expectations
E [x | s1] = 1/2x0 and E [x | s2] = 2x0. After signal s1, expected valuations of all types are
cut in half. As a result, the induced demand curve Q1 (p) is a scaled-down version of the
original curve, Q1 (p) = Q0 (2p). Hence, the new optimal price is twice as small as the original
price, p1 = p0/2, inducing the same trade probability Q∗. Similarly, after signal s2, expected
valuations of all types double. As a result, the demand curve scales up, Q2 (p) = Q0 (p/2),
and the induced optimal price is twice as large as the original price, p2 = 2p0, inducing,
again, the same trade probability Q∗. By the martingale property, an average posterior
expectation is equal to the prior expectation, so Pr (s1) = 6/10 and Pr (s2) = 4/10. Thus,
the average price is equal to the original price, Pr (s1) p1 +Pr (s2) p2 = p0. Because the trade
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Figure 5: A stochastic split of a demand curve following an attribute disclosure. Optimal
prices scale proportionally. Optimal trade probability remains the same.

probability remains constant, the expected revenue equals the no-disclosure revenue, Q∗p0.
Disclosure, even if observed by the seller, does not benefit her.

Although intuitive, this argument does not account for discriminatory schemes with up-
front payments. Theorem 2 confirms that no disclosure is optimal even if the principal can do
that. I highlight that this result requires no assumptions on type distribution F or attribute
distribution G beyond common knowledge of positive trade gains.

Remark 1. The same argument can be applied for the case of many attributes, J > 1, if the
attributes and the types enter the valuation function through one-dimensional indices:

v (θ, x) = ψ (θ)φ (x) , (28)

for ψ, φ : RJ → R+. For example, it applies, if all types belong to a ray, Θ = {βθ0}β∈R+

for some direction vector θ0 ∈ RJ
+ (c.f., Armstrong (1996)). In this case, the indices can be

defined as ψ (θ) = β (θ), and φ (x) = θ0 · x.

Remark 2. The no-disclosure mechanism may not be uniquely optimal. In fact, with a single
attribute, informing the type-θ buyer about an attribute value x is equivalent to informing
him about an attribute percentile G (x), which is also equal to the valuation percentile for
that type. It follows that the analysis of Eső and Szentes (2007) can be applied and, under
some distributional assumptions, full disclosure is also optimal but must be accompanied by
a complex structure of upfront payments and strike prices.

22



4.2 General Problem

The case of several attributes is qualitatively different because an optimal allocation may
depend on attribute realization. Intuitively, the seller should tailor the allocation to the
buyer types who value the realized attribute the most. This allocation adjustment requires
attribute information and, hence, disclosure. Indeed, as I show in the following subsections,
optimal mechanisms with multiple attributes generally provide some attribute disclosure.

In the previous section, I identified a class of optimal disclosures. The connection to
linear disclosures simplifies the problem and allows optimizing the menu with respect to the
defining parameters α (θ), α0 (θ) of (15). However, writing the seller’s problem in terms of
these parameters is cumbersome and not transparent. Instead, as I discussed in the previous
section, the seller can optimize directly in terms of attribute surpluses X . The optimal trade
probability is then the minimal Q such that (X ,Q) belong to the feasibility set F . Because
F is convex, this induced trade probability Q (X ) is a convex function of attribute surpluses.
The exact shape of Q (X ) depends on the attribute distribution G and is generally nonlinear.

This observation reduces the search for an optimal menu to a concrete multidimensional
screening problem, presented in full in the Appendix. Even though the seller sells a single
object, information disclosure allows him to control the attribute surpluses X (θ) at the
time of a purchase. However, unlike in the bundling problem, the seller cannot choose the
surpluses at will, they must belong to a convex feasibility set. Moreover, the surpluses
directly affect the trade probability in a nonlinear fashion.

Even the most basic multidimensional screening problems are known to be prohibitively
difficult.10 The seller’s problem is further complicated by the presence of multiple double-
deviation constraints and the non-linearity of the trade probability. I make progress by
focusing on a specific class of buyer’s types.

4.3 Single-Minded Buyer

I call a type single-minded if it values only one attribute. For a generic single-minded type,
the vector θ places a positive weight only on one dimension:

θ = (0, . . . , 0, θj, 0, . . . , 0) . (29)

Thus, single-minded types allow for a simpler notation. I can represent the types by J

attribute cohorts Θj such that all types within the same cohort value the same attribute. I
10Bergemann et al. (2012) and Daskalakis et al. (2017) highlight the difficulties associated with the mul-

tiproduct monopolist problem.
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slightly abuse the notation and let the type subscript identify the attribute cohort and the
type value identify the valuation intensity, so that Θj ⊆ R+ and

vj (θj, x) = θjxj ∀ j, θj ∈ Θj. (30)

I denote the frequency of a cohort Θj by f (Θj) and the marginal cumulative type distribution
within the cohort by Fj (θj).

A buyer is single-minded if all types θ ∈ Θ are single-minded and attribute values are
independently distributed, so that xj ∼ Gj and G (x) = ×jGj (xj).11 The independence re-
quirement is substantive. Starting with the general case, one can always redefine attributes
as valuations of the corresponding types as done in the proof of Proposition 6. In this
formulation, each type naturally values only the attribute that arose from his original val-
uation. However, the so-defined attributes can be correlated with the correlation structure
determined by the original attribute and type distributions.

