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1 Introduction

Data are generated by a potentially complex process, the so-called data-generating process (DGP),

usually represented by a joint probability distribution over the sample space. The investigator does

not know the DGP, so she uses models. These models should be ‘close’ to the DGP, the measure

of closeness depending on what purpose the investigator has in mind. The best model for one

purpose is not necessarily the best model for another purpose (Hjort and Claeskens 2003, Hansen

2005). The branch of statistical theory that attempts to find the best model for a given purpose

from the available data is called ‘model selection’. Like any other data-driven statistical decision,

model selection is subject to sampling uncertainty which, if ignored, can lead to overestimating the

accuracy of parameter estimates (Kabaila and Mainzer 2018).

In contrast, ‘model averaging’ is not concerned with finding the best model, but with the best

estimator of those features of the DGP that are of interest to the investigator.1 This estimator is

based on a set of models, each model producing one estimator and one measure of model uncertainty.

Model averaging combines all these estimators with weights that take into account the uncertainty

about each model. No model is selected as ‘the best’ as estimation is based on the contribution of

all models.

There is now a large literature on model averaging, both from a frequentist and a Bayesian

perspective; see Steel (2020) for a thorough and extensive survey. Our approach, weighted-average

least squares (WALS), is frequentist but with a Bayesian flavor. It applies to a linear regression

model in which we are certain about including a set of core or ‘focus regressors’, but uncertain about

the number and identity of a set of additional controls or ‘auxiliary regressors’. For each model

in the model space, the coefficients on the focus and auxiliary regressors (the focus and auxiliary

parameters) are estimated by constrained least squares, hence by a frequentist procedure. How-

ever, after implementing a semi-orthogonal transformation of the auxiliary regressors, the WALS

weighting scheme is developed following a Bayesian approach in order to obtain desirable theoretical

properties. The final result is a model averaging estimator that assumes an intermediate position

between Bayesian and frequentist model averaging.

Most model averaging estimators are biased in ways that are not properly captured by the local

misspecification framework, which assumes that the specification error vanishes with the sample size

n at the convergence rate of
?
n. Furthermore, the sampling distribution of most model averaging

estimators is not well approximated by the normal distribution and there is increasing evidence

1Confusingly, the word ‘model averaging’ is a misnomer since we do not average over models but over estimators.
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that, even after correcting for bias, inference based on model averaging can be misleading when

relying on the normal approximation (Hjort and Claeskens 2003, Claeskens and Hjort 2008, Hansen

2014, Liu 2015, DiTraglia 2016, Zhang and Liu 2019). The purpose of the current paper is to find

out whether this is also the case in WALS and, if so, what can be done about it.

The bias and variance of WALS have recently been analyzed by De Luca et al. (2021), who

exploit results on the frequentist properties of the Bayesian posterior mean in a normal location

model. The current paper extends their results to inference by proposing a simulation-based ap-

proach for WALS confidence and prediction intervals. This approach yields re-centered intervals,

using the bias-corrected posterior mean as a frequentist estimator of the normal location parameter.

We assess the finite-sample performance of this approach by an extensive Monte Carlo experi-

ment, where in some cases we can cross-check our simulation results with exact results or analytic

approximations. To facilitate comparisons with the simulation study by Zhang and Liu (2019),

hereafter ZL, we stay close to their framework and consider a finite model space that is assumed

to contain the DGP (M -closed environment) but has little additional structure. Unlike ZL, who

restrict their attention to inference about a single auxiliary parameter, we first concentrate on in-

ference about a single focus parameter, interpreted as the causal effect of a policy or intervention in

the presence of a potentially large number of auxiliary parameters. We compare the performance of

WALS with that of several competing estimators, including the unrestricted least-squares estimator

(with all auxiliary regressors) and the restricted least-squares estimator (with no auxiliary regres-

sors), two post-selection estimators based on alternative model selection criteria (the Akaike and

Bayesian information criteria), various versions of frequentist model averaging estimators (Mallows

and jackknife), and one version of a popular shrinkage estimator (the adaptive LASSO). In addi-

tion, we discuss prediction intervals for the outcome of interest, which involves linear combinations

of all focus and auxiliary parameters.

The main conclusion of our Monte Carlo experiment is that, compared to other estimators,

coverage errors for WALS are small and confidence and prediction intervals are short, centered

correctly, and allow for asymmetry. They are also easy and fast to compute by simulation.

The remainder of this paper is organized as follows. In Section 2 we introduce the framework

and describe the estimators which we wish to consider. One of these estimators is WALS, which we

describe in some detail in Section 3. In Section 4 we discuss how to construct confidence intervals for

these estimators. The Monte Carlo experiment is described in Section 5. Sections 6–8 contain the

simulation results, separately for point estimates (Section 6), confidence intervals (Section 7), and
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prediction intervals (Section 8). Section 9 concludes. Appendix A contains the abbreviations used

in the paper, and Appendix B describes the main algorithm for simulation-based WALS confidence

intervals.

2 Framework and estimators

Our framework is the linear regression model

y “ Xβ ` ϵ “ X1β1 `X2β2 ` ϵ, (1)

where y pn ˆ 1q is the vector of observations on the outcome of interest, X1 pn ˆ k1q and X2

pn ˆ k2q are matrices of nonrandom regressors, β1 and β2 are unknown parameter vectors, and ϵ

is a vector of random disturbances. The k1 columns of X1 contain the ‘focus regressors’ which we

want in the model on theoretical or other grounds, while the k2 columns of X2 contain the ‘auxiliary

regressors’ of which we are less certain. These auxiliary regressors could be controls that are added

to avoid omitted-variable bias or transformations and interactions of the set of original regressors,

such as indicator variables, polynomials, B-splines, etc. We assume that k1 ě 1, k2 ě 0, and that

X “ pX1, X2q has full column-rank k “ k1 `k2 ď n. The disturbance vector ϵ has zero mean and a

positive definite variance matrix, diagonal but not necessarily equal to σ2In. The DGP thus allows

for nonnormality and heteroskedasticity.

When k2 “ 0 there is no model uncertainty and we simply estimate the model with only the

focus regressors, but when k2 “ 1 we have two models to consider depending on whether we include

or exclude the auxiliary regressor. In general, there are 2k2 possible models that contain all focus

regressors and a (possibly empty) subset of the auxiliary regressors. If pβ1j and pβ2j are the least-

squares (LS) estimators of β1 and β2 in model j, then the model averaging estimators take the

form

pβ1 “

2k2
ÿ

j“1

λj
pβ1j ,

pβ2 “

2k2
ÿ

j“1

λj
pβ2j , (2)

where the λj are nonnegative data-dependent model weights that add up to one. Even for moderate

values of k2 the computational burden of calculating 2k2 estimates and the associated weights can

be substantial. For example, when k2 “ 20 the model space contains more than one million models.

One possibility is to reduce the number of models by preordering, as suggested by Hansen

(2007). In this approach we order the auxiliary regressors a priori such that we only consider

k2 `1 nested models where model p contains the focus regressors and the first p auxiliary regressors
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(p “ 0, 1, . . . , k2). Except for a few special cases in which the auxiliary regressors admit a natural

preordering (e.g., polynomial regression models), the question of how we should order the auxiliary

regressors remains open (see, however, Hansen 2014, p. 498) and if we use preliminary regressions to

order the regressors then the statistical noise generated by these preliminary investigations should

not be ignored.

Another possibility to reduce the computational burden is weighted-average least squares, as

proposed in Magnus et al. (2010). We shall discuss the WALS method in more detail in Section 3.

Before we discuss WALS, let us review the other estimators which will play a role in this paper.

Most of these estimators also appear in ZL, and we purposely try to stay close to that paper for

reasons of comparability.

Least squares (LS). The unrestricted LS estimator pβu “ pX 1Xq´1X 1y is denoted by LS-U and

includes all k2 auxiliary regressors. The restricted LS estimator pβr “ ppβ1
1,r, 0

1q1, where pβ1,r “

pX 1
1X1q´1X 1

1y, is denoted by LS-R and includes no auxiliary regressors. These estimators require

neither preordering nor model selection.

