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Abstract

We study a dynamic problem of the design and sale of securities backed by a long-lived collateral

asset. Issuers are privately informed about the quality of the asset, and raise capital by securitizing

it to fund a productive technology. Issuers can pledge not only the current period payoff from the

assets, but also the future resale price. There is a dynamic feedback loop between the future asset

price and today’s issuers’ decision where both adverse selection and the productivity level determine

the liquidity of the securities. Multiple dynamic - liquid and illiquid - equilibria might arise when

only equity contracts can be issued. We characterize the optimal security design and demonstrate

that it involves short-term liquid collateralized debt, or short-term repo. It eliminates the multiple

equilibria fragility and improves social welfare relative to the illiquid equity equilibrium. When repo

contract is not flexible, repo runs might occur. Comparative statics generate rich dynamic properties

of haircuts and interest rates for repos and repo runs in relation to productivity, adverse selection

and contract riskiness.

Keyword: Liquidity; Security Design; Financial Fragility; Repo; Haircut; Repo Runs; Portfolio

Repo

JEL classification: G10, G01
∗e-mail: eozdenoren@london.edu.
†e-mail: K.Yuan@lse.ac.uk.
‡e-mail: s.zhang31@lse.ac.uk.

We thank Ulf Axelson, James Dow, Peter Kondor, Sergei Glebkin, Naveen Gondhi, and seminar participants at the Cam-

bridge Judge Business School, Cass Business School, the INSEAD summer workshop, the LSE, NUS matching workshop,

London FIT workshop, the University of Bath, and the Vienna Graduate School of Finance (VGSF) for valuable comments.

1



1 Introduction

In this paper, we study provision of liquidity to productive borrowers who face pledgeability constraints

and adverse selection frictions when obtaining funding. Borrowers can ameliorate the impact of these

constraints and frictions by borrowing against a long-lived (collateral) asset. One contribution of the pa-

per is to provide a general theoretical framework to model the endogenous formation of funding liquidity

in a dynamic environment. Built upon this general framework, we further analyze the consequences of

dynamic security design for improving liquidity and social welfare.

Understanding the properties and the fragility of asset-backed liquidity is of systemic importance to

the global economy. Since early 2000, we have observed the meteoric rise of asset price associated with

productivity boom and its subsequent collapse. Asset-backed liquidity also experienced a similar pattern:

there is a proliferation of short-term asset-backed borrowing facilities including repos and asset-backed

commercial papers (ABCPs) before the Great Recession, followed by subsequent runs on these facilities

leading to the ultimate demise of the ABCP market. Even today, asset-backed liquidity including repo

financing remains a crucial source of short-term funding for financial institutions. Globally the repo

transaction has an outstanding notional amount of $12 trillion around mid-2016 (CGFS, 2017). A

survey of major European financial institutions finds that Euro repo market activities grow 19.4% from

2016 to 2017 (ICMA, 2018). If the repo market were ever under stress again, it would pose a great threat

to the stability of international financial system.

Besides the fragility, asset-backed markets have many puzzling features. For example, a casual

investigation of the recent data on US tri-party repo activities shows that the US GDP growth rate

is related to repo transaction volume and haircut in different ways. Graphs in Figure 1 compare the

US GDP growth rate with volume and value-weighted haircut for tri-party repo transactions backed by

illiquid collaterals (that is, collaterals other than treasury and agency bonds) since 2012. We observe that

since 2016, repo transaction volume is increasing while repo haircut is decreasing in the GDP growth.

Both point out that repo liquidity is increasing. However, during the previous GDP growth spur between

2014 and 2016, repo transaction volume is up but repo haircut is not lowered. These casual observations

indicate that real economy growth might have a complex relationship with repo liquidity. Indeed, with

productivity and adverse selection as key ingredients, our dynamic model shows that the amount of repo

transaction is increasing in productivity and decreasing in adverse selection while haircut is increasing

in both productivity and adverse selection. Therefore, although adverse selection is lower during the

growth peak, the rapid increase in productivity might contribute to the increase in haircut from 2014 to

2016, according to our theory.
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(a) Repo Transaction Volume (b) Value-Weighted Repo Haircuts

Figure 1: US GDP Growth Rate and Repo: Solids lines are US GDP growth rate (3-month rolling average).

Dash-dotted lines are tri-party repo transaction volume and value-weighted haircut (3-month rolling average) for

collaterals other than treasury and agency bonds respectively.

In our model, entrepreneurs who have access to a productive technology demand funding liquidity.

These potential borrowers face typical frictions in the funding market. They may not be able to pledge

the future cashflow due to either non-verifiability, un-observability, lack of commitment, or any other

reasons. In this case, pledging collateral assets helps to obtain the liquidity necessary for the production.1

However, the quality of collateral assets is often subject to adverse selection due to the incentive of

borrowers to tamper the collateral quality for more funds. For example, historically, borrowers have

incentive to debase metallic coins, ie., reduce the metallic content of the coins below the coin’s face

value, or use counterfeited coins to obtain more funding. In the recent time, collateral quality is subject

to questioning because of the possibility that borrowers might pledge it multiple times.

More specifically, in our model, to take advantage of the productive technology, entrepreneurs issue

securities that are backed by the cashflow from a long-lived collateral asset. By selling these asset-

backed securities, investors raise liquidity to purchase the necessary inputs for production. We consider

a dynamic setting where the quality of the collateral asset (captured by the distribution of its dividend

payoff) varies period by period. Collateral is of either high or low quality, where the dividend distribution

of the high quality collateral first-order stochastically dominates that of the low quality.2 The borrowers
1Examples of collateral assets include coins made of precious metals, tangible assets such as real estate, silk garments,

cattle, productive equipment, and the financial assets such as treasury securities in the recent times.
2To focus on the role of the asset as collateral, we assume that the asset is not an input in the production process and

the dividend process is exogenous.
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are privately informed about the current period quality at the beginning of each period. That is, there is

adverse selection about the quality of the collateral asset between borrowers and lenders at the beginning

of each period before any borrowing and production takes place.

