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Abstract

We estimate the demand for health insurance in the California Affordable Care
Act marketplace (Covered California) without using parametric assumptions on the
distribution of the unobserved components of utility. To do this, we develop a com-
putational method for constructing sharp identified sets in a nonparametric discrete
choice model. The method allows for endogeneity in prices (premiums) and for the use
of instrumental variables to address this endogeneity. We use the method to estimate
bounds on the effect of changes in premium subsidies on coverage choices, consumer
surplus, and government spending. We find that a $10 decrease in monthly premium
subsidies would cause between a 2.3% and 11.4% decline in the proportion of low-
income adults with coverage. The corresponding reduction in total annual consumer
surplus would be between $43 and $66 million, while the savings in yearly subsidy out-
lays would be between $293 and $944 million. These nonparametric estimates reflect
substantially greater price sensitivity than in comparable logit or probit models.
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1 Introduction

Under the Patient Protection and Affordable Care Act of 2010 (“ACA”), the United

States federal government spends over $40 billion per year on subsidizing health insur-

ance premiums for low-income households. The design of the ACA and the regulation

of non-group health insurance remain objects of intense debate among policy mak-

ers. Addressing several key design issues, such as the structure of premium subsidies,

requires estimating demand under counterfactual scenarios.

Recent research on the demand for health insurance has filled this need using dis-

crete choice models in the style of McFadden (1974). For example, Chan and Gruber

(2010) and Ericson and Starc (2015) used conditional logit models to estimate demand

in Massachusetts’ Commonwealth Care program, Saltzman (2017) used a nested logit

to estimate demand in the California and Washington ACA exchanges, and Tebaldi

(2017) estimated demand in the California ACA exchange with a variety of logit, nested

logit, and mixed (random coefficient) logit models.

These various flavors of logit models differ in the way they deal with the indepen-

dence of irrelevant alternatives property (see e.g. Goldberg, 1995; Berry, Levinsohn,

and Pakes, 1995; McFadden and Train, 2000), and in how they deal with potential

endogeneity of prices (e.g. Berry, 1994; Hausman, 1996; Berry et al., 1995; Berry,

Levinsohn, and Pakes, 2004). However, they are all fully parametric, with the logistic

distribution playing a central role in the parameterization. This raises the concerning

possibility that the counterfactual demand predictions generated from these models

might be significantly driven by functional form.

In this paper, we use a nonparametric model to estimate the effects of changing

premium subsidies on choice behavior, consumer surplus, and government spending in

the California ACA exchange (Covered California). The model is a distribution-free

counterpart of a standard discrete choice model in which consumers’ indirect utility for

insurance options depends on the price (premium) and on their unobserved valuation

for the option. In contrast to standard parametric discrete choice models, we do not

assume that these valuations follow a specific distribution such as normal (probit) or

type I extreme value (logit). The main restriction of the model is that indirect utility is

additively separable in premiums and latent valuations. The model allows for premiums

to be endogenous (correlated with latent valuations), and allows a researcher to use

instrumental variables to address this endogeneity.1

1 While we develop our methodology with a focus on our health insurance application, we believe that it
should also be of wider interest for demand analysis in other markets with product differentiation, as well
as for other discrete choice settings more generally.
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Point identification arguments in similar nonparametric discrete choice models with

exogenous prices are often premised on the assumption of large variation in prices (e.g.

Thompson, 1989; Matzkin, 1993). When prices are endogenous, point identification

requires large variation in instruments for prices, as well as additional completeness

conditions (Chiappori and Komunjer, 2009; Berry and Haile, 2014). In the Covered

California data, we only observe limited variation in premiums, so these conditions will

not be satisfied. This leads us to consider a partial identification framework.

The primary challenge with allowing for partial identification is finding a way to

characterize and compute sharp bounds for target parameters of interest. We develop

a characterization based on the insight that in a discrete choice model, many differ-

ent realizations of latent valuations would lead to identical choice behavior under all

relevant observed and counterfactual prices. Using this idea, we partition the space of

unobserved valuations according to choice behavior by constructing a collection of sets

that we call the Minimal Relevant Partition (MRP). We prove that sharp bounds for

typical target parameters of interest can be characterized by considering only the way

the distribution of valuations places mass over the MRP. We then use this result to

develop estimators of these bounds, which we implement using linear programming.

We combine our empirical methodology with rich administrative data to estimate

demand counterfactuals for the California ACA exchange. The focus of our analy-

sis is the choice of metal tier for low-income households who are not covered under

employer-sponsored insurance or public programs. Our main counterfactual of interest

is how changes in premium subsidies would affect the proportion of this population that

chooses to purchase health insurance, as well as their chosen coverage tiers, and their

realized consumer surplus. To identify these quantities, we use the additively separable

structure of utility in the nonparametric model together with institutionally-induced

variation in premiums across consumers of different ages and incomes. We exploit this

variation by restricting the degree to which preferences (latent valuations) can differ

across consumers of similar age and income who live in the same geographic region.

Since the nonparametric model is partially identified, this strategy yields bounds,

rather than point estimates. However, the bounds are quite informative. Using our

preferred specification, we estimate that a $10 decrease in monthly premium subsidies

would cause between a 2.3% and 11.4% decline in the proportion of low-income adults

with coverage. The average consumer surplus impact of this subsidy decrease would

be between $1.86 and $2.80 per person, per month, or between $43 and $66 million

annually when aggregated. Savings on subsidy outlays would be $293 to $944 million.

When we analyze heterogeneity by income, we find that poorer consumers value health

insurance more, and so incur the bulk of the surplus loss from decreasing subsidies.
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Overall, our estimates reinforce and amplify the finding that the demand for health

insurance in this segment of the population is highly price elastic (e.g. Abraham, Drake,

Sacks, and Simon, 2017; Finkelstein, Hendren, and Shepard, 2017).

We show that comparable estimates using logit models tend to yield price responses

close to our lower bounds, and so may substantially overstate the value that consumers

place on health insurance. This possibility of understated price sensitivity is more se-

vere when considering larger price changes that involve more distant extrapolations.

It also remains when considering similar models, such as mixed logit, that allow for

valuations to be correlated across options. Our findings provide an example in which

the shape of the logistic (or similarly-shaped Gaussian) distribution can have an im-

portant impact on empirical conclusions.2 The nonparametric model we use presents

a remedy for this problem, and in this case provides empirical conclusions that differ

significantly along a policy-relevant dimension.

The remainder of the paper is organized as follows. In Section 2, we begin with

a discussion of the key institutional aspects of Covered California. In Section 3, we

develop our nonparametric discrete choice methodology for estimating the demand for

health insurance.3 In Section 4, we discuss our empirical implementation of the method

using the Covered California administrative data and our main empirical results. In

Section 5 we contrast these results with estimates from standard parametric models.

Section 6 contains some brief concluding remarks.

2 Covered California

Covered California is one of the largest state health insurance exchanges regulated by

the ACA, accounting for more than 10% of national enrollment. As in other states, it

primarily serves low-income households with income between 100-400% of the federal

poverty level (FPL) by providing these households an option to purchase subsidized

insurance if they are not covered by an employer or a public program, such as Medi-Cal

(Medicaid) or Medicare. In 2014, over 94% of purchasing households were beneficiaries

of premium subsidies. Our analysis will focus exclusively on this large and important

subpopulation.

The basic structure of Covered California is determined by federal regulation, and

so is common to other ACA marketplaces. The regulation splits states into geographic

2 Other examples include Ho and Pakes (2014) and Compiani (2018), who also found that logit models
underestimate price elasticities relative to less parametric alternatives, albeit using different methods in
different empirical settings.

3 Appendix A contains a methodological literature review that compares and contrasts our approach with
the related semi- and nonparametric literature on discrete choice models.
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rating regions comprised of groups of contiguous counties or zip codes. In California,

there are 19 such rating regions. Insurers are allowed to vary premiums across (but not

within) rating regions, and consumers face the premiums set for their resident region.

Each year in the spring, insurers announce their intention to enter a region in the

subsequent calendar year and undergo a certification process by the state. Consumers

are then able to purchase insurance for the subsequent year during an open enrollment

period at the end of the year.

However, Covered California also differs from other ACA marketplaces in several

important aspects. One important difference is that an insurer who intends to partic-

ipate in a rating region is required to offer a menu of four plans classified into metal

tiers of increasing actuarial value: Bronze, Silver, Gold and Platinum.4 Unlike other

marketplaces, the insurer must provide the entire menu of four plans in any region

where it enters. Moreover, the actuarial features of the plans are standardized to have

the characteristics shown in Table 1 (among others). Insurers who enter a rating region

must therefore offer each of the plans listed in Table 1 with the features shown there.

We will focus our analysis on the choice of tier, i.e. on how much coverage to purchase,

rather than modeling which insurer to purchase it from.

Insurers are also regulated in the way in which they can set premiums. Each

insurer chooses a base premium for each metal tier in each rating region. This base

premium is then transformed through federal regulation into premiums that vary by

the consumer’s age.5 The insurer is not permitted to adjust premiums based on any

other characteristic of the consumer.6 Households with annual income below 400% FPL

pay lower premiums than received by the insurer, with the difference being made up

by premium subsidies. These subsidies are set according to federal regulations based

on the household’s income (measured in FPL) and number of household members.7

Besides subsidies, there is also an income tax penalty for remaining uninsured which

is assessed at filing.

In addition to premium subsidies, the ACA also contained a provision under which

households with income lower than 250% of the FPL receive cost-sharing reduction

(CSR) subsidies. In Covered California, CSRs are implemented by changing the actu-

4 There is a fifth coverage level called minimum (or catastrophic) coverage, but this is not available to
subsidized buyers, so we omit it from our analysis.

5 This transformation involves multiplying base premiums by an adjustment factor that starts at 1 for
individuals at age 21 and increases smoothly to 3 at age 64. These factors are set by the Center for Medicaid
& Medicare Services. Individuals 65 and older are covered by Medicare. See Orsini and Tebaldi (2017) for
further discussion.

6 Some states also allow for adjustments based on tobacco use. California is not one of these states.
7 See Tebaldi (2017) for details on how these subsidies are set.
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Table 1: Standardized Financial Characteristics in Covered California

Annual Annual max Primary E.R. Specialist Preferred Actuarial
deductible out-of-pocket visit visit visit drugs value

Bronze $5,000 $6,250 $60 $300 $70 $50 60%
Silver (>250% FPL) $2,250 $6,250 $45 $250 $65 $50 70%
Silver (200-250% FPL) $1,850 $5,200 $40 $250 $50 $35 74%
Gold $0 $6,250 $30 $250 $50 $50 79%
Silver (150-200% FPL) $550 $2,250 $15 $75 $20 $15 88%
Platinum $0 $4,000 $20 $150 $40 $15 90%
Silver (100-150% FPL) $0 $2,250 $3 $25 $5 $5 95%

Source: http://www.coveredca.com/PDFs/2015-Health-Benefits-Table.pdf

arial terms of the Silver plan for these households. As a result, the terms of a Silver

plan vary across households with different FPL levels, with discrete changes at 150%,

200%, and 250% of the FPL; see Table 1. The CSRs make the Silver plan very at-

tractive for low-income households relative to the more expensive Gold and Platinum

plans.

3 Empirical Framework and Methodology

3.1 Model

We consider a model in which a population of consumers indexed by i each choose a

single health insurance plan Yi from a set J ≡ {0, 1, . . . , J} of J+1 choices. Each plan j

has a premium, Pij , which is indexed by the consumer, i, since different consumers face

different post-subsidy premiums depending on their sociodemographic characteristics.8

Choice j = 0 represents the outside option of not choosing any of the insurance plans,

and has premium normalized to 0, so that Pi0 = 0. When we take the model to the

Covered California data in Section 4, we will have five choices (J = 4) with options

1, 2, 3, and 4 representing Bronze, Silver, Gold, and Platinum plans, respectively.

Consumer i has a vector Vi ≡ (Vi0, Vi1, . . . , ViJ) of valuations for each plan, with the

standard normalization that Vi0 = 0. The valuations are known to the consumer, but

latent from the perspective of the researcher. We assume that consumer i’s indirect

utility from choosing plan j is given by Vij − Pij , so that their plan choice is given by

Yi = arg max
j∈J

Vij − Pij . (1)

8 The premium Pij can be viewed as net of the tax penalty for remaining uninsured.
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Our use of (1) will be nonparametric in the sense that we will not assume that the

distribution of Vi follows a specific functional form such as i.i.d. type I extreme value

(logit) or multivariate normal (probit).

Models like (1) in which valuations and premiums are additively separable in in-

direct utility have been widely used in the recent literature on insurance demand, see

e.g. Einav, Finkelstein, and Cullen (2010a), Einav, Finkelstein, and Levin (2010b), and

Bundorf, Levin, and Mahoney (2012). In Appendix B, we derive (1) from an insurance

choice model similar to the ones in Handel (2013) and Handel, Hendel, and Whinston

(2015), in which consumers have quasilinear utility and constant absolute risk aversion

preferences. In this model, differences in Vi across consumers arise from heterogeneity

in their unobserved preferences, risk factors (and/or perception), and risk aversion.