If the buyer is single-minded, then the seller knows that the buyer values only one at-
tribute but does not know which one or how much. This type structure allows further
narrowing of the class of optimal experiments. Because attributes are independently dis-
tributed, a type θj ∈ Θj values only information about attribute j. Information about other
attributes does not change his ex-ante valuation and has no value for him. This observation
suggests an optimal way to screen single-minded types in a direct menu: if the buyer reports
type θj ∈ Θj, then the seller should provide information only about attribute j. Providing
any other information would make misreporting more appealing without adding value for
truth telling. The following proposition confirms this intuition.

Proposition 7. (Directional Disclosure)
If the buyer is single-minded, then there exists an optimal menu such that an experiment
Ej (θj) is informative only about attribute j. That is, for all j, θj ∈ Θj, qj (θj, x) = qj (θj, x′)
whenever xj = x′j.

Proposition 7 establishes that every experiment Ej (θj) provides information about a sin-
gle attribute j. At the same time, by Theorem 1, Ej (θj) is a linear disclosure. However, any
linear disclosure that is informative only about attribute j is effectively a binary monotone
partition defined on this attribute.

Corollary 1. If the buyer is single-minded, then an optimal experiment Ej (θj) is a binary
monotone partition of attribute j.

11The name is inspired by “single-minded” bidders studied in the literature on combinatorial auction
design. A “single-minded” type values a specific attribute, whereas a “single-minded” bidder values a specific
bundle. See, for example, Lehmann et al. (2002). I thank Laura Doval for drawing my attention to this
helpful connection.
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It follows that an optimal experiment Ej (θj) can be characterized by its threshold α0j (θj),
so that it informs the buyer whether attribute j is above or below this threshold. By
construction, the buyer should purchase the object in only one element of the partition.
Incentive compatibility requires this element correspond to attributes above the threshold,
because higher attribute values are more attractive. The resulting trade function is:

qj (θj, x) =

1, if xj > α0j (θj) ,

0, if xj < α0j (θj) .
(31)

As discussed in Section 4.2, posing the seller’s problem in terms of α0j (θj) is not very
convenient. Instead, I characterize the experiment by the attribute surplus:

Xj (θj) =
∫ ∞
α0j(θj)

xjdGj (xj) . (32)

The total trade probability can be written as the function of the surplus Qj (Xj). The
attribute surplus can take any value between 0 and E [xj]. As it increases, the corresponding
disclosure threshold α0j decreases and the total trade probability Qj increases.

It follows that to characterize an optimal menu, I need to find the optimal attribute
surplus functions Xj (θj) and tariff functions rj (θj), pj (θj). I start with a simpler case
that does not incorporate the valuation heterogeneity within each attribute. I then study a
general case and show that an optimal mechanism remains qualitatively the same.

4.3.1 Orthogonal Types

I begin with the case in which each attribute cohort is a singleton, Θj = {θj}, so there is
no vertical within-attribute heterogeneity and the number of types equals the number of
attributes |Θ| = J . Note that in this case, any two different types θ, θ′ ∈ Θ are orthogonal
to each other as vectors in RJ , so I refer to this case as the setting of orthogonal types.

Without loss of generality, I can set all valuation intensities equal to one:

θj ≡ 1 ∀ j = 1, . . . , J. (33)

Hence, I will omit the dependence on the intensity within each attribute and differentiate
types by subscripts.

The class of orthogonal types features particularly tractable incentive constraints. If type
θj misreports, then he is offered an experiment tailored to another orthogonal type and hence
not informative about attribute j. Thus, the type has no reason to act upon the experiment
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realization and the tightest incentive-compatibility constraint is one in which he always buys.
All others can be dropped. The seller’s problem can be written as

max
{rj ,Xj ,pj}J

j=1

J∑
j=1

f (θj) (rj +Qjpj) (34)

s.t. Xj − pjQj − rj ≥ E [xj]− pk − rk, ∀ j, k = 1, . . . , J, (35)

Xj − pjQj − rj ≥ 0, (36)

Xj ∈ [0,E [xj]] , Qj = Qj (Xj) . (37)

This problem resembles a one-dimensional mechanism design problem with the following
important differences. First, each item in this problem features both horizontal and vertical
components. The upfront payments rj are purely vertical—all types value them the same.
The experiments Ej and the associated attribute surpluses Xj are purely horizontal—they
are valuable only to the type θj. The object prices pj are mixed as they are paid only if the
trade occurs, probability of which depends on a type. Second, the problem is non-linear.
Not only are there products between the object prices pj and the trade probabilities Qj, but
also the trade probability functions Qj (Xj) are generically nonlinear as well.

Because of these differences, I cannot apply standard mechanism design techniques. In-
stead, I solve the problem in a sequence of simplifications. In the first step, I observe that
using upfront payments rj is detrimental to the seller. For any strictly positive rj the seller
can reduce the transfer and increase the object price pj to keep the total expected transfer
rj +Qjpj the same. This change does not affect utilities of truth-telling types or the seller’s
revenue. However, it makes misreporting less appealing. Intuitively, by shifting the expected
transfer towards the object price, the seller better discriminates against the types who always
purchase the object.

