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Abstract

We develop a new method for characterizing global solutions to search and match-
ing models with aggregate shocks and heterogeneous agents. We formulate general
equilibrium as a high dimensional partial differential equation (PDE) with the dis-
tribution as a state variable. Solving this problem has previously been intractable
because the distribution impacts agent decisions through the matching mechanism
rather than through aggregate prices. We overcome these challenges by developing
a new deep learning algorithm with efficient sampling in a high dimensional state
space. This allows us to study search markets that are not “block recursive”. In
applications to labor search models, we show that while block recursivity may ap-
proximately hold under symmetric shocks, it fails to capture the dynamics when
shocks have an asymmetric impact. Business cycles have a “cleansing” effect by
amplifying positive assortative matching in recessions, and the magnitude of the
countercyclicality depends on the bargaining process between workers and firms.
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1 Introduction

Heterogeneity and aggregate risks are important in markets with search frictions. How-
ever, modeling these markets has proven technically challenging. The existing literature
either studies the deterministic steady state (e.g. Shimer and Smith (2000)) or imposes
contracting restrictions to ensure that agent decisions are not affected by the distri-
bution, thereby rendering the models “block-recursive” as seen in the seminal work of
Menzio and Shi (2011) and Lise and Robin (2017). Developments in the deep learn-
ing literature have opened up the possibility to relax these restrictions and solve high
dimensional economic problems. In this paper, we present a general formulation of
search and matching (SAM) models as high dimensional PDEs and develop a new deep
learning algorithm, which we refer to as DeepSAM, to solve this class of models. We
apply our method to canonical models in the search and matching literature.

We focus on a class of models with the following features. The economy is populated
by heterogeneous agents (e.g. workers or investors) and heterogeneous institutions
(e.g. firms or financial intermediaries) that can be matched or unmatched. Matches
generate utility that depends upon the idiosyncratic agent and institution types and an
exogenous aggregate variable that follows a continuous time Markov chain. Unmatched
agents and institutions engage in random search to meet each other. Upon meeting,
they choose whether to accept the match and then bargain over the division of match
surplus. We show that the equilibrium for this economy can be characterized recursively
with a state space consisting of the exogenous aggregate variable and the distribution of
matches across types in the economy. The match distribution impacts agent decisions
because the opportunity cost of accepting a match depends on which other agents are
looking for matches. This means that the partial differential equation (PDE) for the
match surplus necessarily includes high dimensional terms capturing how the surplus
changes as the distribution changes. By contrast, “block recursive” models impose
restrictions to ensure these terms are zero.

We propose a new deep learning algorithm to solve this class of high dimensional
PDEs. We approximate the surplus function with a neural network and then use gra-
dient descent to train the neural network to minimize the average loss in the PDE for
the surplus function on a random collection of sample points. To our knowledge, we
are the first to apply deep learning to study search and matching models. In doing
so, we face a number of technical challenges. First, unlike competitive market models
(e.g. Krusell and Smith (1998)), the mean of the distribution is insufficient for calcu-
lating equilibrium. Instead, we need to integrate over the equilibrium surplus function,

2



weighted by the population match density and the acceptance function. This means
the shape of the distribution has a larger impact on the problem than in competitive
market models and so we develop a sampling scheme that focuses on distributions close
to the correct shape. Second, the surplus function can have sharp curvature in parts
of the state space. For such cases, we use a “homotopy” approach combined with ef-
ficient sampling in a high dimensional state space. This involves training the neural
network parameters that give low curvature and then gradually retraining the model
with updated parameters.

In Section 3, we deploy our methodology to solve a “canonical” labor market search
model. This model can be thought of as either the Shimer and Smith (2000) model
with two-sided heterogeneity and aggregate shocks, or as the Mortensen and Pissarides
(1994) model with worker and firm heterogeneity. We test our solution in a number of
ways. We start by examining the neural network approximation to a model without
aggregate shocks since the steady state of this model can be solved with existing fixed
point solution techniques. We show that the average squared difference between our
solution and the fixed point solution is in the order of magnitude of 10−6. For the
model with aggregate shocks, there are no existing solutions for us to compare to.
Instead, we study the training error and stability of the solution. We show that the
average numerical error on the differential equation over the full state space is in the
order of 10−7 and that the standard deviation across many independent runs of our
training algorithm is in the order of 10−4 at each point of the state space. We interpret
these results as strong evidence that our neural network training algorithm can find an
accurate solution.

We use our solution to the labor search model to revisit how heterogeneity interacts
with aggregate labor market dynamics. First, we study a severe labor market crisis
that increases average unemployment to 30%. We compute impulse response following
the shock and compare the results to those from a “block-recursive” model in which
the matching function does not depend upon the employment distribution. When
the unemployment increase is symmetric across the population the block recursive
dynamics are very similar to the full solution. However, when the unemployment
increase is asymmetric and concentrated among low-skilled workers, then the block-
recursive model significantly underestimates the time it takes for the economy from the
crisis. This is because the shock to the distribution strengthens assortative matching
in the economy, which ends up decreasing the rate at which agents reenter the labor
force. Quantitatively, in the first quarter following the shock, the feedback from the
employment distribution changing agent decisions contributes approximately 5-10% of
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the change in unemployment. Second, we study the capacity of our model to generate
unemployment volatility across the business cycle. A common approach for generating
high volatility, proposed by Hagedorn and Manovskii (2008) for representative agent
labor market models, is to adjust the unemployment benefit (and other variables) so
that agent match surplus is close to zero and matching decisions are very sensitive to
the business cycle. We solve our heterogeneous agent model using the Hagedorn and
Manovskii (2008) parameterization and show that unemployment is much less volatile.
This is because a model with type independent unemployment benefits and separation
rates cannot be calibrated to make a large fraction of agents approximately indifferent
about accepting matches.

In Section 4, we introduce on-the-job search into our labor market model. Unlike
Lise and Robin (2017) and subsequent papers, we are able to relax the assumption
that firms have all the bargaining power in the market between unemployed workers
and firms. We show that the firm bargaining power significantly skews the assortative
matching pattern, with high firm bargaining power making high-type firms less picky
and high worker bargaining power making high-type workers less picky. We further
investigate the cyclicality of sorting patterns over the business cycles. We find that
positive assortative matching is stronger in a recession and weaker in an expansion.
This is because in a recession fewer agents are matched and so the opportunity cost
of waiting for a high type is lower. The extent of countercyclical sorting over business
cycles is significantly influenced by the bargaining process between workers and firms.
With a standard calibration of the worker bargaining power used in the business cycle
literature (e.g. by Shimer (2005)), the cyclical sorting dynamics are approximately 75%
smaller than in an Lise and Robin (2017), where they impose that firms have all the
bargaining power to ensure the model is block recursive. The intuition is that when
one side of the market has all the bargaining power their decisions end up being more
responsive to changes in the opportunity cost of waiting.

Literature Review: Over the past three decades, there have been two major advances
in solving search and matching models with heterogeneity and aggregate risk. One is
the Bertrand competition model of wage setting introduced in Postel-Vinay and Robin
(2002) and deployed in many papers (e.g. Cahuc et al. (2006); Lise and Robin (2017)).
The other is the directed search block recursive structure introduced by Menzio and Shi
(2010, 2011). Both these approaches impose contracting and entry assumptions that
ensure that agent decisions are independent of the distribution of matches. Our paper
relaxes these constraints and solves a general class of models where the distribution
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may impact agents’ decision making.1

We are part of a growing computational economics literature using deep learning
techniques to solve economic models and overcome the limitations of traditional solu-
tion techniques. These papers have focused on solving heterogeneous agent macroeco-
nomic models with incomplete but competitive markets (e.g. Duarte (2018), Azinovic
et al. (2022), Maliar et al. (2021), Han et al. (2021), Kahou et al. (2021), Fernández-
Villaverde et al. (2023), Gopalakrishna (2021), Sauzet (2021), Huang (2022), Gu et al.
(2023), among others). Our contribution is to show how to undertake deep learning
to solve a search and matching model. In doing so, we characterize the equilibrium
as a high dimensional “master equation” similar to those discussed in Bilal (2023); Gu
et al. (2023); Ahn et al. (2018). What makes the search and matching model differ-
ent to train compared to a competitive incomplete markets model is that the shape
of the distribution matters for calculating equilibrium rather than just calculating the
evolution of the distribution. This is because, as summarized in Table 1, the distri-
bution impacts agents’ decisions via the matching probability with other types rather
than through aggregate prices. This imposes greater challenges on how we develop our
numerical and sampling schemes to get an accurate solution.

