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1 Introduction

Empirical data are often characterized by skewed distributions with fat tails,
and a Bayesian analysis should explicitly account for these two features;
see Fernández and Steel (1998) for an early analysis in this direction. Higher
moments of posterior distributions are, however, difficult to obtain in general.
In this note we derive explicit formulae for posterior moments and quantiles
of any order in the important special case of a normal location model with
Laplace (double-exponential) prior.

Let us consider a sample x = (x1, . . . , xn) from a univariate normal dis-
tribution with unknown mean η and unit variance, so the density of x given
η (the likelihood) is

L(x; η) = (2π)−n/2 exp

[

−1

2

n
∑

i=1

(xi − η)2

]

.

Suppose, in addition, that some information on η is available in the form of
a prior density π(η). The posterior density of η given x is then given by

p(η; x) =
e−z2/2π(η)

∫

e−z2/2π(η) dη
,

where

z =
√
n

(

1

n

n
∑

i=1

xi − η

)

.

This intriguingly simple model is known as the normal location model with
location parameter η; see Pericchi and Smith (1992), Mitchell (1994), and
Magnus (2002). Because the distribution of z given η is N (0, 1) for all values
of n, there is no loss of generality in setting n = 1, which is the case commonly
considered in the literature, so we shall also confine ourselves to this case.

The following two questions arise: How do we treat prior information or
the lack of it (ignorance), that is, how do we choose the prior? And, what can
we say about the posterior distribution? In particular, under what conditions
can we obtain explicit formulae for posterior moments and quantiles?

The first question has received considerable attention. Dawid (1973) pro-
vided sufficient conditions for the posterior distribution of η to approach the
prior distribution as x tends to infinity, so that an outlier has bounded and
vanishing influence on the posterior distribution. Pericchi and Sansó (1995)
presented a result closely related to Dawid’s theorem, which enabled them to
consider priors and likelihoods with bounded but non-vanishing influence on
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the posterior moments. The use of the Laplace prior as a basis for construct-
ing a location invariant family for ‘near ignorant’ robust Bayesian analysis
of credible intervals was considered by Pericchi and Walley (1991). Magnus
(2002) and Kumar and Magnus (2013) discussed the choice of prior within the
framework of neutrality and robustness, while O’Hagan and Pericchi (2012)
focussed on how to handle conflicting information sources using Bayesian
heavy-tailed models. The robustness of the normal location parameter was
also considered by Choy and Smith (1997) and Choy and Walker (2003).

The second question has only received a partial answer, as authors have
concentrated on the mean and variance of the posterior distribution of η;
see Pericchi and Smith (1992), Mitchell (1994), and some generalizations
in Pericchi and Sansó (1995). Meeden and Isaacson (1977) obtained some
results on the rate of convergence of the posterior mean to the prior mean.
Pericchi, Sansó, and Smith (1993), building on results of Meeden and Isaacson
(1977), investigated the relationship between the posterior mean and the
posterior mode; see also Kumar and Magnus (2013).

Pericchi, Sansó, and Smith (1993) also derived relationships for posterior
moments and cumulants of η, but their results are restricted to the mean and
variance only. These results are relevant in the areas of Bayesian robustness
and approximation. In particular, results are obtained on the behavior of
the posterior distribution for a large observation, generalizing Meeden and
Isaacson (1977).

The purpose of this note is to derive closed-form expressions for any pos-
terior moment or quantile of η. Higher-order moments (in fact, cumulants)
are of interest in themselves, but they are also useful when we wish to ob-
tain posterior quantiles for sums (or, more generally, linear combinations) of
the parameters of interest, as for example in weighted-average least squares
(WALS); see Magnus and De Luca (2016).

We shall concentrate primarily on Laplace priors, whose role in robust
Bayesian inference was established by Pericchi and Smith (1992). Their use
in the Bayesian representation of the LASSO (Tibshirani, 1996) was discussed
by Li and Goel (2006), Park and Casella (2008), and Hans (2009).

In Section 2 we discuss our framework in a general context. Then, restrict-
ing ourselves to Laplace priors, we derive posterior quantiles and moments in
Sections 3 and 4 respectively. Knowledge of the moments leads to knowledge
of the cumulants, which have an important advantage over moments because
the cumulant of sum of independent random variables is equal to the sum of
the corresponding cumulants. Using the Cornish-Fisher expansion to obtain
an approximation to the posterior distribution of this sum is discussed in
Section 5.
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2 Priors and posteriors

Although in this note we shall mostly be concerned with the Laplace prior, let
us consider first a more general prior density π which satisfies the following
three conditions: (i) is symmetric around zero, π(−η) = π(η) for all η > 0;
(ii) is positive and non-increasing on (0,∞); and (iii) is differentiable, except
possibly at 0.

