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Abstract

We consider estimating the location parameter θ in the normal loca-
tion model and study the sampling properties of estimators derived
from a Bayesian approach that places a prior on a scaled version of θ
interpreted as the ‘population t-ratio’. Our non-standard approach is
motivated by the fact that in model selection and model averaging, it is
the t-ratio rather than the parameter estimate that plays an important
role. We show that the finite-sample distribution of these estimators
is not centered at θ and is generally non-normal. We also show that
the speed at which the estimation bias vanishes as the sample size
increases critically depends on the choice of prior. In the asymptotic
theory, we prove uniform

?
n-consistency of our estimators and ob-

tain their asymptotic distribution under a general moving-parameter
setup that includes both the fixed-parameter and the local-parameter
settings as special cases. Our results have direct implications for the
WALS estimator of Magnus, Powell and Prüfer (2010). They may also
be helpful for other model selection or model averaging procedures.

Keywords: normal location model, uniform
?
n-consistency, asymptotic

distribution, model averaging

JEL classification: C11, C13, C51, C52



1 Motivation

We reconsider possibly the simplest of all estimation problems, namely the
estimation of a parameter θ based on a single observation x, normally dis-
tributed with unknown mean θ and unit variance, that is,

x „ Npθ, 1q. (1)

Model (1) is known as the (univariate) normal location model and the prob-
lem of estimating the location parameter θ in this model is known as the
normal location problem. The normal location problem has been studied
from various angles; see, for example, Pericchi and Smith (1992); Magnus
(1999, 2002); Johnstone and Silverman (2004); Kumar and Magnus (2013);
DasGupta and Johnstone (2014); Johnstone (2019); and De Luca, Magnus
and Peracchi (2022).

We offer two motivations for studying this seemingly trivial problem.
First, the obvious solution of estimating θ by the maximum likelihood esti-
mator θ̂ “ x may not be a good choice. Second, despite its simplicity, this
problem is closely related to the more challenging issue of determining the
effects of model selection in linear regression models.

Let us consider both motivations in more detail. The maximum likelihood
estimator θ̂, sometimes called the ‘usual’ estimator, is unbiased, has unit
variance and, under squared error loss, its risk is equal to its mean squared
error MSEpθ̂q “ 1. It is the unique minimax estimator of θ (van der Vaart
(1998, Proposition 8.6)) and it is admissible (Berger (1985, p. 548)). One
may therefore wonder why we wish to consider alternative estimators. To
answer this question, let us compare θ̂ to another estimator of θ, namely the
‘silly’ estimator θ̌ “ 0. Since MSEpθ̌q “ θ2, we find that the silly estimator
is ‘better’ than the usual estimator in the mean squared error sense if and
only if |θ| ă 1. This simple comparison shows that, although no estimator
dominates the usual estimator for all values of θ, it is easy to find other
estimators with smaller risk in a non-negligible region of the parameter space.

Ideally, we would like to find an admissible estimator which behaves like θ̌
for ‘sufficiently small’ values of θ, and like θ̂ for ‘sufficiently large’ values of θ.
This intuitive idea leads to the ‘pretest’ estimator

θ̄ “

#

x if |x| ą c,

0 if |x| ď c,
(2)
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for some c ě 0 (possibly c “ 1), which we can also write as

θ̄ “ λpxqx λpxq “

#

1 if |x| ą c,

0 if |x| ď c.
(3)

The function λpxq may be interpreted either as a shrinkage function that
shrinks the usual estimator of θ towards zero, or as a weight function em-
ployed to combine the usual and the silly estimators of θ with weights λpxq
and 1´λpxq respectively. Unfortunately, θ̄ is inadmissible (it has a disconti-
nuity at x “ ˘c), and it has other undesirable properties as well; see Judge
and Bock (1983); Magnus (1999); Leeb and Pötscher (2003, 2005, 2006a);
Kabaila and Leeb (2006); and Efron (2014).

A continuous version of the pretest estimator is obtained when we allow
λpxq to increase smoothly with |x|. The question then arises how to choose
the function λpxq. A simple example is

λpxq “
x2

x2 ` 1
, (4)

but there are many alternative specifications. Magnus (2002) shows that this
smooth generalization of the pretest estimator already produces an estimator
of θ with better sampling properties. However, the estimator based on (4) is
still inadmissible (Strawderman and Cohen (1971, p. 278)).

Although admissibility is a frequentist concept, it is intimately connected
to Bayesian ideas. In fact, subject only to mild conditions, any (generalized)
Bayes estimator is admissible (Berger (1985, Section 4.8)). Thus, instead of
specifying the function λpxq, we may take a Bayesian approach by specifying
a prior distribution πpθq for θ. Under squared error loss, the posterior mean
θ̃ “ Epθ|xq is our estimator of θ, and we are interested in its frequentist
properties. Thus, our approach is to use the prior as a vehicle to obtain
a frequentist estimator that enjoys good sampling properties. For previous
studies on the frequentist properties of Bayesian estimators see, for example,
Joanes and Peers (1974), Carlin and Louis (2000, Chapter 4), Johnstone and
Silverman (2004), Efron (2012, 2015), and De Luca, Magnus and Peracchi
(2022).