We then explore the implications of optimal security design for liquidity provision in this dynamic

environment with adverse selection. We begin with a benchmark case where borrowers are restricted

to selling asset-backed equity for liquidity.3 Given this limitation, the economy might exhibit fragility

in terms of possible multiple (dynamic stationary) equilibria for the same underlying technology and

beliefs. The logic behind the multiple equilibria in the benchmark case is based on a dynamic feedback

loop between the future resale price and current borrowers’ action: a high (low) anticipated future resale

price for the collateral asset allows borrowers to exchange the asset-backed equity claims for more (less)

capital in the current period to engage in productive technology. Borrowers with low-quality assets

always sell equity claim backed by the low-quality asset to raise funding today. However, borrowers with

high quality collateral are attracted to sell equity claims in exchange for today’s funding for production

only if productivity and resale price are high enough. When borrowers with high quality collateral

pool with the low quality ones, the average quality of the security pool is higher, lowering the adverse

selection endogenously, and therefore, justifying the high future asset price. The opposite is true for a

low (anticipated) future resale price. The asset prices are self-fulfilling in this dynamic environment.

The dynamic feedback loop leads to three possible equilibrium regions in this economy. There is a

‘separating’ region where productivity is low and adverse selection is severe. In this region, high-quality

borrowers choose to retain their asset-backed equity claims. Since only low quality borrowers are selling

equity claims and engaging in production, the equity price today is indeed low, the economic output is

limited, and the asset resale price in turn is depressed. There is also a ‘pooling’ region where productivity

is high and adverse selection is mild. In this region, both types borrow against their equity claims to

employ the productive technology, the equity price is high, the output is large and the asset price is,

in turn, booming. For the intermediate values of productivity and adverse selection, there are multiple

equilibria where both separating and pooling equilibria coexist.

Interestingly, asset price in this economy is more than the sum of the discounted future dividends

because the collateral asset commands a liquidity price premium. The borrowers pledge the asset’s

dividend flows and resale price to overcome pledgability constraints and raise funding for production.

The liquidity premium reflects a technology multiplier since the funds are more valuable when the
3The benchmark case can be relevant for under-developed financial markets where sophisticated securities are not

available and borrowers can only pledge the entire cash flow from the collateral asset.
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technology is more productive. This connection between productivity and liquidity premium might

seem counter-intuitive because the long-lived asset is not a direct input in the production technology

per se and serves only as a collateral to obtain funding liquidity. This theoretical finding about the

technology multiplier might speak to the meteoric rise of asset price during the productivity boom we

observed during the mid 2000s.

Next we turn to optimal security design. It is well understood in the literature that in a static economy

optimal security design improves liquidity. In a dynamic economy, we demonstrate that optimal security

design also eliminates the multiple equilibria fragility. To our knowledge this new role for security design

has not been discovered till now. To state this result more explicitly, let us first describe our notion of

liquid vs. illiquid security. We call a security liquid if both borrower types sells it. A liquid security

commands a higher price so more funding can be raised by borrowers to scale up production. We call a

security illiquid if only the low type sells it. An illiquid security has a lower price so less funding can be

raised by low type borrowers to scale up production.

Our main result on optimal security design shows that there is a unique stationary dynamic security

design equilibrium where the optimal design involves a short-term liquid collateralized debt tranche, ie.,

short-term repo, and the residual illiquid equity tranche.4

In the optimal security design, the issuer chooses the face value of the repo debt as large as possible

in order to raise the maximum amount of liquidity. As the face value increases, the repo debt tranche

incorporates more of the high dividend states. If the face value is too high, the high quality borrowers,

who know these states are likely, might prefer to retain the debt tranche rather than pooling with the

low quality borrowers to get a discount price for these states. Hence the security design pushes the face

value of the repo debt up to the point where the high quality borrowers are indifferent between selling

versus retaining the asset-backed debt tranche.5 A key point is that the repo tranche always incorporates

the resale price of the collateral. As the collateral price increases, selling the repo tranche becomes more

attractive to the high quality type, allowing the security designer to increase the face value of the repo.

The dynamic security design equilibrium Pareto dominates the separating equilibria in the equity-

only benchmark case and selects the pooling equilibrium in the multiple equilibria range. To see why,

suppose a repo debt backed only by the future resale price is introduced. Since this debt is free of adverse

selection problem, both borrower types will issue it to take advantage of the productive technology. Since
4In the model, dividend is independently distributed over time, so that the adverse selection problem only exists at the

beginning of each period.
5Selling the debt tranche generates value through the technology multiplier. However, selling it is less attractive for the

high type as he must pool with the low type and accept a lower price.
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the technology multiplier is engaged in valuing the liquid debt, the collateral asset price rises. The higher

asset price will allow the borrowers to increase the face value of repo debt by incorporating some of the

high dividend states. The face value will increase until the high quality borrowers become indifferent

between selling the liquid repo debt versus retaining it. In the separating equilibrium region of the

equity-only benchmark case, this process leads to a liquid repo debt tranche that is traded by both

types and improves the welfare of the borrowers. In the multiple equilibria region it selects the pooling

equilibrium – that is, issuers sell the entire equity-like “pass-through” debt. In this unique security design

equilibrium, both liquidity and production output are higher than the eliminated separating equilibrium.

The optimal security design in our model speaks to the empirical observation that most of the repo

funding extended by money market mutual funds and security lenders is collateralized with Treasury or

Agency-backed securities (Krishnamurthy, Nagel, and Orlov, 2014). Our setup on repo contracts backed

by common collaterals captures that fact. The terms of the repo contract such as interest rates and

haircut as well as the collateral asset price are endogenously determined in our model. Comparative

analysis on these equilibrium variables allow us to generate some unique predictions and testable impli-

cations. For example, our model predicts that the magnitude of repo haircut has two components: the

productivity of the borrower’s technology, and the value of the equity tranche relative to the value of

the collateral. The first component arises because borrowers, who price the collateral asset, value the

liquidity service the asset provides, while lenders, who price the loan, does not value the liquidity service.