Information criterion (IC). As implemented in ZL, these estimators require preordering and the

assumption that the errors in (1) are homoskedastic. After preordering, the pth model (p “

0, 1, . . . , k2) has k1 focus regressors and p auxiliary regressors. Let

M˚
p “ In ´X˚

p pX˚1

p X
˚
p q´1X˚1

p (3)

be the usual idempotent matrix in model p, where X˚
p “ pX1, X2,pq denotes the matrix containing

the first k1 `p regressors, and let pσ2p “ y1M˚
p y{n be the maximum likelihood (ML) estimator of the

error variance in model p. The Akaike IC for model p is

AICp “ n logppσ2pq ` 2pk1 ` pq (4)

and the Bayesian IC for model p is

BICp “ n logppσ2pq ` plog nqpk1 ` pq. (5)

The IC-A model selection estimator is the LS estimator in the model with the lowest value of AICp,

and the IC-B model selection estimator is the LS estimator in the model with the lowest value of

BICp. There is no model averaging here, only model selection. Model averaging based on smoothed

AIC and BIC weights was considered by Buckland et al. (1997) and Burham and Anderson (2002).
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Adaptive LASSO (ALASSO). The adaptive LASSO estimator proposed by Zou (2006) does not

rely on preordering. It solves the optimization problem

min
β

˜

py ´Xβq1py ´Xβq ` ψn

k
ÿ

l“1

|βl|

pβ2l,u

¸

, (6)

where βl is the lth component of β, pβl,u is the lth component of the unrestricted LS estimator of β,

and ψn is a tuning parameter selected by the generalized cross-validation method (Li 1987, Andrews

1991). The ALASSO estimator does not distinguish between focus and auxiliary regressors, but it

could easily be modified by only penalizing the coefficients on the auxiliary regressors.

Mallows. The Mallows model averaging (MMA) estimator was introduced by Hansen (2007). It

relies on preordering and assumes that the errors in (1) are homoskedastic with known variance

σ2 which we set equal to s2u, the unbiased LS estimator of σ2 in the unrestricted model. Let

M˚pwq “
řk2

p“0wpM
˚
p , where M˚

p is defined in (3). Then the MMA weights are obtained by

solving

min
w

˜

y1M˚1

pwqM˚pwqy ` 2s2u

k2
ÿ

p“0

wppk1 ` pq

¸

(7)

subject to
ř

pwp “ 1 and 0 ď wp ď 1 for all p. If we denote the optimal weights by pwp then the

MMA estimator takes the form

pβMMA “

k2
ÿ

p“0

pwppX˚1

p X
˚
p q´1X˚1

p y. (8)

The MMA estimator is asymptotically efficient (in the mean squared error sense) for nested models

under homoskedasticity, but not under heteroskedasticity (Hansen 2007).

Jackknife. The jackknife model averaging (JMA) estimator (Hansen and Racine 2012) also relies

on preordering but it allows for heteroskedasticity. Let Dp be the diagonal matrix containing the

diagonal elements ofM˚
p on its diagonal and zeros elsewhere and defineM :pwq “

řk2
p“0wpD

´1
p M˚

p .
2

Then the JMA weights are obtained by solving

min
w

y1M :1

pwqM :pwqy (9)

with respect to w subject to
ř

pwp “ 1 and 0 ď wp ď 1 for all p. The JMA estimator is

asymptotically efficient for nested models under heteroskedasticity. Under homoskedasticity, the

2The diagonal elements of Dp are all nonnegative, but not necessarily strictly positive. To ensure nonsingularity
of Dp we must add the requirement that the ith unit vector in Rn (the vector whose ith entry is 1 and 0 elsewhere)
does not lie in the column space of X for any i.
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MMA and JMA estimators have the same (nonstandard) limiting distribution (ZL, p. 824). The

JMA-M (modified JMA) estimator introduced by ZL is defined by weights that solve

min
w

˜

y1M :1

pwqM :pwqy ` ψn

k2
ÿ

p“0

wppk1 ` pq

¸

(10)

subject to the same constraints as in (9), where the tuning parameter ψn is set equal to log n, as in

ZL. The JMA and JMA-M estimators take the same form as (8) where pwp is given by the solution

of (9) and (10), respectively.

3 The WALS approach

The WALS estimator was introduced in Magnus et al. (2010) and reviewed in Magnus and De Luca

(2016). Unlike other model averaging estimators, the WALS approach exploits a semi-orthogonal

transformation of the auxiliary regressors that reduces the computational burden from order 2k2 to

order k2, coupled with a rescaling of the focus regressors that improves the accuracy of inversion

and eigenvalue routines. Specifically, we transform X2 and β2 by defining Z2 “ X2∆2Ψ
´1{2 and

γ2 “ Ψ1{2∆´1
2 β2, where ∆2 is a diagonal k2 ˆ k2 matrix such that all diagonal elements of Ψ “

∆2X
1
2M1X2∆2 are equal to one and M1 “ In ´ X1pX 1

1X1q´1X 1
1. We also rescale X1 and β1 by

defining Z1 “ X1∆1 and γ1 “ ∆´1
1 β1, where ∆1 is a diagonal k1 ˆ k1 matrix such that all diagonal

elements of Z 1
1Z1 are equal to one. Since Z1γ1 “ X1β1 and Z2γ2 “ X2β2, we may then write

model (1) equivalently as

y “ Z1γ1 ` Z2γ2 ` ϵ. (11)

The fact that Z 1
2M1Z2 “ Ik2

brings several important advantages. First, if pγ1j and pγ2j are the

LS estimators of γ1 and γ2 in model j, then the WALS estimators can be written as

pγ1 “

2k2
ÿ

j“1

λjpγ1j “ pγ1,r ´QWpγ2,u, pγ2 “

2k2
ÿ

j“1

λjpγ2j “ Wpγ2,u, (12)

where pγ1,r “ pZ 1
1Z1q´1Z 1

1y is the estimator of γ1 in the restricted model (with γ2 “ 0), pγ2,u “

Z 1
2M1y is the estimator of γ2 in the unrestricted model, Q “ pZ 1

1Z1q´1Z 1
1Z2, W “

ř

j λjWj , and

Wj “ Ik2
´SjS

1
j , where Sj is a k2 ˆ rj selection matrix of rank 0 ď rj ď k2 — that is, S1

j “ rIrj : 0s

or a column-permutation thereof — representing the rj exclusion restrictions implied by model

j “ 1, . . . , 2k2 .

Second, the dependence of pγ1 and pγ2 on the estimators from all 2k2 models in the model space

is completely captured by the random diagonal matrix W “
ř

j λjWj , whose k2 diagonal elements
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wh are partial sums of the λj since the Wj are nonrandom diagonal matrices with k2 ´ rj ones and

rj zeros on the diagonal. It follows that the computational burden of calculating pγ1 and pγ2 is of

order k2, as we only need to compute the restricted estimate pγ1,r and the unrestricted estimate pγ2,u,

and determine the set of k2 WALS weights wh; not the considerably larger set of 2k2 model weights

λj . Unlike some other approaches we are not ignoring any of the 2k2 models in the original model

space because each model contributes to the model averaging estimates through the k2 diagonal

elements of the matrix W .

Third, Theorem 2 of Magnus and Durbin (1999) implies that the mean squared error (MSE)

of pγ1 depends on the MSE of pγ2. Thus, if we can choose the λj optimally such that pγ2 is a ‘good’

estimator of γ2 (in the MSE sense), then the same weights will also provide a ‘good’ estimator

of γ1.

Fourth, the components of pγ2 “ Wpγ2,u are shrinkage estimators of the components of γ2, as

0 ď wh ď 1. Under the additional assumption that the errors in (11) are homoskedastic and normal,

pγ2,u „ N pγ2, σ
2Ik2

q. Hence, if we restrict each wh to depend only on the hth component of pγ2,u, then

the shrinkage estimators in pγ2 will also be independent. Under this additional restriction (discussed

in detail in Magnus and De Luca 2016), our k2-dimensional problem reduces to k2 (identical) one-

dimensional problems, namely: given one observation x „ N pη, σ2q, what is the estimator mpxq of

η with minimum MSE? This is the so-called normal location problem. Since the risk properties of

mpxq are little affected by estimating the variance parameter (Danilov 2005, Magnus and De Luca

2016), we also assume that σ2 is known.