The additive separability (quasilinearity) of premiums in (1) imposes restrictions on

substitution patterns. In particular, (1) implies that if all premiums were to increase

by the same amount, then a consumer who chose to purchase plan j ≥ 1 before the

premium increase will either continue to choose plan j after the premium increase,

or will switch to the outside option (j = 0), but they will not switch to a different

plan k ≥ 1, k 6= j. This limits the role of income effects to the extensive margin of

purchasing any insurance plan versus taking the outside option.

However, it is important to note that (1) is a model of a given consumer i. When

we take (1) to the data, we will be combining observations on many consumers, and

so in practice we can allow for income effects by allowing for dependence between a

consumer’s income and their valuations. We make this formal by treating a consumer’s

observed characteristics (including their income) as part of a vector, Xi, and then

considering restrictions on the dependence between Vi, Pi, and the various components

of Xi. We discuss these types of assumptions more in Section 3.3.1 and our specific

implementation of them in Section 4.2. In general, Xi can also contain characteristics

that vary over choice options, but this will not play a part in our application, due to

the regulated homogeneity of tier characteristics in Covered California.

A common parametric specification for discrete choice demand models replaces (1)

by

Yi = arg max
j∈J

X ′ijβi − αiPij + ξj + εij , (2)

where Xij and Pij are as in our notation (indexed as specific to choice j), ξj are the

unobservable components of choice j that do not vary across consumers, and εij are

idiosyncratic logit (type I extreme value) unobservables that are independent across
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choices.9 In the influential model of Berry et al. (1995), the βi and αi terms are

unobservable random coefficients that vary across consumers, and are typically pa-

rameterized to be normally distributed.10 Our motivation in considering (1) is to use

the utility maximization structure of a discrete choice model for inference on policy

counterfactuals, while avoiding having to make these types of non-economic parametric

assumptions.

The specification of indirect utility we use in (1) can be viewed as nesting (2) after

dividing through by αi and taking Vij ≡ α−1
i (X ′ijβi + ξj + εij).

11 This observation

highlights some considerations for our analysis. First, we want to be careful about

assuming that Vi and Xi are independent, since the observable characteristics of con-

sumers or insurance options might naturally be related to valuations.12 Whereas (2)

tightly parameterizes the way in which observable characteristics affect valuations, we

prefer to leave this relationship nonparametric in our application, in part because we

have a large administrative data set. Second, we typically do not want to assume that

Vi and Pi are independent, since Vi also depends on unobservable characteristics of

plans and consumers (the ξj and εij) terms in (2)), and firms likely set premiums with

knowledge of these characteristics (Berry, 1994; Hausman, 1996). Third, we want to

allow for Vij and Vik to be arbitrarily dependent for j 6= k, in order to avoid imposing

the unattractive substitution patterns associated with the logit model (Hausman and

Wise, 1978; Goldberg, 1995; Berry et al., 1995; McFadden and Train, 2000).

3.2 Target Parameters

The primitive object of model (1) is the distribution of valuations, Vi, conditional

on premiums, Pi, and other covariates, Xi. We will assume throughout the paper

that this distribution is continuous so that ties between choices in (1) occur with zero

probability. In addition to ensuring no ties, this also means we can associate the

conditional distribution of valuations with a conditional density function f(·|p, x) for

each realization Pi = p and Xi = x.13

The function f will be a key object in the following. However, to compute common

9 For example, see equation (6) of Nevo (2011), or equation (1) of Berry and Haile (2015).
10 However, see Fox, Kim, Ryan, and Bajari (2012) who provide conditions under which this distribution

of random coefficients is nonparametrically identified, and Fox, Kim, Ryan, and Bajari (2011) who develop
a nonparametric estimator based on discretizing this distribution. Their results maintain the type I extreme
value assumption on εij , and require additional structure to allow for endogeneity in Pij .

11 This requires the mild assumption that αi > 0 with probability 1.
12 For example, this is implied by the motivating model discussed in Appendix B.
13 More formally, this requires the assumption that the distribution of Vi, conditional on (Pi, Xi) = (p, x)

is absolutely continuously distributed with respect to Lebesgue measure on RJ for every (p, x) in the support
of (Pi, Xi).
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counterfactual quantities of interest we do not need to consider f in its entirety. Instead,

these quantities can written as integrals (or sums of integrals) of f . For example, a

natural counterfactual is the proportion of consumers who would choose plan j (the

demand for j) if premiums were changed from an observed baseline, p, to a new vector,

p?. This proportion can be written in terms of f as∫
1[vj − p?j ≥ vk − p?k for all k]︸ ︷︷ ︸

choose j if premiums were p?

f(v|p, x) dv, (3)

where we have conditioned on Xi = x as well. Another natural counterfactual quantity

is the associated impact on average consumer surplus from such a premium change.

This can be written as∫ {
max
j∈J

vj − p?j
}
f(v|p, x) dv︸ ︷︷ ︸

consumer surplus under p?

−
∫ {

max
j∈J

vj − pj
}
f(v|p, x) dv︸ ︷︷ ︸

consumer surplus under p

. (4)

Conceptually, we view both (3) and (4) as scalar-valued functions of f . The func-

tions vary in their form, and will further vary when we consider different counterfactual

premiums p?, choice probabilities for products for plans other than j in (3), and dif-

ferent values of (or averages over) the covariates, x. In Section 4, we will also consider

a third class of quantities that measure changes in subsidy outlays.

To handle this generality in the following, we consider all such quantities to be

examples of target parameters, θ : F → Rdθ , where F is the collection of all conditional

density functions on RJ . The target parameter is just a function of the conditional

density of valuations, f . In the examples just given, it is a scalar function, so that

dθ = 1. However, we may also want to consider cases with dθ > 1, e.g. when thinking

about the joint identified set for two related target parameters of interest, such as

consumer surplus and government expenditure. Our goal is to infer the values of θ(f)

that are consistent with both the observed data and our prior assumptions.

3.3 Assumptions

We augment (1) with two types of prior assumptions. The first assumption is that one

or more components of Xi are suitable instruments. The second assumption exploits

the vertical structure of the metal tiers in the ACA.
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3.3.1 Instrumental Variables

To describe the first type of assumption, let Wi and Zi be two subvectors (or more

general functions) of the observable characteristics, Pi and Xi. The Zi variables will

be assumed to be instruments and satisfy an exogeneity condition discussed ahead.

This exogeneity condition will be conditional on Wi, so this subvector can be viewed

as containing controls. Note that either or both of these subvectors could be chosen to

be empty.

Stating the instrumental variable assumption requires considering the density of

valuations conditional on Wi and Zi. We can construct this object by averaging over

f as follows:

fV |WZ(v|w, z) ≡ E
[
f(v|Pi, Xi)

∣∣∣Wi = w,Zi = z
]
. (5)

Our assumption that Zi is an instrument, conditional on Wi, can then be stated as the

following:

fV |WZ(v|w, z) = fV |WZ(v|w, z′) for all z, z′, w, and v. (6)

In words, (6) just says that the distribution of valuations is invariant to shifts in Zi,

conditional on Wi. That is, Zi is exogenous. A special case of (6) would be to take

Zi = Pi and Wi = Xi, which amounts to assuming that premiums are exogenous

conditional on other observables, Xi.

In order for (6) to be a useful assumption, shifts in the instrument Zi (still condi-

tioning on Wi) should have an effect on premiums. This follows the usual intuition: If

Zi is exogenous, then changes in observed choice shares as Zi varies reflect changes in

premiums, rather than changes in the unobservable valuations. The more that premi-

ums vary with Zi, the more information we will have to pin down different parts of the

density of valuations, f , and hence the target parameter, θ.

However, it is important to stress that we do not require an instrument to have a

large amount of variation, or even to be continuous. These types of assumptions are

commonly made to justify point identification of nonparametric discrete choice models,

but in our data we can plainly see that they would not be satisfied, even if we were to

assume (which we will not) that premiums themselves are exogenous.14 This reality

14 These types of “large support” assumptions, and the closely related concept of identification-at-infinity,
have had a prominent role in the literature on nonparametric identification. Early examples of their use
include Manski (1985), Thompson (1989), Heckman and Honoré (1990), and Lewbel (2000). More recent
applications of this argument to discrete choice include Heckman and Navarro (2007) and Fox and Gandhi
(2016).
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leads us to consider the partial identification framework discussed in the next section.

3.3.2 Vertical Structure

The second assumption we use exploits the vertical structure of the ACA, i.e. the

fact that the Bronze plan is actuarially more generous than the Platinum plan. For

example, the Bronze plan has a higher deductible and higher out-of-pocket maximum

than the Platinum plan (see Table 1). Our assumption is that, for equal premiums, a

consumer would always prefer a plan that is more generous to one that is less generous.

With j = 4 as the Platinum plan, and j = 1 is the Bronze plan, this means we assume

that f places zero mass on regions where v1 > v4 or, equivalently, concentrates all of

its mass on regions with v4 ≥ v1.15

Implementing this assumption in the context of the ACA is complicated by the

existence of CSR subsidies. As discussed in Section 2, CSRs are used in Covered

California to change the terms of the Silver plan depending on a consumer’s income.

Lower-income consumers face more generous Silver plans, and this generosity gets

gradually phased out at higher incomes. The effect of this is that, depending on a

consumer’s income, they might prefer a Silver plan (at equal premiums) to a Gold or

even a Platinum plan.

With this flexibility in mind, we formalize the verticality assumption as follows.

For each realization of Wi defined as in the previous section, we choose a set V(w) and

then assume that f is such that∫
V(w)

fV |WZ(v|w, z) dv = 1 for all w, z. (7)

This assumption captures the idea that the distribution of valuations is concentrated

on a given region, e.g. by taking V(w) = {v : v4 ≥ v1} in the example above. Allowing

V(w) to change with covariates w will be used in our application to allow the vertical

ordering to change with income, so as to account for CSRs. Note that if one does

not want to impose a verticality assumption, then one can simply take V(w) = RJ , in

which case (7) will be satisfied for any conditional density f .

3.4 The Identified Set

We now develop our method for determining the set of possible values that the target

parameter θ(f) could take over valuation densities f that both satisfy the assumptions

15 Note that we will not assume that consumers prefer any of the plans (inside options) to the outside
option.
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in the preceding section, and are consistent with the observed data. To do this, we

assume that researcher has at their disposal a collection of conditional choice shares,

denoted as

s(j|p, x) ≡ P[Yi = j|Pi = p,Xi = x]. (8)

In our setting, these shares will be estimated from a combination of administrative

data on enrollment and survey data that we use to estimate the market size. Here, our

analysis of identification is premised on the thought experiment of perfect knowledge

of these choice shares.16

Each density of valuations implies a set of choice shares analogous to (8). In par-

ticular, a consumer would choose option j when faced with a premium p if and only if

they have valuations in the set

Vj(p) ≡
{

(v1, . . . , vJ) ∈ RJ : vj − pj ≥ vk − pk for all k
}
. (9)

The choice shares for good j implied by the density f are just determined by the mass

that f places on this set. We denote these implied choice shares by

sf (j|p, x) ≡
∫
Vj(p)

f(v|p, x) dv. (10)

We say that a valuation density f is observationally equivalent if its predicted choice

shares match the observed choice shares, i.e. if

sf (j|p, x) = s(j|p, x) for all j, p and x. (11)

The identified set of valuation densities is the set of all f that are both observa-

tionally equivalent and satisfy the assumptions laid out in the previous section. We

call this set F?:

F? ≡ {f ∈ F : f satisfies (6), (7), and (11)} . (12)

However, our real interest centers on the target parameter, θ, examples of which include

counterfactual choice shares (3) and changes in consumer surplus (4). The identified

set for θ is just the image of the identified set for F? under θ. That is,

Θ? ≡ {θ(f) : f ∈ F?}.
16 More formally, it is premised on perfect knowledge of the joint distribution of (Yi, Pi, Xi).
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The set Θ? consists of all values of the target parameter that are consistent with both

the data and the instrumental variable and verticality assumptions (6) and (7). It is

our central object of interest.

The difficulty lies in characterizing Θ?. In the following, we develop an argument

that enables us to compute Θ? exactly. The idea is to partition RJ into the smallest

collection of sets within which choice behavior would remain constant under all pre-

miums that were observed in the data, as well as all premiums that are required to

compute the target parameter. We call this set the minimal relevant partition (MRP)

of valuations. We then reduce the problem of characterizing Θ? from one of searching

over densities f to one of searching over mass functions defined on the sets that consti-

tute the MRP. For cases in which the target parameter is scalar-valued (dθ = 1), this

latter problem can often be solved with two linear programs.

3.5 The Minimal Relevant Partition of Valuations

We illustrate the definition and construction of the MRP using a simple example with

J = 2, so that a consumer’s valuations (and the premiums of the plans in their choice

set) can be represented as points in the plane. A general (and formal) definition of the

MRP is given in Section 3.7.