It reflects heterogeneous valuation over the collateral assets among agents. This component relates to

the difference in opinion literature on leverage starting with Geanakoplos and Zame (2002), Geanakoplos

(2003), Fostel and Geanakoplos (2012), and Simsek (2013). The second component arises because of

information friction (and/or adverse selection). This component has been emphasized by Dang, Gorton,

and Holmström (2011) and Gorton and Ordonez (2014). Interestingly, the repo rate in our model is free

of the adverse selection risk since repo debt is liquid and both high and low quality borrowers partici-

pate in this market. Nevertheless, repo debt is risky and repo rate is determined by the default risk of

the repo contacts (which is related to the face value of the repo contract) and the demand for funding

liquidity (which is related to the productivity). Our model also generates predictions on commonly used

portfolio repos, which are repo contracts backed by a portfolio of collateral assets. It predicts that when

the fraction of safe asset in the collateral pool increases, repo contract terms improve since the level

of adverse selection is lowered. Not only our theory offers a new perspective on how adverse selection

affects of the terms of short-term repo contracts, it also has implications on how asset-backed liquidity

variables such as the volume, asset prices, asset price liquidity premium, haircuts/leverage, interest rates,
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liquidity premium, vary over productivity boom-bust cycle. These implications are based on two exam-

ples of the theory: one is to model the asset quality, ie., dividend payoff using a two-point distribution

(high probability payoff for high quality borrowers and vice versa) where we are able to derive a closed

form solution; the other is to model the asset quality and the productivity as Markov processes where

numerical results are derived. For example, we find that when adverse selection is severe, repo haircut

is more sensitive to asset quality than repo rate, generating a testable hypothesis. A numerical example

shows an amplification of productivity shocks: a percentage increase in productivity leads the asset

price to increase by more than 10 percentage points, generating a finding worthy of a further calibration

exercise fitting the macro data.

In an extension of the paper, we demonstrate how repo runs might occur in this economy. This

hinges on whether borrowers have the flexibility to adjust the security design at the beginning of each

period. In the main part of the paper, we show that there is a unique equilibrium when borrowers

has this flexibility. This implies that the over-night repo market could be robust to run. In practice,

repo contract terms may not be updated daily because of associated administrative costs or simply

inattention. When there is rigidity of repo contract, that is, the face value of the repo contract does not

get updated with a certain probability at the beginning of each period, a run equilibrium might emerge

and the liquidity of the repo market may deteriorate. Repo runs in our setup are dynamic feedback

runs and hence distinct from bank runs as in Diamond and Dybvig (1983), the type of repo runs due to

repo market microstructure features, liquidity need of the lenders as well as the capital position of the

borrowers as in Martin, Skeie, and Von Thadden (2014) or the collateral crisis due to the endogenous

information production studied in Gorton and Ordonez (2014). Repo runs in our model might unfold

slowly and are marked by two stages. The initial stage is when the liquid security design equilibrium

switches to the sunspot equilibrium where the pessimistic belief of an upcoming sunspot (associated with

worsening fundamentals) is triggered. The second stage is when a sunspot actually hits the economy.

When the economy enters a sunspot equilibrium, haircut of the repo contract immediately increases,

because investors anticipates that the repo contract may be illiquid when a sunspot hits the economy.

At the same time, the asset price and the repo volume are also lowered. When the sunspot hits, they

decrease further, while the haircut increases further. The drop in repo liquidity is severe when the

sunspot hits, because the repo backed by high quality collateral stops circulating entirely. Our model of

runs also maps out the recovery process of asset-backed liquidity. When the contract terms are updated,

the update restores investors’ sentiment about the liquidity of this market, the price and the volume

recover partially, to the levels right after equilibrium switch. The fluctuation driven by sunspots may
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take place repeatedly, until the sunspot equilibrium cannot be sustained as an equilibrium. It is possible

that the asset-backed liquidity evaporates as in the ABCP market if adverse selection becomes so severe

that only low quality borrowers are in the market.

Related literature. The seminal work of Akerlof (1970) started the literature on lemons market to

study the impact of adverse selection on trade volume and efficiency. There is a long lineage of security

design literature including Leland and Pyle (1977); Myers and Majluf (1984); DeMarzo and Duffie (1995);

and DeMarzo and Duffie (1999) that examine informed sellers’ incentive to issue optimal security to signal

asset quality. For example, in DeMarzo and Duffie (1999), a closely related paper, retaining equity is a

signal for quality. By comparison, ours is a competitive screen model and securities are designed to screen

issuer types. Therefore implications are different. In ours, both borrower types issue debt while only the

poor quality type issues equity. Moreover, extending the static setup to a dynamic environment allows

us to discover that security design helps to mitigate adverse selection problem not only by increasing

the amount of liquidity but also by eliminating fragility.

Our result that both borrower types issue debt and debt is liquid is reminiscent of the finding in

Gorton and Pennacchi (1990)where they find that low-information-intensity (debt-like) securities protect

sellers from the risk of selling only high-quality assets when trading with an informed buyer. Boot and

Thakor (1993) also find that the optimal security design is implementable by a liquidity debt contract

and an equity contract, and others. However, the motivation is to stimulate information production

using information sensitive securities. This literature has now progressed to incorporate endogenous

asymmetric information in optimal security design problem such as Yang (Forthcoming); Dang, Gorton,

and Holmström (2013); and Farhi and Tirole (2015). That information friction affects moneyness of

an asset has also been studied by Lester, Postlewaite, and Wright (2012) and Li, Rocheteau, and Weill

(2012).

There has also emerged a literature on heterogeneous information and security design such as Ellis,

Piccione, and Zhang (2017). Under diverse beliefs, however, there is no fragility under dynamic environ-

ment. There will be speculative premium under diverse beliefs but it is difficult to investigate financial

fragility unless exogenous changes in beliefs are introduced. With adverse selection as in our model, the

changes in market liquidity or “beliefs” can be endogenous.