The normal location problem is an important ingredient in the WALS procedure. We take a

Bayesian approach to it, which allows a proper treatment of admissibility, bounded risk, robustness,

near-optimality in terms of minimax regret, and ignorance about η. The Bayesian approach requires

two elements: a distribution for the k2-vector of t-ratios x “ pγ2,u{su where, as before, s2u “

y1M1pIn ´ Z2Z
1
2qM1y{pn´ kq is the LS estimator of the error variance in (11), and a neutral prior

with bounded risk for the normal location parameter η. The concept of neutrality relates to the

notion of ignorance about η (Kumar and Magnus 2013, Magnus and De Luca 2016). Specifically,

it requires the prior median of η to be zero and the prior median of |η| to be one.

Assuming, as for the MMA estimator, that the errors in (11) are homoskedastic with known

variance equal to s2u, the k2 components xh of x are independently distributed as N pηh, 1q. The

Bayesian approach to this normal location problem then yields the posterior mean mh “ mpxhq as

8



an estimator of ηh. Hence, the WALS estimators of γ1 and γ2 are

pγ1 “ pγ1,r ´Qpγ2, pγ2 “ sum, (13)

with m “ pm1, . . . ,mk2
q1, and the WALS estimators of β1 and β2 are

pβ1 “ ∆1pγ1,
pβ2 “ ∆2Ψ

´1{2
pγ2. (14)

The mixture of Bayesian and frequentist approaches requires special attention when assessing

the sampling properties of our model averaging estimator. First, for a prior which is symmetric

around zero, the posterior mean mh suffers from attenuation bias, so that pβ1 and pβ2 are in general

biased estimators of β1 and β2. Second, for any nonnegative bounded prior density, the variance

v2hpxhq of the posterior distribution of ηh represents a first-order approximation to the sampling

standard deviation of the posterior mean mh (De Luca et al. 2021, Proposition 2). This somewhat

counterintuitive result shows that care should be taken when assessing the sampling precision of

the posterior mean mh as a frequentist estimator of ηh.

De Luca et al. (2021) recently investigated these issues and proposed new plug-in estimators

of the sampling moments of mh. Specifically, they first used Monte Carlo methods to accurately

tabulate the functional forms of the bias δhpηhq and variance σ2hpηhq of the posterior mean mh under

three types of neutral priors with bounded risk belonging to the class of (reflected) generalized

gamma distributions: Laplace, Weibull, and Subbotin. For each prior, they then compared two

alternative plug-in methods for estimating the unknown location parameter ηh: the maximum

likelihood estimator xh and the Bayesian posterior mean mh. The first estimator leads to the

plug-in ML estimators δhpxhq and σ2hpxhq, the second to the plug-in double shrinkage estimators (so

named because of the double use of the posterior mean function in the leading term of the analytical

approximations to the estimated bias) δhpmhq and σ2hpmhq. Based on these plug-in estimators, De

Luca et al. (2021) also derived new estimators for the sampling bias and variance of the WALS

estimators (14). These findings have implications for WALS inference, i.e. the construction of

confidence and prediction intervals, and these implications are the subject of the current paper.

4 Confidence intervals

We shall consider sixteen confidence intervals: ten from ZL and six based on WALS. In this section

we write our parameter of interest as βl, indicating the lth component of β, which could be either

a focus or an auxiliary parameter. As in ZL, we wish to construct p1´αq-level confidence intervals
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for βl and these take the form

CInpβlq “

”

qβl ´ cl,
qβl ` cl

ı

, (15)

where qβl is an estimate of βl and the quantities cl and cl are chosen to attain the desired coverage

level. If cl “ cl then the interval is called symmetric.

Least squares (LS). The confidence interval for βl in the unrestricted model is obtained by setting

qβl equal to the lth component of the LS-U estimator pβu and letting cl “ cl “ z1´α{2 spqβlq, where

z1´α{2 is the p1´α{2qth quantile of the standard normal distribution and spqβlq denotes the (classical

or heteroskedasticity-robust) standard error of qβl. The confidence interval for βl in the restricted

model is obtained in a similar way except that qβl is now the lth component of pβr.

Information criterion (IC). For the IC-A and IC-B estimators, let pp be the number of auxiliary

regressors selected by the Akaike or Bayesian IC, pβlpppq the LS estimator of βl in the selected model,

and sppβlpppqq the associated standard error. Then, qβl “ pβlpppq and cl “ cl “ z1´α{2 spqβlq. ZL call

these confidence intervals ‘naive’ because they ignore model selection noise.

Adaptive LASSO (ALASSO). Here qβl is the ALASSO estimator of βl and cl “ cl “ n´1{2q˚
l pαq,

where q˚
l pαq is the αth quantile of the conditional distribution of |

?
npqβ˚

l ´ qβlq| given the data

and qβ˚
l is the ALASSO estimate from a bootstrap sample. These confidence intervals rely on the

asymptotic validity of the bootstrap for the ALASSO estimator, established by Chatterjee and

Lahiri (2011) and Camponovo (2015) for alternative versions of the bootstrap.

Mallows. There are two variants based on the Mallows estimator qβl of βl. In MMA-B we have

cl “ cl “ n´1{2q˚
l pαq, where q˚

l pαq is the αth quantile of the bootstrap distribution of |
?
npqβ˚

l ´ qβlq|

and qβ˚
l is the MMA estimate from a bootstrap sample. In MMA-S we have cl “ n´1{2qlp1 ´ α{2q

and cl “ ´n´1{2qlpα{2q, where qlpαq is the αth quantile of the simulated asymptotic distribution

of the estimator based on ZL (Theorem 2). The first interval is symmetric, the second is not.

Jackknife. There are two variants based on the jackknife estimator and one based on the modified

jackknife estimator. Let qβl be the jackknife estimator of βl. In JMA-B we have, similar to MMA,

cl “ cl “ n´1{2q˚
l pαq, where q˚

l pαq is the αth quantile of the bootstrap distribution of |
?
npqβ˚

l ´ qβlq|

and qβ˚
l is the JMA estimate from a bootstrap sample. In JMA-S we have cl “ n´1{2qlp1 ´ α{2q

and cl “ ´n´1{2qlpα{2q, where qlpαq is now based on ZL (Theorem 4).

For the modified estimator we let qβl be the JMA-M estimator of βl and cl “ cl “ z1´α{2 s
˚
l ,

where s˚
l is the standard error in the ‘just-fitted’ model (using ZL’s definition), that is, the model
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obtained from the ordered sequence of models by deleting all redundant regressors (where the

parameter is zero) which appear at the end of the sequence. (Hence, there may still be redundant

regressors in the just-fitted model, but the last included regressor is not redundant.)3 Symmetry

of these confidence intervals is justified by the asymptotic normality of the JMA-M estimator (ZL,

Theorem 5).

WALS. We shall compare three types of WALS confidence intervals for βl: uncentered-and-naive

(UN), centered-and-naive (CN), and simulation-based (S).

In the uncentered-and-naive confidence interval we set qβl equal to the WALS estimator pβl and

let cl “ cl “ z1´α{2 sppβlq, where sp
pβlq is either the plug-in maximum likelihood (ML) estimator or

the plug-in double-shrinkage (DS) estimator of its standard error. Uncentered-and-naive confidence

intervals take the classical normal approximation to the sampling distribution of pβl at face value

and neglect the bias of the WALS estimator of βl.

In the centered-and-naive confidence interval we apply a bias correction and set qβl equal to the

bias-corrected WALS estimator

qβl “ pβl ´ bppβlq, (16)

where bppβlq is either the plug-in ML estimator or the plug-in double-shrinkage estimator of the bias

of pβl. As in the uncentered-and-naive approach we set cl “ cl “ z1´α{2 s, but now, in contrast to

the uncentered-and-naive approach, s “ spqβlq depends on the bias-corrected WALS estimator and

is computed by the simulation-based algorithm discussed in Appendix B. As for the uncentered-

and-naive confidence interval, the centered-and-naive confidence interval takes the classical normal

approximation at face value (hence naive), but it re-centers to correct for estimation bias and it

accounts for randomness in the estimated bias.