Expanding on our second motivation, the (univariate) normal location
problem is of intrinsic interest, but it is also essential in the theory of pretest,
shrinkage, and model averaging estimators, which can all be viewed as esti-
mating the location parameters in the diagonal form of a Gaussian sequence
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model (Johnstone (2019, Chapter 2)). For example, the pretest estimator
corresponds to a two-step procedure where one first ‘tests’ whether |θ| ą c,
and then chooses between the usual and the silly estimator based on this
preliminary ‘test’. This procedure mimics the usual practice in applied re-
gression analysis, where the analyst first performs a t-test and then chooses
the model (and hence the estimator) based on the outcome of this preliminary
t-test. Other examples include the empirical Bayes thresholding estimator
of Johnstone and Silverman (2004), the penalized least squares estimators
analyzed by Pötscher and Leeb (2009), the weighted-average least squares
(WALS) estimator of Magnus, Powell and Prüfer (2010), the Bayesian model
averaging estimator of Lee and Oh (2013), and the wavelet shrinkage esti-
mators discussed in Johnstone (2019, Chapter 7).

Consider the linear regression model

y “ X1β1 `X2β2 ` u, u „ Np0, σ2Inq, (5)

where X1 (n ˆ k1) is a matrix of ‘focus’ variables that are required to be in
the model on theoretical or other grounds, while there is doubt whether the
additional ‘auxiliary’ variables in X2 (nˆ k2) should be in the model or not.
Thus, there are 2k2 models to consider. If β̂1piq denotes the estimator of β1
in model i, then

β̃1 “
2k2
ÿ

i“1

ωiβ̂1piq (6)

is the model-averaging estimator of β1. When the auxiliary regressors in X2

can be made orthogonal using some preliminary data transformation, the
equivalence theorem of Magnus and Durbin (1999) shows that the choice of
model weights ωi in (6) is equivalent to the choice of λpxq in a shrinkage
estimator for the location parameter θ. In particular, the theory developed
for our Bayesian shrinkage estimator of θ has direct implications on the sam-
pling properties of the WALS estimator; see Magnus and De Luca (2016) for
a review of the WALS approach and De Luca, Magnus and Peracchi (2018,
2022, 2023) for additional generalizations and developments of this model
averaging procedure.

The present paper considers a small but important variant of model (1),
which allows us to study the sampling properties of the posterior mean in
large samples. This variant is explored in Section 2, where we distinguish be-
tween two Bayesian approaches to the normal location problem: the standard
approach and the one we propose. Section 3 discusses regularity conditions
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placed on the prior to ensure that the posterior mean resulting from the pro-
posed Bayesian approach satisfies certain desirable properties, and Section 4
specifies four priors which satisfy these conditions. Section 5 studies the
finite-sample distribution of the posterior mean. In Section 6 we investigate
uniform

?
n-consistency and in Section 7 we investigate the asymptotic dis-

tribution of the posterior mean using a general moving-parameter setup that
includes both the fixed-parameter and the local-parameter settings as special
cases. Section 8 concludes. Proofs of all propositions are in the Appendix.

2 Two Bayesian approaches

In model (1) there is only one observation, and hence the sample size plays
no role and any discussion of asymptotics is meaningless. Things change,
however, if we replace x with a sample statistic xn (e.g., a sample mean)
that depends on the sample size n and satisfies

xn „ N

ˆ

θ,
σ2

n

˙

, (7)

where σ2 ą 0 is assumed to be known. The assumption that σ2 is known
is typically motivated by the wish to derive simple and easy-to-interpret
approximations that can prove helpful for the asymptotic analysis; see, e.g.,
Pötscher (2006), Pötscher and Leeb (2009), and DasGupta and Johnstone
(2014). The assumption can be relaxed if σ2 is estimated consistently by an
estimator that is independent of xn; see, e.g., Leeb and Pötscher (2003). The
normality assumption, on the other hand, is employed to derive our Bayesian
estimator of θ and its finite-sample distribution, and it will be weakened in
the large sample theory of Sections 6 and 7.

The obvious estimator of θ in model (7) is xn (the ‘usual’ estimator),
which is unbiased and consistent. The mean square error of the usual esti-
mator is MSEpxnq “ σ2{n, while the silly estimator has MSEp0q “ θ2. So
we prefer the silly estimator (in the MSE sense) if and only if |θ| ă σ{

?
n.

Defining

x˚n “
xn

σ{
?
n
, θ˚n “

θ

σ{
?
n
, (8)

we can write (7) equivalently as

x˚n „ Npθ˚n, 1q. (9)
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With σ known, the transformed random variable x˚n is the t-ratio for testing
the hypothesis θ “ 0, so its mean θ˚n may be viewed as the ‘population t-
ratio’. There is no essential difference between the approach via (7) and the
approach via (9). However, if we add a prior, then it does make a difference
whether we place the prior on θ or on θ˚n.