By studying optimal collateral-backed security design and funding liquidity, our paper is also related

to a long line of collateral literature in money and macroeconomics starting with the seminar work of

Kiyotaki and Moore (1997) and recent studies on the prevalence of the use of repo contracts in funding

financial institutions such as Geanakoplos and Zame (2002), Geanakoplos (2003), Fostel and Geanakoplos
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(2012), Simsek (2013), and Gottardi, Maurin, and Monnet (2017). Increasingly attempts are made to

incorporate financial frictions in the macroeconomic models or studying macroeconomic implication of

financial friction such as collaterals to understand the boom and bust cycles. The recent papers include

but are not limited to Gorton and Ordonez (2014); Kuong (2017); Parlatore (Forthcoming); and Miao

and Wang (2018). Kurlat (2013) and Bigio (2015) study financial frictions that arise endogenously from

adverse selection in a dynamic production economy.

Our paper is also closely to Plantin (2009), Chiu and Koeppl (2016), Donaldson and Piacentino

(2017); and Asriyan, Fuchs, and Green (2017), where multiple equilibria is dynamic in nature. Although

Asriyan, Fuchs, and Green (2017) focuses on sentiment-driven multiple equilibria and differs from ours

in setup and implication, the insight that asset price and liquid is closely linked is very close to ours.

Our insight on the implication of security design on the dynamic fragility is important contribution to

this literature.

2 The Model Setup

In this economy, there are two types of agents. One type has access to a technology to produce an

intermediate good. This technology is constant-returns-to-scale and allows the agent to produce one unit

of the intermediate good from one unit of labor. However, the intermediate good does not provide direct

utility. The other type possesses a “productive” technology that produces a consumption good using the

intermediate good through a constant returns-to-scale technology. This technology is productive because

an input of one unit of intermediate good generates z > 1 units of consumption good, and we term it the

z-technology. We call the agent who has the ability to produce the intermediate good the type I agent

and the agent who possesses the z-technology the type O agent.6 In addition, both types of agents have

access to a “basic” technology to produce consumption goods. This basic technology produces one unit

of consumption good using one unit of labor.7

The assumption on the technologies in the economy is made to capture the gain from trade between

the two types of agents. Intermediate goods can be interpreted as any inputs to the z-technology such

as capital, equipments, or intermediate products. The O type agents (eg., entrepreneurs) would like to

borrow as much intermediate goods as possible from the I type agents (eg., investors or suppliers) to

engage in the productive z-technology. However, agent O’s promise to pay back is not enforceable. This
6Here, O stands for owner since, as we show later, agent O will own a productive asset and I stands for investor since

agent I will invest in asset based securities.
7The framework of dynamic analysis is borrowed from Lagos and Wright (2005).
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is one of the key frictions that the dynamic economic mechanisms in our model are aimed to overcome.

Timing. The economy is set in discrete time and lasts forever. Each period has three dates. At date

1, the intermediate good is produced by agent I. At date 2, consumption good is produced via the z-

technology using the intermediate good and/or the basic technology using labor. At date 3, consumption

takes place. Any leftover intermediate or consumption good perishes at the end of the period.

Utilities and discounting. An agent’s utility in period t is given by Ut(x, l) = x − l where x is the

amount of consumption good consumed and l is the amount of labor supplied by the agent. There is no

discounting between sub-periods. Agents discount periods at a rate β, with 0 < β < 1.

Productive Asset and Asymmetric Information. There is a productive asset in the economy, which

pays s units of dividend in terms of consumption good at date 3. The total supply of the asset is A. With

probability λ, the dividend of the asset follows distribution FL ∈ ∆[sL, sH ], with 0 ≤ sL < sH . With

probability 1− λ, it follows distribution FH ∈ ∆[sL, sH ]. We assume that FH first order stochastically

dominates FL. The quality, denoted by Q ∈ {H,L}, represented by λ (Q = L with probability λ), is

i.i.d. over time. More generally, asset quality could be persistent over time. We will consider that case

in later sections.

As mentioned earlier, in a frictionless environment, since the returns to scale of the z-technology are

z > 1, agent O would like to borrow unlimited amount of intermediate goods from the I agents at the

beginning of the period (i.e., date 1) in order to produce unlimited amount of consumption goods at date

2. However, agent O’s promise to pay back is not enforceable. The productive asset provides liquidity

because it can be used as collateral to back up agent O ’s promise to pay back. If agent O owns the

asset, she can borrow intermediate goods from the I agents at date 1 using both the dividend and the

resale value of the asset at date 3 as collateral. This is possible because if agent O does not fulfill her

promise, I agents can seize the collateral asset.

However, the use of this collateral asset for liquidity service is limited by an additional friction in our

economy, which is asymmetric information. We assume that the quality of the collateral asset is privately

observed by agent O at the beginning of the period (i.e, at date 1 of each period). This introduces an

adverse selection problem which plays a key role in our analysis. The assumption that agent O is

better informed of the collateral asset’s quality can be motivated or micro-founded in several ways.

As demonstrated later, agent O would purchase all collateral assets in equilibrium because her need of

liquidity to kick start the z-technology. Consequently, she has a stronger incentive to acquire information

on the collateral asset. Empirically, one can also motivate the superior information advantage of the

asset owner by the fact that the asset quality can be easily tempered with by the owners. Historically,
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when both silver and gold were used as collaterals, borrowers have incentive to debase these collaterals or

use counterfeits, various technologies (eg., special weighting) were adopted to assess the purity of these

collaterals. In the modern environment, the possibility of pledging collateral multiple times creates

similar adverse selection problems.

In this asymmetric information environment, the asset provides only limited amount of liquidity since

the amount that agent O can borrow is bounded by the expected dividend and the resale value of the

asset. As we will show in our baseline case, when agent O has superior information about the asset

quality, resulting adverse selection tightens the liquidity constraint. In this case, agents’ expectations

about the asset price can make the adverse selection problem more or less severe, leading to multiple

equilibria.

In this environment with adverse selection, agent O can improve liquidity available at the beginning

of the each period by optimally designing securities which are used to exchange for the intermediate

goods at date 1 and deliver consumption good payments at the end of each period. A security, hence

is a state-contingent promise at date 1 of consumption good payment at date 3. Denote the payoff

from security j at state s to be yj(s). Because agent O cannot commit to pay, the security must be

backed by the dividend and the ex-dividend price of the asset, denoted by φt. The set of all feasible

asset backed securities at time t for a given price φt is It (φt) ⊆ {y : y(s) ≤ s + φt,∀s ∈ [sL, sH ]}.