In the second step, I use the special structure of incentive-compatibility constraints to
show object price discrimination is not profitable as well. Indeed, because all experiments
off the truth-telling path bring no information value, an optimal deviation is to the types
associated with the lowest price p. If there is any object price variation, then there is a type
θj with a price pj > p. This type’s item is not attractive to any other type. Moreover, for
the type to be willing to pay a higher price, the item must contain partial disclosure. This
leads to a contradiction: the seller can simultaneously lower the price pj and increase the
attribute surplus Xj in such a way that the type’s rents Xj − pjQj remain the same but
the expected payment Qjpj increases. Intuitively, the seller should not lose surplus on types
irrelevant for incentives of the others.

Once I establish that optimal mechanism is nondiscriminatory, finding optimal experi-
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ments is straightforward. The seller should maximize trade probability by providing minimal
information sufficient to convince the buyer to make a purchase, attribute by attribute. If
the type θj is ex-ante sufficiently optimistic, E [xj] ≥ p, then the seller should provide no
attribute information, Ej = E. Otherwise, the seller should increase the type’s trade ex-
pectation up to the object price, Xj/Q (Xj) = p. The following theorem summarizes the
findings.

Theorem 3. (Optimal Menu, Orthogonal Types)
If the buyer is single-minded and the types are orthogonal, then an optimal responsive menu
is characterized by the following properties:

1. For any attribute j, rj = 0,

2. For any attribute j, pj = p, and

3. For any attribute j, Ej is a binary monotone partition of xj such that E [xj | Ej, s+] =
max {p,E [xj]}.

The optimal menu is illustrated in Figure 6. I highlight its notable features. First, the
pricing strategy is simple. The menu does not feature price discrimination and the disclosure
is provided free of charge. Second, the menu has the standard “no distortions at the top,
no rents at the bottom” property. Namely, all types with the ex-ante valuation above the
optimal price always buy the object, whereas all other types are indifferent to participating
in the mechanism. In this way, “the top” and “the bottom” are not single types, but two type
classes that partition the type space. Third, the menu admits a nondiscriminatory indirect
implementation. The seller can simply provide a single combined disclosure followed by the
optimal posted price. Because each type values only one attribute, he will focus on the
relevant attribute information. Third, for given attribute distributions {Gj}, the optimal
mechanism can be found easily by a two-stage algorithm. In the first stage, for any fixed
price p, the algorithm uses the third property of Theorem 3 to find optimal thresholds α0j

and define the corresponding trade probability Q. The so-defined function Q (p) is effectively
a “modified” demand curve that accounts for optimal disclosure. In the second stage, the
algorithm uses the demand curve to find an optimal price.

4.3.2 Continuum of Types

I now extend the analysis to the general case of single-minded types and allow for the vertical
heterogeneity within attribute cohorts. In particular, I assume that for all j, the attribute
cohorts admit an upper bound, Θj =

[
0, θj

]
and θj are continuously distributed over Θj
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Figure 6: Optimal mechanism in the case of orthogonal types. Green color indicates at-
tribute regions in which a purchase recommendation is sent, for types with partial disclosure.
Blue color indicates the types’ rent conditional on a trade, for types with no disclosure. At-
tributes are ordered by increasing ex-ante expectations.

according to a distribution function Fj (θ). For the main result of this section, I assume that
each of the distributions Fj (θ) is log-concave.12

In this general case, for each attribute j, the seller needs to design the tariff and the
attribute surplus functions, rj (θj), pj (θj), Xj (θj). This requires incorporating more incen-
tive constraints than in the case of orthogonal types, particularly, the constraints in which
the type pretends to be another type within the same cohort and follows the experiment
recommendation. Swapping the decision or never purchasing the object remains suboptimal,
so those constraints may again be omitted.

As before, I approach this problem in a sequence of simplifying steps. First, I invoke the
same argument as in the case of orthogonal types to establish that upfront payments are
not used in an optimal menu, rj (θj) ≡ 0. Indeed, if some rj (θj) > 0, then the seller can
simultaneously decrease rj (θj) and increase pj (θj) to keep the expected payment rj (θj) +
Qj (θj) pj (θj) the same. This does not affect the revenue or incentive compatibility within
each attribute cohort. However, it relaxes incentive constraints between different cohorts.

Second, by standard arguments, incentive compatibility within the same cohort implies
that Xj (θj) is nondecreasing in θj. It in turn implies that α0j (θj) is nonincreasing; hence,
Qj (θj) is nondecreasing and Xj (θj) /Qj (θj) is nonincreasing in θj. That is, higher types

12The class of log-concave distributions includes normal, logistic, exponential, and uniform distributions,
as well as their truncations.
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must trade with higher probability but lower expectations.
The seller’s problem can then be written solely in terms of the attribute surpluses.

Lemma 1. The seller’s problem can be written as:

max
{Xj(θj)}J

j=1

J∑
j=1

f (Θj)
∫ θj

0

(
θj −

1− Fj (θj)
fj (θj)

)
Xj (θj) dFj (θj) (38)

s.t. Xj (θj) is non− decreasing, Xj (θj) ∈ [0,E [xj]] , (39)∫ θj

0
Xj (θj) dθj ≥ θjE [xj]− p (X1 (·) , . . . ,XJ (·)) ∀ j. (40)

The objective function and the monotonicity constraints capture the incentive-compatibility
constraints within each attribute cohort. They are derived by standard one-dimensional
arguments. The integral constraints are novel and capture the incentive-compatibility con-
straints between different cohorts. In particular, they require that the highest type within
each cohort does not want to purchase the object at the minimal price.