Distribution How distribution affect agents’ decisions
HAM Asset wealth and income Via aggregate prices

SAM Type (productivity) of agents
in two sides of matching

Via matching probability
with other types

Table 1: How distribution matters in heterogeneous agent models (HAM) vs search
and matching (SAM) models.

Our paper is also connected to recent papers studying business cycle dynamics in
heterogeneous agent labor search models (e.g. Krusell et al. (2017); Schaal (2017);
Moscarini and Postel-Vinay (2018); Engbom (2021); Alves (2022); Qiu (2023)). Our
contribution to this body of literature primarily centers on analyzing the feedback
mechanisms generated by alterations in the distribution, which in turn influence agents’
matching decisions.

The paper is structured as follows. Section 2 describes our DeepSAM methodology
in a general setup of search and matching models. Section 3 applies DeepSAM to

1Our work is also relevant to Petrosky-Nadeau and Zhang (2017), which proposes a global solution
method to representative agent search models with aggregate shocks.
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a canonical labor market search model. Section 4 extends the model to incorporate
on-the-job search. Section 5 concludes.

2 Methodology

In this section, we outline a general model that nests search and matching models
from various streams of the literature. We then introduce our deep learning algorithm,
DeepSAM, to solve the model.

2.1 Environment

Setting: The economy is in continuous time with an infinite horizon. The economy is
populated by a continuum of infinitely lived agents (e.g. workers or investors) indexed
by type x, and a continuum of institutions (e.g. firms or dealers) indexed by type y.
Agents are either employed in a match (e) or unmatched (u). Institutions are either
producing in a match (p) or vacant (v). The distribution of matches between agents and
institutions is endogenous, and determined by agent and institution decisions. Agents
and institutions have a discount rate ρ. The aggregate state of the economy is indexed
by zt ∈ Z, which follows a continuous time Markov chain with transition matrix Σ.

Match utility: If an agent is unmatched (unemployed), they get flow utility b. Agents
match with institutions but not with each other. If an agent of type x is matched
with an institution of type y, they generate transferable utility F (x, y, z), where F is
increasing in each variable and twice differentiable with uniformly bounded first partial
derivatives on Z × [0, 1]× [0, 1]. Matches are destroyed at exogenous rate δ(x, y, z) that
potentially depends upon the match and the aggregate state.

Distributions: Let gw(x) denote the constant exogenous population function of agents.
Let gf (y) denote the constant exogenous population function of institutions. We will
relax the assumption on exogenous institution population later with a free entry con-
dition in Section 2.2.6. Let gt(x, y) denote the function of matched workers. Let ge

t (x)
denote the function of employed agents. Let gu

t (x) denote the function of unemployed
agents. Let gp

t (y) denote the function of producing institutions. Let gv
t (y) denote the

function of vacant institutions. The relationships between the densities are given in
Table 2 below. We define the aggregate agent employment by Et :=

∫
ge

t (x)dx, ag-
gregate agent unemployment by Ut :=

∫
gu

t (x)dx, aggregate producing institutions by

6



Pt :=
∫

gp
t (y)dy, and aggregate vacant institutions by Vt :=

∫
gv

t (y)dy. Observe that
we can calculate all densities from gt and so (zt, gt) is a sufficient aggregate state space
for the economy.

Description Function Conditional Density
Matches gt(x, y)
Employed workers ge

t (x) =
∫

gm
t (x, y)dy ge

t (x)/Et

Unemployed workers gu
t (x) = gw

t (x) − ge
t (x) gu

t (x)/Ut

Producing firms gp
t (y) =

∫
gm

t (x, y)dx gp
t (y)/Pt

Vacant firms gv
t (y) = gf

t (y) − gp
t (y) gv

t (y)/Vt

Table 2: Summary of distributions

Search and Matching Technology: Only and all unmatched agents engage in ran-
dom search. We generalize to include “on-the-job” search in Section 4. A function
m : Z × G → R+, (zt, gt) 7→ m(zt, gt) takes the state of the economy and gener-
ates meetings. The rate at which a worker meets a potential institution is given
by Mu

t := m(zt, gt)/Ut, while the rate at which a vacant firm meeting a potential
hire is Mv

t := m(zt, gt)/Vt. The rate at which that an agent meets any institution
y ∈ Y ⊂ [0, 1] equals Mu

t (
∫

Y (gv
t (y)/Vt)dy), where gv

t (y)/Vt is the density conditional
on being vacant. The rate at which an institution meets any worker x ∈ X ⊂ [0, 1]
equals Mv

t (
∫

X(gu
t (x)/Ut)dx, where gu

t (y)/Ut is the density conditional on being unem-
ployed.

Surplus division: We impose that agents negotiate according to a generalized Nash
Bargaining protocol so that agents get a fraction β of surplus and institutions get the
remaining fraction 1 − β. The contract is implemented by providing w(x, y, z, g) flow
utility to the agent and f(x, y, z) − w(x, y, z, g) flow utility to the institution.

2.2 Recursive Characterization of Equilibrium

We now define and characterize a recursive equilibrium. The aggregate states are (z, g),
where z is the aggregate productivity and g is the distribution of matches.2 We guess

2The mean field game literature has studied the mathematical difficulties involved in defining a
recursive equilibrium with an infinite dimensional state (e.g. Cardaliaguet et al. (2015)). However,
there is debate about whether these characterizations are appropriate for economic models. For our
purposes, we are always going to work with a finite type space so the only relevant mathematical
question is whether a limit exists as the type space becomes continuous.
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(and later verify) that the law of motion for g takes the form:

dgt(x, y) = µg(x, y, z, g)dt.

2.2.1 Surplus Division

Let V u(x, z, g) denote the value of unemployment for a worker of type x. Let V e(x, y, z, g)
denote the value of worker x employed at an institution of type y. Let V v(y, z, g) de-
note the value of a vacancy for firm y. Let V p(x, y, z, g) denote the value of firm y

employing a worker of type x. The surplus of a match is defined as:

S(x, y, z, g) := V p(x, y, z, g) − V v(y, z, g) + V e(x, y, z, g) − V u(x, z, g)

The Nash Bargaining protocol implies that the division of surplus is given by:

βS(x, y, z, g) = V e(x, y, z, g) − V u(x, z, g)

(1 − β)S(x, y, z, g) = V p(x, y, z, g) − V v(y, z, g)
(2.1)

These equations must implicitly define a transfer or “wage” (x, y, z, g). As in other
papers, we assume that contract terms are indexed to the contracts of new hires so
that V e(x, y, z, g)−V u(x, z, g) and V p(x, y, z, g)−V v(y, z, g) are the same for all agents
with a particular (x, y).

2.2.2 Agent Hamilton-Jacobi-Bellman (HJBE) Equations

Suppose that agents believe that the evolution of the match distribution g is charac-
terized by function µ̃g(x, y, z, g). Given beliefs, the value functions V u, V e, V v, and
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V p satisfy the Hamilton Jacobi Bellman Equations (HJBE):

ρV u(x, z, g) = b + Mu
∫

α(x, ỹ, z, g)βS(x, ỹ, z, g)gv(ỹ)
V

dỹ

+
∑
ž ̸=z

λ(z, ž)(V u(x, ž, g) − V u(x, z, g)) + ⟨DgmV u, µ̃g⟩

ρV e(x, y, z, g) = w(x, y, z, g) − βδ(x, y, z)S(x, y, z, g)

+
∑
ž ̸=z

λ(z, ž)(V e(x, ž, g) − V e(x, z, g)) + ⟨DgV e, µ̃g⟩

ρV v(y, z, g) = Mv
∫

α(x̃, y, z, g)(1 − β)S(x̃, y, z, g)gu(x̃)
U

dx̃

+
∑
ž ̸=z

λ(z, ž)(V v(x, ž, g) − V v(x, z, g)) + ⟨DgV v, µ̃g⟩

ρV p(x, y, z, g) = F (x, y, z) − w(x, y, z, g) − δ(1 − β)S(x, y, z, g)

+
∑
ž ̸=z

λ(z, ž)(V p(x, ž, g) − V p(x, z, g)) + ⟨DgV p, µ̃g⟩ .