Suppose that the data consists of a single observed premium vector, pa ≡ (pa1, p
a
2),

and that we are concerned with behavior under a counterfactual premium vector, p?,

which we do not observe in the data. The idea behind the MRP in this example is

illustrated in Figure 1. Panel (a) shows that considering behavior under premium pa

divides R2 into three sets depending on whether a consumer would choose options 0,

1, or 2 when faced with pa. Panel (b) shows the analogous situation under premium

p?. Intersecting these two three-set collections creates the collection of six sets shown

in panel (c). This collection of six sets is the MRP in this example.

The MRP is “minimally relevant” in the sense that any two consumers who have

valuations in the same set would exhibit the same choice behavior under both premiums

pa and p?. Conversely, any two consumers with valuations in different sets would exhibit

different choice behavior under at least one of these premiums. For example, consumers

with valuations in the set marked V2 in Figure 1c make the same choices as those with

valuations in V4 under pa, but make different choices under p?, where the first group

chooses the outside option, and the second group chooses plan 1. Similarly, consumers

with valuations in V2 and V6 both choose the outside option at p?, but at pa the first

group chooses plan 2 and the second group chooses plan 1.

In Figure 1d, we show how the MRP would change if we were to observe a second
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Figure 1: Partitioning the Space of Valuations
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premium, pb. The MRP now consists of ten sets, but the idea is the same: Consumers

with valuations within a given set have the same choice behavior under all premiums

pa, pb, and p?, while consumers with valuations in different sets would make different

choices for at least one of these premiums.

The way the MRP is constructed ensures that predicted choice shares for any val-

uation density can be computed by summing the mass that the density places on sets

included in the MRP. For example, in Figure 1c, we can see that the share of consumers

who would choose good 1 if premiums were pa can be written as

sf (1|pa, x) =

∫
V5
f(v|pa, x) dv +

∫
V6
f(v|pa, x) dv,

while the share of consumers who would choose good 2 is given by

sf (2|pa, x) =

∫
V2∪V3∪V4

f(v|pa, x) dv.

This allows us to simplify the determination of whether a given f is observationally

equivalent by considering only the total mass that f places in sets in the MRP, without

having to be concerned with how this mass is distributed within these sets.

Since we constructed the MRP using p? too, the same is also true when considering

target parameters θ that measure choice behavior at p?. For example, suppose that

our target parameter is the choice share of plan 2 if premiums were changed from pa

to p?. This is a particular case of (3), and can be written in terms of the MRP as

θ(f) =

∫
V3
f(v|pa, x) dv. (13)

As another example, we could write the associated change in this choice share as

θ(f) =

∫
V3
f(v|pa, x) dv −

∫
V2∪V3∪V4

f(v|pa, x) dv = −
∫
V2∪V4

f(v|pa, x) dv.

In both of these quantities, we have kept the density conditional on the observed

premium, pa, which corresponds to the typical counterfactual of changing prices while

keeping the unobservable factors fixed.

3.6 Computing Bounds on the Target Parameter

Now suppose that we observe the following choice shares at pa:

s(0|pa) = .20, s(1|pa) = .14, and s(2|pa) = .66,
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where we are assuming that there are no covariates (no Xi) for simplicity. Also for

simplicity, we will start by assuming that premiums are exogenous, i.e. we limit our

attention to f for which f(v|pa) = f(v|p?) = f(v).17 In this case, the observational

equivalence condition (11) can be written as ∫
V1
f(v) dv = s(0|pa) = .20,

and

∫
V5
f(v) dv +

∫
V6
f(v) dv = s(1|pa) = .14,

and

∫
V2
f(v), dv +

∫
V3
f(v) dv +

∫
V4
f(v) dv = s(2|pa) = .66. (14)

As shown in (13), if our target parameter is the choice share of plan 2 at p?, this can

be written as

θ(f) =

∫
V3
f(v) dv. (15)

The key observation is that, even though all of these quantities depend on a density

f , they can be computed with knowledge of just six non-negative numbers:{
φl ≡

∫
Vl
f(v) dv

}6

l=1

.

This suggests that we can focus only on the total mass placed on the sets in the MRP

without losing any information. To find the largest value that θ(f) can take while still

respecting (14), we just rephrase everything in terms of {φl}6l=1 and then maximize

(15) subject to (14):

t? ≡max
φ∈R6

φ3 (16)

subject to: φ1 = .20

φ5 + φ6 = .14

φ2 + φ3 + φ4 = .66

φl ≥ 0 for l = 1, . . . , 6.

This is a linear program. In this simple example, one can see by inspection that the

solution of the program is to take φ3 = .66, so that t? = .66. To find the smallest value

of θ(f) we solve the analogous minimization problem, the optimal value of which we

17 In terms of (6), this would be like taking Wi to be a null (empty) vector, and taking Zi = Pi.
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call t?. In this example, t? = 0.

In the next section, we formally prove that Θ? = [t?, t
?]. This result shows that the

procedure of reducing f to a collection of six numbers {φl}6l=1 is a sharp characterization

of Θ? in the sense that it entails no loss of information. The intuition behind the

sharpness is as follows. First, for any value in t ∈ Θ?, there must exist (by definition)

an f ∈ F? such that θ(f) = t. This f generates a collection of numbers {φl =∫
Vl f(v) dv}6l=1, which must satisfy the constraints in (16), since every f ∈ F? satisfies

(14). Conversely, given any value of t ∈ [t?, t
?], there exists a set of numbers {φl}6l=1

satisfying the constraints in (16), and such that φ3 = t.18 From this set of numbers

{φl}6l=1, we can construct a density f that satisfies (14) by distributing mass in the

amount of φl arbitrarily within each Vl. Evidently, this density will also satisfy θ(f) =

φ3 = t. Thus, Θ? = [t?, t
?].

Now suppose that we have a second observed premium, pb, so that the MRP is

as shown in Figure 1d. In this case, the MRP contains 10 sets, so the linear program

analogous to (16) will have 10 variables of optimization. In addition to the observational

equivalence constraints for pa in (16), these variables will also need to satisfy three more

observational equivalence constraints corresponding to the observed shares for pb, which

we will suppose here are given by

s(0|pb) = .27, s(1|pb) = .31, and s(2|pb) = .42.

Reasoning through the solution to the resulting program is more complicated. Since

the observed shares for pa still need to be matched, it is still the case that a total mass

of .66 must be placed over consumers who would choose plan 2 under pa. Some of these

consumers might choose the outside option under pb. In fact, as shown in Figure 2,

this must be the case for a proportion of at least s(0|pb)− s(0|pa) = .07 of consumers.

Given this new requirement, the maximum amount of mass remaining to distribute over

consumers who would choose plan 2 under p? has decreased from .66 to .66− .07 = .59.

This is the new upper bound, t?. The fact that it is smaller than the previous upper

bound reflects the additional information contained in pb. The lower bound, t?, is still

zero, because it is still possible to match the observed choice shares for pa and pb by

concentrating all mass to the south of p?.

When we take this procedure to the data, the linear programs will have thousands

of variables and constraints, which makes this sort of case-by-case reasoning impossible.

18 This follows because the constraint set in (16) is closed and connected and the objective function is
continuous.
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Figure 2: The numbers in each set show a solution to the linear program when the target parameter
is the proportion of consumers who choose plan 2 at p? and the objective is to find the upper bound
(maximize) this proportion. Matching the share of consumers who choose the outside option at the
new observed premium, pb, means there is now .07 less mass to devote to this objective.

Instead, we will use state-of-the-art solvers to obtain t? and t?.
19 In practice, we will

also not assume that premium are exogenous. This makes a graphical interpretation

unweildy, since a separate diagram like Figure 2 would be needed for each value of

the conditioning variables. The mass placed over sets within each diagram gets linked

together by imposing constraints on these masses that are analogous to the instrumental

variable assumption (6). Part of the formal analysis in the next section involves showing

that such a procedure retains sharpness.

19 In particular, we use Gurobi (Gurobi Optimization, 2015). We formulate and presolve the problems
using AMPL (Fourer, Gay, and Kernighan, 2002).
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3.7 Formalization

In this section, we formalize the discussion in the previous three sections in the following

ways. First, we provide a precise definition of the MRP. Second, we generalize the

transformation from densities f to mass functions over the sets in the MRP, which,

as in the previous section, we refer to as φ. Third, we show how to compute bounds

for any target parameter under the instrumental variable and verticality assumptions.

Fourth, we provide the general statement and proof of the result that these bounds are

sharp. Lastly, we consider the conditions under which these bounds can be computed

by solving linear programs. Throughout the analysis, we model (Pi, Xi) as discretely

distributed with finite support, although this is not essential to the methodology.

Beginning with the MRP, we let P denote a finite set of premiums that is chosen by

the researcher and always contains at least the marginal support of premiums, supp(Pi).

The premiums in P are used to construct the MRP, so a given MRP depends on P.

For example, in Figure 1c we had P = {pa, p?}, while in Figure 1d, P = {pa, pb, p?}.
The choice of which additional points to include in P is determined by the parameter

of interest, θ. In Figure 1, we were focusing on demand at a new premium, p?, so P
had to include p?. This restriction will be formalized below as the statement that θ(f)

can be evaluated for any f by only considering the total mass that f places on sets

in the MRP. Additional points can always be added to P in an effort to make this

restriction hold.

We use the set P to formally define the MRP as follows.

Definition 1. Let Y (v, p) ≡ arg maxj∈J vj−pj for any (v1, . . . , vJ), (p1, . . . , pJ) ∈ RJ ,

where v ≡ (v0, v1, . . . , vJ) and p ≡ (p0, p1, . . . , pJ) with v0 = p0 = 0. The minimal

relevant partition of valuations (MRP) is a collection V of sets V ⊆ RJ for which the

following property holds for almost every v, v′ ∈ RJ (with respect to Lebesgue measure):

v, v′ ∈ V for some V ∈ V ⇔ Y (v, p) = Y (v′, p) for all p ∈ P. (17)

Definition 1 creates a collection of sets that is “minimally relevant” in the sense that

any two consumers who have valuations in a set in the collection would exhibit the

same choice behavior for every premium vector in P. Conversely, any two consumers

with valuations in different sets would exhibit different choice behavior for at least

one premium in P. Constructing the MRP is intuitive, but somewhat involved both

notationally and algorithmically. Since the details of constructing the MRP are not

necessary for understanding the methodology, we relegate our discussion of this to
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Appendix C.20

The utility of the MRP as a concept is that it allows us to express the choice

probabilities associated with any density of valuations, f , in terms of the mass that f

places on sets in V. In particular, for every p ∈ P and j ∈ J , let Vj(p) ⊆ V denote

the sets in the MRP for which a consumer with valuations in these sets would choose

j when facing premiums p.21 Then the probability that a consumer chooses j under

premiums p is the probability that Vi lies in the union of V ∈ Vj(p). Since sets in V

are disjoint, the observational equivalence condition (10) can be written as the sum of

the masses that a given f places on sets in Vj(p), i.e.

sf (j|p, x) =
∑

V∈Vj(p)

∫
V
f(v|p, x) dv. (18)

Having defined the MRP, we now define mass functions over the MRP. To do this,

let φ(·|·, ·) denote a function with domain V× supp(Pi, Xi). Such a function φ can be

viewed as an element of Rdφ , where dφ is the product of the cardinalities of these sets.

Let R
dφ
+ denote the subset of Rdφ whose elements are all non-negative and define

Φ ≡
{
φ ∈ R

dφ
+ :

∑
V∈V

φ(V|p, x) = 1 for all (p, x) ∈ supp(Pi, Xi)

}
. (19)

The set Φ contains all functions that could represent a conditional probability mass

function with domain given by the finite collection of sets, V.

Each conditional valuation density f generates a mass function φf ∈ Φ defined by

φf (V|p, x) ≡
∫
V
f(v|p, x) dv. (20)

We assume that the value of the target parameter for any f is fully determined by

φf . Formally, the assumption is that there exists a known function θ with domain Φ

such that θ(f) = θ(φf ) for every f ∈ F . Since Φ depends on the MRP, and the MRP

depends on P, satisfying this requirement is a matter of choosing P to be sufficiently

20 We should, however, note two small misnomers in our terminology that become evident in the construc-
tion, or perhaps by inspecting Figure 1. First, the MRP may not be a strict partition, because adjacent sets
in V could overlap on their boundary. Since we are focusing on continuously distributed valuations, this
distinction does not have any practical or empirical relevance, and does not violate Definition 1. Second, and
for the same reason, although we have described the MRP as “the” MRP, it may not be unique, since one
could consider a boundary region to be in either of the sets to which it is a boundary without violating (17)
on a set of positive measure. Again, this is not important for our analysis given our focus on continuously
distributed valuations.

21 Using the notation of Definition 1, Vj(p) ≡ {V ∈ V : Y (v, p) = j for almost every v ∈ V}.
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rich to evaluate the target parameter of interest, θ.