The simulation-based approach also yields a re-centered confidence interval by using the bias-

corrected posterior mean as a frequentist estimator of the normal location parameter, and it

accounts for the randomness of the bias-corrected posterior mean by exploiting a large set of

pseudo-random Monte Carlo replications. But unlike the centered-and-naive approach it produces

a quantile-based confidence interval that does not require critical values from the normal distribu-

tion and is not necessarily symmetric. We expect the simulation-based confidence interval to be

3The just-fitted model is unknown in practice, so s˚
l is not a feasible estimator. In applications, one could treat

the model that receives the largest weight as the just-identified model because the weights of under-fitted and over-
fitted models should be small. In the simulations we follow ZL and assume that the just-fitted model is known. As
a consequence, the correct intervals will be larger than reported since some of the model selection noise has been
ignored.
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superior to the other two. The algorithm underlying the centered-and-naive and simulation-based

methods is provided in Appendix B.

5 Monte Carlo setup

The simulation setup closely follows ZL with some exceptions which we shall list and explain later

in this section. We have k1 “ 2 focus regressors, x11 and x12 (of which the first is the constant

term), and k2 auxiliary regressors, x21, . . . , x2k2 . Our parameter of interest is the coefficient β12 on

the second focus regressor x12, which may be interpreted as the causal effect of x12 on y.

The k2 ` 1 regressors x12, x21, . . . , x2k2 are drawn from a multivariate normal distribution with

mean zero and variance σ2xΣxpρq, where

Σxpρq “

¨

˚

˚

˚

˝

1 ρ . . . ρ
ρ 1 . . . ρ
...

...
...

ρ ρ . . . 1

˛

‹

‹

‹

‚

p´
1

k2
ă ρ ă 1q. (17)

We set σ2x “ ρ “ 0.7.

The error term is generated by ϵi “ σiui, where the ui are independently distributed following

either a standard normal distribution or a t-distribution with five degrees of freedom or a skewed

t˚-distribution (also with d “ 5 degrees of freedom), defined as

fpt˚;µ, σ, d, λq “
Γpd`1

2 q

π1{2pθσqΓpd2q

ˆ

1 `
pt˚ ´ µq2

p1 ` λ sgnpt˚ ´ µqq2pθσq2

˙´ d`1
2

, (18)

where d ą 2, |λ| ă 1, sgnp¨q is the sign function, and

θ “
rπ1{2pd´ 2q1{2Γpd´2

2 qs pd´ 2q1{2

b

p1 ` 3λ2qrπ1{2pd´ 2q1{2Γpd´2
2 qs2 ´ r4λΓpd´1

2 qs2
(19)

is a normalizing constant to ensure that Vpt˚q “ σ2 (Hansen 1994, Theodossiou 1998). The

parameter λ controls the skewness of the distribution (defined for d ą 3). For λ “ 0 we obtain the

standard t-distribution with d degrees of freedom by setting µ “ 0 and σ “ d1{2{θ “ pd{pd´ 2qq1{2.

When λ ą 0 the distribution is skewed to the right; and when λ ă 0 it is skewed to the left.

In addition to the standard normal distribution and the tp5q-distribution we shall consider two

versions of the skewed t˚-distribution with five degrees of freedom, one with λ “ 0.5 (moderate

positive skewness) and one with λ “ 0.8 (large positive skewness).

We consider four homoskedastic and four heteroskedastic error distributions, as given in Table 1.

In the homoskedastic cases we take σi “ 2.5 when the distribution of ui has variance one. For the

12



Table 1: Eight error distributions

Skedasticity Distribution ui σi

Homoskedastic 1 N p0, 1q 2.5

2 tp5q
a

15{4
3 t˚p0, 1, 5, 0.5q 2.5
4 t˚p0, 1, 5, 0.8q 2.5

Heteroskedastic 5 N p0, 1q 2.5 τi
6 tp5q

a

15{4 τi
7 t˚p0, 1, 5, 0.5q 2.5 τi
8 t˚p0, 1, 5, 0.8q 2.5 τi

tp5q-distribution the variance is 5{3 and hence we need a correction factor
a

15{4 “ 2.5{
a

5{3. In

the heteroskedastic cases we define

τi “
1 ` 2|x

piq
12 | ` 4|x

piq
21 |

1 ` 6σx
a

2{π
, (20)

where x
piq
12 and x

piq
21 denote the ith observation on the second focus regressor and the first auxiliary

regressor, respectively, and the scaling is chosen such that Epτiq “ 1 for all i.

Table 2: Four configurations of the k2 “ 8 auxiliary parameters

Conf. β2

(a) pξ, ξ2, ξ3, ξ4, 0, 0, 0, 0q1

(b) pξ4, ξ3, ξ2, ξ, 0, 0, 0, 0q1

(c) pξ, ξ2, 0, 0, ξ3, ξ4, 0, 0q1

(d) p0, 0, 0, 0, ξ4, ξ3, ξ2, ξq1

We set k2 “ 8 so that we have 2k2 “ 256 possible models that include the two focus regressors

and a subset of the eight auxiliary regressors. We fix β1 “ p1, 1q1 and consider four configurations

of the eight auxiliary coefficients, as shown in Table 2.

Our setup is intentionally similar to the setup in ZL with three important exceptions:

� Our parameter of interest is one of the focus parameters, not one of the auxiliary parameters

as in ZL, because it is focus parameters that we are primarily interested in.

� ZL ignore the possibility of skewness in the error distribution. In fact, of the eight cases in

Table 1 they only consider two: homoskedastic under normality (case 1) and heteroskedastic

under a t-distribution (case 6). In the heteroskedastic setup we take 5 rather than 4 degrees
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of freedom, so as to ensure the existence of both skewness and kurtosis. In addition, our

scaling in design 6 gives Epσiq “ 2.5{
a

Vptp5qq « 1.94 thus ensuring comparability with the

other designs, whereas in ZL’s case we would have Epσiq « 3.23. Finally, we let τi depend on

one focus and one auxiliary regressor (instead of two auxiliary regressors).

� To the three cases (a)–(c) in Table 2, we have added case (d) to show what can happen

when the preliminary ordering is poor. As in case (b), the auxiliary regressors with nonzero

coefficients enter with a decreasing order of importance as measured by the magnitude of

their coefficients (since we set |ξ| ă 1). In addition, case (d) implies that all submodels in the

preordered sequence of k2 ` 1 nested models (except for the unrestricted model) are subject

to omitted-variable bias.

We set ξ “ 0.5 and consider sample sizes of n “ 100 and n “ 400. By combining the eight

specifications of the regression error in Table 1 with the four configurations of the auxiliary pa-

rameters in Table 2, we obtain 32 simulation designs for n “ 100 and 32 simulation designs for

n “ 400. Using 5,000 Monte Carlo replications for each design (instead of 500 replications as

in ZL), we compute the bias, variance, and MSE of the nine estimators discussed in Sections 2

and 3: LS-U, LS-R, IC-A, IC-B, ALASSO, MMA, JMA, JMA-M, and WALS. The LS-U, LS-R and

WALS estimators are implemented in Stata, the other estimators in MATLAB.4 Our simulation

data were generated in MATLAB to exploit the availability of the sgtrnd routine for computing

pseudo-random draws from the skewed t˚-distribution. Since WALS has been shown to be quite

robust to different choices of the prior (De Luca et al. 2018, 2021), we restrict our attention to

WALS based on the Laplace prior because the Laplace prior allows closed-form expressions for the

posterior moments (De Luca et al. 2020) and this has computational advantages.

6 Monte Carlo results: point estimates

In this and the next two sections we present the results of the Monte Carlo experiment in a number

of graphs. This section discusses point estimates. Confidence intervals and prediction intervals are

discussed in Sections 7 and 8, respectively.

FIGURES 1–2 HERE

In Figures 1 and 2 we present the first two sampling moments of the nine estimators for n “ 100.