(2.2)

where DgV j is the Frechet derivative of V j with respect to the distribution g, ⟨f(y), h(y)⟩ =∫
f(y)h(y)dy is the inner product, and α is an indicator for the acceptance of a match:

α(x, y, z, gm) :=
{

1, if S(x, y, z, g) > 0
0, otherwise

(2.3)

The acceptance function has this form because when surplus is positive and there is
generalized Nash bargaining, both agents and institutions accept the match.

2.2.3 Distribution Evolution

Given the matching decisions of the agents, the measure of matches evolves according
to:

dgt(x, y) = − δ(x, y, z)gt(x, y)dt + Mu
t gu

t (x)α(x, y, z, gm)gv
t (y)
Vt

dt
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Given the state, g, then we can recover the other features of the distribution from Table
2. So, the KFE can be expressed as:

dgt(x, y) = − δ(x, y, z)gt(x, y) + m(Ut, Vt)
UtVt

αt(x, y)
(

gw(x) −
∫

gt(x, y)dy

)
×
(

gf (y) −
∫

gt(x, y)dx

)
=: µg(x, y, z, gm)dt

(2.4)

2.2.4 Equilibrium and Master Equation

Definition 1. A (recursive) equilibrium is a collection of a collection of func-
tions {V u, V e, V v, V p, w, α} such that: (i) given a belief about the evolution of gt,
(V u, V e, V v, V p, α) solve the HJBEs (2.2), (ii) division of surplus satisfies (2.1), and
(iii) agent beliefs about the evolution of gt are consistent in the sense that µ̃g = µg,
where (2.2) is given by equation (2.4).

After combining the HJBEs and imposing belief consistency, the equilibrium can
be characterized by the “master equation” for the surplus:

0 = LSS

=: − ρS(x, y, z, g) + F (x, y, z) − δ(x, y, z)S(x, y, z, g)

− (1 − β)m(z, g)
V(z, g)

∫
α(x̃, y, z, g)S(x̃, y, z, g) gu(x̃)

U(z, g)dx̃

− b − β
m(z, g)
U(z, g)

∫
α(x, ỹ, z, g)S(x, ỹ, z, g) gv(ỹ)

V(z, g)dỹ

+ ⟨DgS(x, y, z, g), µg(x, y, z, g)⟩

+
∑
ž ̸=z

λ(z)(S(x, y, ž, g) − S(x, y, z, g))

(2.5)

where µg is given by (2.4), (U , V, gu, gv) can be calculated by Table 2, and α is given
by equation (2.3).

2.2.5 Relation to Environments in Other Papers

Block recursivity: We can compare this setup to well known papers in the search
literature with “block-recursivity”. Lise and Robin (2017) sets β = 0 and introduces a
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“free” vacancy creation3 so that:

α(x, y, z, g) = α(x, y, z), S(x, y, z, g) = S(x, y, z)

and the model has “block-recursivity”. Menzio and Shi (2011) has one-sided hetero-
geneity, competitive search, and “free” firm entry so:

S(x, y, z, g) = S(x, y, z)

and the model also has “block-recursivity”. The goal of our paper is to solve for α and
S explicitly as a function of g.

Dimension reduction: For models with incomplete but competitive markets, Krusell
and Smith (1998) suggests replacing the law of motion for the distribution by the law
of motion of its mean (and potentially the law of motion of other low dimensional
moments). This is a plausibly appealing approach for competitive market models
because the distribution impacts agents’ decisions by changing aggregate prices and
aggregate prices primarily depend upon the mean of the distribution. By contrast, in
a search and matching model, the distribution impacts agents’ decisions by changing
the probability of which type of agent they meet. This ultimately enters the master
equation on lines 3 and 4 of equation (2.5). We can see that there low dimensional
moments of the distribution are sufficient for evaluating these terms. Instead, we need
to the integral across the surplus function, weighted by the acceptance decision and
the density of searching agents.

2.2.6 Free Entry

So far, we have described a model with a fixed population of firms. A common assump-
tion in the labor literature is that firms can enter and create vacancies if they pay a
cost. In this subsection, we show how this changes the surplus master equation.

Environment Changes: We now allow new firms to pay a cost c and enter the model
with a draw of y from the uniform distribution U(0, 1). This introduces an additional
“free-entry” condition into the model that:

c = E[V v
t ] =

∫
V v(ỹ, z, g)dỹ.

3They also introduce on-the-job search, which we compare to in Section 4.
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For simplicity, we also assume that the matching function is homothetic and only
depends upon the ratio Vt/Ut so that

m(zt, gt)
Vt

= m̂

(Vt

Ut

)
.

Master Equation for Surplus with Free Entry Condition: Combining the free entry
condition with the HJB equations gives:

m̂

(Vt

Ut

)
= ρc∫ ∫

α(x̃, ỹ)gu
t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ
(2.6)

⇒ Vt = Utm̂
−1

 ρc∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ

 (2.7)

where gu
t = gw

t −
∫

gm
t (x, y)dy and so the RHS can be computed from gm

t and St. For
Equation (2.6), compared to the problem with exogenous institution population gf (y),
the matching rate now depends upon the average surplus because new institutions enter
the model until it is no longer profitable to do so. Since firm y draws are uniformly
distributed, gf

t is given by:

gf
t = 1

Vt + Pt
(2.8)

where again Vt and Pt can be expressed in terms of g and S.
With the free entry condition, the master equation expression for surplus takes the

same form as Equation (2.5) but with different definitions of V(z, g) and gv(y). V(z, g)
is now calculated from Equation (2.7), and gv(y) = gf (y)−

∫
g(x, y)dx can be calculated

with z, g, and S using Equations (2.7) and (2.8). In addition, µg(x, y, z, g) also comes
from the same expression of KFE (2.4) but with different definitions of gf (y) and V.
For more details, see Appendix A.

Even though the surplus master equation is more non-linear, we can still solve the
master equation using similar techniques as the master equation without free entry.

2.3 Approximation with Finite Types

Our goal is to solve the master equation (2.5) numerically to obtain S(x, y, z, g) and
α(x, y, z, g). Then we could solve for the value and wage functions using Equation (2.2).
The difficulty of solving Equation (2.5) is that the state space contains an infinite di-
mensional distribution, g, and so the master equation contains Frechet derivatives with
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respect to the distribution. To make progress on this problem, we discretize the type
space so that equation (2.5) becomes a high, but finite dimensional partial differential
equation that can be solved using deep learning.

Discrete type space and KFE: We restrict the possible types to a finite collection:
x ∈ X = {x1, . . . , xnx} and y ∈ Y = {y1, . . . , yny }. With some abuse of notation, we
let g

t
denote the vector of measures of matched agents at the points (X , Y), where

gtij = gt(xi, yj) is the function at type (xi, yj). The aggregate state variables are now:
{z, g

t
}, the aggregate productivity and the density vector of matched agents. Under

this discretization, the Riemann approximation to the KFE is given by:

dgt(x, y)/dt = µg(x, y, zt, gt
)

= −δ(x, y, z)gt(x, y) +
m(zt, gt

)
UtVt

α(x, y, z, g
t
)

×

gw(x) − 1
ny

ny∑
j=1

g
t
(x, yj)

(gf (y) − 1
nx

nx∑
i=1

g
t
(xi, y)

) (2.9)

Master equation: The discretized Master equation for the Surplus is given by:

0 = LSS

= − (ρ + δ(x, y, z))S(x, y, z, g) + F (x, y, z) − b

− (1 − β)
m(zt, g)

U(z, g)V(z, g)
1

nx

nx∑
i=1

α(xi, y, z, g)S(xi, y, z, g)gu(xi)

− β
m(zt, g)

U(z, g)V(z, g)
1
ny

ny∑
j=1

α(x, yj , z, g)S(x, yj , z, g)gv(yj)

+
nx∑
i=1

ny∑
i=1

∂gij S(x, y, z, g)µg(xi, yj , z, g)

+
∑
ž ̸=z

λ(z)(S(x, yj , ž, g) − S(x, yj , z, g)) (2.10)

where to ensure differentiability of the value function when there is a finite number of
types, we approximate α(x, y, z, g) by:

α(x, y, z, g) =
(
1 + e−ξS(x,y,z,g)

)−1

which can be interpreted as a logit choice model where utility shocks come from an
extreme value distribution with parameter ξ.
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2.4 DeepSAM Algorithm

In this section, we outline our algorithm for solving the discretized master equation
(2.10). Let ω = (x, y, z, g) ∈ Ωω denote the state space. Let Θ ∈ ΩΘ denote a
collection of parameters. We approximate the surplus function S by a “feed-forward”
neural network:

Ŝ : Ωω × ΩΘ → R, (ω,Θ) 7→ Ŝ(ω;Θ)

with form:

h(1) = ϕ(1)(W (1)ω + b(1)) . . . Hidden layer 1

h(2) = ϕ(2)(W (2)h(1) + b(2)) . . . Hidden layer 2
...

h(H) = ϕ(H)(W (H)h(H−1) + b(H)) . . . Hidden layer H

Ŝ = σ(h(H)) . . . Surplus

where, using the terminology of the deep learning literature, H is referred the number
of hidden layers, the length of vector h(i) is referred to as the number of neurons in
hidden layer i, ϕ(i) is referred to as the activation function for hidden layer i, and the
collection Θ = (W 1, . . . W (H), b(1), . . . , b(H)) are the parameters for the neural network.