The standard Bayesian approach places a prior on θ. This prior does not
depend on the sample size, so the resulting posterior mean of θ given xn is
consistent for θ (van der Vaart (1998, Chapter 10)), because, as n increases,
the data information becomes increasingly important and dominates the prior
information which remains constant.

Since MSEp0q ă MSEpxnq if and only if |θ˚n| ă 1 and, more generally,
since model selection and model averaging typically depend on diagnostics
(such as t-ratios) rather than on parameter estimates, it makes sense in
our context to place a prior on θ˚n rather than on θ. This approach, first
suggested by Huntsberger (1955) and Hjort (1986), plays a key role in the
Bayesian shrinkage step of the WALS estimator of Magnus, Powell and Prüfer
(2010). An important issue is whether this non-standard approach leads to a
consistent estimator of θ. For example, suppose the prior distribution of θ˚n is
Np0, τ 2q, where τ does not depend on n. Then the posterior distribution of θ˚n
is Npξ x˚n, ξq, with ξ “ τ 2{p1`τ 2q. Under quadratic loss, the Bayes estimator
of θ˚n is the posterior mean m˚

n “ Epθ˚n|x˚nq “ ξ x˚n, while θ̃n “ σm˚
n{
?
n “

ξ xn is the implied estimator of θ. From a frequentist perspective, the bias
and variance of θ̃n are Epθ̃nq ´ θ “ pξ ´ 1qθ and Vpθ̃nq “ ξ2σ2{n, so the
variance of θ̃n vanishes as n Ñ 8 but the bias does not. Hence, with a
normal prior for θ˚n, θ̃n is not a consistent estimator of θ.

We thus need conditions on the prior to ensure that θ̃n enjoys attractive
sampling properties as an estimator of θ. Henceforth we shall write the
posterior mean of θ˚n as m˚

n “ mpx˚nq and the posterior variance as v˚2n “

v2px˚nq, where the functions m : R Ñ R and v2 : R Ñ R` have properties
that depend on those of the prior density π of θ˚n.

3 Regularity conditions on the prior

Our first three conditions on the prior π are just mild regularity conditions:

(C1) π is symmetric around zero;
(C2) π is positive and non-increasing on p0,8q; and
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(C3) π is differentiable, except possibly at 0.

Kumar and Magnus (2013) show that, under (C1)–(C3), the posterior
mean function m satisfies the following properties: mp´xq “ ´mpxq, mp0q “
0, m1pxq ą 0, 0 ă mpxq ă x for x ą 0, and mpxq Ñ 8 as x Ñ 8. Since
m is continuous and strictly increasing, its inverse function ` : R Ñ R ex-
ists, is continuous, strictly increasing, and satisfies `p´tq “ ´`ptq, `p0q “
0, and `ptq Ñ 8 as t Ñ 8. Because m is a shrinkage rule, there ex-
ists a continuous and symmetric shrinkage function wpxq “ mpxq{x for
x ‰ 0, satisfying wp´xq “ wpxq, 0 ă wpxq ă 1, and wpxq Ñ v2p0q as
x Ñ 0. The latter property follows immediately by l’Hôpital’s rule and
the Brown–Tweedie formula (Brown (1971); Pericchi and Smith (1992)):
limxÑ0mpxq{x “ limxÑ0m

1pxq “ v2p0q.
An important requirement for posterior inference is that, when the data

information is sufficiently strong, the prior should have bounded influence
on mpxq (Sansó and Pericchi (1992)). If this is not the case, then the MSE
of m˚

n as an estimator of θ˚n is not bounded in θ˚n (Brown (1971)). Although
mpxq is bounded from above by x (for x ą 0), conditions (C1)–(C3) are not
enough to imply this additional property.

To see this, consider again the example of a normal prior for θ˚n and let
us introduce the following two functions:

gpxq “ x´mpxq “ p1´ wpxqqx, ψpθq “ ´
d lnπpθq

dθ
“ ´

π1pθq

πpθq
. (10)

Since gpxqmeasures the deviation between x and mpxq, we call it the ‘discrep-
ancy function’. In our example, gpxq “ p1´ ξqx, wpxq “ ξ, and ψpθq “ θ{τ 2.
Hence, the bias of m˚

n is equal to ´gpθ˚nq and its MSE is equal to ξ2` gpθ˚nq
2,

both of which are unbounded in θ˚n because the function g is unbounded.
Since gpθ˚nq “ ξ ψpθ˚nq, it follows that the bias and the MSE of m˚

n are un-
bounded in θ˚n because the function ψ is unbounded.

To avoid this problem, we therefore impose the following additional con-
dition:

(C4) ψpθq Ñ ψ0 as θ Ñ 8, where ψ0 ě 0 is some finite constant.