The sixteen plots in Figure 1 represent the homoskedastic designs, the sixteen plots in Figure 2 the

4The MATLAB routines were kindly provided by X. Zhang and C.-A. Liu. All Stata routines are available from
the authors upon request.
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heteroskedastic designs. Each plot contains the squared bias–variance decomposition of the MSE

of the nine estimators and, in addition, two ‘iso-MSE’ lines, which consist of all points with the

same MSE as the unrestricted estimator LS-U (red dash-dotted line) and the WALS estimator (blue

dashed line). Design 1a refers to distribution 1 (normal, homoskedastic) and configuration (a), and

so on, as described in Tables 1 and 2.

The similarity of the sixteen plots in Figure 1 is remarkable. The estimators LS-U, LS-R,

ALASSO, and WALS are not affected by preordering, hence their moments and MSEs are the

same across configurations. But this is not the case for the other five estimators: IC-A, IC-B,

MMA, JMA, and JMA-M. For these other estimators the effect of preordering can be substantial

(comparing across rows), but the effect of nonnormality (skewness and excess kurtosis) appears

to be small (comparing across columns). The restricted estimator LS-R has a large bias which

dominates the small variance, and hence its MSE is large. ALASSO has a small bias but a large

variance, hence a large MSE. The MSE is also large for IC-B based on the BIC criterion because

of its large bias, especially in configurations (b) and (d) where the ordering is unfavorable. The

IC-A estimator based on the AIC criterion behaves about the same as the unrestricted estimator

in configurations (a) and (c), but considerably worse in configurations (b) and (d). As predicted

by the asymptotic theory discussed in Section 2, MMA (Mallows) and JMA (jackknife) perform

essentially the same under homoskedasticity and are indistinguishable in the figure, but again their

performance deteriorates when the preordering is unfavorable. Unlike ZL, we don’t find that JMA-

M ‘dominates other estimators in most cases’; in fact, JMA is 7–14% more efficient relative to

JMA-M (as measured by the ratio of their MSEs) in the sixteen designs of Figure 1.

The dominating estimator is WALS, whose excess bias relative to LS-U (which is unbiased) is

more than offset by a much smaller variance, thus capturing the essence of model averaging. The

efficiency of WALS relative to the next-best JMA estimator is about 12% in configurations (a)

and (c), 23% in configuration (b) and 31% in configuration (d). The MSE of WALS is 0.23–0.24

depending on the error distribution, hence showing considerable robustness to violations of the

normality assumption, probably due to the fact that n “ 100 is already large enough to justify

asymptotic approximations to the normal location problem based on the central limit theorem.

Now consider the case of heteroskedastic errors, still for n “ 100, as plotted in Figure 2. All

models are now misspecified, also the model based on the normal distribution. In our setup this

leads to a deterioration of the MSE by about 30% (averaged over all estimators and all designs

with and without heteroskedasticity), but the ordering of estimators remains unaltered. Curiously
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and contrary to what is predicted by the asymptotic theory, MMA is 2% more efficient than JMA

under heteroskedasticity. WALS is still the preferred estimator in terms of MSE.

FIGURE 3 HERE

When the number of observations increases, then things change. Since we work in an M -closed

environment, the number of models is fixed and does not increase with the number of observations.

The unrestricted model produces unbiased estimators whose variance (and hence MSE) decreases

at the rate n´1. So eventually LS-U will dominate unless we let the number of models increase as

well (as we shall do later).

In Figure 3 we only present designs 1 and 5 (both based on the normal distribution) because

the t- and skewed t˚-distributions produce moments that are almost identical. For example, in

the homoskedastic case the MSE ranges from 0.066 to 0.070 for LS-U and from 0.083 to 0.087 for

WALS over the four distributions, while in the heteroskedastic case it ranges from 0.095 to 0.101

for LS-U and from 0.110 to 0.115 for WALS.

When n increases from 100 to 400, one would expect the variance to decrease by about 75%,

and this is more or less what happens. Averaged over all estimators the variance decreases by

about 73% in both the homoskedastic and the heteroskedastic cases. The (absolute) bias also

decreases but at a lower speed. The unrestricted estimator LS-U is unbiased, while the restricted

estimator LS-R has a bias which does not vanish asymptotically but rather converges to a limit;

as a result, the bias in LS-R is almost constant between n “ 100 and n “ 400. Averaging over the

remaining estimators we find a decrease of the absolute bias of about 35% in the homoskedastic

case and 29% in the heteroskedastic case. The decrease in absolute bias of the WALS estimator is

particularly slow. The resulting MSE decreases by about 60% averaged over all estimators, both

under homoskedasticity and heteroskedasticity.

The preferred estimator is now the unrestricted estimator LS-U, with ALASSO as second-best

and WALS as third-best. These three estimators are not influenced by the order of the auxiliary

variables. For the other estimators (except LS-R which clearly performs badly) the ordering is

important and a poor choice of preordering may lead to poor behavior of the estimator.

Let us now extend our design in four directions. First, we consider not only n “ 100 and n “ 400

but also two intermediate values 200 and 300. Second, we extend the number of auxiliary variables

from k2 “ 8 to 16, 24, 32, . . . , 64 by setting β2 “ pξ, ξ2, . . . , ξk2{2, 0, 0, . . . , 0q1. Third, we consider

not only ξ “ 0.5 but also ξ “ ´0.5, so that we allow for both positive and negative influences or,

what is the same, for positive and negative correlations between the regressors. Fourth, we allow
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in addition to σ2x “ ρ “ 0.7 (high correlation) also σ2x “ ρ “ 0.3 (low correlation). In total, our

second Monte Carlo experiment includes 128 simulation designs for the different combinations of

n, k2, ξ, and ρ. For each design, we consider again 5,000 Monte Carlo replications.

In the extended design we restrict ourselves to distribution 1 (homoskedastic normal errors)

and to only two estimators: the unrestricted LS estimator LS-U and WALS.

FIGURE 4 HERE

In Figure 4 we consider the efficiency of the WALS estimator relative to the LS-U estimator,

given by the ratio MSEppβ12,uq{MSEppβ12,WALSq. The smaller (better) is MSEppβ12,WALSq, the higher

is the efficiency of WALS relative to LS-U. Theory predicts that, in every setup, WALS will dominate

LS-U when n is ‘small’ and LS-U will dominate WALS when n is ‘large’. The question is where to

draw the line between small and large. It turns out that the parameter values used in ZL, which

we have followed to allow comparisons, are not the most favorable for WALS. The four plots in

column 1 are the same as in the main simulation study with k2 “ 8, ξ “ 0.5, and ρ “ 0.7, except

that we have now added the intermediate values n “ 200 and n “ 300. We see that LS-U dominates

when n is larger than about 250. But when ξ is negative (column 2) or when the correlation is

small (column 3) or both (column 4), then WALS dominates LS-U for (much) larger values of n,

certainly larger than 400. As expected, we also see that an increase in the number of auxiliary

variables increases the efficiency of WALS relative to LS-U.

7 Monte Carlo results: confidence intervals

In the previous section we presented and discussed the finite-sample performance of the nine point

estimators defined in Section 2. Our main concern in this paper, however, is not with estimation

but with inference, and hence we now turn to confidence intervals. We compare sixteen methods

as discussed in Section 4, ten from ZL and six based on WALS.5 Our parameter of interest is still

β12, the coefficient of the second focus regressor, and we consider confidence intervals for β12 of

the form (15) with nominal coverage probability of (at least) 1 ´ α. For given α (10%, 5%, 1%),

we can calculate qβ12, c12pαq, and c12pαq for each method and each replication of the 32 simulation

designs. By averaging over the 5,000 Monte Carlo replications of each simulation design, we then

5The confidence intervals for ALASSO, MMA-B, and JMA-B are based on 499 bootstrap replications, those for
MMA-S and JMA-S are based on 499 Monte Carlo replications, and those for WALS (DS-S, ML-S, DS-CN, and ML-
CN) on 5,000 Monte Carlo replications. Despite the larger number of replications, the simulation-based algorithm
for WALS is considerably faster than the other algorithms.
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obtain the coverage probability (the relative frequency that the interval contains the true value of

β12) and the length of the interval. Our first concern is how close to 1´α this coverage probability

is, our second concern is the average length of the confidence interval.

FIGURES 5–6 HERE

Figures 5 and 6 summarize the simulation results for n “ 100 and n “ 400, respectively.