Our goal is to train the parameters of the neural network to approximately solve
equation (2.10). Our approach is summarized in Algorithm 1. Essentially, we use
stochastic gradient descent to train the neural network to minimize the average loss in
the master equation on a random collection of sample points.

2.4.1 Implementation Details

As with other neural network approaches, there are many implementation details in-
volved with these generic steps. What makes the search and matching model different
to solve compared to a competitive incomplete markets model? An important differ-
ence is that in a search and matching model, the shape of the distribution matters for
calculating equilibrium rather than just for calculating the evolution of the distribu-
tion. This imposes greater restrictions on how we need to sample to get an accurate
solution. We discuss how this impacts some key decisions below.

Sampling procedure: We first solve the model at the steady state for the different fixed
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Algorithm 1: Generic Solution Algorithm
Input : Initial neural network parameters Θ0, number of points K to

sample, sequence of learning rates {ζn : n ≥ 0}, precision threshold ϵ.
Output: A neural network approximation (x, y, z, g) 7→ Ŝ(x, y, z, g;Θ) of the

surplus function S solving the discretized master equation.
1. Approximate surplus function by neural network S(x, y, z, g) ≈ Ŝ(x, y, z, g;Θ).

2. Start with initial parameter guess Θ0.

3. At iteration n with Θn:

(a) Generate K sample points, Qn =
{(

xk, yk, zk, {gij,k}i≤nx,j≤ny

)}
k≤K

.

(b) Calculate the average mean squared error of surplus master equation (2.10)
on sample points:

L (Θn, Qn) := 1
K

∑
k≤K

∣∣∣LSŜ
(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)∣∣∣2
(c) Update NN parameters with stochastic gradient descent (SGD) method:

Θn+1 = Θn − ζn∇ΘL (Θn, Qn)

(d) Repeat until L (Θn, Qn) ≤ ϵ with precision threshold ϵ.

4. Once S is solved, we have α and can solve for worker and firm value functions.
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z. We then start by drawing distributions that are a random combination of the steady
state distributions for the different z. If required, once the error is small, we can then
move to sampling from the ergodic distribution generated by the current solution. We
can also increase sampling in regions of the state space (x, y) where errors are high.

Algorithm stability It is most difficult to stabilize the algorithm when Ŝ(x, y, z, g;Θ)
has sharp curvature. In this case, we use a “homotopy” approach. Step (1): Train NN
for parameters that give low curvature in Ŝ1. Step (2): Change parameters closer and
retrain NN starting from previous Ŝ2 = Ŝ1. Step (3)+: keep changing parameters and
retraining until at desired parameters.

Ultimately, our deep learning algorithm will allow us to solve models with high
dimensionality. Sometimes this is referred to as “breaking the curse of dimensionality”.
However, that is not the best description of what is happening. Instead, we are looking
for the appropriate subspace of the high dimensional state space and then training
the model on that subspace. In this sense, it is the flexibility of the neural network to
train on an arbitrary subspace that opens up the possibility of solving high dimensional
models. If we attempted to train the model on all conceivable distribution, then we hit
the same “curse of dimensionality”.

3 Labor Search Model

In this section, we show how to use our algorithm to solve labor search and matching
models. We focus on a canonical model that can be thought of as either Shimer and
Smith (2000) with two-sided heterogeneity and aggregate shocks, or as Mortensen and
Pissarides (1994) with worker and firm heterogeneity. Our presentation is similar to a
continuous time version of Hagedorn et al. (2017) with aggregate shocks.

3.1 Environment Details

Our environment is a special case of the Section 2.1 with the following features. The
agents are interpreted as “workers” and the institutions as “firms”. Matches are in-
terpreted as producing output F (z, x, y) = zf(x, y), where z is interpreted as aggre-
gate productivity in the economy. Following Shimer (2005), we consider aggregate
shocks to the aggregate productivity and the separation rate. The matching function
m : [0, 1] × [0, 1] → [0, min(U , V)], (U , V) 7→ m(U , V) is restricted to take the masses of
unemployed workers U and vacant firms V as inputs.
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3.2 Parameters

Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Kaplan et al. (2018)
δ Job destruction rate 0.2 BLS job tenure 5 years
ξ Extreme value for α choice 2.0

f(x, y) Production function for match (x, y) 0.6 + 0.4
(√

x + √
y
)2 Hagedorn et al. (2017)

β Surplus division factor 0.72 Shimer (2005)
zL, zH TFP shocks 0.985, 1.015 Lise and Robin (2017)

z̄ Steady state TFP 1 Shimer (2005)
λz,LH , λz,HL Poisson transition probability 0.08, 0.08 Shimer (2005)

δL, δH Separation rate shocks 0.18, 0.22 Shimer (2005)
δ̄ Steady state separation rate 0.2 Shimer (2005)

λδ,LH , λδ,HL Poisson transition probability 0.1, 0.1 Shimer (2005)
m(U , V) Matching function κUνV1−ν Lise and Robin (2017)

ν Elasticity in meeting function 0.5 Lise and Robin (2017)
κ Scale parameter for meeting function 5.4 Unemployment rate
b Worker unemployment benefit 0.5 Shimer (2005)

nx Discretization of worker types 7
ny Discretization of firm types 8

Table 3: Economic Parameters.

Economic parameters: The calibration of the economic parameters for our baseline
model can be seen in Table 3. We calibrate the model at the annual frequency. Where
possible, we take standard parameters from the literature. The only parameter that
we calibrate “internally” is the scale parameter for the meeting function. We choose
this parameter to target an average unemployment rate across the economy of 6% in
the ergodic mean.

Neural network parameters: We describe the details of the neural network approxima-
tion and sampling in Table 4. We use a fully connected feed-forward network with 4
layers, 50 neurons per layer, and a tanh(·) activation function. We sample data points
from random combinations of the stationary distribution distribution for each TFP z.

3.3 Accuracy and Verification

We start by testing the accuracy of our solution approach. We first consider a version
of the model without aggregate shocks since we can compare that to solutions from
existing fixed point solution methods such as that in Hagedorn et al. (2017). We then
examine the numerical error and stability when we use DeepSAM to solve the model
with aggregate shocks.
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Parameter Value
Number of layers 4
Neurons per layer 50
Activation function tanh(·)
Initial learning rate 10−4

Final learning rate 10−5

Sampling distribution
Initial sample size per epoch 256
Final sample size per epoch 512
Convergence threshold for target calibration 10−6

Table 4: Neural network parameters

3.3.1 Solution Without Aggregate Shocks

To check the numerical accuracy of the DeepSAM method, we first use it to solve the
model without aggregate shocks, namely zt ≡ z̄, δt ≡ δ̄. The master equation for this
special case is a 58-dimensional PDE for S(x, y, g) under our choice of discretization,
and the detailed setup is presented in Appendix B. We perform a number of checks to
verify the accuracy of our solution technique. We discuss the tuning process to achieve
this level of accuracy in the neural network training process in Appendix B.2.1.

Numeric performance metric Value
PDE training loss 3.9 × 10−6

MSE to deterministic steady state 5 × 10−6

Table 5: Model without aggregate shock: loss and comparison to conventional method.