I now argue that the lowest price p is offered to the highest types θj. The argument
and the result are analogous to that in the case of orthogonal types. Assume in an optimal
mechanism some neighborhood of θj is not offered the minimal price. Then, these types are
not imposing externalities on other cohorts through the integral constraint. Moreover, to
not go for the lowest price, these types should be offered some disclosure so Xj (θj) < E [xj].
It leads to a contradiction. The seller could marginally increase Xj (θj) for these types,
improving the revenue but not affecting any other constraint.

This observation allows stating a relaxed problem in which the monotonicity and integral
constraints are dropped but all high types are required to be offered the same minimal price.
If type distributions are log-concave, then the solution to the relaxed problem is a single-
step function. It satisfies the original constraints and hence solves the original problem. The
solution corresponds to only one item per attribute cohort associated with the same object
price. The following theorem summarizes the findings.

Theorem 4. (Optimal Menu, Single-Minded Buyer)
If the buyer is single minded and type distributions are log-concave, then an optimal menu
is characterized by the following properties:

1. For all j, θj ∈ Θj, r (θj) = 0,

2. For all j, θj ∈ Θj, p (θj) = p, and

3. For all j, θj ∈ Θj, Ej (θj) = Ej where Ej is a binary monotone partition of xj.
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It is worth pointing out that my analysis provides a partial characterization in the case of
general distributions Fj (θj) as well. The first statement remains the sam—upfront payments
are not used with a single-minded buyer. However, the second and the third statements
need to be modified to allow for limited price discrimination. In particular, the arguments
of Samuelson (1984) and Bergemann, Bonatti, and Smolin (2018) can be applied to limit
the number of optimal items to two per cohort. That is, the highest types are still offered
the lowest price ∀ j, k, p

(
θj
)

= p
(
θk
)

= p, but per each attribute cohort there could be one
more item that targets lower types.

5 Discussion

5.1 Demand Transformation

My analysis highlights that attribute disclosure can be profitably used to modify a demand
curve. Consider the example in which there are two attributes J = 2, x1 ∼ U [0, 1], x2 ∼
U [0, 2] independently distributed and a continuum of single-minded types. Types θ1 ∈ Θ1

value only the first attribute and types θ2 ∈ Θ2 value only the second attribute. Each cohort
is equally likely and within each cohort the types are uniformly distributed over [0, 2] so the
average type is equal to 1.

If the seller provides no disclosure, then she faces a piecewise-linear demand curve. The
optimal no-disclosure price is pno = 2/3 with the corresponding revenue 1/3. If the seller
provides full disclosure, then the type valuations spread out. The demand decreases for
lower prices and increases for higher prices. The overall effect is negative. The full-disclosure
optimal price is pfull ' 0.82 with the corresponding revenue 0.28 < 1/3. The left side of
Figure 7 illustrates this case.

However, the seller can increase revenue by providing partial disclosure. The type distri-
butions are log-concave so, by Theorem 4, the optimal mechanism can be implemented by
a single multipartition disclosure followed by a posted object price. The optimal disclosure
thresholds can be calculated numerically to be α01 ' 0.27, α02 = 0. The seller optimally
reveals whether the first attribute is above 0.27, yet provides no information about the sec-
ond attribute. This disclosure targets the types that ex-ante value the object less. As a
result, the demand decreases for low prices, increases for medium prices, and remains the
same for high prices. The overall effect is positive. The disclosure increases demand even at
the optimal no-disclosure price pno. The optimal-disclosure optimal price is popp ' 0.80 with
the corresponding revenue 0.35 > 1/3. The right side of Figure 7 illustrates.

These findings resonate with the analysis of Johnson and Myatt (2006), who also study
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Figure 7: Attribute disclosure and demand transformation. Left: demand curves under
no disclosure and full disclosure. Right: demand curves under no disclosure and optimal
disclosure. Vertical lines indicate revenue-maximizing prices.

the impact of information disclosure on demand curves. They restrict attention to disclosures
that spread type valuations uniformly. Such disclosures translate into global rotations of the
demand curve. Johnson and Myatt (2006) show that in many settings, the optimal global
rotations are extreme and correspond to either no disclosure or full disclosure. No disclosure
is associated with a mass market characterized by low price and high demand. Full disclosure
is associated with a niche market characterized by high price and low demand.

In contrast, I show that attribute disclosure can rotate the demand curve locally. The
local rotations correspond to partial disclosures that target specific types. These disclosures
can outperform full and no disclosure in both mass and niche markets. I highlight that
multiple attributes are required for this result. As shown in Section 4.1, no disclosure
remains optimal in a one-dimensional framework.

5.2 Full and Public Disclosure

In a closely related paper, Eső and Szentes (2007) study discriminatory mechanisms in a
“valuation-rank” framework and obtain two main qualitative results. First, they show that
full information disclosure is generally optimal. Second, they show that the seller cannot
benefit from conditioning the price on the disclosure realization.

In this section, I illustrate that both of these results do not hold in the attribute setting.
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Consider the example in which there are two attributes J = 2, x1 ∼ U [0, 1], x2 ∼ U [0, 2],
independently distributed. Let there be two equally likely orthogonal types: θ1 values only
the first attribute and θ2 values only the second attribute.