Kumar and Magnus (2013, Theorem 4.1) prove that gpxq Ñ 0 if and only
if ψ0 “ 0. A straightforward extension of their theorem shows that, under
(C1)–(C4), gpxq Ñ ψ0 ă 8 as x Ñ 8 (a proof of this result, omitted for

6



brevity, is available from the authors upon request). This implies that the
estimator m˚

n of θ˚n has bounded MSE and is admissible. When ψ0 “ 0, it
also implies the stronger property, sometimes called ‘Bayesian robustness’,
that x ´ mpxq Ñ 0 and v2pxq Ñ 1 as x Ñ 8, so that prior information is
essentially ignored when x is sufficiently large. For robust priors (i.e., when
ψ0 “ 0), we also have wpxq Ñ 1 as xÑ 8.

In a Bayesian analysis one often needs to formalize the concept of prior
ignorance, and a flat (improper) prior is then typically used for computational
convenience. In our context, a flat prior fails to capture a notion of prior
ignorance which we call ‘neutrality’, namely not knowing whether or not
|θ˚n| ă 1, that is, whether or not the silly estimator of θ has a lower MSE
than the usual estimator. Our final condition on π ensures that neutrality is
satisfied:

(C5) π satisfies
ş1

0
πpθq dθ “

ş8

1
πpθq dθ “ 1{4.

Together with condition (C1), condition (C5) implies that the events
|θ˚n| ă 1 and |θ˚n| ą 1 are equally likely a priori.

4 Specification of the prior

Many priors satisfy conditions (C1)–(C5). We shall study four. The first two
priors are based on the gamma function

Γprq “

ż 8

0

tr´1e´t dt pr ą 0q. (11)

If we substitute t “ cθb with dt “ bcθb´1 dθ, and let r “ p1´ aq{b, we obtain
the class of reflected gamma-type priors

πpθq “
bcp1´aq{b

2Γpp1´ aq{bq
|θ|´ae´c|θ|

b

p0 ď a ă 1, b ą 0, c ą 0q, (12)

where we have imposed the additional restriction a ě 0, because otherwise
the prior will be increasing rather than decreasing for small values of θ ą 0.
Special cases are the Weibull prior (a` b “ 1):

πpθq “
bc

2
|θ|´p1´bqe´c|θ|

b

p0 ă b ď 1, c ą 0q, (13)
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and the Laplace prior (a “ 0 and b “ 1), which is a special case of the
Weibull prior:

πpθq “
c

2
e´c|θ| pc ą 0q. (14)

The Weibull (and hence also the Laplace) prior satisfies regularity conditions
(C1)–(C4). As shown in Kumar and Magnus (2013) and Magnus and De Luca
(2016), a reflected generalized gamma prior is robust if and only if 0 ă b ă 1
and is neutral if and only if

ż c

0

tp1´a´bq{be´t dt “
Γpp1´ aq{bq

2
.

Thus, the Weibull prior with b ă 1 is robust, but the Laplace prior is not
(although it has bounded influence since ψ0 “ c ą 0). Neutrality leads to
c “ ln 2 for both priors. For the Weibull prior, we fix the prior parameter b
by the minimax regret criterion for m˚

n, with regret defined as the difference
between the MSE of m˚

n and the minimum MSE in estimating θ˚n. Based on
this criterion, Magnus and De Luca (2016) find that the ‘optimal’ neutral
and robust Weibull prior is achieved for b « 0.8876 and c “ ln 2.

The other two priors are based on the beta function

Bpr, sq “
ΓprqΓpsq

Γpr ` sq
“

ż 1

0

tr´1p1´ tqs´1 dt pr ą 0, s ą 0q. (15)

Substituting t “ p1 ` cθbq´1 with dt “ ´bcp1 ` cθbq´2θb´1dθ, and letting
r “ 1{a´ 1{b and s “ 1{b, we obtain the class of reflected beta-type priors

πpθq “
c1{bb

2Bp1{a´ 1{b, 1{bq
p1` c|θ|bq´1{a p0 ă a ă b, c ą 0q, (16)

special cases of which are the Pareto prior (b “ 1):

πpθq “
cp1´ aq

2a
p1` c|θ|q´1{a p0 ă a ă 1, c ą 0q (17)

and the Cauchy prior (a “ 1, b “ 2, c “ 1):

πpθq “
1

π

1

1` θ2
, (18)

where πpθq denotes the prior function and π « 3.14 denotes Archimedes’
constant. The Pareto and Cauchy priors also satisfy conditions (C1)–(C4).
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A reflected beta-type prior is robust when b ą a ą 0, and hence both the
Pareto and the Cauchy priors are robust. The reflected beta-type prior is
neutral when

ż 1

1{pc`1q

tr´1p1´ tqs´1 dt “
Bpr, sq

2
,

where r “ 1{a´ 1{b and s “ 1{b. Specifically, the Pareto prior is neutral for
c “ 2a{p1´aq ´ 1, while the Cauchy prior is always neutral. For the Pareto
prior, we also fix the prior parameter a by the minimax regret criterion for
m˚
n. The ‘optimal’ neutral and robust Pareto prior is achieved for a « 0.0862

and c « 0.0676. The maximum regret for m˚
n is equal to 0.4546 under the

Weibull prior, 0.4959 under the Pareto prior, 0.5127 under the Laplace prior,
and 0.6332 under the Cauchy prior.