We show the results in Table 5. The PDE training loss is the mean square error
reached an average of 3.9 × 10−6 over the 58-dimensional state space (x, y, g) after
57 minutes of training. For this problem without aggregate shocks, we can use a
conventional method, such as the fixed point algorithm such as that in Shimer and
Smith (2000); Hagedorn et al. (2017), to solve for the deterministic steady state. Then
we can compare our solution at the deterministic steady state with the benchmark
solution using conventional methods SDSS

Conventional(x, y). By setting g = gDSS , we get
our solution at DSS as

SDSS
DeepSAM(x, y) = S(x, y, g = gDSS)

We define the squared difference of the two methods for each (x, y) pair as ∥SDSS
DeepSAM(x, y)−
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SDSS
Conventional(x, y)∥2. The mean squared difference takes the average of the squared dif-

ference across all (x, y) pairs. We also depict the results visually. The upper right
panel of Figure 1 shows the mean squared loss in the surplus Master equation at the
steady state distribution. Evidently, the training error is in the order of magnitude of
10−6 and not biased in a particular part of the state space. The lower right panel of
Figure 1 plots the squared difference between the DeepSAM solution and conventional
solution at the DSS.4 Evidently, the difference is in the order of magnitude of 10−5,
which we interpret as high accuracy.

Figure 1: Surplus solution for the labor search model without aggregate shocks, using
DeepSAM and conventional method. Figure note: The upper and lower left plots show
the surplus solution from the DeepSAM method and conventional method, respectively.
The upper right plot shows the value of loss for the master equation at each grid point
of the state space. The lower right plot computes the squared difference of the surplus
value at each grid point of the state space using the two different methods.

4It takes about 57 minutes to solve the problem as a 58-dimensional PDE on an A100 GPU on Google
Colab, which is easily accessible to all researchers at https://colab.research.google.com/signup.
The computation time varies with different calibrations. For example, if we set a relatively small
κ = 0.4, it only takes less than 30 minutes to solve the 58 dimensional PDE. That’s because the high
dimensional function that is approximated by neural network is flatter in the curvature, which makes
it easier to “learn”.
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3.3.2 Solution With Aggregate Shocks

For the labor search model with aggregate TFP and separation shocks, we cannot
compare it to an existing solution technique because none exists. Instead, we study
the error and stability of our neural network approximation.

Table 6 summarizes the average training loss across the training sample. This tells
us that the error is small (O(10−7)) across the breadth of our sample. Figure 2 focuses
on the mean squared error at the ergodic mean. The left and right panels plot the loss
as a function of worker and firm types, at z = zL and z = zH respectively. We can see
the loss is uniformly small (O(10−7) to O(10−6)) on all state space of x, y, z.

Table 6: Solve the model with aggregate shock: loss.

Numerical Performance Metric Value
PDE training loss 9 × 10−7

Figure 2: Mean squared loss as a function of worker and firm type.

Figure 3 presents the mean and standard deviation of αergodic in 15 independent
runs of the DeepSAM algorithm. As is shown in the right panel, the standard deviation
of αergodic is of the order of O(10−4), which is much smaller than the level of the mean,
as well as the level of differences or impact we will discuss below. Low stability is
a common difficulty for sampling based PDE training algorithms (they often need to
take the average over many runs of the algorithm) so we view these results as very
impressive.
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Figure 3: Average and standard deviation of αergodic across 15 independent runs.

3.4 Revisiting “Block Recursivity”

An important advantage of our solution technique is that we have solved for α explic-
itly as a function of the distribution. In this subsection, we study this relationship
by studying unanticipated changes to the distribution. We use this exercise to illus-
trate when “block-recursivity” assumptions distort transition paths in the economy. In
the next subsection, we study business cycle dynamics driven by the aggregate shock
processes in the model.

3.4.1 Relationship Between α and g

Figure 4 shows how α varies as the match distribution varies. The top plots show three
employment distributions (from left to right): the ergodic distribution, a distribution
with equal employment across types, and a distribution with relatively less employment
for low types and relatively more employment for high types. The left bottom plot
shows the acceptance function at the ergodic distribution. The other bottom plots
show the percentage change in the acceptance function when the distribution changes.

The change in the acceptance function can be understood by considering how the
distribution impacts the opportunity cost of waiting for a better match. Moving to
a distribution where high types have higher employment rates weakens assortative
matching in the acceptance function. This is because the opportunity cost of waiting
for a high type agent increases when most high type agents are already employed
and so high type workers and firms become less picky. By contrast, moving to a
distribution with more equal employment across types leads to more positive assorting
in the acceptance function. This is because the more equal distribution increases the
likelihood that a weighted will yield a better match.
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Figure 4: Variation in α as g Varies.

3.4.2 Response to an Unanticipated g Shock.

We now consider how the dependence of the acceptance function on the distribution
changes transition paths in the economy. We consider two examples of unanticipated
“depression” shocks to the economy: an “equal” shock that increases average unemploy-
ment to 30% proportionally across all matches and an “unequal” shock that increases
unemployment on average to 30% but concentrates the decline on low type workers
and firms. We visualize the two shocks in Figure 5. After each shock, we assume the
economy gradually reverts to the ergodic distribution.

For each example, we decompose the impulse response in the unemployment rate
into two channels:

(i) the change in unemployment when acceptance is always evaluated at the long-run
ergodic employment distribution but otherwise the distribution follows KFE, and

(ii) the additional change in unemployment when the acceptance function reacts to
the changing employment distribution.

We interpret the former as the “block-recursive” dynamics and the later as the addi-
tional “distribution feedback” dynamics in the full model. Mathematically, under the
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Figure 5: Ergodic distribution and distribution after the “unequal” and “equal” “de-
pression” shocks

block recursive dynamics, the distribution gBR
t evolves according to:

dgBR
t (x, y)

dt
= − δ(x, y, zt)gBR

t (x, y)

+
mt(z, g

t
)

Ut(gt
)Vt(gt

)α(x, y, zt, g
ergodic)gu,BR

t (x)gv,BR
t (y)

(3.1)

while, under the full dynamics, the distribution gt satisfies equation (2.9). We define
the contribution of g through “distribution feedback” dynamics by:

∆t := |Ut − UBR
t |

|Ut − U0|
(3.2)

Figure 6 plots the unemployment transition paths for both example shocks. Sub-
plot (a) shows the impulse response for aggregate unemployment following a symmetric
shock, subplot (b) shows the impulse response for aggregate unemployment following
an asymmetric shock, and subplot (c) shows the impulse response for high type un-
employment following an asymmetric shock. On each subplot, the orange dashed line
shows the “block-recursive” dynamics while the solid blue depicts the full dynamics.
The bottom plots show ∆t: the contribution from the way that the employment dis-
tribution changes the acceptance function. In both subplots 6a and 6b, the average
unemployment rate increases to 30%. However, there are differences in the rate of re-
turn to the long-run mean. For the case of a symmetric unemployment increase, there
is very little difference between the block recursive dynamics and the full solution so
the “distribution feedback” dynamics only contributes ≈ 1% of the impulse response
over the first year. By contrast, for the case of an asymmetric employment shock, the
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(a) IRF of Ut after “equal”
shock

(b) IRF of Ut after “unequal”
shock

(c) IRF of Ut for x > 1
2

workers after “unequal” shock

(d) Contribution of g to IRF
through g’s impact on α after

“equal” shock

(e) Contribution of g to IRF
through g’s impact on α after

“unequal” shock

(f) Contribution of g to IRF
for x > 1

2 workers after
“unequal” shock

Figure 6: IRF of Ut after unanticipated shocks to g: full dynamics vs “block recursive”
dynamics in which the decision of workers and firms does not rely on the distribution
gt directly as in Equation (3.1). Contribution of g to IRF through g’s impact on α is
defined in Equation (3.2). The two panels in the left column show the dynamics and
contribution of g after the “equal” shock, while those in the middle and right columns
correspond to the “unequal” shock. The middle column corresponds to the average
unemployment rate for all workers, while the right column is about high-type workers
(x > 1

2).

lines diverge and the “distribution feedback” dynamics contribute ≈ 5% of the impulse
response. The difference arises because the asymmetric shock increases the proportion
of unemployed workers who have low type and so increases the opportunity cost of
waiting for a high type. This leads workers to be less “picky” and accept more low
type matches. Subplot 6c shows that the difference between the block recursive and
full dynamics is particularly large for high type workers. This is because those are the
workers who are most willing to wait for a high type match in normal times when the
unemployment pool is not highly skewed towards low type workers. Taken together,
our results suggest that “block-recursivity” starts to break down in our calibrated labor
market model when the distribution experiences asymmetric shocks to employment.
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3.5 Revisiting Business Cycle Shocks with Heterogeneity

The previous section studied an unanticipated change to the distribution to focus on the
contribution of having α depend on g. We close this section of the paper by examining
the business cycle dynamics generated by the aggregate shock process in the model.