An optimal menu can be calculated by Theorem 3. The menu can be implemented by a
single disclosure that reveals whether the first attribute is above or below 1/2 followed by a
posted price of 3/4. This optimal mechanism obtains revenue 9/16.

The revenue is strictly higher compared to that under full disclosure. In that case, if the
seller does not use upfront payments, then the optimal object price can be calculated to be
2/3, translating into revenue of 1/3. The seller can improve it by using upfront payments.
The optimal mechanism can be easily calculated to be r1 = r2 = 1/2, p1 = p2 = 0. That
is, anticipating full disclosure, the seller prefers to not discriminate between the types at all
and sell the object in advance through an upfront fee. The corresponding maximal revenue
under full disclosure is 1/2 falling short off optimal 9/16.

At the same time, the seller can strictly improve the revenue if she could condition the
price on the disclosure realization. In fact, she can improve the revenue even under full
disclosure. Consider the following mechanism. The seller provides full disclosure, observes
the attributes, and chooses the price optimal for the realized valuation distribution. Under
this scheme, the seller obtains the revenue:

Π =
∫ 1

0

∫ 2

0

1
2 max

{
min {x1, x2} ,

max {x1, x2}
2

}
dx1dx2 = 29

48 >
9
16 . (41)

Naturally, observing the disclosure realization reduces the buyer informational advantage
and helps the seller to better screen the types.

These observations highlight the distinction between the attribute setting and the “valuation-
rank” setting of Eső and Szentes (2007). In their framework, the seller informs the buyer
about an “orthogonal shock” ξ (θ), defined as the type’s valuation percentile. By construc-
tion, these percentiles are uniformly distributed:

ξ (θ) ∼ U [0, 1] ∀ θ ∈ Θ. (42)

The implicit assumption of the valuation-rank framework is that these shocks in fact equal
each other, ξ (θ) ≡ ξ. This assumption is suitable for environments in which, conditional
on the object’s state, the buyer’s type does not affect his valuation percentile. As Eső
and Szentes (2007) discuss, these environments include the cases of additive valuations and
Gaussian learning.

However, despite having the same distribution, the shocks ξ (θ) are generally different

32



random variables. This distinction is particularly prominent in the case of a single-minded
buyer with orthogonal types. Different shocks correspond to different attributes and thus
are independently distributed. In the example above, these shocks are ξ (θ1) = x1 and
ξ (θ2) = x2/2.

6 Conclusion

I studied a monopolist who sells a multi-attribute object to a privately informed buyer and
showed that the seller can benefit from disclosure of attribute information. The benefit
comes through two channels. First, disclosure can be used as a screening device, leveraging
the fact that different buyer types prefer learning about different aspects of the object.
Second, disclosure can lift the buyer’s expectations and persuade him to buy the object at a
higher price. Both channels are important. However, I show that if each type values a single
attribute and attributes are independent, then screening is not beneficial and information
should be disclosed partially and free of charge. That is, in such settings, the choice of
information content is more important than the choice of its pricing.

In this paper, I deliberately focused on the simplest model of pricing and information
control. In practice, additional details may be important and should be accounted for. The
seller may be restricted in what kinds of information she may provide. The buyer may feature
heterogeneity in his ability to process data. The market may involve imperfect competition.
Each of these extensions can be approached within the multi-attribute disclosure framework
that I have outlined.
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7 Appendix

Proof of Proposition 1. Consider an arbitrary menuM = (r (i) , E (i) , p (i))i∈I . For any
type θ, the menu induces the allocation distribution µ (θ) : X → ∆ (A), A = {buy, not buy},
the expected upfront payment r̂ (θ), and the expected object payment, conditional on a
trade, p̂ (θ). Consider a direct responsive menu M ′ = (r′ (θ) , E ′ (θ) , p′ (θ)) with r′ (θ) =
r̂ (θ), p′ (θ) = p̂ (θ), and E ′ (θ) = (A, µ (θ)). If all types report truthfully and follow the
recommendations, then the menuM ′ results in the same allocation distribution and the same
expected payments as the menu M . At the same time, any deviation under M ′ is available
to the buyer under M . Hence, reporting truthfully and following the recommendations is
incentive-compatible for all types under M ′.

Proof of Proposition 2. Towards a contradiction, assume that a responsive menu M =
(r (θ) ,X (θ) ,Q (θ) , p (θ))θ∈Θ is optimal yet every type does not buy the object with some
strictly positive probability. Construct a new menu M ′ as follows. Pick a type θ with the
highest expected payment T = r

(
θ
)

+ p
(
θ
)
Q
(
θ
)
. As Θ is finite, this type exists. Change

this type’s item to no disclosure followed by an object price as follows:

(
r′
(
θ
)
,X ′

(
θ
)
,Q′

(
θ
)
, p′

(
θ
))

=
(
0,E [x] , 1, T + θ ·

(
E [x]−X

(
θ
)))

.

Keep all other items the same. In this menu, type θ chooses the new item and always buys
the object. This strategy gives him exactly the same payoff as the original menu:

θ · X ′
(
θ
)
− p′

(
θ
)

= θ · X
(
θ
)
− p

(
θ
)
Q
(
θ
)
− r

(
θ
)
.