We have now phrased both the target parameter and observational equivalence

condition in terms of φ. The last step is to translate the instrumental variable and

verticality assumptions into statements about φ. For the instrumental variable as-

sumption, we first define for any φ ∈ Φ a function φV|WZ in analogy to (5) as

φV|WZ(V|w, z) ≡ E
[
φ(V|Pi, Xi)

∣∣∣Wi = w,Zi = z
]
, (21)

where Wi and Zi are as in the statement of that condition. Then, a condition appro-

priately analogous to (6) is

φV|WZ(V|w, z) = φV|WZ(V|w, z′) for all z, z′, w, and V. (22)

Similarly, for the verticality assumption, we define in analogy to (7),∑
V∈V(w)

φV|WZ(V|w, z) = 1 for all w, z, (23)

where V(w) is the subset of V that intersects V(w), i.e. V(w) ≡ {V ∈ V : λ(V ∩
V(w)) > 0}, with λ denoting Lebesgue measure on RJ .

The next proposition shows that Θ? can be characterized exactly by solving systems

of equations in φ.

Proposition 1. Let t ∈ Rdθ . Then t ∈ Θ? if and only if there exists a φ ∈ Φ such that

θ(φ) = t, (24)∑
V∈Vj(p)

φ(V|p, x) = s(j|p, x) for all j ∈ J and (p, x), (25)

φV|WZ(V|w, z) = φV|WZ(V|w, z′) for all z, z′, w, and V, (26)

and
∑
V∈V(w)

φV|WZ(V|w, z) = 1 for all w, z. (27)

Observe that each of (25)–(27) are linear in φ.22 If θ is also linear in φ, then Proposition

1 shows that Θ? can be exactly characterized by solving linear systems of equations.

This linearity is satisfied for common target parameters, such as choice shares and

consumer surplus.23 One byproduct of this linearity is that Θ? will be connected, and

so when dθ = 1 it can also be characterized by solving two linear programs. We record

22 This requires noting from (21) that φV|WZ(V|w, z) is itself a linear function of φ.
23 The former is clear from e.g. (15), but the latter is not obvious; see Appendix E.
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this point in the following proposition.

Proposition 2. If θ is continuous on Φ, then Θ? is a compact, connected set. In

particular, if dθ = 1, then Θ? = [t?, t
?], where

t? ≡ min
φ∈Φ

θ(φ) subject to (25)–(27), (28)

and with t? defined as the solution to the analogous maximization problem.

In practice, one often finds that the feasible set in (28) is empty, so that Θ? is

also empty.24 This is an indication of either sampling error in the observed shares,

s(j|p, x), or model misspecification, or both. Instead of reporting empty identified

sets, we modify Proposition 2 to construct a set estimator of Θ?. The estimator uses

a procedure analogous to the method of moments for point identified models. First,

we minimize a criterion function that measures the extent to which the observational

equivalence equality in (25) is violated. Second, we find the set of values t that θ(φ)

can take while coming close to the optimal value of the criterion.25 By choosing an

absolute deviations criterion, this procedure amounts to solving three linear programs

in cases where θ is linear. We provide more detail on the estimation procedure in

Appendix F.

4 Demand in Covered California

4.1 Data

Our primary data source is administrative data containing the universe of households

who purchased a plan through Covered California in 2014. The data contains unique

person and household identifiers for each individual in each household, as well as their

age, income (as a percentage of the FPL), gender, zipcode of residence, and choice of

plan. We focus on the subpopulation of subsidy-eligible households (100-400% FPL) in

which the uninsured members consist of either one or two adults aged 27 and older.26

In addition, we drop the relatively small number of purchasing households with income

under 140% of FPL, since these households are likely eligible for other public health

programs. These restrictions reduce our analysis sample to 630,924 of the 877,365

households who purchased coverage.

24 We follow the usual convention here of letting t? = +∞ and t? = −∞ if the feasible set is empty, in
which case Θ? = ∅.

25 This second step would not be needed if the model were point identified.
26 That is, the household either is childless, or the children are insured through a public program such as

Medi-Cal.
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We characterize each household by a vector Xi of observables consisting of age,

income, and rating region. Household age is defined as the age of a single household

member, or the average age of a couple, which we discretize into 19 two-year bins

running from age 27 and 64. We discretize household income into 20 bins of either 10%

of 20% of the FPL.27 When crossed with the 19 rating regions in Covered California,

this yields 7,220 unique age × income × region bins of the observable characteristics,

Xi. Since the number of households per bin varies greatly by region, we will report

parameters that average over Xi, and therefore put greater weight on larger geographic

markets.

We reconstruct the post-subsidy premiums faced by each household by using their

demographic information together with knowledge of insurers’ base prices and the

ACA-mandated age-rating and income subsidies. As described in Section 2, pre-subsidy

premiums for a given metal tier, rating region, and insurer only vary by age, while the

post-subsidy premiums also vary by income. As a consequence, the post-subsidy premi-

ums faced by consumers (Pij) are a deterministic function of household characteristics,

Xi. In order to infer the impact of premiums on plan choice (i.e. to infer demand), we

will therefore need to consider variation across Xi. The assumptions we use to do this

are described in the next section.

Our analysis is focused on a household’s choice of coverage level (metal tier). The

implicit assumption here is that a household’s health insurance choice problem is sep-

arable in coverage level and insurer. We view this as a reasonable assumption for

Covered California because the regulations ensure that the metal tiers offered—as well

as the characteristics of the tiers—do not vary by insurer. We define premiums for

each tier in each market by taking the median post-subsidy premium across insurers.

As in most other discrete choice demand settings, we do not directly observe in-

dividuals who chose the outside option, i.e. to not purchase a plan through Covered

California. This means that we first need to transform data on quantities chosen for

the inside choices into choice shares by estimating the size of the market. To do this, we

use the 2013 American Community Survey public use file (via IPUMS, Ruggles et al.,

2015) to estimate uninsurance rates conditional on Xi. Our estimation procedure for

this part closely follows those used by Finkelstein et al. (2017) and Tebaldi (2017). For

more detail, see Appendix G.

Table 2 provides some summary statistics for the data we use in estimation. The

participation rate in Covered California is on average 32%, and varies widely across

27 These bins are [140, 150), [150, 160), . . . , [270, 280), [280, 300), [300, 320), . . . , [380, 400]. The 20% bins
are used for households with income higher than 280% of FPL, who account for around 15% of purchasing
households.
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Table 2: Summary Statistics

Markets Mean St. Dev. P-10 Median P-90

Number of buyers 7,220 270.4 302.2 37 172 628
Age 7,220 42.9 11.4 29 43 59
Income (FPL%) 7,220 238.4 69.5 150 230 340
Takeup rate 7,220 0.318 0.258 0.037 0.260 0.705
Average premium paid ($/month) 7,220 155.4 75.3 65 143 262

Bronze Silver Gold Platinum
Premium($/m) Share Premium($/m) Share Premium($/m) Share Premium($/m) Share

By age:

27-34 104 0.064 158 0.134 212 0.013 254 0.014
35-49 92 0.072 158 0.201 227 0.016 281 0.016
50-64 75 0.093 182 0.291 299 0.021 391 0.017

By income (FPL%):

140-150 4 0.015 56 0.418 133 0.006 194 0.008
150-200 21 0.060 87 0.367 166 0.010 228 0.011
200-250 67 0.102 145 0.199 225 0.019 288 0.017
250-400 160 0.082 243 0.083 323 0.021 387 0.019

markets, with a 10th percentile of 4% and a 90th percentile of over 70%. Older and

poorer buyers are more likely to purchase coverage. The impact of the CSRs is evident

in the table: Buyers with income below 200% face premiums of less than $100 per

month to purchase a Silver plan with actuarial value of 88% or more. Likely as a

consequence, that plan is chosen by roughly 40% of such consumers—many fewer than

the 10% of consumers with income over 250% FPL who face a more expensive and less

generous Silver plan.

4.2 Identifying Assumptions

In this section, we describe our specific implementations of assumptions (6) and (7).

An insurer’s primary decision in Covered California is the base price for a rating

region and a coverage level. This decision likely depends on differences in demand and

cost specific to each rating region, for example due to the underlying socioeconomic

or health characteristics of the residents in a region, or due to differences in hospitals

of medical providers. These factors are unobserved in our data, so we will not assume

that variation in premiums across regions is exogenous. That is, we will not impose

any restriction on how preferences (the density of valuations f) varies across regions.
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Instead, we will assume—in a limited way—that preferences are invariant to changes

in age and income. Since premiums vary with age due to the age-rating, and with

income, due to the premium subsidies, this will provide variation in premiums that we

can use to help identify demand counterfactuals. The way in which premiums evolve

with age and income is prescribed by the regulations in Covered California, so the

behavior of insurers is not likely to be an important threat to this strategy. Rather,

the main concern we have is that valuations also change with age or income due to

changes in latent risk factors or preferences. For this reason, we will look only at very

local variation in age and income.

We formulate this approach using the notation of Section 3 by letting Wi denote

a coarser aggregate of a group of Xi realizations. For each region, we group Xi into

age bins given by {27–32, 33–38, 39–44, 45–50, 51–56, 57–64} and income bins given

in percentage of FPL by {140–170, 170–200, 200–220, 220–250, 250–280, 280–340,

340–400}. A value of Wi is then taken to be a region indicator crossed between all

possibilities of these coarser age-income bins. Conditioning on a value of Wi, we observe

multiple premiums corresponding to variation in age and income within the Wi bin.

Our assumption is that the distribution of latent valuations does not change as Xi

varies within this coarser bin.

For example, one value of Wi = w corresponds to the North Coast rating region,

ages between 39–44 and incomes between 170–200% of the FPL. Within this bin, we

have 9 values of Xi, comprised of the finer age bins {39–40, 41–42, 43–44} crossed

with the finer income bins {170–180, 180–190, 190–200}. For each of these 9 values

we observe a different premium vector. Since the variation we want to use is now in

Xi, conditioning on a value of Wi, the notation we developed in Section 3 corresponds

to taking Zi = Xi. The assumption we use is now precisely (6) in that discussion,

repeated here for emphasis:

fV |WZ(v|w, z) = fV |WZ(v|w, z′) for all z, z′, w, and v.︸ ︷︷ ︸
within a coarse bin (Wi = w), valuations are invariant to age and income (z 6= z′)

(29)

The income aspect of assumption (29) gives empirical content to the separability

between income and valuations in (1). The implied behavioral restriction is that a

change in income that leaves a household inside a given Wi bin would not affect their

choice of metal tier, although it could lead a household to change to or from the outside

option. That is, the assumption is that there are no income effects with respect to the

choice of metal tier within a coarse income bin. This type of assumption must hold

as the width of the Wi bins gets smaller. It is also commonly assumed in parametric
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implementations such as (2), which impose exogeneity of all non-price explanatory

variables.

The other aspect of (29) is the invariance to age. We are more concerned about

this assumption, since health risks certainly increase in age, and likely at an increasing

rate. We begin with (29) primarily for ease of interpretability. In Section 4.4, we

relax assumption (6)/(29) to a strictly weaker “imperfect instrument” assumption that

allows for some variation with age. We view our estimates there as constituting our

most credible and interesting results.

The other assumption we utilize is the verticality assumption (7), adjusted to ac-

count for CSRs as shown in Table 1. To account for the CSRs, we have chosen the

coarse bins (Wi) so as not to cross the CSR thresholds of 200 and 250% of the FPL.

For consumers with income above 200% FPL, we assume that for equal prices every-

one would prefer Platinum over Gold, Gold over Silver, and Silver over Bronze. Below

200% FPL range, we assume that Silver is preferred to Gold, and Gold is preferred to

Bronze, however we do not assume a relationship between Silver and Platinum, since

the actuarial values are close, and the terms of the two plans are significantly different.

In no case do we assume that any of the plans are preferred to the outside option.

4.3 Results

The focus of our analysis is on measuring the effect of an equal change in post-subsidy

premiums for all consumers on aggregate choice shares, consumer surplus, and gov-

ernment subsidy expenditure. Let π(Xi) = Pi denote the observed premium vector,

which we recall is a deterministic function of Xi in Covered California. We consider

new counterfactual premium vectors of the form π(Xi) + δ, which reflect an equal

change in premiums for all consumers. That is, the counterfactuals we consider can be

represented as the impact of shifting every households’ price from the observed price,

Pi ≡ π(Xi) to a counterfactual price, P ?i ≡ π(Xi) + δ for various choices of δ. For each

value of Wi, we construct the MRP using the set formed from all Pi and P ?i .