Figure 7 plots the impulse response of the aggregate unemployment rate Ut after a
persistent δH or δL shock when the economy starts with the ergodic mean distribution.
The left plot shows the case with an unemployment benefit b = 0.5 while the right plot
shows the case with b = 0.9. We plot the results of a standard calibration b = 0.5 and
a high unemployment benefit calibration b = 0.9 as Hagedorn and Manovskii (2008) in
Figure 7b.5 Evidently varying b has limited impact on the aggregate dynamics of the
model.

(a) b = 0.5 (b) b = 0.9

Figure 7: IRF of Ut to aggregate separation shocks. Figure note: The left panel plots
the impulse response of the aggregate unemployment rate to high or low separation
shock when b = 0.5, right panel plots the same IRF when b = 0.9.

Discussion of the “Shimer Puzzle” Although we not working with exactly the same
setup considered by Shimer, our results shed light on the so-called “Shimer puzzle”:
that unemployment is insufficiently responsive to TFP shocks in labor search models.
A common resolution in search models with representative workers, originally proposed
by Hagedorn and Manovskii (2008), is to introduce a large unemployment benefit. By
doing so, they put the representative worker at the margin of (un)employment, such
that a TFP shock will change the employment status of many workers. A general result

5For the calibration with b = 0.9, we also change the calibration for κ = 6.1 such that we can still
match the average unemployment level around 6%.
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in our model is that unemployment benefits have limited influence on aggregate employ-
ment dynamics. This is because, in a search model with heterogeneous workers, this
no longer works since we cannot put many workers at the margin of (un)employment
at the same time.

4 On-The-Job Search and Cyclical Sorting

In this section, we introduce endogenous job-to-job and job-to-unemployment transi-
tions into the model from Section 3. We use this model to study asymmetric labor
market dynamics over the business cycles.

4.1 Environment Changes

We make the following changes to the environment from subsection 3.1.

Search and Matching: All workers now engage in random search. The matching func-
tion becomes m(Ut + ϕEt, Vt) with the interpretation that ϕ is the exogenous relative
intensity at which employed workers search. Let Wt := Ut + ϕEt denote the total mass
of searchers. The probabilities that an unemployed or an employed worker meets a
potential employer are given by:

Mu
t = m(Wt, Vt)

Wt
, Me

t = ϕ
m(Wt, Vt)

Wt

while the probability that a vacant firm meets a potential hire is:

Mv
t = m(Wt, Vt)

Vt
.

Conditional on meeting a worker, we define the probabilities that the worker is unem-
ployed or employed by Cu = U

U+ϕE and Ce = ϕE
U+ϕE respectively. The probability for a

firm to meet an unemployed worker x ∈ X ⊂ [0, 1] equals MvCu
∫

X gu(x)dx. The prob-
ability for a firm to meet an employed worker x ∈ X ⊂ [0, 1] equals MvCu

∫
X ge(x)dx.

Bargaining: Let V u
t (x) denote the value of unemployment for a worker of type x. Let

V e
t (x, y) denote the value of worker x employed at a firm of type y. Let V v

t (y) denote
the value of a vacancy for firm y. Let V p

t (x, y) denote the value of firm y employing an
unemployed worker of type x.
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As before, the surplus of a match between an unemployed worker and an vacant
firm is defined as:

Su
t (x, y) := V p

t (x, y) − V v
t (y) + V e

t (x, y) − V u
t (x)

and the division of surplus is given by:

βSu
t (x, y) = V e

t (x, y) − V u
t (x)

(1 − β)Su
t (x, y) = V p

t (x, y) − V v
t (y)

When a worker employed at some firm of type y meets a firm of type ỹ, the two
firms engage in Bertrand competition, as described in Postel-Vinay and Robin (2002).
If S(x, ỹ) > S(x, y), then the worker moves to firm ỹ and receives the incumbent em-
ployer’s reservation value (1 − β)St(x, y) (in addition to whatever they had already
been promised). If the worker does not move, then their continuation value updates
with the surplus of new matches for (x, y).

Endogenous exit: In addition to allowing workers to search, we also allow matches to
breakup. If St(x, y) < 0, the worker returns to unemployment and the firm returns to
posting vacancies.

4.2 Recursive Characterization of Equilibrium

Surplus Differential Equation: In Appendix C we show that the differential equation
for the surplus becomes the following:

ρSt(x, y) = ft(x, y) − δSt(x, y) − αb
t(x, y)St(x, y) − b

− (1 − β)m(Wt, Vt)
WtVt

∫
α(x̃, y)St(x̃, y)gu

t (x̃)dx̃

− (1 − β)ϕm(Wt, Vt)
WtVt

∫
αp

t (y, x̃, ỹ)gm
t (x̃, ỹ)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ (1 − β)ϕm(Wt, Vt)
WtVt

∫
αe

t (x, y, ỹ)St(x, y)gv
t (ỹ)dỹ

− β
m(Wt, Vt)

WtVt

∫
αt(x, ỹ)St(x, ỹ)gv

t (ỹ)dỹ

+ λ(z)(St(x, y, z̃) − St(x, y, z)) + ∂tSt(y)
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where:

αt(x, ỹ) :=
{

1, if St(x, ỹ) > 0
0, otherwise

αb
t(x, ỹ) :=

{
1, if St(x, ỹ) < 0
0, otherwise

αe
t (x, y, ỹ) :=

{
1, if St(x, ỹ) ≥ St(x, y) ≥ 0
0, otherwise

αp
t (y, x̃, ỹ) :=

{
1, if St(x̃, y) ≥ St(x̃, ỹ) ≥ 0
0, otherwise

Evidently, the main difference to the differential equation for surplus in Section 3 is
that now we have to take into account the possibility of movements from job to job.
These jobs potentially have a different acceptance function than the unemployment to
job transitions.

Kolmogorov Forward Equation: Likewise, in Appendix C we show that the measure of
matches evolves according to following differential equation:

dgm
t (x, y) = − δgm

t (x, y)dt − αb
t(x, y)gt(x, y)

− ϕ
m(Wt, Vt)

WtVt
gm

t (x, y)
∫

αe
t (x, y, ỹ)gv

t (ỹ)dỹdt

+ m(Wt, Vt)
WtVt

αt(x, y)gu
t (x)gv

t (y)dt

+ ϕ
m(Wt, Vt)

WtVt

∫
αe

t (x̃, ỹ, y)gv
t (y)gm

t (x̃, ỹ)
Et

dx̃dỹdt

If we know measure of matches, then we can recover the other distribution:

ge
t (x) =

∫
gm

t (x, y)dy, gu
t (x) = gw

t (x) −
∫

gm
t (x, y)dy,

gp
t (y) =

∫
gm

t (x, y)dx gv
t (y) = gf

t (y) −
∫

gm
t (x, y)dx,

Ut =
∫

gu
t (x)dx, Vt =

∫
gv

t (y)dy

Et =
∫

ge
t (x)dx, Pt =

∫
gp

t (y)dy
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(a) β = 0 (b) β = 0.5 (c) β = 0.72 (d) β = 1

Figure 8: Sorting at the ergodic distribution for different worker bargaining power β.
This figure presents the acceptance decision α(x, y) for worker x and firm y at the
ergodic distribution of the economies with different β.

4.3 Working Bargaining Power Influences Assortative Matching

Unlike Lise and Robin (2017) and subsequent papers, our solution relaxes the assump-
tion that firms have all the bargaining power in the market between unemployed workers
and firms (i.e. they assume β = 0). This allows us to study the interaction between bar-
gaining power and sorting. Figure 8 shows how the ergodic acceptance function varies
with worker bargaining power. Evidently, firm bargaining power significantly skews
the assortative matching dynamics with high firm bargaining power making high type
firms less picky and high worker bargaining power making high type workers less picky.
This illustrates that with a “standard production” function we cannot get the empirical
assortative matching patterns with the β = 0 imposed in the “block-recursive” random
search models. Instead, we would need to customize the production function to offset
the skew in the acceptance and get dynamics similar to cases with β ≈ 0.5.