As X ⊆ RJ
++, the uninformative experiment achieves a maximal attribute surplus, E [x] =∫

x∈X xdG > X (θ). As Θ ⊆ RJ
++, the new expected payment from type θ is strictly higher

than in the original menu, p′
(
θ
)
> T .

The new menu M ′ is not necessarily direct. The no disclosure item may be attractive
to some types other than θ. However, the only profitable strategy under no disclosure is
always buying. Such deviation would only increase the seller’s profit as T was chosen to be
the highest expected payment. Hence, the menu M ′ brings strictly greater revenue than the
menu M . Contradiction. The result follows.

Proof of Proposition 3. As the expected valuations of all types exist, the set F is a
continuous image of a compact set. Hence, F is compact.

The set F is convex because for any trade functions q1, q2 their convex combination is a
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feasible trade function that achieves a convex combination of their attribute surpluses and
trade probabilities. Indeed, take any two points (X1,Q1) , (X1,Q2) ∈ F and γ ∈ [0, 1]. By
construction, there exist trade functions q1, q2 : X → [0, 1] that generate these two points.
Then, the function q3 , γq1 + (1− γ) q2 is an admissible trade function that generates the
attribute surplus

X3 (θ) =
∫
x∈X

xq3 (x) dG (x)

=
∫
x∈X

x (γq1 (x) + (1− γ) q2 (x)) dG (x)

= γ
∫
x∈X

xq1 (x) dG (x) + (1− γ)
∫
x∈X

xq2 (x) dG (x)

= γX1 (θ) + (1− γ)X2 (θ) .

The same argument can be applied to the trade probability. Hence, (X3,Q3) is a convex
combination of (X1,Q1) and (X2,Q2) and belongs to the feasibility set F .

The boundary of F is spanned by linear disclosures. Indeed, as F is a finite-dimensional
closed set, the Supporting Hyperplane theorem (Rockafellar (1970), Theorem 11.6, Corollary
11.6.1, p. 100) can be applied.13 In particular, a point

(
X̂ , Q̂

)
belongs to the boundary of F

if only if there are coefficients (λ, λ0) not all zero such that:

(
X̂ , Q̂

)
∈ arg max

(X ,Q)∈F
λ · X + λ0Q.

It follows from the definition of F that the trade function q̂ generating the point
(
X̂ , Q̂

)
is

such that:

q̂ (x) ∈ arg max
q:X→[0,1]

λ ·
∫
x∈X

xq (x) dG (x) + λ0

∫
x∈X

q (x) dG (x)

∈ arg max
q:X→[0,1]

∫
x∈X

(λ · x+ λ0) q (x) dG (x) .

The integral is maximized pointwise. Its any maximizer is a linear disclosure (15) with
coefficients α = λ, α0 = λ0.

13This step might fail if there are infinitely many attributes, |J | =∞. If F has infinite dimensions then it
might have some boundary points that cannot be supported by a hyperplane. A sufficient condition for the
existence of a supporting hyperplane is that F has a non-empty interior.
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Proof of Proposition 4. For an arbitrary trade expectation Y ∈ X, the problem of
finding the maximal probability experiment can be written as:

max
q:X→[0,1]

∫
q (x) dG (x)

s.t.
∫
xq (x) dG (x)∫
q (x) dG (x) = Y.

Equivalently, it can be written in terms of the attribute surpluses and trade probabilities as:

max
(X ,Q)∈F

Q

s.t. X −QY = 0.

As F is compact, the solution to this problem exists and belongs to the boundary of F .
Thus, by Proposition 3, it can be achieved (only) by a linear disclosure.

Proof of Proposition 5. The seller’s problem can be written in terms of attribute sur-
pluses and trade probabilities as:

max
{r(θ),X (θ),Q(θ),p(θ)}

∫
θ∈Θ

(r (θ) +Q (θ) p (θ)) dF (θ) (43)

subject to incentive-compatibility constraints: ∀ θ, θ′ ∈ Θ,

θ · X (θ)−Q (θ) p (θ)− r (θ) ≥ θ · X (θ′)−Q (θ′) p (θ′)− r (θ′) , (44)

θ · X (θ)−Q (θ) p (θ)− r (θ) ≥ θ · (E [x]−X (θ′))− (1−Q (θ′)) p (θ′)− r (θ′) , (45)

θ · X (θ)−Q (θ) p (θ)− r (θ) ≥ θ · E [x]− p (θ′)− r (θ′) , (46)

θ · X (θ)−Q (θ) p (θ)− r (θ) ≥ −r (θ′) , (47)

the individual-rationality constraints: ∀ θ ∈ Θ,

θ · X (θ)−Q (θ) p (θ)− r (θ) ≥ 0, (48)

and the feasibility constraint: ∀ θ ∈ Θ,

(X (θ) ,Q (θ)) ∈ F . (49)

Consider any feasible profile of tariff functions, attribute surpluses, and trade probabilities
r (θ), X (θ), Q (θ), p (θ) that satisfy constraints (44), (45), (46), (47), (48). Take any type

36



θ̂ such that
(
X
(
θ̂
)
,Q

(
θ̂
))
∈ int (F). Consider the following perturbation: keeping X

(
θ̂
)

and p
(
θ̂
)
Q
(
θ̂
)
fixed, minimize Q

(
θ̂
)
within F . By (3), F is compact so an optimum exists

and belongs to the boundary. By construction, Q′
(
θ̂
)
≤ Q

(
θ̂
)
. The perturbation keeps

the objective (43) and the constraints (44), (47), (48) intact. At the same time, it strictly
increases p

(
θ̂
)
and hence strictly relaxes the constraints (45) and (46) for all types deviating

to type θ̂. Hence, the perturbed profile is implementable and delivers the same allocation as
the original profile. As one can do this perturbation to all types θ ∈ Θ, the result follows.