Figure 1: Posterior mean and discrepancy functions
under four neutral priors
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Figure 1 plots the posterior mean and discrepancy functions of the four
priors after imposing neutrality and minimax regret optimality. For large θ˚n,
the Laplace prior has thin tails that decay exponentially, while the Cauchy
prior has much thicker tails that decay at the rate pθ˚nq

´2. The Weibull and
Pareto priors are in-between the Laplace and Cauchy priors. This implies
that, as x increases, the Cauchy posterior mean function mpxq curves back
towards the 45˝ line much faster than the other three priors. Turning to
the discrepancy functions in the right panel, we see that the Laplace prior
is not robust since its discrepancy function converges to the prior parameter
c “ ln 2. The Weibull and Pareto priors are robust since gpxq Ñ 0 as xÑ 8,
but convergence is slow, especially for the Weibull prior. In contrast, the
Cauchy discrepancy function converges to zero very quickly.

Figure 2: Posterior variance and shrinkage functions
under four neutral priors
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Figure 2 plots the shrinkage and the posterior variance functions resulting
from our four neutral priors. For small x, the Cauchy prior implies slightly
more shrinkage than the other three priors but, for all of them, wpxq Ñ v2p0q
as x Ñ 0 and v2pxq Ñ 1 as x Ñ 8. In agreement with Mitchell (1994),
the Laplace posterior variance is non-decreasing and converges to one from
below as xÑ 8. Since v2pxq “ m1pxq, the Laplace posterior mean is convex
for x ą 0. The Weibull, Pareto, and Cauchy posterior variances reach a
maximum greater than one before approaching one from above as x Ñ 8.
Moreover, for x ą 0, their shrinkage functions are non-decreasing because
v2pxq ě wpxq. In the next three sections, we show that the properties of
the functions m, `, g, v2, and w play a crucial role in determining the finite-
sample and asymptotic properties of our shrinkage estimator of θ.

5 Finite-sample properties

In this section we study the sampling properties of the shrinkage estimator
θ̃n of θ, given by θ̃n “ pσ{

?
nqm˚

n, as developed in Section 2. Extending the
results of De Luca, Magnus and Peracchi (2022) on the bias and variance of
m˚
n, we establish the finite-sample distribution of tn “

?
npθ̃n´θq{σ “ m˚

n´θ
˚
n

under model (9).

Proposition 1 Let x˚n „ Npθ˚n, 1q. Then,

tn “
θ̃n ´ θ

σ{
?
n
“ wpθ˚n ` znqzn ´ p1´ wpθ

˚
n ` znqq θ

˚
n,

where w is the shrinkage function and zn „ Np0, 1q. Under conditions (C1)–
(C3), the density of tn at a point t is given by

fpt; θ˚nq “
φ p`pt` θ˚nq ´ θ

˚
nq

v2p`pt` θ˚nqq
,

where v2 is the posterior variance function, ` is the inverse of the posterior
mean function, and φ is the standard-normal density.

Let us consider again the case of a Np0, τ 2q prior for θ˚n, where m˚
n “ ξ x˚n,

`pt` θ˚nq “ pt` θ
˚
nq{ξ, and v2p`pt` θ˚nqq “ ξ. Proposition 1 then implies that

fpt; θ˚nq “
1

?
2πξ

exp´
1

2

ˆ

t´ pξ ´ 1qθ˚nq

ξ

˙2

,
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that is, tn „ Nppξ´1qθ˚n, ξ
2q. As in Section 2, we have Eptnq “ Epm˚

n´θ
˚
nq “

pξ´ 1qθ˚n, so the bias of our estimator of θ is Epθ̃n´ θq “ pξ´ 1qpσθ˚n{
?
nq “

pξ´ 1qθ. The result on the sampling variance of tn is also in agreement with
the surprising findings of Efron (2015, Theorem 1) and De Luca, Magnus and
Peracchi (2022, Proposition 2), namely that, for any positive and bounded
prior density, the posterior variance represents a first-order approximation
to the sampling standard deviation (not the sampling variance) of m˚

n. For
the normal prior, the posterior mean is linear and hence the approximation
is exact.

More generally, Proposition 1 shows that, except in the case of a normal
prior, the finite-sample distribution of tn is the same as that of a non-linear
function of zn „ Np0, 1q, and is therefore non-normal in general. This distri-
bution depends on the sample size n only through θ˚n, and the continuity of
` and v2 ensures that the density f is continuous in both its arguments.

At θ˚n “ 0, the finite-sample distribution of tn is the same as the distri-
bution of wpznqzn, which does not depend on n and is symmetric around the
origin. All its odd moments thus vanish. Further, since Erpwpznqq2pz2pn s ă
Epz2pn q, all its even moments are smaller than the corresponding moments
of the standard-normal distribution. Setting p “ 1 shows that, at θ˚n “ 0,
our shrinkage estimator is unbiased and more efficient than the usual esti-
mator x˚n.