4.4 Revisiting Cyclical Sorting with On-the-job Search

In this section, we study cyclical sorting in our model with on-the-job search and
aggregate shocks. We call a pair of match (x, y) as a “PAM pair” if |x − y| ≤ 1

2 , and
otherwise as a “mismatch pair”. Figure 9 shows relative changes (compared to that
in the ergodic distribution) in the total mass of “PAM pairs” and “mismatch pairs”
over time when persistent positive or negative productivity shocks hit the economy.
There is a strong pattern of countercyclical sorting over the business cycles. In the
expansion, the mass of “mismatch pairs” grows faster than that of “PAM pairs”, which
means workers and firms with very different types may accept each other, weakening
the positive assortative matching. In the recession, the mass of “mismatch pairs” drops
faster than that of “PAM pairs”, which means workers and firms become more “picky”,
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(a) IRF after zH shock (b) IRF after zL shock

Figure 9: IRF of the total mass of different pairs after a persistent productivity shock
in the on-the-job search model with aggregate shocks. Figure note: The blue solid line
shows the relative change of the total mass of “PAM pairs” compared to that in the
ergodic distribution.The yellow dotted line shows the relative change of the total mass
of “mismatch pairs”.

amplifying the positive assortative matching. This is consistent with the cleansing
effect of business cycles (Caballero and Hammour, 1994). We discuss further sorting
patterns in the ergodic distribution in Appendix B.3.

Figure 10 shows how cyclical assortative matching varies with the worker bargaining
power β. The cyclical sorting dynamics are amplified when β is closer to the extreme
values of 0 or 1. When β = 0.72, as calibrated in the business cycle literature such as
Shimer (2005), the cyclical sorting dynamics are approximately 75% smaller than in
an economy with β = 0, as assumed by Lise and Robin (2017). The intuition is that
when one side of the market has all the bargaining power their decisions end up being
more responsive to changes in the opportunity cost of waiting. This means the classic
assumption about take-it-or-leave-it offers following Postel-Vinay and Robin (2002) has
important implications on the model dynamics.

5 Conclusion

In this paper, we developed a new method for characterizing global solutions to search
and matching models with aggregate shocks and heterogeneous agents. This allowed
us to study dynamics in models where agent decisions depend upon the distribution
and so the model is not “block-recursive”. We showed block recursivity is a reasonable
assumption when shocks are symmetric across the distribution but becomes inaccurate
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(a) β = 0 a la Lise and Robin (2017) (b) β = 0.5

(c) β = 0.72 (benchmark) (d) β = 1

Figure 10: IRF of the total mass of different pairs after a persistent productivity shock
in the on-the-job search model with aggregate shocks for different β.

when shocks have an asymmetric impact. We then used our model to study how
business cycles have a “cleansing effect” by increasing the assortative matching in the
economy. We believe our methodology is a major breakthrough in our understanding
of search and matching dynamics with potential applications in the labor, finance, and
spatial literature.
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A Master Equation with the Free Entry Condition

As in Section 2.2.6, the free entry condition is

c =
∫

V v
t (ỹ)dỹ

Recall from (2.2) the HJB equation for a vacant institution with productivity y is

ρV v
t (y) = Mv

t

∫
α(x̃, y)gu

t (x̃)
Ut

(1 − β)St(x̃, y)dx̃ + ∂tV
v

t (y)

Integrating and combining these equations, we have that:

ρ

∫
V v

t (ỹ)dỹ = Mv
t

∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ + ∂t

∫
V v

t (ỹ)dỹ

⇒ ρc = m(Ut, Vt)
Vt

∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ

⇒ m(Ut, Vt)
Vt

= ρc∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ

Assuming that m(Ut, Vt)/(Vt) = m̂(Vt/Ut), we have that:

Vt = Utm̂
−1

 ρc∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ


where gu

t = gw
t −

∫
gm

t (x, y)dy and so the RHS can be computed from gm
t and St. (For

example, if m(U , V) = κUνV1−ν , then Mv
t = m(U , V)/V = m̂(Vt/Ut) = κ(U/V)ν and

Mu
t = m(U , V)/U = κ(V/U)1−ν). Since firm y draws are uniformly distributed, we

have that gf
t is given by:

gf
t = 1

Vt + Pt

= 1

Utm̂−1
(

ρc∫ ∫
α(x̃,ỹ)(gu

t (x̃)/Ut)(1−β)St(x̃,ỹ)dx̃dỹ

)
+
∫ ∫

gm
t (x, y)dydx
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where Vt is from (2.7), Pt =
∫ ∫

gm
t (x, y)dydx, and Ut =

∫
(gw

t (x) −
∫

gm
t (x, y)dy). This

means that gf
t can be computed from gm

t and St. Finally, this means that

gv
t (y) = gf

t (y) − gp
t (y)

= 1

Utm̂−1
(

ρc∫ ∫
α(x̃,ỹ)(gu

t (x̃)/Ut)(1−β)St(x̃,ỹ)dx̃dỹ

)
+
∫ ∫

gm
t (x, y)dydx

−
∫

gm
t (x, y)dx

We can now calculate the differential equation for surplus:

ρSt(x, y) = ρ(V p
t (x, y) − V v

t (y) + V e
t (x, y) − V u

t (x))

= ft(x, y) − wt(x, y) − δ(1 − β)St(x, y) + ∂tV
p

t (x, y)

−
(

Mv
t

∫
α(x̃, y)gu

t (x̃)
Ut

(1 − β)St(x̃, y)dx̃ + ∂tV
v

t (y)
)

+ wt(x, y) − βδSt(x, y) + ∂tV
e

t (x, y)

−
(

b + Mu
t

∫
αt(x, ỹ)gv

t (ỹ)
Vt

βSt(x, ỹ)dỹ + ∂tV
u

t (x)
)

= ft(x, y) − δSt(x, y) − Mv
t

∫
α(x̃, y)gu

t (x̃)
Ut

(1 − β)St(x̃, y)dx̃

− b − Mu
t

∫
αt(x, ỹ)gv

t (ỹ)
Vt

βSt(x, ỹ)dỹ + ∂tSt(x, y)

where:

Vt = Utm̂
−1

 ρc∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ


Mv

t = m(U , V)/V = m̂(Vt/Ut) = κ(U/V)ν ,

Mu
t = m(U , V)/U = κ(V/U)1−ν

gv
t (y) = gf

t (y) − gp
t (y)

= 1
Vt + Pt

− gp
t (y)

= 1

Utm̂−1
(

ρc∫ ∫
α(x̃,ỹ)(gu

t (x̃)/Ut)(1−β)St(x̃,ỹ)dx̃dỹ

)
+
∫ ∫

gm
t (x, y)dydx

−
∫

gm
t (x, y)dx

and the KFE is in the same form as (2.4) with different definitions of gf (y) and V.
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B Appendix For the Labor Search Model in Section 3

B.1 Master equation and loss function for the model without aggre-
gate shocks

To verify the accuracy of the DeepSAM method, we apply it to solve a labor search
model without aggregate shocks, which can also be solved with a conventional numerical
method such as that in Hagedorn et al. (2017). The master equation and loss function
for the Surplus is given by:

0 = LSS = −(ρ + δ(x, y))S(x, y, g) + F (x, y) − b

− (1 − β)
m(g)

U(g)V(g)
1

nx

nx∑
i=1

α(xi, y, g)S(xi, y, g)gu(xi)

− β
m(g)

U(g)V(g)
1
ny

ny∑
j=1

α(x, yj , g)S(x, yj , g)gv(yj)

+
nx∑
i=1

ny∑
i=1

∂gij S(x, y, g)µg(xi, yj , g)

in which

dgt(x, y)/dt = µg(x, y, g
t
) = −δ(x, y)gt(x, y) +

m(g
t
)

UtVt
α(x, y, g

t
)

×

gw(x) − 1
ny

ny∑
j=1

g
t
(x, yj)

(gf (y) − 1
nx

nx∑
i=1

g
t
(xi, y)

)

and α(x, y, g) is given by:

α(x, y, g) =
(
1 + e−ξS(x,y,g)

)−1
.