The set It (φt) captures any potential exogenous restrictions on the set of feasible securities. One

possible set, It (φt) = {y : y(s) = s + φt,∀s ∈ [sL, sH ]}, consists of only a single “pass-through”

security which promises the dividend and resale value of the collateral asset. A second possibility,

It (φt) = {y : y(s) increasing in s, y(s) ≤ s + φt,∀s ∈ [sL, sH ]}, is the set of all monotone securities

backed by the collateral asset. The monotonicity restriction is motivated by realism since the payoff

from any loan collateralized directly by the asset or any other collateralized loan is increasing in s.

A security design is a finite selection of securities that are backed by the asset.

Definition 1. Given the asset price φt, a security design consists of a finite set of securities Jt (φt) ⊆

It (φt).

When j ∈ Jt (φt) , we say that security j is available.

Trading environment. There are two types of markets in this economy. After state is realized at the

end of each period t (ie., at date 3), a centralized market for the collateral asset opens for trading. The

asset price, denoted by φt, is determined in this centralized market.

In addition, at the beginning of each period t (ie., at date 1), there are decentralized markets for

intermediate goods. Specifically, for each available security, there is a decentralized sub-market where
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agent O meets at least two randomly chosen I agents to trade asset-based securities in exchange for

intermediate goods. We assume that agent Is simultaneously make price offers per unit of the security.

Agent O then observes the price offers and decides the quantity of the security to allocate to each agent

I. Since each unit of the security must be backed by one unit of the asset, the total quantity of the

security sold by agent O must be less than or equal to the amount of asset owned by agent O in that

period. If agent O decides to sell a positive amount of the security, she allocates the amount of the

security that she would like to sell to the agent I who offers the higher price. If several agent Is are tied

for the highest offer, agent O equally splits the amount that she would like to sell between them.

The following figure summarizes the time and events in this setup.

Period t Period t+ 1

1 2 3 1 2 3

Production: Intermediate
goods

Consumption
goods

via z technology

and basic technology

Consumption
occurs

Markets: Securities traded
in decentralized

Asset traded
in centralized

Information: FH or FL privately
observed by O-agents

State is
realized

Figure 2: Timeline

3 Security Design Problem

3.1 Defining the security design problem

A few notations are in order before the definition. We denote the value function of agent O at date 1 of

period t by Vo,t(a, µo,t) and her value function at date 3 of period t by W s
o,t(c, a) at state s, where c is

the amount of consumption goods, a is the amount of the asset that she brings into period t, and µo,t

indicates the set of available securities. Similarly, we denote the value function of agent I in submarket

for asset j by V jI,t(a) and his value function in the last sub-period of period t to be W s
I,t(c, a). The

security design problem is defined based on the characterization of these value functions.
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Agent O’s value function at date 3 of period t is solved by

W s
o,t(c, a) = max

x,l,ã≥0
x− l + βVo,t+1(ã), (1)

s.t.x+ φtã = c+ (s+ φt) a+ l.

Likewise, Agent I’s value function at date 3 of period t is solved by

W s
I,t(c, a) = max

x,l,ã≥0
x− l + βVI,t+1(ã), (2)

s.t.x+ φtã = c+ (s+ φt)a+ l.

From (1) and (2), it is easy to see that W s
o,t and W s

i,t are linear in c and a since

W s
o,t(c, a) = c+ (s+ φt) a+W s

o,t(0, 0), (3)

W s
I,t(c, a) = c+ (s+ φt) a+W s

i,t(0, 0). (4)

Next, we characterize V jI,t(a). We denote by yjt (s) the payoff of asset j in state s and assume that

that the high type values the security weakly more than the low type, i.e., ELy
j
t (s) ≤ EHy

j
t (s).

8 We

denote by Rjt the ratio of the expected value of the security under the low versus the high distribution,

i.e., Rjt ≡ ELy
j
t /EHy

j
t As this ratio increases, the expected values of the asset under the low versus the

high distribution become closer, and hence the adverse selection problem becomes less severe.

Recall that agent Is simultaneously make price offers per unit of the security, agent O observes the

price offers and decides how much of the security to allocate to each agent I.9 Hence, in principle, the

value function depends on the offer that agent I makes in sub-market j.

Consider an arbitrary agent I who participates in submarket j and bids for security yjt at per-unit

price qjt . If this is the highest bid, he receives aQt (qjt ) ∈ [0, a] units of security j and pays qjta
Q
t (qjt ) units

of intermediate goods in return. Agent I’s expected payoff from this bid is given by:

V jI,t(a) =

∫
λ
[
−qjtaLt (qjt ) +W s

I,t(a
L
t (qjt )y

j
t (s), a)

]
dFL (s)

+

∫
(1− λ)

[
−qjtaHt (qjt ) +W s

I,t(a
H
t (qjt )y

j
t (s), a)

]
dFH (s)

=

∫
λ
[
−qjtaLt (qjt ) + aLt (qjt )y

j
t (s)

]
dFL (s) +

∫
(1− λ)

[
−qjtaHt (qjt ) + aHt (qjt )y

j
t (s)

]
dFH (s) (5)

+

∫
W s
i,t(0, a)d [λFL (s) + (1− λ)FH (s)]

8This assumption is automatically satisfied for monotone securities.
9In this formulation agent O has all the bargaining power, but this is not crucial for any of our results.
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where the second equality is obtained by substituting (4) using the fact that W s
i,t are linear in c and a.10

If qjt is not the highest bid, this agent’s expected payoff is given only by the third term of the second

equality since he is not allocated any of the security in sub-market j.

The winning bid qjt must satisfy two conditions. First, due to Bertrand competition I agents make

zero surplus in expectation. This means that qjt must equal the expected value of a unit of the security

given the expectation of I agents about the quantities that will be sold by the two types. Second, these

expectations must be incentive compatible in the sense that if I agents anticipate that a given type of the

O agent will sell a positive amount of the security at per-unit price qjt , that type must find it profitable

to sell the security given the price. The next proposition shows that among the prices that satisfy the

zero surplus and incentive compatibility conditions, Bertrand competition selects the highest one.