Figure 3 plots the finite-sample densities of tn under our four neutral pri-
ors for five values of θ˚n. These densities are all non-normal but, unlike many
post-selection estimators (see, e.g., Figure 2 in Leeb and Pötscher (2005)) and
many thresholding estimators (see, e.g., Figures 1–3 in Pötscher and Leeb
(2009)), they are all unimodal and smooth. This is because Bayesian shrink-
age estimators are smooth functions of the data. At θ˚n “ 0, all densities are
symmetric and centered at the origin. They are also more concentrated than
the standard-normal density, and leptokurtic. For small non-zero values of
θ˚n, there is a bias which has opposite sign as θ˚n, while the skewness has the
same sign as θ˚n. For large enough values of θ˚n, all densities tend to have a
normal shape but they are not necessarily centered at zero because of the
bias. In Proposition 3 we shall prove that the finite-sample distribution of tn
indeed converges to a normal distribution as θ˚n Ñ 8.

Figure 4 plots the bias, variance, skewness, and excess kurtosis of m˚
n

under our four neutral priors. As θ˚n increases, the bias of m˚
n converges to

zero much faster for the Cauchy and Pareto priors than for the Weibull prior,
which is closely related to the behavior of the discrepancy function shown in
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Figure 3: Density of tn “
?
npθ̃n ´ θq{σ

under four neutral priors and five values of θ˚n
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the right panel of Figure 1. When θ˚n is small, the Cauchy posterior mean
has a relatively small variance. However, as θ˚n increases, its variance first
reaches a peak of 1.24 at θ˚n “ 4.33 and then approaches 1 monotonically.
Although there is no uniform improvement in the MSE, the Cauchy prior may
be preferred to the other priors because of its greater robustness. However,
robustness is not the only criterion, and the Pareto prior offers, in our view,
the best compromise between robustness and minimax regret. The skewness
reaches a positive maximum around θ˚n “ 1.4 and the peak is largest for the
Cauchy prior. As θ˚n increases, the skewness converges to zero monotonically
for the Laplace prior, while for the other priors it first attains a negative
minimum around θ˚n “ 5 before approaching zero from below. In contrast,
the excess kurtosis attains a global maximum at θ˚n “ 0, the peak being
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Figure 4: Bias, variance, skewness and excess kurtosis of m˚
n

under four neutral priors
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again largest for the Cauchy prior. As θ˚n increases, the excess kurtosis first
decreases, attains a negative minimum between θ˚n “ 3 and θ˚n “ 4 for all
priors, and then approaches zero, although not necessarily monotonically and
not necessarily from below.

6 Consistency

We next investigate the sampling properties of our shrinkage estimator of
θ as n Ñ 8, relaxing the assumption that xn is normally distributed. In
the current section we establish (uniform) consistency, in the next section
the asymptotic distribution. Both properties will be proved under the mild

assumption that
?
npxn ´ θq{σ

d
ÝÑ Np0, 1q.
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Formally, θ̃n is (pointwise)
?
n-consistent for θ if, given any θ P R and

ε ą 0, there exist M and N (depending on both θ and ε) such that

n ą N ùñ Pr rn1{2
|θ̃n ´ θ| ěM s ď ε, (19)

implying that limnÑ8 Pr rnδ|θ̃n ´ θ| ě εs “ 0 for any θ P R, ε ą 0, and
0 ď δ ă 1{2. If the same N and M work equally well for every θ, the
consistency is said to be uniform. That is, θ̃n is uniformly

?
n-consistent for

θ if, for any ε ą 0, there exist M and N such that

n ą N ùñ sup
θPR

Pr rn1{2
|θ̃n ´ θ| ěM s ď ε. (20)

Proposition 2 Suppose that
?
npxn ´ θq{σ

d
ÝÑ Np0, 1q and that the prior

density of θ˚n satisfies conditions (C1)–(C4). Then θ̃n is uniformly
?
n-

consistent for θ, and hence

lim
nÑ8

sup
θPR

Pr rnδ|θ̃n ´ θ| ě εs “ 0

for every 0 ď δ ă 1{2 and every ε ą 0.

The proof of this result exploits the fact that, under (C1)–(C4), gpx˚nq is
bounded, and so |θ̃n ´ xn| is bounded by a deterministic sequence propor-
tional to σ{

?
n. Unlike Proposition 1, condition (C4) rules out a conjugate

normal prior for θ˚n because the corresponding discrepancy function would
be unbounded (see Section 3). The uniform convergence rate of θ̃n is similar
to that of conservative post-selection estimators, in contrast to consistent
post-selection and thresholding estimators which typically achieve a conver-
gence rate that is slower and depends on the underlying tuning parameters
(Pötscher and Leeb (2009)).