Figure 3 illustrates Bronze and Silver observed and counterfactual prices for buyers

with income lower than 250% of the FPL. We use this case for illustration since it can

be plotted on the plane, and because most buyers (over 93%) in this income range

choose Bronze and Silver, presumably due to the CSR subsidies. In Figure 3b, the

counterfactual corresponds to increasing the price of the Bronze plan by $10 for all

consumers, while Figure 3c illustrates the analogous change in the Silver plan. In

Figure 3d, both the Bronze and the Silver plan are increased by $10, which from the

consumer’s perspective would be equivalent to a $10 reduction in premium subsidies if
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Figure 3: Observed and Counterfactual Prices

(a) Observed prices
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(b) Increase bronze premiums by $10
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(c) Increase silver premiums by $10
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(d) Increase both premiums by $10
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Note: The figure shows observed and counterfactual prices of Bronze and Silver plans for households with income between 140-
250% of the FPL. Panel (a) plots the prices observed in the data in grey, where each observation is a unique region-age-income
combination. Panel (b) overlays in red the counterfactual prices representing an increase in $10 per person, per month for Bronze
premiums. Panel (c) is like Panel (b), but the price increases are for Silver premiums. Panel (d) is like Panels (b) and (c) with
price increases of $10 for both Silver and Bronze premiums.
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Bronze and Silver were the only two choices.28

The first set of target parameters we consider is the change in choice shares for each

good. For market x and good j, this can be written as

∆Sharej(f |x) ≡
∫
Vj(π(x)+δ)

f(v|x) dv −
∫
Vj(π(x))

f(v|x) dv, (30)

where Vj(p) was defined in (9). Note that in (30), and in the following, the densities

f are only conditional on Xi, since premiums are a deterministic function of Xi. We

also omit the dependence on the price change, δ, since this will be clear from the way

we present our results. In order to aggregate (30) into a single measure, we average it

over markets x and report

∆Sharej(f) ≡
∑
x

∆Sharej(f |x) P[Xi = x]. (31)

We will average other parameters in an analogous way. In the notation of Section 3,

∆Sharej is an example of a target parameter, θ.

Table 3 reports estimated bounds for ∆Sharej across the four metal tier choices

together with bounds on overall participation, i.e. 1 −∆Share0. The rows of Table 3

reflect different types of premium increases, δ. The nominal premium increase is taken

to be $10 per person, per month, which represents a moderate to large price increase

for many consumers (see Table 2). Our estimated bounds are quite informative. For

example, for the full sample in panel (a), we estimate that a simultaneous $10 increase

in all premiums reduces the proportion of households that purchase coverage by be-

tween 2.5 and 10.3%. Panel (b) shows that these estimates are larger in magnitude

for low-income households, at between 3.4 and 14.7%, and panel (c) shows that they

are smaller in magnitude for higher-income households, who we estimate would reduce

participation in Covered California by between 1.3 and 4.4%. Comparing panels (b)

and (c) more generally, we find a pattern of higher price sensitivity for low-income

households.

The other columns of Table 3 measure substitution patterns within and between

coverage tiers. For example, panel (a) shows that an increase in Bronze premiums by

$10 per person, per month would lead to a decrease of between 0.9 and 4.7% in the

share of consumers choosing the Bronze plan, and an increase in the share choosing

Silver of between 0.1 and 4.0%. The increase in the share choosing Gold or Platinum

28 In this example with J = 2, j = 1 denoting Bronze, and j = 2 denoting Silver, Figures 3b, 3c, and
3d would correspond to taking δ = (10, 0), δ = (0, 10) and δ = (10, 10), respectively, where the price of the
outside option is always fixed at 0.
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Table 3: Substitution Patterns

Change in probability of choosing
$10/month premium Bronze Silver Gold Platinum Any Plan

increase for LB UB LB UB LB UB LB UB LB UB

Panel (a): 140 - 400% FPL

Bronze -0.047 -0.009 +0.001 +0.040 +0.000 +0.017 +0.000 +0.022 -0.026 -0.002

Silver +0.001 +0.104 -0.146 -0.021 +0.000 +0.042 +0.000 +0.092 -0.070 -0.004

Gold +0.000 +0.004 +0.000 +0.008 -0.010 -0.001 +0.000 +0.008 -0.004 -0.000

Platinum +0.000 +0.004 +0.000 +0.008 +0.000 +0.007 -0.011 -0.001 -0.005 -0.000

All plans -0.027 -0.005 -0.073 -0.016 -0.005 -0.000 -0.005 -0.000 -0.103 -0.025

Panel (b): 140 - 250% FPL

Bronze -0.054 -0.011 +0.002 +0.047 +0.000 +0.016 +0.000 +0.026 -0.030 -0.002

Silver +0.002 +0.157 -0.217 -0.031 +0.000 +0.047 +0.000 +0.143 -0.108 -0.007

Gold +0.000 +0.003 +0.000 +0.006 -0.007 -0.001 +0.000 +0.006 -0.003 -0.000

Platinum +0.000 +0.005 +0.000 +0.009 +0.000 +0.006 -0.012 -0.001 -0.005 -0.000

All plans -0.032 -0.006 -0.112 -0.024 -0.004 -0.000 -0.006 -0.000 -0.147 -0.034

Panel (c): 250 - 400% FPL

Bronze -0.038 -0.007 +0.001 +0.031 +0.000 +0.019 +0.000 +0.017 -0.020 -0.002

Silver +0.000 +0.034 -0.053 -0.007 +0.000 +0.036 +0.000 +0.025 -0.021 -0.001

Gold +0.000 +0.005 +0.000 +0.010 -0.013 -0.001 +0.000 +0.010 -0.005 -0.000

Platinum +0.000 +0.003 +0.000 +0.006 +0.000 +0.008 -0.009 -0.001 -0.004 -0.000

All plans -0.020 -0.005 -0.022 -0.005 -0.006 -0.001 -0.004 -0.000 -0.044 -0.013

is significantly smaller, reflecting the closer substitutability of the Bronze and Silver

plans. The extensive margin change of participation for a Bronze premium increase

is between 0.2 and 2.6%, which is naturally both smaller and tighter than the change

when all premiums are increased together. In contrast, increasing Platinum premiums

by the same amount would lead to a much smaller decline in the proportion of buyers

not purchasing coverage. Overall, Table 3 indicates substitution patterns inconsistent

with the independence of irrelevant alternatives property of the logit model.

To help put our estimates in context, consider the lower-income buyers in panel (b).

The sociodemographic characteristics of these buyers are similar to buyers in the more

widely studied Commonwealth Care health exchange implemented in Massachusetts

before the ACA (e.g. Chan and Gruber, 2010; Ericson and Starc, 2015; Finkelstein
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Figure 4: Extensive Margin Demand Changes for Different Counterfactuals
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et al., 2017). Finkelstein et al. (2017) estimate demand in this market by exploiting two

discontinuities in subsidies. They estimate that a $40 increase in monthly premiums

leads to a 24% reduction in the probability of enrollment for buyers 150% of the FPL, a

20% reduction for buyers at 200% FPL, and a 14% reduction for 250% FPL. Assuming

these effects are linear in premium, and dividing by a factor of four suggests that a

10$ premium increase would lead to a reduction in enrollment of between 3.5% and

6%. This estimate is consistent with our 3.4 to 14.7% bounds on the same quantity.

Our direct estimates of the effect of a $40 increase in all premiums on participation are

between 8% and 38% for buyers with income below 200% of the FPL, between 6% and

28% for buyers with income between 200–250% of the FPL, and between 6% and 16%

for buyers with income between 250–300% of the FPL. Despite important differences in

institutions and econometric methodology, our estimates are remarkably aligned with

the point estimate of demand responses in the Massachusetts exchange.

One consequence of adopting a partial identification framework is that the amount

of information that the data and assumptions yield about a specific counterfactual

quantity is reflected in the width of the bounds. The bounds for more ambitious

(more distant) counterfactuals will be wider than for more modest counterfactuals

that are closer to what was observed in the data. This situation is evident in Figure
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4, which plots the average extensive margin (enrollment) response as a function of a

given increase or decrease in all premiums. Our bounds are relatively tight for small

changes in premiums, and then widen as the premiums get farther from what was

observed in the data. We consider this an attractive feature of our approach, since it

reflects the increasing difficulty of drawing inference about objects that involve larger

departures from the observed data, and so captures an important dimension of model

uncertainty. In contrast, a fully parametric model point identifies any counterfactual

quantity regardless of how distant the extrapolation involved.29

The second set of parameters we consider measure the effects of changing pre-

mium subsidies on consumer surplus and government spending. From the household’s

perspective, a decrease in premium subsidies is the same as an increase in premiums

faced.30 Such a subsidy change generates an average change in consumer surplus for a

household in market x of

∆CS(f |x) ≡
∫

max
j∈J
{vj − πj(x)− δj} dv −

∫
max
j∈J
{vj − πj(x)} dv,

which we aggregate by averaging over markets into

∆CS(f) ≡
∑
x

∆CS(f |x) P[Xi = x].

We will be interested in contrasting the change in consumer surplus to the change in

government spending on premium subsidies. For market x, this is given by

∆GS(f |x) ≡
∑
j>0

(subj(x)− δj)×
[∫
Vj(π(x)+δ)

f(v|x) dv

]

−
∑
j>0

subj(x)×
(∫
Vj(π(x))

f(v|x) dv

)
,

where subj(x) denotes the baseline premium subsidy for purchasing plan j in market

29 Note that confidence intervals on point estimates from a parametric model will tend to widen as one
extrapolates further. However, for the parametric models we consider in Section 5, the width of these
confidence intervals is basically zero even for distant extrapolations.

30 Our analysis here requires maintaining a partial equilibrium framework in which there are no other
supply side responses in base prices due to an adjustment in subsidy schemes. Integrating our approach with
a model of insurance supply is beyond the scope of the current paper, but an interesting avenue for future
research.
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Figure 5: Change in Consumer Surplus Resulting from a Change in Premiums
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x. We denote aggregated government spending as

∆GS(f) ≡
∑
x

GS(f |x) P[Xi = x].

Both ∆CS and ∆GS are examples of target parameters θ.31

Figure 5 depicts our bounds on ∆CS for a $10 decrease in subsidies as the shaded

areas between the two demand curves. The lower bound on the change in consumer

surplus is the area to the left of the less-steep demand curve, while the upper bound

also includes the entire area to the right of the steeper demand curve. Intuitively, the

lower bound is attained at the upper bound (smallest magnitude) of price elasticity

for the extensive margin, while the upper bound of the change in consumer surplus

is attained at the lower bound (largest magnitude) this price elasticity. Note that

while the bounds on ∆CS shown here are sharp and unique, the demand curves we

have plotted are not, since there are many ways to draw a demand curve up to a $10

premium increase that can yield the same area to the left, while still respecting the

data and assumptions.

Table 4 tabulates the estimated bounds on ∆CS for the same $10 decrease in

31 In Appendix E, we show how to construct sharp bounds on ∆CS by deriving corresponding θ functions
that are linear in φ.
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Table 4: The Impacts of Reducing Monthly Subsidies by $10

140 - 400% FPL 140 - 250% FPL 250 - 400% FPL 140 - 400% FPL
Change in Change in Change in Associated change

consumer surplus consumer surplus consumer surplus in subsidy outlays
LB UB LB UB LB UB LB UB

Average ($/person-month) -2.62 -1.80 -3.58 -2.45 -1.35 -0.94 -36.20 -13.03

Aggregate ($ million/year) -61.49 -42.26 -47.84 -32.74 -13.64 -9.52 -848.05 -305.16

premium subsidies. The first column shows estimated bounds using the entire sample,

while the second and third columns split the estimates into lower and higher income

samples. In the fourth column of Table 4, we report bounds on the corresponding

reduction in government spending that results from the lower subsidies. We estimate

these by fixing average consumer surplus at its lower or upper bound, then solving for

the bounds on government spending that could be realized for this consumer surplus

change.32

Our bounds imply that a $10 decrease in monthly subsidies would lead to a reduc-

tion in average monthly consumer surplus of between $1.80 and $2.62 per person. The

impacts for the lower-income sample are estimated to be approximately twice as large,

which is a consequence of the higher price elasticity for this group found in Table 1.

Both estimates are dwarfed by the corresponding change in government expenditure on

premium subsidies, which we estimate to be between $13.03 and $36.20 per consumer,

per month. The large magnitude of the expenditure savings is due to the large number

of marginal buyers who exit the market due to the post-subsidy premium increase.

When these buyers exit, they relinquish their entire premium subsidy, which in most

cases is significantly more than $10.

The bottom row of Table 4 shows the aggregate yearly impact of a $10 reduction in

subsidies in Covered California. The total consumer surplus impact would be between

$42 and $61 million, with the majority of the losses concentrated among households

with income below 250% of the FPL. At the same time, government subsidy outlays

would decline by between $305 and $848 million per year. Overall, our findings suggest

that consumers value health insurance significantly less than it would cost in premium

subsidies to induce them to purchase a plan. This finding is consistent with a growing

number of empirical analyses, see e.g. Finkelstein et al. (2017). In interpreting this find-

ing, we caution that our estimates do not account for the existence of potentially large

32 We do this because a given consumer surplus change could be attained in a variety of different ways,
each of which might be associated with different changes in government spending.
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externalities such as the cost of uncompensated care, debt delinquency, or bankruptcy

(Finkelstein et al., 2012; Mahoney, 2015; Garthwaite, Gross, and Notowidigdo, 2018).