Proposition 1. If Rjt > ζ ≡ 1−(z−1)/λz, in submarket j the price of the security is qjt = λELy
j
t +(1−

λ)EHy
j
t and aLt (qjt ) = aHt (qjt ) = a. If Rjt < ζ then the price of the security is qjt = ELy

j
t and aLt (qjt ) = a

and aHt (qjt ) = 0.11

Proof. Let qj = λELy
j
t + (1− λ)EHy

j
t . Note that zqj − EHyjt T 0 iff Rjt T ζ.

Consider the case Rjt > ζ. Suppose that the equilibrium price qjt is strictly less than q. In this case

an I agent can deviate and bid q − ε where ε > 0. For ε small enough, z (q − ε) − EHyjt > 0. Hence

at this price both types sell a units of the security and the deviation generates strictly positive surplus.

This means that the equilibrium price must be at least q. At price q or above both types will sell a units

of the security, hence the only price that is consistent with zero profit condition is qjt = q.

Now consider the case Rjt < ζ. In this case high type will sell the security only if qjt is sufficiently

larger than q. However, at prices above q, I agents make negative profit. Hence equilibrium price must

be below q. If qjt is below
(
ELy

j
t

)
/z then neither type sells the security. In this case, one of the I agents

can deviate and bid ELy
j
t − ε where ε > 0. For ε small enough, z

(
ELy

j
t − ε

)
−ELyjt > 0 so the low type

sells the security and the deviating agent makes strictly positive surplus. If qjt is at least
(
ELy

j
t

)
/z but

less than ELy
j
t then the low type sells the security to the I agents who bid that price. In this case, one

of the I agents who bids ELy
j
t or less can deviate and bid slightly above qjt . This agent then buys the

10If qjt ties with k− 1 other highest bids, his expected payoff is as above except that aQt (qjt ) terms are now divided by k.
11When Rjt = ζ there are multiple equilibria. In particular both pooling and separating (and even semi-separating)

equilibria are possible. To simplify exposition in this knife edge case we will select the pooling equilibrium. To see why

there are multiple equilibria, suppose I agents bid ELy
j
t , the low type sells a units and I agents make zero profit. Since

Rjt = ζ, to attract the high type, an I agent must deviate to bidding at least λELy
j
t + (1− λ)EHyjt . But this deviation is

not profitable since by deviating an I agent can not make positive surplus. Hence both ELy
j
t and λELy

j
t + (1− λ)EHyjt

can be sustained as equilibrium bids.
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security alone and increases her surplus. At prices greater than equal to ELy
j
t (and below q), the low

type alone sells a units of the security. Hence the only price that is consistent with zero profit condition

is qjt = ELy
j
t .

This proposition shows that when Rjt is above the threshold ζ, the adverse selection problem is not

too severe and both types sell a units of the security. In this case the security price is the pooling price

qjt = λELy
j
t + (1−λ)EHy

j
t . When Rjt is below the threshold, the adverse selection problem is too severe

and only the low type sells a units of the security. In this case the security price is the separating price

qjt = ELy
j
t .

Now we are ready to state the optimal security design problem. Agent O chooses security design

Jt (φt) ⊆ It (φt) to maximize

Vo,t(a) = λ

∫
W s
o,t

 ∑
j∈Jt(φt)

aLt (j)
[
zqjt − y

j
t (s)

]
, a

 dFL(s) (6)

+ (1− λ)

∫
W s
o,t

 ∑
j∈Jt(φt)

aHt (j)
[
zqjt − y

j
t (s)

]
, a

 dFH(s)

= λ

∫  ∑
j∈Jt(φt)

aLt (j)
[
zqjt − y

j
t (s)

]
+ a (s+ φt)

 dFL(s)

+ (1− λ)

∫  ∑
j∈Jt(φt)

aHt (j)
[
zqjt − y

j
t (s)

]
+ a (s+ φt)

 dFH(s) +W s
o,t(0, 0),

subject to ∑
j∈Jt(φt)

yjt (s) ≤ s+ φt,∀s, (7)

qjt =

λELy
j
t + (1− λ)EHy

j
t , if Rjt ≥ ζ,

ELy
j
t , if Rjt < ζ,

(8)

aLt (j) = a and aHt (j) =

a, if Rjt ≥ ζ,

0, if Rjt < ζ.

(9)

The security design is done ex-ante, before Agent O learns the asset quality. At the security design stage,

Agent O simply decides which sub-markets are open for trading but she cannot commit to trading in a

given sub-market. The first constraint ensures that the security design is feasible in the sense that Agent
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O should be able to fulfill her promises in every sub-market and in all states. The second and third

constraints say that prices and quantities in the decentralized security markets must be the equilibrium

outcomes characterized in Proposition 1.

We now state the equilibrium definition for the dynamic security design problem.

Definition 2. A dynamic stationary equilibrium consists of asset prices φt, security design Jt (φt) ⊆

It (φt) and security prices qjt for each j ∈ Jt (φt) such that (i) Jt (φt) solves the security design problem

(6), (ii) security price qjt satisfies equation (8) and (iii) φt solves the Euler equation given by:

φt = β

z
∑
j∈Pt

qjt + λ
∑

j∈Jt(φt)\Pt

qjt

+ (1− λ)
∑

j∈Jt(φt)\Pt

EHy
j
t

 , (10)

where j ∈ Pt ⊆ Jt (φt) iff Rjt ≥ ζ.

4 The Baseline: Fragility of the Dynamic Lemons Market

In this section, we consider the benchmark case where Agent O secures liquidity only by selling Agent I

the collateral asset at the beginning of each period in exchange for intermediate goods as inputs for the

z-technology. We demonstrate that this economy is fragile and exhibits dynamic multiplicity in prices.

That is, we show that for a given price path there might be multiple equilibria in the decentralized

markets.