7 Asymptotic distribution

When establishing the asymptotic distribution of θ̃n, we allow explicitly for
the possibility that θ depends on n. To structure this dependence, we set
θn “ n´δθ0 with δ ě 0 and θ0 P R. The most important special cases are
δ “ 0 and δ “ 1{2. When δ “ 0 we have θn “ θ0 (the ‘fixed-parameter’
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case), and when δ “ 1{2 we have θn “ n´1{2θ0 (the ‘local-parameter’ case).
For θ0 “ 0 we have θ˚n “ 0, but for θ0 ‰ 0 our parameter of interest becomes

θ˚n “
n1{2θn
σ

“
n1{2´δθ0

σ
Ñ

$

’

&

’

%

˘8 if 0 ď δ ă 1{2,

θ0{σ if δ “ 1{2,

0 if δ ą 1{2,

(21)

as nÑ 8. What matters for the asymptotic distribution of θ̃n is whether θ˚n
diverges or converges to a finite constant, in which case its speed of conver-
gence also matters.

Proposition 3 Suppose the conditions of Proposition 2 hold and let tn “?
npθ̃n ´ θnq{σ, where θn “ n´δθ0 with δ ě 0 and θ0 P R. Let w be the

shrinkage function and z „ Np0, 1q. Then, tn
d
ÝÑ t, where the distribution

of t depends on δ and θ0 as follows:
(a) If 0 ď δ ă 1{2, then

t “

#

wpzqz if θ0 “ 0,

z ´ signpθ0qψ0 if θ0 ‰ 0,

where ψ0 is defined in condition (C4). If the prior is robust then ψ0 “ 0.
(b) If δ “ 1{2, then t “ wpζ ` zqz ´ r1´ wpζ ` zqsζ with density

fpt; ζq “
φ p`pt` ζq ´ ζq

v2p`pt` ζqq
,

where ζ “ θ0{σ and the functions φ, v2, and ` are defined as in Proposition 1.
(c) If δ ą 1{2, then t “ wpzqz with density fptq “ φp`ptqq{v2p`ptqq.

In contrast to Proposition 1, condition (C4) is needed in Proposition 3
to obtain the distribution of t when 0 ď δ ă 1{2 and θ0 ‰ 0. At θ0 “ 0, the
value of δ does not matter and the distribution of tn always converges to the
distribution of t “ wpzqz. When θ0 ‰ 0 there are two relevant intervals for
δ, namely 0 ď δ ă 1{2 and δ ě 1{2, though in practice the most important
values are δ “ 0 and δ “ 1{2, which we have called the fixed-parameter and
the local-parameter case, respectively.

Part (a) of Proposition 3 shows that, when δ “ 0, the asymptotic distri-
bution of θ̃n is normal (standard-normal if the prior is robust) for all θ0 ‰ 0,
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but not for θ0 “ 0. Thus, for θ0 not equal but close to 0, the asymptotic
approximation could misrepresent important features of the finite-sample
distribution of θ̃n. Moreover, like for the classical Hodges estimator (see,
e.g., van der Vaart (1998, pp. 109–110)), the fixed-parameter case gives the
misleading impression that θ̃n is superefficient at the origin, as it is asymp-
totically equivalent to xn when θ0 ‰ 0 but asymptotically more efficient when
θ0 “ 0. This overoptimistic conclusion reflects the lack of uniformity in the
convergence of the finite-sample distribution to the asymptotic distribution.
Related results are discussed in detail in Leeb and Pötscher (2005, 2006a,b),
Pötscher (2006), and Pötscher and Leeb (2009).

Part (b) of Proposition 3 shows that, when δ “ 1{2, the asymptotic
density of tn “

?
npθ̃n ´ θnq{σ is the same as the finite-sample density in

Proposition 1, which justifies using the local-parameter framework to study
the sampling properties of θ̃n. In a neighborhood of ζ “ 0, the asymptotic
distribution of tn is characterized by sizeable departures from normality, both
in terms of skewness and excess kurtosis. This is also the region of the pa-
rameter space where θ̃n has smaller asymptotic risk than the usual estimator
xn, although the risk improvements are not uniform. However, for sufficiently
large values of ζ, the asymptotic distribution of tn is normal.

Although one can construct consistent estimators of the finite-sample
distribution function of

?
npθ̃n´ θq for any given value of θ, these estimators

are not uniformly close to the true distribution function. In fact, Leeb and
Pötscher (2006b, Lemmas 3.1 and 3.5) show that no uniformly consistent
estimator of the distribution of shrinkage-type estimators can exist. This
‘impossibility result’ is a general feature of a large class of estimators of θ
that includes post-selection, thresholding, and model-averaging estimators.
In our case, it means that one should be careful with inference based on the
estimated distribution of θ̃n, as there is no guarantee that it will be close to
the true one.

8 Conclusions

We have investigated the sampling properties of a Bayesian estimator of θ in
the normal local model xn „ N pθ, σ2{nq with σ2 known. Unlike the standard
Bayesian approach, which places a prior on θ that does not depend on the
sample size n, we place a prior on the ‘population t-ratio’ θ˚n “

?
nθ{σ.

This non-standard approach is motivated by the fact that model selection
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and model averaging estimators typically depend on diagnostics such as t-
ratios. Moreover, since MSE comparisons between alternative estimators of
θ depend crucially on θ˚n, it leads to a transparent notion of prior ignorance
about θ˚n that is formalized in the neutrality condition (C5).