4.4 Allowing Valuations to Change Within Coarse Age Bins

The primary assumption that drives our results is (29). As we noted, the part of this

assumption that imposes independence between valuations and age within coarse age

bins is probably questionable, since valuations likely change with risk factors, and risk

factors change with age.33 In this section, we consider a strictly weaker version of (29)

that allows for some deviations away from perfect invariance. This can be viewed as a

sensitivity analysis, and is similar in spirit to proposals by Conley, Hansen, and Rossi

(2010), Nevo and Rosen (2012), and Manski and Pepper (2017).

The way in which we do this is to relax (29) into two inequalities controlled by a

slackness parameter. The relaxed assumption is that

(1− κ(z, z′))fV |WZ(v|w, z′) ≤ fV |WZ(v|w, z) ≤ (1 + κ(z, z′))fV |WZ(v|w, z′)
for all z, z′, w, and v, (32)

where κ(z, z′) ≥ 0 is the slackness parameter. We specify κ in the following way:

κ(z, z′) =


κ, if z and z’ differ only in age, and only by a single bin

0, if z and z’ differ only in income

+∞, otherwise.

In words, the assumption is that within any coarse bin (i.e., conditional on Wi = w),

the pointwise difference in conditional valuation densities corresponding to any two

adjacent two-year age bins (with identical income) can be no greater than κ%. The

constant κ is a value that we choose and will vary. Taking κ = 0 reduces (32) back to

our previous assumption of (29). Alternatively, taking κ = +∞ completely relaxes the

age restriction, so that the only variation we are using is with respect to income.

Table 5 reports bounds on some of our main target parameters under (29) for

different values of κ.34 The row with κ = 0 are the same as the estimates reported

in the previous section, κ = +∞ corresponds to estimates that only use variation in

income. Our preferred specification sets κ = 0.4, which can be interpreted as allowing

33 Indeed, the importance of age heterogeneity in health insurance demand is the emphasis of existing
work, see e.g. Ericson and Starc (2015), Geruso (2017), and Tebaldi (2017).

34 Note that it is straightforward to modify the sharp characterization in Proposition 1 to allow for an
assumption like (29) instead of (6). The difference in implementation just amounts to replacing (26) with
an inequality analogous to (29).
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Table 5: Allowing for Valuations to Vary Within Coarse Age Bins

Change in Change in consumer Change in government
Allowed variation probability of not enrolling surplus ($/person-month) spending ($/person-month)
in preferences if all premiums increase if subsidies decrease if subsidies decrease

with age by $10/month by $10/month by $10/month
LB UB LB UB LB UB

κ=0 +0.025 +0.103 -2.62 -1.80 -36.20 -13.03

κ=0.2 +0.024 +0.108 -2.73 -1.85 -38.31 -12.75

κ=0.4 +0.023 +0.114 -2.80 -1.86 -40.29 -12.52

κ=0.8 +0.020 +0.125 -2.89 -1.80 -44.15 -11.77

κ=1 +0.018 +0.131 -2.94 -1.74 -46.33 -11.15

κ=3 +0.015 +0.143 -3.01 -1.63 -50.21 -10.22

κ=+∞ +0.013 +0.154 -3.07 -1.47 -55.12 -8.98

for a change of up to 40% in valuations between adjacent two-year age bins, conditional

on income. This seems fairly conservative to us. The figures we reported in the abstract

and introduction are for κ = .4, but we include a variety of choices of κ so that the

reader can make their own judgment.35 Overall, our findings remain similar in that

we find evidence of high price elasticity. As before, this leads to an estimated effect of

decreasing subsidies on consumer surplus that is small, at between $1.86 and $2.80 per

person, per month, while the impact on government spending of between $12.52 and

$40.29 is considerably larger.

5 Comparison to Parametric Models

Our motivation in this paper has been to provide estimates of key policy parameters

using a model that does not use parametric distributional assumptions. In this sec-

tion, we compare our nonparametric bounds to estimates from some fully parametric

logit and probit models which do use such assumptions. These models all follow a

35 Note that the bounds generally widen with κ, since larger values correspond to weaker assumptions.
However, this is not always the case, due to the fact that we are estimating these bounds using the procedure
in Appendix F. Essentially, that procedure works by restricting attention to densities that come close to fitting
the observed choice shares the best. This fit mechanically improves as κ increases, because more densities are
considered. As a result, densities that seemed to fit well for smaller values of κ might no longer be deemed
to fit well when κ increases, since the best fit has improved. This creates a countervailing effect to changing
κ, which can lead to non-monotonicity in the estimated bounds even though monotonicity must hold for the
population bounds.
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specification similar to (2), which we write here as

Yi = arg max
j∈J

1[j ≥ 1] (γi + βiAVij)− αiPij + εij , (33)

where γi is an individual-specific intercept, and AVij is the actuarial value of tier j

for individual i (see Table 1). The presence of the indicator sets the contribution of

these terms to 0 for the outside option (j = 0). The logit class of models restrict εij to

follow a type I extreme value distribution, independently across j, while probit models

restrict εij to follow a standard normal distribution.

The first model we estimate is a logit in which the price parameter, αi, is constant,

but both γi and βi vary with observables in a rich way.36 The second model is a probit

with the same specification.37 We then consider three mixed logit models. In all of

these models, γi and βi vary with observables as in the baseline model, and now the

premium coefficient αi varies with the region. The three models differ in whether γi,

αi, or both have an additional unobservable component that is normally distributed

with unknown variance. In the latter case, we also assume that the two unobservable

components are uncorrelated.

Figure 6 illustrates how our nonparametric bounds on the extensive margin re-

sponses compare to the estimates one obtains from these five parametric models. The

estimates shown are for the counterfactuals of a $10 and $20 increase in all premiums

(or decrease in subsidies). All of the point estimates are within the nonparametric

bounds, but clustered near the upper bound, where price sensitivity is smallest. The

implication is that different distributional assumptions on εij other than logit and pro-

bit could yield estimates near the lower bound, while still preserving the same degree of

fit to the observed choice shares. As we showed in Table 4, these estimates would have

substantially different policy implications in terms of consumer surplus and government

spending. Thus, the assumption of a type I extreme value (or similarly-shaped normal)

distribution appears here to have a significant impact on the empirical conclusions that

would be drawn.

36 The specification allows βi to vary freely by region with a different value in each of the following four
age bins: {27–34, 35–44, 45–54, 54–64}. It allows γi to also vary freely by region, and within each region

restricts γi = γInci + γAge
i , where γInci varies in three FPL income bins {140–200, 200–250, 250–400}, and

γAge
i varies in the same four age bins as βi.
37 We have had difficulty estimating a similar probit with correlated εij because the likelihood is very flat,

suggesting a potential failure of point identification.
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Figure 6: Comparison Between Nonparametric Bounds and Parametric Estimates
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6 Conclusion

We estimated the demand for health insurance in California’s ACA marketplace using

a new nonparametric methodology. While we designed our methodology with health

insurance in mind, it should be applicable to other discrete choice problems as well.

The central idea of the method is to divide realizations of a consumer’s valuations into

sets for which behavior remains constant. We showed how to define the collection of

such sets, which we referred to as the minimal relevant partition (MRP) of valuations.

Using the MRP, we developed a computationally reliable linear programming procedure

for consistently estimating sharp identified sets for target parameters of interest.

Our estimates of demand using this methodology point to the possibility of substan-

tially greater price sensitivity than would be recognized using comparable parametric

models. This is consistent with the commonly-heard folklore that logits are “flat”

models. We showed that this finding has potentially important policy implications,

since it implies that the impact of decreasing subsidies on consumer surplus could be

much smaller—and the impact of government expenditure much larger—than would

be recognized using standard parametric methods. More broadly, our results provide

a clear example in which functional form assumptions are far from innocuous, and
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actually play a leading role in driving empirical conclusions.
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A Methodology Literature Review

In this section, we discuss the relationship of our methodology to the existing literature.

We focus our attention first on semi- and non-parametric approaches to unordered

discrete choice analysis. This literature can be traced back to Manski (1975). The

focus of Manski’s work, as well as most of the subsequent literature, has been on

relaxing parameterizations on the distribution of unobservables, while the observable

component of utility is usually assumed to be linear-in-parameters.38 The motivation of

our approach is also to avoid the need to parameterize distributions of latent variables,

however we have chosen to keep the entire analysis nonparametric.39

Our approach has three key properties that, when taken together, make it distinct

in the literature on semi- and nonparametric discrete choice. First, much of the litera-

ture has focused on identification of the observable components of indirect utility, while

treating the distribution of unobservables as an infinite-dimensional nuisance param-

eter. For example, in (2), this would correspond to identifying αi and βi when these

random coefficients are restricted to be constant. Examples of work with this focus

include Manski (1975), Matzkin (1993), Lewbel (2000), Fox (2007), Pakes (2010), Ho

and Pakes (2014), Pakes, Porter, Ho, and Ishii (2006, 2015), Pakes and Porter (2016),

and Shi, Shum, and Song (2016). Identification of the relative importance of observable

factors for explaining choices is insufficient for our purposes, because the policy coun-

terfactuals we are interested in, such as choice probabilities and consumer surplus, also

depend on the distribution of unobservables. Treating this distribution as a nuisance

parameter would not allow us to make sharp statements about quantities relevant to

these counterfactuals.

Second, we allow for prices (premiums in our context) to be endogenous in the

sense of being correlated with the unobservable determinants of utility. This differen-

tiates our paper from work that focuses on identification of counterfactuals, but which

assumes exogenous explanatory variables. Examples of such work includes Thompson

(1989), Manski (2007, 2014), Briesch, Chintagunta, and Matzkin (2010), Chiong, Hsieh,

and Shum (2017), and Allen and Rehbeck (2017). The importance of allowing for en-

dogenous explanatory variables in discrete choice demand analysis was emphasized by

38 Matzkin (1991) considered the opposite case in which the distribution of the unobservable component is
parameterized, but the observable component is treated nonparametrically. See also Briesch, Chintagunta,
and Matzkin (2002).

39 Extending our methodology to a semiparametric model is an interesting avenue for future work, but
not well-suited to our application since there is no variation in choice (plan) characteristics in Covered
California. Conceptually though, one could use our strategy with a semiparametric model by fixing the
parametric component and then repeatedly applying our characterization argument, similar to the strategy
in Torgovitsky (2018).
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Berry (1994) and Hausman, Leonard, and Zona (1994), and motivated the influential

work of Berry et al. (1995, 2004). In our application, it is essential that we can make

statements about demand counterfactuals while still recognizing that premiums could

be dependent with unobservable valuations.

This leads us to the third way that our approach differs from existing literature,

which is that we do not place strong demands on the available exogenous variation

in the data. In particular, we do not require the existence of a certain number of

instruments, or that such instruments satisfy strong support or rank conditions. For

example, Lewbel (2000) and Fox and Gandhi (2016) require exogenous “special regres-

sors” with large support, which are not available in our data. Alternatively, Chiappori

and Komunjer (2009) and Berry and Haile (2014) provide identification results that re-

quire a sufficient number of continuous instruments that satisfy certain “completeness”

conditions, which can be viewed as high-level analogs to traditional rank conditions.40

Besides the difficulty of finding a sufficient number of continuous instruments, one

might also be concerned with the interpretability and/or testability of the completeness

condition (Canay, Santos, and Shaikh, 2013). Not maintaining these types of support

and completeness conditions leads naturally to a partial identification framework.

Other authors have also considered taking a partial identification approach to un-

ordered discrete choice models. Pakes (2010), Ho and Pakes (2014), Pakes et al. (2006,

2015), Pakes and Porter (2016) developed moment inequality approaches that can be

used to bound coefficients on observables in specifications like (2) without parametric

assumptions on the unobservables. As noted, this is insufficient for our purposes, since

we are concerned with demand counterfactuals. Manski (2007), Chiong et al. (2017)

and Allen and Rehbeck (2017) bound counterfactuals, but assume that all explanatory

variables are exogenous. In parametric contexts, Nevo and Rosen (2012) have consid-

ered partial identification arising from allowing instruments to be partially endogenous,

and Gandhi, Lu, and Shi (2017) treated the problem of non-purchases in scanner data

as one of partial identification.

On a more specific technical level, our work is related to a literature on compu-

tational approaches to characterizing identified sets in the presence of partial identi-

fication. In particular, the linear programming structure we exploit has been noted

by many other authors, see e.g. Balke and Pearl (1994, 1997) and Hansen, Heaton,

and Luttmer (1995) for early examples. Previous work that has implemented linear

programming to characterize sharp identified sets includes Honoré and Tamer (2006),

Honoré and Lleras-Muney (2006), Manski (2007, 2014), Lafférs (2013), Freyberger and

40 See also Compiani (2018), who has shown how to construct and implement estimators based on the
results of Berry and Haile (2014).
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Horowitz (2015), Demuynck (2015), Kline and Tartari (2016), Torgovitsky (2016, 2018),

Kamat (2017), and Mogstad, Santos, and Torgovitsky (2018). Of this work, ours is

closest to Manski (2007), who also considered discrete choice problems. Methodologi-

cally, our work differs from Manski’s because we maintain and exploit more structure

on preferences (via (1)), and in addition we do not assume that explanatory variables

(or choice sets in Manski’s framework) are exogenous.