A flexible and mathematically tractable three-parameter class of priors
satisfying these conditions is the family of reflected generalized gamma dis-
tributions, with densities of the form

π(η) =
qcδ

2Γ(δ)
|η|−αe−c|η|q , (1)

where c > 0, q > 0, 0 ≤ α < 1, and δ = (1 − α)/q. This class includes as
special cases the two-parameter families of Subbotin (α = 0) and reflected
Weibull distributions (α+ q = 1); and the one-parameter families of Laplace
(α = 0, q = 1) and normal distributions (α = 0, q = 2, with zero mean and
variance 1/(2c)). A Laplace prior is thus a special case of both a Subbotin
and a reflected Weibull prior.

Given the prior density (1), the resulting posterior density of η given x is

p(η; x) =
|η|−α

A(x)
exp

[

−1

2

(

(η − x)2 + 2c|η|q
)

]

, (2)

where

A(x) =

∫ ∞

−∞

|η|−α exp

[

−1

2

(

(η − x)2 + 2c|η|q
)

]

dη

=

∫ ∞

0

η−αe−cηq
(

e−(η−x)2/2 + e−(η+x)2/2
)

dη (3)

is a normalizing constant which depends only on x. Note that A(−x) = A(x).
Since the prior distribution is symmetric, we have that Pr(η < 0) =

Pr(η > 0) = 1/2. If, in addition, Pr(|η| < 1) = Pr(|η| > 1) = 1/2, we say
that the prior is ‘neutral’, a concept attempting to capture the vague notion
of ignorance in an explicit and applicable form. Neutrality occurs if and only
if

1

Γ(δ)

∫ c

0

tδ−1e−tdt = 1/2.

In the case of the normal distribution we have δ = 1/2, so that neutrality
holds for c = 0.2275. In the case of the Laplace and reflected Weibull distri-
butions we have δ = 1, and neutrality holds for c = log 2 = 0.6931. In the
case of Subbotin no explicit solution exists.
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Next, we define

A(a; x) =

∫ a

−∞

|η|−α exp

[

−1

2

(

(η − x)2 + 2c|η|q
)

]

dη,

so A(x) = A(∞; x) and the posterior distribution function of η may be
written as

F (a; x) = Pr(η ≤ a|x) = A(a; x)

A(x)
.

If F (a; x) = p, then the posterior quantile function Q is defined by the
equation Q(p; x) = a. We are interested in the quantiles of the posterior
distribution, but we might also be interested in the quantiles of the sum of
independent random variables, each of which follows the distribution in (2).
For this we need the moments (in fact, the cumulants) of each of the poste-
riors; see Section 5.

The moments of the posterior distribution are given by

E(ηk|x) = 1

A(x)

∫ ∞

−∞

ηk|η|−α exp

[

−1

2

(

(η − x)2 + 2c|η|q
)

]

dη

=
1

A(x)

∫ ∞

0

ηk−αe−cηq
(

e−(η−x)2/2 + (−1)ke−(η+x)2/2
)

dη, (4)

and the associated cumulants follow from these moments.
For the general class of priors considered in this section we don’t obtain

explicit formulae for the posterior distribution function and the posterior
moments and quantiles. There is one prior however which allows such explicit
formulae, namely the Laplace prior.

3 Posterior quantiles under a Laplace prior

In the special case of the Laplace prior we have α = 0 and q = 1 and hence,
as a special case of (1),

π(η) =
c

2
e−c|η| (c > 0).

The posterior density of η given x, as a special case of (2), then takes the
form

p(η; x) =
1

A(x)
exp

[

−1

2

(

(η − x)2 + 2c|η|
)

]

. (5)

This distribution has received considerable attention (Pericchi and Smith,
1992; Mitchell, 1994; Magnus, 2002), and in this note we present expressions
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for any moment or quantile of the posterior distribution of η under a the
Laplace prior.