Results on the large sample properties of standard Bayesian estimators
of θ do not directly extend to our approach. In addition to the mild regular-
ity conditions (C1)–(C3), condition (C4) requires the prior on θ˚n to have a
bounded influence on the posterior mean function. This rules out a conjugate
normal prior for θ˚n and is related to the notion of Bayesian robustness.

Our main results are as follows. First, we extend earlier results on the first
two sampling moments of our estimator θ̃n “ n´1{2σ Epθ˚n|xnq and derive its
finite-sample distribution under the assumption that σ is known. We show
that this distribution displays sizeable departures from normality in terms
of skewness and excess kurtosis. Second, the choice of prior affects both the
speed at which the estimation bias tends to zero and the speed at which the
sampling variance tends to one. This bias-precision trade-off depends on the
thickness of the prior tails. Third, θ̃n is a uniformly

?
n-consistent estimator

of θ under very mild conditions on xn. Fourth, we derive the asymptotic
distribution of θ̃n under a moving-parameter setup that encompasses both
the fixed-parameter and the local-parameter settings.

These results have direct implications for the WALS estimator of Magnus,
Powell and Prüfer (2010). They may also be helpful for other model selection
or model averaging procedures.
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Appendix: Proofs

Proof of Proposition 1: Write x˚n “ θ˚n ` zn. Then, since m˚
n “ wpx˚nqx

˚
n, the

first result follows from

?
npθ̃n ´ θq{σ “ m˚

n ´ θ
˚
n “ wpθ˚n ` znqzn ´ r1´ wpθ

˚
n ` znqsθ

˚
n.

Since tn “ m˚
n ´ θ˚n “ mpx˚nq ´ θ˚n is a continuous one-to-one transformation

of x˚n with inverse function x˚n “ `ptn ` θ
˚
nq, its density at a point t is

fpt; θ˚nq “ |`
1
pt` θ˚nq|φp`pt` θ

˚
nq ´ θ

˚
nq,

where `1pt ` θ˚nq “ rm1px˚nqs
´1. The second result then follows from the

Brown–Tweedie formula, using the fact that m1pxq “ v2pxq ą 0.

Proof of Proposition 2: Since the function g is bounded, there exists a finite
constant G ą 0 such that 0 ă gpxq ď G for all x. The triangle inequality
gives

|θ̃n ´ θ| ď |xn ´ θ| ` |θ̃n ´ xn|,

from which we obtain

Pr
´

n1{2
|θ̃n ´ θ| ěM

¯

ď Pr
´

n1{2
|xn ´ θ| ` n

1{2
|θ̃n ´ xn| ěM

¯

ď Pr
`

n1{2
|xn ´ θ| ěM{2

˘

` Pr
´

n1{2
|θ̃n ´ xn| ěM{2

¯

ď
4σ2

M2
` Pr

´

n1{2
|θ̃n ´ xn| ě σG

¯

,

where the first term on the last line uses Chebyshev’s inequality, and the
second term follows by choosing M ą 2σG. Since

n1{2
|θ̃n ´ xn| “ σ|mpx˚nq ´ x

˚
n| “ σ|gpx˚nq| ď σG

almost surely, the result follows by setting M “ n1{2´δε and choosing n
sufficiently large, so that M ą 2σG.

Proof of Proposition 3: Cases (b) and (c), where δ ě 1{2, follow directly
from Proposition 1 and the assumption that

?
npxn ´ θq{σ “ x˚n ´ θ

˚
n “ zn

d
ÝÑ z „ Np0, 1q.
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Note that ζ “ 0 in case (c). Let us prove case (a), where 0 ď δ ă 1{2. We
first rewrite tn “

?
npθ̃n ´ θnq{σ as

tn “ m˚
n ´ θ

˚
n “ zn ´ gpx

˚
nq,

with m˚
n “ wpx˚nqx

˚
n, θ˚n “ n1{2´δθ0{σ, and gpx˚nq “ x˚n ´m˚

n. Since zn
d
ÝÑ z,

we only need to study the asymptotic behavior of gpx˚nq. If θ0 ą 0, then
θ˚n Ñ 8 as nÑ 8. Hence,

Pr px˚n ěMq “ Pr pzn ěM ´ θ˚nq Ñ 1

for every M ą 0, which we write as plimx˚n “ 8. By the (generalized)
continuous mapping theorem (see Theorem 18.11 and Example 18.4 in van
der Vaart (1998)), we then find

plim gpx˚nq “ gpplimx˚nq “ gp8q “ ψ0.

Similarly, if θ0 ă 0, then θ˚n Ñ ´8 as nÑ 8 so that

Pr px˚n ď ´Mq “ Pr pzn ď ´M ´ θ˚nq Ñ 1

for every M ą 0, which we write as plim x˚n “ ´8. Since m is an odd
function, we then find plim gpx˚nq “ ´ψ0. Finally, if θ0 “ 0, then x˚n “ zn so

that m˚
n “ wpznqzn, gpx˚nq “ p1´ wpznqqzn, and tn “ wpznqzn

d
ÝÑ wpzqz.
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