Both figures contain 16 panels, one for each method. On the horizontal axis we plot the coverage

probabilities for the three values of α: 10% (red long-dashed line), 5% (green dashed line), and

1% (blue dash-dotted line). The lengths of the intervals are plotted on the vertical axis. Since

there are 32 designs (labeled 1a–8d), there are 32 points in each panel for each level of α (marked

as triangles for α “ 10%, squares for α “ 5%, and circles for α “ 1%). The markers are full for

the homoskedastic designs and empty for the heteroskedastic designs. Not all points are visible

because many overlap, but what really matters is how much the coverage probabilities differ from

their nominal levels and how short the confidence intervals are.

Regarding the coverage probabilities we see that there are five methods that produce accurate

coverage probabilities, namely classical or heteroskedasticity-robust unrestricted least squares (LS-

U) and the four centered versions of WALS: centered-and-naive (WALS-DS-CN andWALS-ML-CN)

and simulation-based (WALS-DS-S and WALS-ML-S). The other eleven methods are much less ac-

curate. In particular, the naive confidence intervals for IC-A and IC-B lead to large undercoverage

errors because they ignore model selection noise, in agreement with ZL’s findings for the confidence

intervals for an auxiliary coefficient. The bootstrapped confidence intervals for MMA and JMA are

more accurate than the simulation-based algorithms proposed by ZL, but the underlying undercov-

erage errors are still sizeable (with n “ 100, the undercoverage errors of MMA-B and JMA-B are

´0.03 for α “ 10% and ´0.02 for α “ 5%) and they increase with the sample size (with n “ 400,

the undercoverage errors become ´0.07 for α “ 10% and ´0.05 for α “ 5%). The confidence

intervals of JMA-M also have nonnegligible undercoverage errors which tend to increase with the

sample size. ALASSO performs well for n “ 400, but the undercoverage errors of its 90% and 95%

bootstrapped confidence intervals for n “ 100 are rather large (´0.19 for α “ 10% and ´0.08 for

α “ 5%). Apparently, the asymptotic validity of the bootstrap for ALASSO requires a large value

of n, especially for confidence intervals with a small significance level. The uncentered-and-naive

confidence intervals for WALS do not perform well because they use critical values from the normal

distribution and ignore the estimation bias. Ignoring the estimation bias is much more important

than naively using critical values from the normal distribution, as is shown by first comparing
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uncentered-and-naive with centered-and-naive (large difference) and then centered-and-naive with

simulation-based (small difference). Obviously to use the correct critical values is better, but the

improvement is very small.

Table 3: Skewness and excess kurtosis of the bias-corrected WALS estimator of β12

Double shrinkage Maximum likelihood

n “ 100 n “ 400 n “ 100 n “ 400

Skewness ´0.019 ´0.026 ´0.007 ´0.010
Excess kurtosis 0.019 0.009 0.005 0.001

While we have established that taking the bias into account matters for constructing the correct

confidence intervals using WALS, one may also wonder about the behavior of higher moments of

the bias-corrected WALS estimator. In Table 3 we present the skewness and excess kurtosis of the

estimator of the focus parameter β12, where we average over the eight designs (four distributions,

homo- and heteroskedastic) since the variation between the eight designs is negligible. These higher-

order moments are again estimated by the simulation-based algorithm discussed in Appendix B.

The estimator is left-skewed and exhibits positive excess kurtosis, but the deviations from

zero (the normal case) are very small. In comparison, the χ2p8q distribution, which already looks

quite ‘normal’, has skewness 1.0 and excess kurtosis 1.5, and the χ2p32q distribution has skewness

0.5 and excess kurtosis 3{8. For an auxiliary parameter the deviation from normality is slightly

higher, but still small. When n increases then the skewness increases somewhat while the excess

kurtosis decreases. The ML-based estimator is slightly closer to normality than the DS-based

estimator. Based on these findings we conclude that the bias-corrected WALS estimator is well

approximated by a normal distribution, thus confirming the comparison between centered-and-naive

and simulation-based earlier in this section.

Regarding the interval lengths for our five favourite methods we see that for n “ 100 the interval

lengths in the homoskedastic designs are about 1.7 when α “ 10%, 2.1 when α “ 5%, and 2.7 when

α “ 1%; about 12% higher in the heteroskedastic designs. For n “ 400 the interval lengths decrease

by about 50%. WALS performs slightly better than LS-U, but the differences are small and require

further investigation under the extended design.

In the extended design defined in the previous section we consider only the classical LS-U

confidence interval, and the two simulation-based WALS confidence intervals WALS-DS-S and

WALS-ML-S, based on the plug-in double-shrinkage and maximum likelihood estimators of the
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bias of the posterior mean in the normal location model.6

FIGURES 7–8 HERE

The coverage probabilities of the three methods (LS-U, WALS-DS-S, WALS-ML-S) are com-

pared in Figure 7 for the 90%, 95% and 99% confidence levels. The coverage errors of the three

methods are in general small. For the 128 simulation designs considered in our second Monte Carlo

experiment they are always smaller than 0.03 in absolute value and they are more often positive

(overcoverage) than negative (undercoverage). The fact that WALS-DS-S yields slightly larger

coverage errors than WALS-ML-S is consistent with the finite-sample properties of the underlying

plug-in estimators of the bias of the posterior mean in the normal location model. Specifically,

under the Laplace prior, the plug-in double-shrinkage estimator of the bias of the posterior mean

has always a larger bias than the plug-in maximum likelihood estimator (De Luca et al. 2021,

Figure 3). Our results also suggest that the absolute value of the coverage errors for WALS-DS-S

increases with α: it reaches a maximum of 0.006 when α “ 1%, 0.018 when α “ 5%, and 0.028

when α “ 10%.

In Table 3 we investigated the skewness and excess kurtosis of the bias-corrected WALS esti-

mator of the focus parameter β12. In the extended design we also find that both skewness and

excess kurtosis deviate very little from zero and that the ML-based estimator is slightly closer to

normality than the DS-based estimator. For ξ “ ´0.5 the skewness is positive rather than negative.

Hence the previous conclusion that the bias-corrected WALS estimator is well approximated by a

normal distribution still holds in the extended design.

Next we compare the lengths of the confidence intervals in Figure 8, where we present the

relative lengths (LS-U divided by WALS-DS-S and LS-U divided by WALS-ML-S) for the 95%

level only, since the results for the 90% and 99% levels are indistinguishable from the 95% level.

For all cases we have LS-U ą WALS-ML-S ą WALS-DS-S, so that the simulation-based WALS

confidence intervals are always smaller than the classical LS-U confidence intervals, even for the

designs where the LS-U estimator dominates the WALS estimator in terms of MSE. The average

length reduction with respect to classical LS-U confidence intervals is about 1.8% for WALS-ML-S

and about 5.4% for WALS-DS-S. This result agrees with the fact that, although more biased, the

plug-in double-shrinkage estimator of the bias of the posterior mean has better MSE performance

than the plug-in maximum likelihood estimator, at least when the unknown location parameter has

6The centered-and-naive results for WALS-DS-CN and WALS-ML-CN are again very close to those obtained with
the simulation-based approach.
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a small or moderate value.

The relative gains of WALS on LS-U in terms of confidence interval length are much smaller

than the relative gains in terms of MSE obtained from the point estimators, which agrees with the

findings of Kabaila and Leeb (2006), Wang and Zhou (2013), and Ankargren and Jin (2018) for

other model averaging approaches to inference. A possible explanation is the randomness of the

estimated bias. We have seen that re-centering based on the bias-corrected estimator is important

to obtain small coverage errors. However, bias correction comes at the price of increased sampling

variability, which is reflected in the length of the confidence interval.