We discuss posterior quantiles first. We do so by deriving the poste-
rior distribution function of η and then, by inversion, its posterior quantile
function. Defining

G(x) = e−cxΦ(x− c) + ecxΦ(−x− c),

where Φ denotes the cumulative distribution function of the standard normal
distribution, as a special case of (3) we obtain the following expression for
the normalizing constant in (4)

A(x) =

∫ ∞

0

e−cη
(

e−(η−x)2/2 + e−(η+x)2/2
)

dη

= ec
2/2e−cx

∫ ∞

0

e−(η−x+c)2/2 dη + ec
2/2ecx

∫ ∞

0

e−(η+x+c)2/2 dη

= ec
2/2e−cx

∫ ∞

−x+c

e−t2/2 dt+ ec
2/2ecx

∫ ∞

x+c

e−t2/2 dt

=
√
2π ec

2/2G(x).

For a ≤ 0 we can write the posterior distribution function of η as

F (a; x) =
1

A(x)

∫ a

−∞

exp

[

−1

2

(

(η − x)2 − 2cη
)

]

dη

=
ec

2/2ecx

A(x)

∫ a

−∞

e−(η−x−c)2/2 dη

=
ecxΦ(−x− c+ a)

G(x)
.

Similarly, for a ≥ 0, we have

F (a; x) = F (0; x) +
1

A(x)

∫ a

0

exp

[

−1

2

(

(η − x)2 + 2cη
)

]

dη

= 1− e−cxΦ(x− c− a)

G(x)
.

Given the distribution function F (a; x) we have, for a ≤ 0,

F (a; x) = p ⇐⇒ Φ(−x − c + a) = pe−cxG(x),

and similarly, for a ≥ 0,

F (a; x) = p ⇐⇒ Φ(x− c− a) = (1− p)ecxG(x).
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Now using the fact that

a ≤ 0 ⇐⇒ F (a; x) ≤ F (0; x) =
ecxΦ(−x− c)

G(x)
,

we obtain the posterior quantile function of η as

Q(p; x) =

{

x+ c+ Φ−1 (pe−cxG(x)) (p ≤ F (0; x)),

x− c− Φ−1 ((1− p)ecxG(x)) (p > F (0; x)).
(6)

All posterior quantiles based on the Laplace prior can thus be computed
explicitly. Note, however, that this applies only to one variable, not to a
sum of independent variables. Quantiles for such a sum will be discussed in
Section 5.

4 Posterior moments under a Laplace prior

Let us now consider the posterior moments of η under a Laplace prior. Us-
ing (4), these moments are given by

µk = E(ηk|x) = 1

A(x)

∫ ∞

0

ηke−cη
(

e−(η−x)2/2 + (−1)ke−(η+x)2/2
)

dη

=
(−1)ke−cxPk(−c+ x) + ecxPk(−c− x)

G(x)
, (7)

with

Pk(a) =

∫ a

−∞

(t− a)kφ(t) dt,

where φ denotes the density function of the standard normal distribution and
we used the fact that

∫ ∞

0

ηke−cηe−(η−x)2/2 dη = ec
2/2e−cx

∫ ∞

0

ηke−(η+c−x)2/2 dη

= (−1)kec
2/2e−cx

∫ −c+x

−∞

(t+ c− x)ke−t2/2 dt

and, similarly,

∫ ∞

0

ηke−cηe−(η+x)2/2 dη = (−1)kec
2/2ecx

∫ −c−x

−∞

(t+ c+ x)ke−t2/2 dt.
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The moments in (7) can be computed if we can find explicit expressions
for the Pk(a), which are closely related (but not identical) to the Hermite
polynomials defined by

Hk(x) = (−1)kex
2/2 dk

d xk
e−x2/2.

Let pk(t) = (t− a)kφ(t), so Pk(a) =
∫ a

−∞
pk(t) dt. Then,

p′k−1 = (k − 1)(t− a)k−2φ(t) + (t− a)k−1φ′(t)

= (k − 1)pk−2 − pk − apk−1,

using the fact that φ′(t) = −t φ(t). Integrating then gives, for k ≥ 2,

0 = pk−1(a) =

∫ a

−∞

p′k−1(t) dt = (k − 1)Pk−2(a)− Pk(a)− aPk−1(a),

which leads to the recursion

Pk(a) = −aPk−1(a) + (k − 1)Pk−2(a) (k ≥ 2),

with P0(a) = Φ(a), P1(a) = −aΦ(a) − φ(a) as starting values. In contrast,
the Hermite polynomials satisfy the recursion

Hk(a) = aHk−1(a)− (k − 1)Hk−2(a) (k ≥ 2),

with H0(a) = 1 and H1(a) = a as starting values.
It is now easy to obtain closed-form expressions for all posterior moments

(and hence all posterior cumulants) of η. For example, the posterior mean
of η is