For this benchmark case we use the notion of equilibrium in Definition 2 except that we take the

collateral asset as the only available security. That is we set It (φt) = {y : y(s) = s+ φt,∀s ∈ [sL, sH ]}.

Hence the optimization problem in (6) becomes trivial since there is only a single feasible security which

is the asset itself, but in equilibrium (8) and (10) must still be satisfied. The payoff of the collateral

asset in state s is s + φt. Hence, by (8) the price of the collateral asset in the decentralized market is

given by qPt = φt + λELs + (1 − λ)EHs if (ELs + φt)/(EHs + φt) ≥ ζ and qSt = φt + ELs otherwise.

Using (10) we obtain the price of the collateral asset in the centralized market as

φt =

βzq
P
t+1, if ELs+φt+1

EHs+φt+1
≥ ζ,

β
[
zλqSt+1 + (1− λ) (φt+1 + EHs)

]
, if ELs+φt+1

EHs+φt+1
< ζ.

(11)

Plugging qPt and qSt into (11) we observe that a pooling equilibrium, in which both types of agent O sell

the asset in the decentralized market for the intermediate goods, exists if and only if

ELs+ φP

EHs+ φP
≥ ζ, (12)
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where asset price in the pooling equilibrium is given by,

φP = βz(φP + λELs+ (1− λ)EHs),

φP =
βz (λELs+ (1− λ)EHs)

1− βz
. (13)

Similarly, a separating equilibrium in which only the low type of agent O sells the asset in the decen-

tralized market for the intermediate goods, exists if and only if

ELs+ φS

EHs+ φS
< ζ, (14)

where asset price in the separating equilibrium is given by,

φS = β
[
λz
(
φS + ELs

)
+ (1− λ)

(
φS + EHs

)]
,

φS =
β [λzELs+ (1− λ)EHs]

1− β(λz + 1− λ)
. (15)

Note that the pooling price is always higher than the separating price:

φP =
βz [λELs+ (1− λ)EHs]

1− βz
> φS =

β [λzELs+ (1− λ)EHs]

1− β(λz + 1− λ)
.

Furthermore, the discounted value of future dividends is β (λELs+ (1− λ)EHs) / (1− β) . It is easy

to see that, since z > 1, the price for the asset is strictly higher than the discounted value of future

dividends in both scenarios. The difference is justified by the collateral service provided by the asset.

The pooling price is higher because the collateral service is more valuable in the pooling equilibrium of

the decentralized market as both types use the collateral to purchase the intermediate goods. Moreover,

when z is higher, there is more demand for collateral which justifies a higher asset price.

Since the pooling price is higher than the separating price, for the same underlying parameters, there

maybe multiple price equilibria. That is, the separating price φS can be consistent with a separating

equilibrium and the pooling price φP can be consistent with a pooling equilibrium in the decentralized

market.

Corollary 1. The condition for price multiplicity when agent O uses the productive assets as collateral

for intermediate goods is

1− z − 1

z

1

λ (1− β)
<
ELs

EHs
< 1− z − 1

z

1

λ (1− β + β (1− λ) (z − 1))
. (16)

Proof. By Proposition 1 the condition for price multiple equilibria is,

ELs+ φS

EHs+ φS
< ζ ≤ ELs+ φP

EHs+ φP
.
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Plugging for φS and φP we obtain the condition for multiplicity in 16. Hence for intermediate values

of ELs/EHs both price equilibria exist.

The existence of multiple price equilibria is due to a dynamic feedback loop. If agents anticipate

the asset to be traded in a pooling equilibrium in the decentralized market, the asset price is high. In

turn, when the price is high, the high type O agent is willing to pool. Conversely, if agents anticipate

the asset to be traded in a separating equilibrium in the decentralized market, the asset price is low. In

turn, when the price is low, the high type O agent keeps the asset. The beliefs are self-fulfilling. We

show next security design helps to eliminate this type of fragility in the economy.

5 Dynamic Security Design with Monotone Securities

In this section we restriction attention to monotone securities and solve the security security design

problem given in ((6)). We show that agent O can use security design to overcome the fragility of the

price equilibrium that arises when agents can only trade the underlying asset.

5.1 Solving for Optimal Security Design

As a preliminary step, we first show that optimal security design involves at most two securities. One

security is always liquid and the other one is illiquid.

Lemma 1. If two securities yj and yk are both liquid (illiquid) then yj + yk is also liquid (illiquid).

Moreover, if a security design involves yj and yk, replacing the two securities by their combination yj+yk

is also a feasible security design and provides the same payoff to agent O. Hence, w.l.o.g. we can restrict

attention to security design that involves at most two securities, a liquid and an illiquid one.

According to 1, we focus on security design with at most one liquid and one illiquid tranches. Note

that when a liquid and an illiquid security are combined the resulting security might be liquid (illiquid)

and strictly improve (lower) agent O’s payoff. In fact, whenever there are two tranches and the liquidity

constraint is not binding for the liquid tranche, that is if ELyj > ζEHy
j , it is always possible to combine

part of the illiquid tranche with the liquid one and strictly improve agent O’s payoff. We state this

observation in the next lemma.

Lemma 2. If a security design is optimal and involves a liquid and an illiquid tranche, the liquid tranche

must satisfy the liquidity constraint with equality.
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Proof. From Lemma 1 we can restrict attention to security design with two tranches. Suppose a given

security design involves two tranches where yj is liquid which satisfies liquidity constraint strictly and yk

is illiquid. Now take yj + εyk and (1− ε) yk. This is a feasible design. If ε is small enough yj + εyk is

still liquid, and the new design improves agent O’s payoff.

Additionally, the feasibility constraint must always hold with equality. To see this suppose there are

two securities yjt and ykt where the former is liquid and the latter is illiquid and some of the dividend is

not incorporated into either security, that is, yjt (s)+ykt (s) < s+φ for a positive measure of states. If the

unused portion of the dividends is incorporated into the illiquid tranche then there are two possibilities.