B A Model of Insurance Choice

In this section, we provide a model of choice under uncertainty for a risk averse con-

sumer which leads (1). The model is quite similar to those discussed in Handel (2013,

pp. 2660–2662) and Handel et al. (2015, pp. 1280–281). Throughout, we suppress

observable factors other than price (components of Xi) that could affect a consumer’s

decision. All quantities can be viewed as conditional on these observed factors, which

is consistent with the nonparametric implementation we use in the main text.

Suppose that each consumer i chooses a plan j to maximize their expected utility

taken over uncertain medical expenditures, so that

Yi = arg max
j∈J

∫
Uij(ex) dFij(ex), (34)

where Uij(ex) is consumer i’s ex-post utility from choosing plan j given realized ex-

penditures of ex, and Fij is the distribution of these expenditures, which varies both

by consumer i (due to risk factors) and by plan j (due to coverage levels). Assume

that Uij takes the constant absolute risk aversion (CARA) form

Uij(ex) = − 1

Ai
e−AiCij(ex), (35)

where Ai is consumer i’s risk aversion, and Cij(ex) is their ex-post consumption when

choosing plan j and realizing expenditures ex. We assume that ex-post consumption

takes the additively separable form

Cij(ex) = Inci − Pij − ex + Ṽij , (36)

where Inci is consumer i’s income, Pij is the price they paid for plan j, and Ṽij is an

idiosyncratic preference parameter.
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Substituting (36) into (35) and then into (34), we obtain

Yi = arg max
j∈J

− 1

Ai

[
eAi(Pij−Inci−Ṽij)

∫
eAiex dFij(ex)

]
Transforming the objective using u 7→ − log(−u), which is strictly increasing for u < 0,

we obtain an equivalent problem

Yi = arg max
j∈J

− log

(
1

Ai

[
eAi(Pij−Inci−Ṽij)

∫
eAiex dFij(ex)

])
= arg max

j∈J
− log

(
1

Ai

)
+Ai

(
Inci − Pij + Ṽij

)
+ log

(∫
eAiex dFij(ex)

)
.

Eliminating additive terms that don’t depend on plan choice yields

Yi = arg max
j∈J

−AiPij +AiṼij + log

(∫
eAiex dFij(ex)

)
.

Suppose that Ai > 0, so that all consumers are risk averse.41 Then we can express the

consumer’s choice as

Yi = arg max
j∈J

[
Ṽij +

1

Ai
log

(∫
eAiex dFij(ex)

)]
− Pij ,

which takes the form of (1) with

Vij ≡
[
Ṽij +

1

Ai
log

(∫
eAiex dFij(ex)

)]
.

Examining the components of Vij reveals the factors that contribute to heterogene-

ity in valuations in this model. Heterogeneity across i can come from variation in risk

aversion (Ai), from differences in risk factors or beliefs (Fij), and from idiosyncratic

differences in the valuation of health insurance (Ṽij). Differences in valuations across

j arise from the interaction between risk factors and the distribution of corresponding

expenditures (Fij), as well as from idiosyncratic differences in valuations across plans

(Ṽij). The main restrictions in this model are the assumption of CARA preferences

in (35) and the quasilinearity of ex-post consumption in (36). However, as noted in

the main text, it is important to realize that for these restrictions to have empirical

content, they must be combined with an assumption about the dependence between

income (here called Inci) and the preference parameters, Ai and Ṽij .

41 Showing that (1) would arise from risk neutral consumers is immediate.
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C Construction of the Minimal Relevant Partition

We first observe that any price (premium) vector p ∈ RJ divides RJ into the sets

{Vj(p)}Jj=0, as shown in Figures 1a and 1b. Intuitively, we view such a division as

a partition, although formally this is not correct, since these sets can overlap on the

hyperplanes like vj − pj = vk − pk where ties occurs. These regions of overlap have

Lebesgue measure zero in RJ , so this caveat is unimportant given our focus on con-

tinuously distributed valuations. To avoid confusion, we refer to a collection of sets

that would be a partition if not for regions of Lebesgue measure zero as an almost sure

(a.s.) partition.

Definition 2. Let {Am}Mm=1 be a collection of Lebesgue measurable subsets of RJ .

Then {Am}Mm=1 is an almost sure (a.s.) partition of RJ if

a)
⋃M
m=1Am = RJ ; and

b) λ(Am ∩ Am′) = 0 for any m 6= m′, where λ denotes Lebesgue measure on RJ .

Next, we enumerate the price vectors in P as P = {p1, . . . , pL} for some integer

L. Let Y ≡ J L denote the collection of all L–tuples from the set of choices J ≡
{0, 1, . . . , J}. Then, since {Vj(pl)}Jj=0 is an a.s. partition of RJ for every pl, it follows

that

{
Ṽy : y ∈ Y

}
where Ṽy ≡

L⋂
l=1

Vyl(pl) (37)

also constitutes an a.s. partition of RJ .42 Intuitively, each vector y ≡ (y1, . . . , yL) is

a profile of L choices under the price vectors (p1, . . . , pL) that comprise P. Each set

Ṽy in the a.s. partition (37) corresponds to the subset of valuations in RJ for which a

consumer would make choices y when faced with prices P.

The collection V ≡ {Ṽy : y ∈ Y} is the MRP, since it satisfies Definition 1 by

construction. To see this, note that if v, v′ ∈ Ṽy for some y, then by (37), v, v′ ∈ Vyl(pl)
for all l = 1, . . . , L, at least up to collections of v, v′ that have Lebesgue measure zero.

Recalling (9), this implies (using the notation of Definition 1) that Y (v, p) = Y (v′, p)

for all p ∈ P. Conversely, if Y (v, p) = Y (v′, p) for all p ∈ P, then taking

y ≡ (Y (v, p1), . . . , Y (v, pL)) = (Y (v′, p1), . . . , Y (v′, pL)), (38)

42 Note that these sets are Lebesgue measurable, since Vj(p) is a finite intersection of half-spaces and Ṽy
is a finite intersection of sets like Vj(p).

42



yields an L–tuple y ∈ Y such that v, v′ ∈ Vyl(pl), again barring ambiguities that occur

with Lebesgue measure zero.

From a practical perspective, this is an inadequate representation of the MRP,

because if choices are determined by the quasilinear model (1), then many of the sets

Ṽy must have Lebesgue measure zero. This makes indexing the partition by y ∈ Y
excessive; for computation we would prefer an indexing scheme that only includes sets

that are not already known to have measure zero. For this purpose, we use an algorithm

that starts with the set of prices P and returns the collection of choice sequences Y
that are not required to have Lebesgue measure zero under (1). We use this set Y in

our computational implementations. Note that since Ṽy has Lebesgue measure zero for

any y ∈ Y \ Y, the collection V ≡ {Ṽy : y ∈ Y} still constitutes an a.s. partition of RJ

and still satisfies the key property (17) of the MRP in Definition 1.

The algorithm works as follows.43 We begin by partitioning P into M sets (or

blocks) of prices {Pm}Mm=1 that each contain (give or take) µ prices. For each m, we

then construct the set of all choice sequences Ym ⊆ J |Pm| that are compatible with

the quasilinear choice model in the sense that ym ∈ Ym if and only if the set

{
v ∈ RJ : vyml − pyml ≥ vj − pj for all j ∈ J and p ∈ Pm

}
(39)

is empty. In practice, we do this by sequentially checking the feasibility of a linear

program with (39) as the constraint set. The sense in which we do this sequentially is

that instead of checking (39) for all ym ∈ J |Pm|—which could be a large set even for

moderate µ—we first check whether it is nonempty when the constraint is imposed for

only 2 prices in Pm, then 3 prices, etc. Finding that (39) is empty when restricting

attention to one of these shorter choice sequences implies that it must also be infeasible

for all other sequences that share the short component. This observation helps speed

up the algorithm substantially.

One we have found Ym for all m, we combine blocks of prices into pairs, then repeat

the process with these larger, paired blocks. For example, if we let P12 ≡ P1 ∪P2—i.e.

we pair the first two blocks of prices—then we know that the set of y12 ∈ J |P1|+|P2|

that satisfy (39) must be a subset of {(y1, y2) : y1 ∈ Y1, y2 ∈ Y2}. We sequentially

check the non-emptyness of (39) for all y12 in this set, eventually obtaining a set Y12.

Once we have done this for all pairs of price blocks, we then combine pairs of pairs of

blocks (e.g. P12 ∪ P34) and repeat the process. Continuing in this way, we eventually

43 We expect that this algorithm leaves room for significant computational improvements, but we leave
more sophisticated developments for future work. In practice, we also use some additional heuristics based
on sorting the price vectors. These have useful but second-order speed improvements that are specific to our
application, so for brevity we do not describe them here.
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end up with the original set of price vectors, P, as well as the set of all surviving choice

sequences, Y ⊆ Y.

The key input to this algorithm is the number of prices in the initial price blocks,

which we have denoted by µ. The optimal value of µ should be something larger than

2, but smaller than L. With small µ, the sequential checking of (39) yields less payoff,

since each detection of infeasibility eliminates fewer partial choice sequences. On the

other hand, large µ makes the strategy of combining pairs of smaller blocks of prices

into larger blocks less fruitful. For our application, we use µ = 8–10, which seems to

be fairly efficient, although it is likely specific to our setting.

D Proofs for Propositions 1 and 2

D.1 Proposition 1

If t ∈ Θ?, then by definition there exists an f ∈ F? such that θ(f) = t. Let φf be

defined as in (20), which we reproduce here for convenience:

φf (V|p, x) ≡
∫
V
f(v|p, x) dv. (20)

Note that φf ∈ Φ, because the MRP V is (almost surely) a partition of RJ , and f is

a conditional probability density function on RJ . Due to the assumed properties of θ,

we also know that θ(φf ) = θ(f) = t. To see that φf satisfies (25), observe that

∑
V∈Vj(p)

φf (V|p, x) ≡
∑

V∈Vj(p)

∫
V
f(v|p, x) dv = sf (j|p, x) = s(j|p, x),

where the first equality follows by definition (20), the second follows from (18), and

the third follows from the definition of F?. Similarly, φf satisfies (26) because

E[φf (V|Pi, Xi)|Wi = w,Zi = z] = E

[∫
V
f(v|Pi, Xi) dv

∣∣∣Wi = w,Zi = z

]
=

∫
V

E
[
f(v|Pi, Xi)|Wi = w,Zi = z

]
dv

=

∫
V

E
[
f(v|Pi, Xi)|Wi = w,Zi = z′

]
dv

= E[φf (V|Pi, Xi)|Wi = w,Zi = z′]

where the second equality follows by Tonelli’s Theorem (e.g. pg. 82 of Shorack, 2000),

the third uses (6), which holds (by assumption) for all f ∈ F?, and the final equality

reverses the steps of the first two equalities. That φf also satisfies (27) follows using a
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similar argument and the hypothesis that f ∈ F? satisfies (7), i.e.

∑
V∈V(w)

(φf )V|WZ(V|w, z) =
∑
V∈V(w)

∫
V

E
[
f(v|Pi, Xi)|Wi = w,Zi = z

]
dv

=

∫
∪{V:V∈V(w)}

fV |WZ(v|w, z) dv

≥
∫
V(w)

fV |WZ(v|w, z) dv = 1, (40)

where the inequality follows because the definition of V(w), together with the fact that

V is an a.s. partition of RJ , implies that V(w) is contained in the union of sets in

V(w). This inequality implies that φf satisfies (27), because∑
V∈V(w)

(φf )V|WZ(V|w, z) ≤
∑
V∈V

(φf )V|WZ(V|w, z)

= E

[∑
V∈V

φf (V|Pi, Xi)
∣∣∣Wi = w,Zi = z

]
= 1,

as a result of φf being an element of Φ. We have now established that if t ∈ Θ?, then

there exists a φ ∈ Φ satisfying (25)–(27) for which θ(φ) = t.

Conversely, suppose that such a φ ∈ Φ exists for some t. Recall that Wi was

assumed to be a subvector (or more generally, a function) of (Pi, Xi), and denote this

function by ω, so that Wi = ω(Pi, Xi). Then define

fφ(v|p, x) ≡
∑

V∈V(ω(p,x))

1
[
v ∈ V ∩ V(ω(p, x))

]
λ
(
V ∩ V(ω(p, x))

) φ(V|p, x),

noting that the summands are well-defined by the definition of V(w). We will show

that t ∈ Θ? by establishing that fφ ∈ F? and θ(fφ) = t.