µ1 =
−e−cxP1(−c + x) + ecxP1(−c− x)

G(x)

=
−e−cx(c− x)Φ(−c + x) + ecx(c+ x)Φ(−c− x)

e−cxΦ(−c + x) + ecxΦ(−c− x)

= x− h(x)c,

where

h(x) =
e−cxΦ(−c + x)− ecxΦ(−c− x)

e−cxΦ(−c + x) + ecxΦ(−c− x)

and we used the fact that

e−cxφ(−c+ x) = ecxφ(−c− x) = e−c2/2φ(x),
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Figure 1: Posterior skewness (left) and posterior excess kurtosis (right) of η
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in agreement with Pericchi and Smith (1992, Eq. (6)). Similarly, from (7)
and

P2(a) = (a2 + 1)Φ(a) + aφ(a),

P3(a) = −(a3 + 3a)Φ(a)− (a2 + 2)φ(a),

P4(a) = (a4 + 6a2 + 3)Φ(a) + (a3 + 5a)φ(a),

we can easily derive closed-form expressions for the posterior variance of η,
its posterior skewness

γ3 =
µ3 − 3µ1µ2 + 2µ3

1

(µ2 − µ2
1)

3/2
,

and its posterior excess kurtosis

γ4 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
− 3.

The left panel of Figure 1 presents the posterior skewness of η as a func-
tion of x and c. The posterior distribution of η is negatively skewed for
x < 0, positively skewed for x > 0, and symmetric for x = 0 (the prior
mean). For x > 0, the skewness reaches a maximum of 0.22 at x = 1.15
when c = 0.5, a maximum of 0.30 at x = 1.21 when c = log(2), and a max-
imum of 0.41 at x = 1.32 when c = 1. As noted by Mitchell (1994), these
results have implications for the ordering of the posterior mean, median and
mode. Using similar arguments in a regression setup, Hans (2009) showed
that the skewed posterior distribution of the regression parameters may lead
to sizeable differences in Bayesian LASSO predictions based on alternative
loss functions.
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The right panel of Figure 1 presents instead the posterior excess kurtosis
of η as a function of x and c. The excess kurtosis is positive (fatter tails)
when |x| is ‘small’, and negative (thinner tails) when |x| is ‘large’. There is
no excess kurtosis at |x| = 1.37 when c = 0.5, |x| = 1.54 when c = log(2),
and |x| = 1.82 when c = 1.

While posterior moments are more commonly employed than cumulants,
working with cumulants has the advantage that the cumulant of a sum of in-
dependent random variables is just the sum of the corresponding cumulants.
We employ this feature in the next section.

5 The Cornish–Fisher expansion

Consider a random variable z with cumulants c1, c2, . . . . Let γk = ck/c
k/2
2 ,

so γ1 is the signal-to-noise ratio, γ2 = 1, γ3 is the skewness, and γ4 is the
(excess) kurtosis. Given the first five cumulants, define the function

C(t) = t+ (t2 − 1)γ3/6 + (t3 − 3t)γ4/24

− (2t3 − 5t)γ2
3/36 + (t4 − 6t2 + 3)γ5/120

− (t4 − 5t2 + 2)γ3γ4/24 + (12t4 − 53t2 + 17)γ3
3/324.

Given a particular value of p (e.g., p = 0.95), let tp be the unique value of t for
which Φ(t) = p, where as before Φ denotes the standard normal cumulative
distribution function. Thus, tp denotes the pth quantile (or 100pth percentile)
of the standard normal distribution.

The pth quantile qp of the distribution of z, defined implicitly by Pr(z ≤
qp) = p, is then approximated by

qp ≈ c1 + c
1/2
2 C(tp).

This is the Cornish–Fisher expansion (Cornish and Fisher, 1938; Fisher and
Cornish, 1960; Chernozhukov, Fernández-Val, and Galichon, 2010), here
based on five cumulants. Using a version with more than five cumulants
will not necessarily produce a better approximation.

In our case, the expansion is useful when we wish to obtain quantiles of
the sum z = z1 + · · ·+ zn of n independent random variables, each of which
follows the posterior distribution (5). We know the quantiles of each of the
random variables from (6), but we don’t know the quantiles of their sum.
Let ci,k denote the kth cumulant of zi. Then the kth cumulant of z is given
by ck =

∑

i ci,k. Given the cumulants of the individual components zi we can
thus approximate the quantiles of their sum z through the Cornish–Fisher
expansion.
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