Proof of Theorem 1. The seller’s problem (43) can be seen as a maximization of a
continuous function over a compact set. Hence, an optimal menu exists. By Proposition 5,
there exists an optimal menu with all allocations located on the boundary of the feasibility
set F . By Proposition 3, such allocations are achieved by linear disclosures. The result
follows.

Proof of Proposition 6. Introduce auxiliary attributes, as many as there are types.
Define an auxiliary attribute x′θ as the valuation of a type θ, x′θ , v (θ, x). The new attribute
vector, x′, is distributed over a set X ′ ⊆ R|Θ|, according to the distribution of original
attributes G and the valuation function v (θ, x). By construction, the valuation of each type
can be defined as the corresponding auxiliary attribute, v′ (θ, x′) = x′θ. This is a special case
of the formulation (1). Thus, Theorem 1 applies and there exists an optimal menu with
every experiment in it being a linear disclosure of auxiliary attributes x′:

q (x′) =

1, if ∑θ∈Θ αθx
′
θ > α0,

0, if ∑θ∈Θ αθx
′
θ < α0,

for α ∈ R|Θ|, α0 ∈ R, not all zeros. In the original formulation, these are linear forms. The
result follows.

Calculations behind Example 1. Consider the linear form (21). If α1 + α2 6= 0, then,
by rescaling the term α0, the sum can be normalized to equal 1. By rearranging the terms,
the linear form can be rewritten as:

q (x) =

1, if − (x− (α1θ1 + α2θ2))2 ≷ α′0,

0, if − (x− (α1θ1 + α2θ2))2 ≶ α′0,

with α′0 = −v0 + α0 + α1α2 (θ1 − θ2)2 and the inequality sign depending on the sign of
the original coefficient sum. This is a neighborhood disclosure with θ̂ = α1θ1 + α2θ2 and
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α1 + α2 = 1.
If α1 = α2 = 0, then the linear form provides no disclosure and, as X is bounded, is

equivalent to a neighborhood disclosure for a sufficiently large |α0|.
Finally, if α1 + α2 = 0 and α1 6= 0, then the linear form (21) is a linear disclosure that

informs about the direction of types’ difference:

q (x) =

1, if (θ1 − θ2) · x ≷ α′0,

0, if (θ1 − θ2) · x ≶ α′0,

with α′0 = α0/ (2α1) + (θ2
1 − θ2

2) /2 and the inequality sign depending on the sign of α1.
However, the proof of Proposition 3 established that the attribute surplus and probability
achieved by a linear form with parameters (α1, α2, α0) correspond to a boundary point of
the feasibility set F in the auxiliary attributes, supported by the hyperplane orthogonal to
the vector (α1, α2, α0). If θ1 6= θ2, the feasibility set has a strict interior. Hence, the set of
boundary points supported by hyperplanes with α1 +α2 = 0 has a measure zero and, hence,
generically does not matter for an optimal mechanism.

Proof of Theorem 2. The argument is given in the text. The only difference from
Myerson (1981)’s problem is that X can take values in [0,E [x]], not in [0, 1]. However, it
does not affect the extremal nature of the solution.

Lemma 2. (Directional Decomposition)
Let (x1, x2, . . . , xJ) be J attributes distributed independently over X ⊆ RJ according to prior
distributions G1, . . . , GJ . Let E = (S, π), π : X → ∆ (S) be an arbitrary experiment.
Let (µ (s, E) ,Pr (s, E)) be the belief distribution induced by E, so that µ (s, E) is a dis-
tribution over X conditional on s given E. Denote by µj (s, E) the jth marginal distribu-
tion of µ (s, E). Then, there exists a collection of experiments {Ej}Jj=1 such that experi-
ment Ej provides the same information as E about attribute j and provides no information
about other attributes: Ej = (S, πj) induces a belief distribution (µ (s, Ej) ,Pr (s, Ej)) with
µ (s, Ej) = (µj (s, E) , G−j) and Pr (s, Ej) = Pr (s, E) for all s ∈ S.

Proof. The proof is constructive. Introduce dummy variables (x′1, x′2, . . . , x′J) that have the
same prior distributions as (x1, x2, . . . , xJ) but drawn independently of them. For a given
j, construct Ej as an experiment that informs about the vector

(
xj, x

′
−j

)
according to the

likelihood function of E. By construction, Ej induces the same marginal distribution of
beliefs about attribute j. However, as (x1, x

′
1, x2, x

′
2 . . . , xJ , x

′
J) are independent, it provides

no information about other attributes. The result follows.
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Proof of Proposition 7. Consider an arbitrary responsive experiment Ej (θj). By Lemma
2 there exists a linear disclosure E ′j (θj) such that the relevant attribute surplus and trade
probability remain the same X ′j (θj) = Xj (θj), Q

(
E ′j (θj)

)
= Q (Ej (θj)), and all other sur-

pluses stay at the ex-ante expectations, X ′k (θj) = E [xk] for all k 6= j. Hence, replacing Ej (θj)
with E ′j (θj) does not change incentive compatibility within cohort Θj but, by Blackwell’s
Theorem, relaxes the incentive-compatibility constraints of other cohorts.