8 Monte Carlo results: prediction intervals

Finally we consider the problem of predicting a single observation yf given our framework y “ Xβ`ϵ

in (1) and given a covariate vector xf “ px1
1f , x

1
2f q1, that is,

yf “ x1
fβ ` ϵf “ x1

1fβ1 ` x1
2fβ2 ` ϵf , (21)

where ϵ and ϵf are jointly normally distributed, independent of each other, with zero means and

variances Vpϵq “ σ2In and Vpϵf q “ σ2. If pβ1 and pβ2 denote the WALS estimators of β1 and β2,

then the WALS point predictor of yf is defined as

pyf “ x1
1f

pβ1 ` x1
2f

pβ2, (22)

and its prediction error is

pyf ´ yf “ x1
1f ppβ1 ´ β1q ` x1

2f ppβ2 ´ β2q ´ ϵf . (23)

Note particularly the assumption of independence of ϵ and ϵf . Without this assumption the analysis

is rather more complicated; see Magnus et al. (2016). Because of (13) and (14) the WALS point

predictor of yf may be viewed as a weighted average of the point predictors from all 2k2 models in

the model space.

We are interested in constructing a prediction interval for Epyf q “ x1
1fβ1 ` x1

2fβ2. The main

difference between the confidence intervals introduced in Section 4 and the prediction intervals

discussed here is that in the former case we are dealing with the sampling uncertainty on one focus

parameter only, while in the latter case we need to deal with the sampling uncertainty on all focus

and auxiliary parameters.
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We consider two procedures for constructing WALS prediction intervals. The first, which we

call the naive approach, starts from the bias-corrected WALS estimator qβ “ pβ ´ bppβq and then

constructs a symmetric prediction interval with nominal coverage probability 1 ´ α:

x1
f

qβ ´ z1´α{2

b

x1
fVqβ

xf ă Epyf q ă x1
f

qβ ` z1´α{2

b

x1
fVqβ

xf , (24)

where V
qβ
is the Monte Carlo variance of qβ estimated from B˚, the R ˆ k matrix containing the

replications of the bias-corrected WALS estimator in step (iv) of the algorithm described in Ap-

pendix B. This approach assumes normality of the bias-corrected WALS estimator, which is why it

is called naive. The other approach, which we call the simulation-based approach, does not assume

normality of the bias-corrected WALS estimator and builds the prediction interval directly from the

quantiles of the empirical distribution of the elements of the vector B˚xf . This prediction interval

need not be symmetric around x1
f

qβ.

FIGURES 9–11 HERE

Figure 9 presents the relative efficiency of the WALS point predictor of Epyf q “ x1
fβ relative

to the LS-U predictor in the 128 simulation designs with homoskedastic normal errors under alter-

native values of n, k2, ξ, and ρ. In each design xf is drawn randomly from a multivariate normal

distribution with mean zero and variance σ2xΣxpρq and then kept fixed for all replications of the

same simulation design. Thus, xf changes with k2 and ρ.

The figure has the same format as Figure 4, except that efficiency is now measured by the ratio

of the mean squared prediction error of WALS relative to LS-U. WALS clearly dominates LS-U

in all designs, and by an even larger margin than what we have seen for the focus coefficient. As

expected, the relative efficiency of WALS increases with the number k2 of auxiliary coefficients

in the DGP. The typical profile of the relative efficiency of the WALS predictor is concave in k2,

revealing very large gains when moving from a small number (k2 “ 8) to a moderate number

(k2 “ 24) of auxiliary coefficients.

Figure 10 shows the actual coverage probabilities of the prediction intervals for LS-U and WALS

for nominal probabilities of 90%, 95%, and 99%. For WALS we only present the simulated-based

intervals, both DS and ML, because the naive and simulation-based prediction intervals are always

very close. This figure is the analog of Figure 7 and, perhaps not surprisingly, prediction interval

coverage errors are only slightly larger than confidence interval coverage errors. There is only one

design (n “ 400, ξ “ ´0.5, ρ “ 0.7) out of the 128 considered for which the coverage error is sizable

(around 6%), and this coverage error is not much larger than for LS-U in the same design.
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Figure 11 plots the relative lengths of the 95% prediction intervals based on LS-U and WALS,

hence the analog of Figure 8. The disadvantage of using LS-U is now even more evident than

before. LS-U prediction intervals are 2–3% larger than WALS-ML and 5–10% larger than WALS-

DS. Furthermore, the relative length of the LS-U prediction intervals, viewed as a function of the

number of auxiliary coefficients, is concave for all designs, again revealing large gains when moving

from k2 “ 8 to k2 “ 24.

9 Conclusions

In this paper we have attempted to extend the theory of WALS estimation to inference. A key

ingredient in this extension is the use of bias correction in WALS, as introduced in De Luca et al.

(2021). To highlight the properties of WALS and put them in perspective we also discussed and

analyzed its main competitors.

One problem with Monte Carlo experiments is that a critical reader may suspect that the authors

have selected precisely those experiments that make their favorite tool shine. This suspicion may or

may not be justified but it is almost impossible to check for the reader. With this possible critique

in mind we have chosen for an existing Monte Carlo setup, namely the one employed by ZL, with

only a few well-reasoned changes.

The WALS procedure has many advantages: computational simplicity even with a large number

of auxiliary variables; no need to preorder the variables as in Hansen’s procedures; no need to make

data-dependent choices of tuning parameters as in adaptive LASSO; a natural (Bayesian) treatment

of ignorance; and excellent finite-sample performance of the estimator.

We discussed both confidence intervals for the focus parameter and prediction intervals for

the outcome of interest, and compared the performance of WALS with that of alternative estima-

tors, including the unrestricted and restricted least-squares estimators, post-selection estimators

based on different model selection criteria, various frequentist model averaging estimators, and

the adaptive LASSO. Our results rely on an extensive set of Monte Carlo experiments that allow

for increasing complexity of the model space and include heteroskedastic, skewed, and thick-tailed

error distributions.

We find, in the homoskedastic case and with a relatively small sample size (n “ 100), that

the dominating estimator is WALS, whose excess bias relative to the unrestricted LS estimator

(which is unbiased) is more than offset by a smaller variance, thus capturing the essence of model

averaging. In the heteroskedastic case, in which all models are misspecified, the performance of
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all estimators deteriorates but their relative position in terms of MSE changes little. Since we

work in an M -closed environment, the model space remains fixed as the sample size increases. The

preferred estimator is now the unrestricted estimator LS-U, followed by ALASSO as second-best,

and WALS as third-best. These three estimators are not affected by the order of the auxiliary

variables (preordering).

Regarding coverage probabilities, there are five methods that produce accurate coverage prob-

abilities, namely classical or heteroskedasticity-robust unrestricted least squares and the four cen-

tered versions of WALS. All other methods are much less accurate. In particular, the naive con-

fidence intervals for post-selection estimators have large undercoverage errors because they ignore

model selection noise. Although ALASSO performs well for n “ 400, the undercoverage errors of its

bootstrapped confidence intervals for n “ 100 are rather large. Comparing the length of confidence

intervals, WALS performs slightly better than the unrestricted LS estimator, though differences

are small. As in De Luca et al. (2021) we have a slight preference for the plug-in DS estimator

over the plug-in ML estimator of the bias of the posterior mean. Given the fact that ML leads to

relatively smaller coverage errors and DS to relatively shorter intervals, and since coverage errors

tend to increase with α, a specialist user may wish to use the ML estimator for 90% intervals and

the DS estimator for 95% and 99% intervals.

Finally, regarding prediction intervals, WALS clearly dominates LS-U. The relative efficiency of

WALS increases with the number of auxiliary coefficients and its typical profile is concave in the

number of auxiliary variables. Coverage errors of prediction intervals are only slightly larger than

of confidence intervals, and when we compare the relative lengths of 95% prediction intervals based

on LS-U and WALS the dominance of WALS is even stronger.