First observe that for any V ∈ V,∫
V
fφ(v|p, x) dv ≡

∑
V ′∈V(ω(p,x))

∫
V

1
[
v ∈ V ′ ∩ V(ω(p, x))

]
λ
(
V ′ ∩ V(ω(p, x))

) φ(V ′|p, x) dv

= 1[V ∈ V(ω(p, x))]φ(V|p, x), (41)

since the sets in V and hence V(ω(p, x)) are disjoint (almost surely). Using (41), we
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have that ∫
RJ
fφ(v|p, x) dv =

∑
V∈V

∫
V
fφ(v|p, x) dv =

∑
V∈V(ω(p,x))

φ(V|p, x) = 1, (42)

where the first equality uses the fact that V is a partition. The final equality is implied

by the hypothesis that φ satisfies (27), since

1 =
∑
V∈V(w)

φV|WZ(V|w, z) = E

 ∑
V∈V(ω(Pi,Xi))

φ(V|Pi, Xi)
∣∣∣Wi = w,Zi = z

 ,
and every φ ∈ Φ satisfies ∑

V∈V(ω(p,x))

φ(V|p, x) ≤
∑
V∈V

φ(V|p, x) = 1.

Thus, from (42), and since fφ inherits non-negativity from φ ∈ Φ, we conclude that fφ

is a conditional density, i.e. fφ ∈ F .

To see that fφ satisfies (6), notice that

(fφ)V |WZ(v|w, z) ≡ E
[
fφ(v|Pi, Xi)|Wi = w,Zi = z

]
≡ E

 ∑
V∈V(w)

1
[
v ∈ V ∩ V(w)

]
λ
(
V ∩ V(w)

) φ(V|Pi, Xi)
∣∣∣Wi = w,Zi = z


=

∑
V∈V(w)

1
[
v ∈ V ∩ V(w)

]
λ
(
V ∩ V(w)

) φV|WZ(V|w, z)

=
∑
V∈V(w)

1
[
v ∈ V ∩ V(w)

]
λ
(
V ∩ V(w)

) φV|WZ(V|w, z′) = (fφ)V |WZ(v|w, z′),

where the fourth equality uses (26), and the final equality reverses the steps of the first

four. The satisfaction of the verticality condition, (7), follows in a similar way from
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(27) and Tonelli’s Theorem, since∫
V(w)

(fφ)V |WZ(v|w, z) dv ≡
∫
V(w)

E
[
fφ(v|Pi, Xi)|Wi = w,Zi = z

]
dv

= E

 ∑
V∈V(w)

φ(V|Pi, Xi)
∣∣∣Wi = w,Zi = z


=

∑
V∈V(w)

φV|WZ(V|w, z) = 1.

That fφ satisfies the observational equivalence condition (11) follows from (18), (25),

and (41), i.e.

sfφ(j|p, x) ≡
∑

V∈Vj(p)

∫
V
fφ(v|p, x) dv

=
∑

V∈Vj(p)∩V(ω(p,x))

φ(V|p, x)

=
∑

V∈Vj(p)

φ(V|p, x)−
∑

V∈Vj(p)∩V(ω(p,x))c

φ(V|p, x) = s(j|p, x),

for all j ∈ J and (p, x) ∈ supp(Pi, Xi). The last equality here follows using (42)

because

0 ≤
∑

V∈Vj(p)∩V(ω(p,x))c

φ(V|p, x) ≤
∑

V∈V(ω(p,x))c

φ(V|p, x) = 1−
∑

V∈V(ω(p,x))

φ(V|p, x) = 0.

Finally, note that in the notation of (20), (41) says

φfφ(V|p, x) = 1[V ∈ V(ω(p, x))]φ(V|p, x).

This equality implies that φfφ(V|p, x) = φ(V|p, x) for all V, since for V /∈ V(ω(p, x))

we must have φ(V|p, x) = 0, as implied by (42). Thus, θ(fφ) = θ(φfφ) = θ(φ) = t, and

therefore t ∈ Θ?. Q.E.D.

D.2 Proof of Proposition 2

Observe that Φ is a compact and connected subset of Rdφ . Since (25)–(27) are linear

equalities, the subset of Φ that satisfies them is also compact and connected. Thus,

if θ is continuous on this subset and dθ = 1, it follows that its image over it—which

Proposition 1 established to be Θ?— is compact and connected as well. If dθ = 1, then
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Θ? is a compact interval, so by definition its endpoints must be given by t? and t?.

Q.E.D.

E Implementing Bounds on Consumer Surplus

In this section, we show that setting the target parameter to be the change in consumer

surplus (as defined in (4)) results in a reduced target parameter function (θ) that is

linear in φ. For shorthand, we denote average consumer surplus at price p?, conditional

on (Pi, Xi) = (p, x) as

CSp?(f |p, x) ≡
∫ {

max
j∈J

vj − p?j
}
f(v|p, x) dv.

Suppose that V is a minimal relevant partition constructed from a set of premiums

P that contains both p and p?. Then

CSp?(f |p, x) =
∑
V∈V

∫
V

{
max
j∈J

vj − p?j
}
f(v|p, x) dv, (43)

since the MRP is an (almost sure) partition of RJ . By definition of the MRP, the

optimal choice of plan is constant as a function of v within any MRP set V. That is,

using the notation in Definition 1, arg maxj∈J vj − pj ≡ Y (v, p) = Y (v′, p) ≡ Y (V, p)
for all v, v′ ∈ V and any p ∈ P. Consequently, we have from (43) that

CSp?(f |p, x) =
∑
V∈V

∫
V
vY (V,p?)f(v|p, x) dv − p?Y (V,p?)

Replacing p? by p, it follows that the change in consumer surplus resulting from a shift

in prices from p→ p? can be written as

∆CSp→p?(f |p, x) ≡ CSp?(f |p, x)− CSp(f |p, x)

=
∑
V∈V

∫
V

(
vY (V,p?) − vY (V,p)

)
f(v|p, x) dv + pY (V,p) − p?Y (V,p?).

Now define the smallest and largest possible change in valuations within any parti-

tion set V as

vp→p?(V) ≡ min
v∈V

vY (V,p?) − vY (V,p),

and vp→p?(V) ≡ max
v∈V

vY (V,p?) − vY (V,p).
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Since we do not restrict the distribution of valuations within each MRP set, the sharp

lower bound on a change in consumer surplus is attained when this distribution con-

centrates all of its mass on vp→p?(V) in every V ∈ V. That is,

∆CSp→p?(f |p, x) ≥
∑
V∈V

vp→p?(V)φf (V|p, x) + pY (V,p) − p?Y (V,p?) ≡ ∆CSp→p?(f |p, x).

Similarly, the sharp upper bound for any f is given by

∆CSp→p?(f |p, x) ≤
∑
V∈V

vp→p?(V)φf (V|p, x) + pY (V,p) − p?Y (V,p?) ≡ ∆CSp→p?(f |p, x).

Therefore, a sharp upper bound on the change in consumer surplus can be found by

taking θ(f) ≡ ∆CSp→p?(f |p, x), setting

θ(φ) ≡
∑
V∈V

vp→p?(V)φ(V|p, x) + pY (V,p) − p?Y (V,p?).

and applying Propositions 1 or 2. The key requirement that θ(f) = θ(φf ) can be seen

to be satisfied here by examining the expression for ∆CSp→p?(f |p, x) above. The sharp

upper bound is found analogously.

F Estimation

Our analysis in Section 3 concerns the identification problem under which the joint

distribution of (Yi, Pi, Xi) is treated as known. In practice, features of this distribution,

such as the choice shares s(j|p, x), need to be estimated from a finite data set, so we

want to model them as potentially contaminated with statistical error. In this section,

we show how to modify Proposition 2 to account for such error in our primary case of

interest with θ linear. A formal justification for this procedure is developed in Mogstad

et al. (2018).

The estimator proceeds in two steps. First, we minimize the discrepancy in the

observational equivalence conditions (25) by solving

Q̂? ≡ min
φ∈Φ

Q̂(φ) subject to (26)–(27),

where Q̂(φ) ≡
∑
j,p,x

P̂[Pi = p,Xi = x]

∣∣∣∣∣∣ŝ(j|p, x)−
∑

V∈Vj(p)

φ(V|p, x)

∣∣∣∣∣∣ , (44)

with ŝ(j|p, x) the estimated share of choice j, conditional on (Pi, Xi) = (p, x), and
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P̂[Pi = p,Xi = x] an estimate of the density of (Pi, Xi). The use of absolute deviations

in the definition of Q̂ means that (44) can be reformulated as a linear program by

replacing terms in absolute values by the sum of their positive and negative parts.44

We weight these absolute deviations by the distribution of (Pi, Xi) so that regions of

smaller density do not have an outsized impact on the estimated bounds.

In the second step, we collect values of θ(φ) among φ that come close to minimizing

(44). That is, we construct the set:

Θ̂? ≡
{
θ(φ) : φ ∈ Φ, and Q̂(φ) ≤ Q̂? + ηn, and φ satisfies (26)–(27)

}
(45)

The qualifier “close” here reflects the tuning parameter ηn, which must converge to zero

at an appropriate rate with the sample size, n. The purpose of this tuning parameter

is to smooth out possible discontinuities caused by set convergence. In our empirical

estimates, we set ηn = .1, and found very little sensitivity to values of ηn that were

bigger or smaller by an order of magnitude. However, there are currently no theoretical

results to guide the choice of this parameter.

In our main case of interest when θ is linear and scalar-valued, we estimate Θ̂? by

solving two linear programs that replace (25) with the condition in (45). That is, we

solve

t̂? ≡ min
φ∈Φ

θ(φ) s.t Q̂(φ) ≤ Q̂? + ηn, (46)

and an analogous maximization problem defining t̂?. The set estimator for Θ? is then

Θ̂? ≡ [t̂?, t̂
?]. For this case, Mogstad et al. (2018) show that t̂? and t̂? are consistent for

t? and t? under weak conditions on ŝ. When θ is linear, (46) can be reformulated as a

linear program, again by appropriately rephrasing the absolute value terms in terms of

their positive and negative parts. In this case, the overall procedure of the estimator

is to solve three linear programs: One for (44), one for (46), and one for the analogous

maximization problem.

G Estimation of Potential Buyers

In this section, we describe how we use the American Community Survey (ACS) to

estimate the number of potential buyers in each market, i.e. in each age × income

× region bin, or each value of Xi = x. As is often the case in empirical studies of

demand (see, e.g. Berry, 1994, pg. 247), in our data we only observe individuals who

44 This is a common reformulation argument, see e.g. Bertsimas and Tsitsiklis (1997, pp. 19–20).
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buy health insurance in Covered California, but not those who were eligible yet chose

the outside option. That is, we do not have data on the quantity who chose choice 0.

Instead, we will construct conditional choice probability (market shares) by estimating

the number of potential buyers, constructing shares of the inside choices (j ≥ 1) by

dividing quantity by potential buyers, and then taking the difference between the sum

of the inside shares and 1 to be the share of the outside choice.

The key step here is estimating the number of potential buyers (market size), Mx,

for each bin Xi = x. We do this using the California 2013 3-year subsample of the

American Community Survey (ACS) public use file, downloaded from IPUMS (Ruggles

et al., 2015).45 We define an individual as a potential buyer, denoted by the indicator

Ii = 1, if they report being either uninsured or privately insured. Individuals with Ii =

0 include those who are covered by employer-sponsored plans, Medi-Cal (Medicaid),

Medicare, or other types of public insurance. Then our estimator of Mx is

M̂x =
N∑
i=1

weightiIi1[Xi = x], (47)

where weighti are the individual sampling weights provided in the ACS, and N is the

total sample size. This sample reflects the selection rules discussed in Section 4.1.

To impose the restriction to households with 1 or 2 adults, we combine age with the

IPUMS definition of a health insurance unit (HIU), and keep only individiuals in HIUs

of size 1 or 2.

An adjustment to this procedure is needed to account for the fact that the PUMA

(public use micro area) geographic identifier in the ACS can be split across multiple

counties, and so in some cases also multiple ACA rating regions. For a PUMA that

is split in such a way, we allocate HIUs to each rating region it overlaps using the

population of the zipcodes in the PUMA as weights. This is the same adjustment

factor used in the PUMA to county crosswalk.46 Since the definition of a PUMA

changed after 2011, we also use this adjustment scheme to convert the 2011 PUMA

definitions to 2012–2013 definitions.

A final adjustment is needed for situations in which our estimate M̂x is smaller

than the number of enrollees in the Covered California administrative data. Some fix

45 The 3 year sample includes information from 2011 to 2013. We use the entire 3 year sample to increase
our sample size.

46 For example, suppose that an HIU is in a PUMA that spans counties A and B, and that this HIU has a
total sampling weight of 10, so that it represents 10 observationally equivalent households. If the adjustment
factor is 0.3 in county A and 0.7 in county B, we assume there are 3 identical HIUs in county A and 7 in
county B.
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for such a case is needed in order to keep all shares bounded between 0 and 1. The fix

we use is to replace M̂x by the total enrollment observed in the administrative data,

so that the estimated share of the outside option is 0. In practice, we find that this

only happens for smaller x bins in sparsely-populated rating regions, and we expect

the cause is statistical error in M̂x. While our solution is not ideal, it seems to be

the best that we can do given the available data. Since our estimates are weighted by

bin size, the adjustment we use turns out to affect our results little when compared to

some other (also ad hoc) adjustments we have tried.
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