B.2 Numerical method and performance

B.2.1 Hyperparameters for the neural networks

Training loss, learning rate, and sample size. Figure 11 presents the value of the
loss function (2.10) along the training process. It takes 1.5 hours on an A100 GPU for
the neural network to converge to a stable solution. The learning rate is 10−4 for the
first 400,000 epoch, is 10−5 after that. Sample size: 256 in first 400k, 512 from after
that. We use a cosine scheme for to adjust the learning rate over time.
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Figure 11: Loss function along training epochs

B.3 Additional results

Figure 12 compares the ergodic distribution of the problem with aggregate shocks with
the deterministic steady state of the problem in the absence of aggregate shocks. We
find on average, the aggregate shocks destroy matches between low productivity work-
ers (firms) and high productivity firms (workers) and amplify the positive assortative
matching. Using α as an example, the differences in the upper right panel are an order
of magnitude larger than the standard deviation of αergodic in Figure 3, which means
our results are credible in a statistical sense.
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Figure 12: Ergodic mean vs deterministic steady state

Figure 13 provides a more closer look into the first row of Figure 12.
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Figure 13: Ergodic α vs deterministic steady state

C Appendix For the On-the-job Search Model

C.1 Agent Problems

Unemployed Workers: The HJB equation for an unemployed worker of type x is the
same as in the model without on-the-job search:

ρV u
t (x) = b + Mu

t

∫
αt(x, ỹ)(V e

t (x, ỹ) − V u
t (x))gv

t (ỹ)
Vt

dỹ + ∂tV
u

t (x)

= b + Mu
t

∫
αt(x, ỹ)βSt(x, ỹ)gv

t (ỹ)
Vt

dỹ + ∂tV
u

t (x)

where:

αt(x, ỹ) :=
{

1, if St(x, ỹ) > 0
0, otherwise

Employed Workers: The HJB equation for an employed worker of type x matched with
type y becomes:

ρV e
t (x, y) = wt(x, y) + Me

t

∫
αe

t (x, y, ỹ)(1 − β)St(x, y)gv
t (ỹ)
Vt

dỹ

+ δ(V u
t (x) − V e

t (x, y)) + ∂tV
e

t (x, y)

= wt(x, y) + Me
t

∫
αe

t (x, y, ỹ)(1 − β)St(x, y)gv
t (ỹ)
Vt

dỹ

− βδSt(x, y) + ∂tV
e

t (x, y)
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where we have used that St(x, y) = V u
t (x) − V e

t (x, y) because the surplus is indexed to
that of new hires and where:

αe
t (x, y, ỹ) :=

{
1, if St(x, ỹ) ≥ St(x, y) ≥ 0
0, otherwise

Vacant Firms: The HJB equation for a vacant firm is:

ρV v
t (y) = MvCu

∫
α(x̃, y)(V p

t (x̃, y) − V v
t (x))gu

t (x̃)
Ut

dx̃

+ MvCe

∫
αp

t (y, x̃, ỹ)gm(x̃, ỹ)
Et

(1 − β)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ ∂tV
v

t (y)

= MvCu

∫
α(x̃, y)(1 − β)St(x̃, y)gu

t (x̃)
Ut

dx̃

+ MvCe

∫
αp

t (y, x̃, ỹ)gm(x̃, ỹ)
Et

(1 − β)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ ∂tV
v

t (y)

where

αp
t (y, x̃, ỹ) :=

{
1, if St(x̃, y) ≥ St(x̃, ỹ) ≥ 0
0, otherwise

Producing Firms: The HJB equation for a producing firm becomes:

ρV p
t (x, y) = ft(x, y) − wt(x, y) + δ(V v

t (x) − V p
t (x, y)) + ∂tV

p
t (x, y)

= ft(x, y) − wt(x, y) − δ(1 − β)St(x, y) + ∂tV
p

t (x, y)

if the division of future surplus from continuing the match is the same as the division
of surplus for new matches.

Master Equation For Surplus: we show that the differential equation for the surplus
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becomes the following:

ρSt(x, y) = ft(x, y) − δSt(x, y) − αb
t(x, y)St(x, y) − b

− Mv
t Cu

t

∫
α(x̃, y)(1 − β)St(x̃, y)gu

t (x̃)
Ut

dx̃

− Mv
t Ce

t

∫
αp

t (y, x̃, ỹ)gm
t (x̃, ỹ)

Et
(1 − β)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ Me
t

∫
αe

t (x, y, ỹ)(1 − β)St(x, y)gv
t (ỹ)
Vt

dỹ

− Mu
t

∫
αt(x, ỹ)βSt(x, ỹ)gv

t (ỹ)
Vt

dỹ

+ λ(z)(St(x, y, z̃) − St(x, y, z)) + ∂tSt(y)

where:

αt(x, ỹ) :=
{

1, if St(x, ỹ) > 0
0, otherwise

αb
t(x, ỹ) :=

{
1, if St(x, ỹ) < 0
0, otherwise

αe
t (x, y, ỹ) :=

{
1, if St(x, ỹ) ≥ St(x, y) ≥ 0
0, otherwise

αp
t (y, x̃, ỹ) :=

{
1, if St(x̃, y) ≥ St(x̃, ỹ) ≥ 0
0, otherwise

Observe that:

Mv
t Cu

t

Ut
= m(Wt, Vt)

WtVt
,

Mv
t Ce

t

Et
= ϕ

m(Wt, Vt)
WtVt

,

Me
t

Vt
= ϕ

m(Wt, Vt)
WtVt

,
Mu

t

Vt
= m(Wt, Vt)

WtVt
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and so the surplus equation becomes:

ρSt(x, y) = ft(x, y) − δSt(x, y) − αb
t(x, y)St(x, y) − b

− (1 − β)m(Wt, Vt)
WtVt

∫
α(x̃, y)St(x̃, y)gu

t (x̃)dx̃

− (1 − β)ϕm(Wt, Vt)
WtVt

∫
αp

t (y, x̃, ỹ)gm
t (x̃, ỹ)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ (1 − β)ϕm(Wt, Vt)
WtVt

∫
αe

t (x, y, ỹ)St(x, y)gv
t (ỹ)dỹ

− β
m(Wt, Vt)

WtVt

∫
αt(x, ỹ)St(x, ỹ)gv

t (ỹ)dỹ

+ λ(z)(St(x, y, z̃) − St(x, y, z)) + ∂tSt(y)

Kolmogorov Forward Equation: The measure of matches evolves according to following
differential equation:

dgm
t (x, y) = − δgm

t (x, y)dt − αb
t(x, y)St(x, y) − Me

t gm
t (x, y)

∫
αe

t (x, y, ỹ)gv
t (ỹ)
Vt

dỹdt

+ Mu
t gu

t (x)αt(x, y)gv
t (y)
Vt

dt + Me
t

∫
αe

t (x̃, ỹ, y)gv
t (y)
Vt

gm
t (x̃, ỹ)

Et
dx̃dỹdt

where this KFE has been written from the perspective of the workers (as discussed in
earlier sections, it could equivalently be written from the point of view of the firms).
The first term on the RHS is the exit rate due to exogenous separations, the second
term is the exit rate due to workers finding better matches, the third term is new
matches from unemployed workers matching, and the final term is employed workers
moving to (x, y). Observe that:

Me
t

Vt
= ϕ

m(Wt, Vt)
WtVt

Mu
t

Vt
= m(Wt, Vt)

WtVt
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So, the KFE becomes:

dgm
t (x, y) = − δgm

t (x, y)dt − αb
t(x, y)gt(x, y)

− ϕ
m(Wt, Vt)

WtVt
gm

t (x, y)
∫

αe
t (x, y, ỹ)gv

t (ỹ)dỹdt

+ m(Wt, Vt)
WtVt

αt(x, y)gu
t (x)gv

t (y)dt

+ ϕ
m(Wt, Vt)

WtVt

∫
αe

t (x̃, ỹ, y)gv
t (y)gm

t (x̃, ỹ)
Et

dx̃dỹdt

If we know measure of matches, then we can recover the other distribution:

ge
t (x) =

∫
gm

t (x, y)dy

gu
t (x) = gw

t (x) − ge
t (x) = gw

t (x) −
∫

gm
t (x, y)dy

gp
t (y) =

∫
gm

t (x, y)dx

gv
t (y) = gf

t (y) − gp
t (y) = gf

t (y) −
∫

gm
t (x, y)dx

Ut =
∫

gu
t (x)dx

Vt =
∫

gv
t (y)dy

Et =
∫

ge
t (x)dx

Pt =
∫

gp
t (y)dy
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