Proof of Theorem 3. Consider the seller’s problem (34) and its arbitrary solution. Define
p = minθ {p (θ)}. This is the relevant price of the deviations across types. Towards the
contradiction, assume p (θ) > p for some type θ.

If E[xj(θ)] ≥ p, then the incentive compatibility constraint is binding. Hence, Q (θ) p (θ) =
X (θ)−E[xj(θ)] + p. For small ε > 0 consider a modified mechanism with X ′ (θ) = X (θ) + ε,
Q′ (θ) p′ (θ) = X ′ (θ) − E[xj(θ)] + p. Because Q (X ) is continuous, the mechanism remains
incentive compatible yet brings higher revenue. Contradiction.

If E[xj(θ)] < p, then the individual-rationality constraint is binding. Hence, Q (θ) p (θ) =
X (θ). For small ε > 0, consider the modified mechanism with p′ (θ) = p (θ)−ε, X ′ (θ) /Q′ (θ) =
X (θ) /Q (θ) − ε. The mechanism remains incentive compatible yet brings higher revenue.
Contradiction.

Now, consider optimal disclosure for a given object price. By feasibility and individual
rationality, X (θ) /Q (θ) ≥ max

{
p,E[xj(θ)]

}
. If X (θ) /Q (θ) > max

{
p,E[xj(θ)]

}
, then for

small ε > 0 the mechanism with X ′ (θ) /Q′ (θ) = X (θ) /Q (θ) − ε is incentive compatible
and increases trade probability, Q′ (θ) > Q (θ), and consequently, revenue. Contradiction.

Proof of Lemma 1. The seller’s problem can be written as:

max
{rj(θj),Xj(θj),pj(θj)}

J∑
j=1

f (Θj)
∫
θj∈Θj

(rj (θj) +Qj (θj) pj (θj)) dFj (θj)

s.t. θjXj (θj)− pj (θj)Qj (θj)− rj (θj) ≥
(
θjXj

(
θ′j
)
− pj

(
θ′j
))
Qj

(
θ′j
)
− rj

(
θ′j
)
, ∀ j, θj, θ′j ∈ Θj,

θjXj (θj)− pj (θj)Qj (θj)− rj (θj) ≥ θjE [xj]− pk (θk)− rk (θk) , ∀ j, k, θj ∈ Θj, θk ∈ Θk,

θjXj (θj)− pj (θj)Qj (θj)− rj (θj) ≥ 0,

Xj (θj) ≥ Qj (θj)E [xj] , Qj (θj) = Qj (Xj (θj)) , ∀j, θj ∈ Θj.

Define the expected transfer function:

Tj (θj) , Qj (θj) pj (θj) .
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I can use standard one-dimension arguments within each cohort to establish the connection
between the attribute surplus and the expected transfer function. Incentive compatibility
requires the slope of the indirect utility function be equal to Xj (θ) almost everywhere. Hence,
the indirect utility function is convex and, by the Envelope Theorem, the optimal transfers
can be recovered to be

Tj (θj) = θjXj (θj)−
∫ θj

0
Xj (z) dz.

Individual rationality and incentive compatibility within each cohort are satisfied by con-
struction. However, incentive compatibility between different cohorts imposes one additional
constraint,

U
(
Ej
(
θj
)
, θj
)

=
∫ θj

0
Xj (θj) dθj ≥ θjE [xj]− p,

where p is the minimal object price in the menu determined by {Xj}Jj=1. The deviations
from all other types θj ∈ Θ follow because the indirect utility function is convex and grows
slower than θjE [xj]. Applying double integration to the objective function completes the
derivation.

Proof of Theorem 4. The argument in the text establishes that all high types are offered
the minimal price. The optimal mechanism should then solve the problem (38) with the
additional constraints that all high types are offered the same fixed price p∗, and are served
the fixed attribute surplus X ∗j

(
θj
)
. These constraints can be written as:

∫ θj

0
Xj (θj) dθj = Xj

(
θj
)
− p∗Qj

(
Xj
(
θj
))
,

Xj
(
θj
)

= X ∗j
(
θj
)
.

I can then consider a relaxed problem with the original integral constraints and the mono-
tonicity constraints dropped. In this relaxed problem, by Luenberger (1969), there exist the
Lagrange multipliers {λj} such that optimal Xj (θj) maximize the Lagrange function

L ∼
J∑
j=1

f (Θj)
∫ θj

0

(
θj −

1− Fj (θj)− λj
fj (θj)

)
Xj (θj) dFj (θj)

over a domain Xj (θj) ∈
[
0,X ∗

(
θj
)]
. If all type distributions are log-concave, then the

integrand is increasing in θj. Hence, the optimal Xj (θj) are bang-bang: Xj (θj) = 0 for
θj < θ∗j , Xj (θj) = X ∗

(
θj
)
for θj > θ∗j . This relaxed solution corresponds to a single item per

each attribute cohort. Hence, the relaxed constraints are satisfied and the relaxed solution
solves the original problem as well.
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