Appendix A: Abbreviations

The following abbreviations are used in this paper:

AIC: Akaike information criterion
ALASSO: adaptive LASSO
BIC: Bayes information criterion
CI: confidence interval
CN: centered-and-naive (confidence interval in WALS)
DGP: data-generation process
DS double shrinkage
IC: information criterion
IC-A: Akaike IC (model selection estimator)
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IC-B: Bayes IC (model selection estimator)
JMA: jackknife model averaging
JMA-B: bootstrap-based JMA
JMA-M: modified JMA
JMA-S: simulation-based JMA
LASSO: least absolute shrinkage and selection operator
LS: least squares
LS-R: restricted LS
LS-U: unrestricted LS
ML: maximum likelihood
MMA: Mallows model averaging
MMA-B: bootstrap-based MMA
MMA-S: simulation-based MMA
MSE: mean squared error
S: simulation-based (confidence interval in WALS)
UN: uncentered-and-naive (confidence interval in WALS)
WALS: weighted-average least squares
ZL: Zhang and Liu (2019)

Appendix B: Algorithm for the simulation-based WALS confidence
intervals

Let x “ pγ2,u{su “ px1, . . . , xk2q1 be the k2-vector of t-ratios from the unrestricted model and

pη “ ppη1, . . . , pηk2q1 an estimator of the k2-vector of parameters η “ pη1, . . . , ηk2q1 in the multivariate

normal location model x „ N k2pη, Ik2q. The simulation-based WALS confidence intervals for

β “ pβ1
1, β

1
2q1 are obtained by the following algorithm:

(i) Compute pη and use its generic element pηh to generate the R-vectors x˚
h “ px˚

1h, . . . , z
˚
Rhq1 of

independent pseudo-random draws from the N ppηh, 1q distribution.

(ii) Compute the R ˆ k2 matrix |M˚ of pseudo-random draws for the bias-corrected posterior

means with generic element

qm˚
rh “ m˚

rh ´ δ˚
rh pr “ 1, . . . , R; h “ 1, . . . , k2q, (25)

where m˚
rh “ mpx˚

rhq is the posterior mean evaluated at x˚
rh and δ˚

rh is either the plug-in

maximum likelihood estimator δpx˚
rhq or the plug-in double-shrinkage estimator δpm˚

rhq of the

bias of m˚
rh.
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(iii) Generate the R ˆ k1 matrix B˚
1r of independent pseudo-random draws from the distribution

N k1
ppβ1r, V1rq, where

pβ1,r “ ∆1pZ 1
1Z1q´1Z 1

1y, V1r “ s2u∆1pZ 1
1Z1q´1∆1 (26)

are the LS-R estimate of β1 in the fully restricted model and its estimated variance matrix,

respectively.

(iv) Compute the R ˆ k matrix qB˚ “ p qB˚
1 ,

qB˚
2 q of pseudo-random draws for the bias-corrected

WALS estimator qβ “ pqβ1
1,

qβ1
2q1 of β, where

qB˚
1 “ B˚

1r ´ su
|M˚Z 1

2Z1pZ 1
1Z1q´1∆1,

qB˚
2 “ su

|M˚Ψ´1{2∆2. (27)

(v) Compute the (1´α)-level confidence interval for the generic component βl of β pl “ 1, . . . , kq

as rq˚
l pα{2q, q˚

l p1´α{2qs, where q˚
l pα{2q and q˚

l p1´α{2q are, respectively, the α{2 and p1´α{2q

empirical percentiles of the R replications corresponding to the lth column qb˚
l of qB˚.

Remarks on the algorithm. To achieve good performance in terms of coverage probabilities, the

initial estimator pη in the first step of the algorithm must be (approximately) unbiased for η. This

leaves us three possible choices: (i) the ML estimator x, (ii) the double-shrinkage bias-corrected

posterior mean qmpxq “ mpxq ´ δpmpxqq, and (iii) the maximum likelihood bias-corrected posterior

mean qmpxq “ mpxq ´ δpxq. In our experience, the differences between these three estimators are

small. In the simulations, we used (ii) for the WALS-DS-S confidence intervals and (iii) for the

WALS-ML-S confidence intervals. The main difference between these two methods is the choice

of the plug-in estimator for the bias of the posterior mean in the second stage of the algorithm,

namely δpm˚
rhq for WALS-DS-S or δpx˚

rhq for WALS-ML-S.

Like other parametric bootstrap approaches, our simulation-based confidence intervals ignore

uncertainty caused by randomness of the regressors. Thus, as typically assumed in the WALS

theory for point estimation, we treat the regressors as fixed.

An important difference with the simulation-based MMA and JMA confidence intervals pro-

posed by ZL is that they simulate from the limiting distribution of the model averaging estimator,

while in simulation-based WALS we don’t. The WALS confidence intervals are based on the finite-

sample properties of the plug-in estimators of the frequentist bias of the posterior mean in the

normal location model (De Luca et al. 2021), and these properties allow us to study the sampling

distribution of the bias-corrected WALS estimator by simulations.
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The Rˆ k matrix qB˚ of Monte Carlo replications obtained from step (iv) of the algorithm can

be used to estimate any aspect of the sampling distribution of the bias-corrected WALS estimator.

For example, we used qB˚ to compute the standard error of qβl required in the centered-and-naive

WALS confidence intervals, and the complete variance matrix of qβ required to implement the naive

approach to prediction intervals. We also used qB˚ to obtain the skewness and kurtosis which we

need to investigate deviations from normality.

Our algorithm is very fast, especially with the Laplace prior. For example, in applications

with n “ 400 observations and k2 “ 40 auxiliary regressors, we can compute point estimates,

their estimated moments, and confidence intervals for all coefficients based on 100,000 Monte Carlo

replications in about 3.5 seconds by using a workstation with one Intel(R) Core(TM) i7-4790

CPU/3.60 GHz processor and 32 GB of RAM.
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Figure 1: Squared bias and variance of the estimators of the focus coefficient β12 in the simulation
designs with k2 “ 8, n “ 100, and homoskedastic errors
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Figure 2: Squared bias and variance of the estimators of the focus coefficient β12 in the simulation
designs with k2 “ 8, n “ 100, and heteroskedastic errors
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Figure 3: Squared bias and variance of the estimators of the focus coefficient β12 in the simulation
designs with k2 “ 8, n “ 400, and normal errors
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Figure 4: Efficiency of WALS relative to LS-U of the estimator of β12 in the simulation designs
with homoskedastic normal errors under alternative values of n, k2, ξ, and ρ
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Figure 5: Coverage probability and length of the confidence intervals for the focus coefficient β12
in the simulation designs with k2 “ 8 and n “ 100
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Figure 6: Coverage probability and length of the confidence intervals for the focus coefficient β12
in the simulation designs with k2 “ 8 and n “ 400
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Figure 7: Coverage probabilities of confidence interval of β12 in the simulation designs with ho-
moskedastic normal errors and alternative values of n, k2, ξ, and ρ
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Figure 8: Relative lengths of the 95% confidence interval of β12 in the simulation designs with
homoskedastic normal errors and alternative values of n, k2, ξ, and ρ
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Figure 9: Efficiency of the WALS predictor of Epyf q relative to the LS-U predictor in the simulation
designs with homoskedastic normal errors under alternative values of n, k2, ξ, and ρ

1.00

1.25

1.50

1.75

2.00

2.25

1.00

1.25

1.50

1.75

2.00

2.25

1.00

1.25

1.50

1.75

2.00

2.25

1.00

1.25

1.50

1.75

2.00

2.25

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

(n,ξ,ρ)=(100, 0.5, 0.7) (n,ξ,ρ)=(100, 0.5, 0.3) (n,ξ,ρ)=(100,−0.5, 0.7) (n,ξ,ρ)=(100,−0.5, 0.3)

(n,ξ,ρ)=(200, 0.5, 0.7) (n,ξ,ρ)=(200, 0.5, 0.3) (n,ξ,ρ)=(200,−0.5, 0.7) (n,ξ,ρ)=(200,−0.5, 0.3)

(n,ξ,ρ)=(300, 0.5, 0.7) (n,ξ,ρ)=(300, 0.5, 0.3) (n,ξ,ρ)=(300,−0.5, 0.7) (n,ξ,ρ)=(300,−0.5, 0.3)

(n,ξ,ρ)=(400, 0.5, 0.7) (n,ξ,ρ)=(400, 0.5, 0.3) (n,ξ,ρ)=(400,−0.5, 0.7) (n,ξ,ρ)=(400,−0.5, 0.3)

W
A

LS
 P

re
di

ci
to

n 
E

ffi
ci

en
cy

Number of auxiliary coefficients

38



Figure 10: Coverage probabilities of prediction interval of Epyf q in the simulation designs with
homoskedastic normal errors and alternative values of n, k2, ξ, and ρ
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Figure 11: Relative lengths of the 95% prediction interval of Epyf q in the simulation designs with
homoskedastic normal errors and alternative values of n, k2, ξ, and ρ
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