If the illiquid tranche becomes liquid, agent O’s payoff increases since both types can now use the new

security to borrow. If the illiquid tranche remains illiquid, it still increases agent O’s payoff since the

low type can borrow more and the high type is still not trading the illiquid portion. Given Lemma 1

and the fact that the feasibility constraint must be binding, the designer’s problem can be simplified

into choosing a liquid tranche y(s) and an illiquid tranche s + φ − y (s) . Computing the prices of the

two tranches from (8) and plugging into (6) the optimal security design simplifies to:

max
y(s)

(z − 1) [λ(ELs+ φ) + (1− λ)EHy(s)] (17)

s.t.s+ φ− y(s) ≥ 0,∀s,

ELy(s)− ζEHy(s) ≥ 0,

y (s) is weakly increasing on [sL, sH ]. (18)

The first constraint above is the feasibility constraint and requires y (s) to be backed by the underlying

asset in every state. The second is the pooling constraint and guarantees that the high O type agent

sells a units of security y.

Clearly the liquid tranche in an optimal security design must satisfy y(s) ≥ φ for all s ∈ [sL, sH ].

Following Ellis, Piccione, and Zhang (2017), we write the monotone security y(s) as:

y(s) = φ+ sL +

∫ s

sL

x(j)dj,

where x(j) ≥ 0 for all j ∈ [sL, sH ].12 Let F̃Q(s) = 1− FQ (s) for Q ∈ {L,H} and s ∈ [sL, sH ]. Then,

EQy(s) = φ+ sL +

∫ sH

sL

F̃Q(j)x(j)dj.

12In our analysis we restrict attention to securities that can be written as the sum of an absolutely continuous increasing

function and countably many jump points.
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Hence, the optimal security design problem (17) is equivalent to the following:

arg max
x

∫ sH

sL

F̃H(s)x(s)ds, (19)

s.t.

∫ s

sL

x(j)dj ≤ s− sL,∀s ∈ [sL, sH ], (20)∫ sH

sL

[
F̃L(s)− ζF̃H(s)

]
x(s)ds+ (1− ζ)φ ≥ 0, (21)

x(s) ≥ 0,∀s ∈ [sL, sH ] (22)

In the above problem, (20) corresponds to the feasibility constraint, (21) corresponds to the pooling

constraint and (22) guarantees that the security is monotone.

The next proposition shows that, as long as fL(s)/fH(s) is decreasing, the optimal liquid tranche is

a debt contract with face value φ+D.

Proposition 2. Assume that fL(s)
fH(s) is decreasing in s. The optimal security is a unique standard debt

contract yD such that

yD(s) = φ+ min(s,D),

for some D ∈ (sL, sH ].

To prove this proposition we use the Lagrangian for the optimization problem (19) and proceed in

three steps. First, we show that when the dividend is above a cutoff x (s) = 0 or equivalently y must

be flat. Second, we show that feasibility constraint must be binding at s whenever x (s) > 0. In other

words, y (s) = φ + s whenever the liquid security is increasing, thus it promises the resale price and

all of the dividend in such states. Finally, we show that there is a unique cutoff below which x (s) > 0

and above which x (s) = 0. The proof also shows that the optimal security cannot have jump points.

Together, these steps imply that the optimal liquid security must be a debt contract.

5.2 Characterizing the Optimal Liquid Security

Suppose the designer anticipates that the liquid security will be liquid as long as ELy/EHy ≥ ζ. In this

case, the prices of equity and liquid debt are

qE =

∫ sH

D

F̃L(s)ds,

qD = φ+ sL + λ

∫ D

sL

F̃L(s)ds+ (1− λ)

∫ D

sL

F̃H(s)ds
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Using Proposition 2 and plugging for ζ, the optimization problem in (19) and the associated constraints

(20)-(22) can be simplified as

max
D∈[sL,sH ]

∫ D

sL

F̃H(s)ds (23)

subject to

(z − 1)

[
φ+ sL + λ

∫ D

sL

F̃L(s)ds+ (1− λ)

∫ D

sL

F̃H(s)ds

]
≥ λ

∫ D

sL

[
F̃H(s)− F̃L(s)

]
ds, (24)

where the constraint is the condition for the both O types to pool and issue the liquid debt.

To complete the characterization of optimal liquid security we solve for the equilibrium given in

Definition 2. Note that the equilibrium boils down to solving (23) to find the optimal debt level D ∈

(sL, sH ] given the asset price φ and determining the asset price φ in the centralized market through the

corresponding Euler equation:

φ = β

{
z (qD + λqE) + (1− λ)

∫ sH

D

F̃H(s)ds

}
. (25)

Proposition 3. Assume that fL(s)
fH(s) is decreasing in s. If ELs/EHs < 1 − (z − 1) /(zλ (1− β)), there

is a unique equilibrium where the face value of the debt D ∈ (sL, sH) and the asset price φ are solutions

to the following two equations:

φ =
z

z − 1
λ

∫ D

sL

[
F̃H(s)− F̃L(s)

]
ds−

∫ D

sL

F̃H(s)ds− sL (26)

φ =
β

1− βz

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ sH

D

F̃H(s)ds

}
(27)

Otherwise, there is a unique equilibrium where D = sH and φ = β
1−βz z [λELs+ (1− λ)EHs]. Moreover,

in the former case the equilibrium of the security design problem strictly Pareto dominates all equilibria

of the case where only the asset can be used as collateral. In the latter case, the equilibrium of the security

design problem strictly Pareto dominates the separating equilibrium of the case where only the asset can

be used as collateral and replicates the pooling equilibrium.

The formal proof of the proposition is in the Appendix. We provide an intuitive discussion of this

result and the economics mechanism behind it in the next subsection. The following corollary follows

immediately from Proposition 3.

Corollary 2. Under the welfare improving security design equilibrium, there is non-trivial tranching

when ELs/EHs < 1− (1− ζ)/(1− β).

21



↑ Liquidity

& Output

↑ φ

↓ Adverse

selection

↑ D

Figure 3: Asset Price φ and Liquid Debt Face Value φ+D

Note that this condition is the same condition for the left boundary of multiple equilibria region in

(16) indicating that security design improves the liquidity of the unique separating regime when only

equity is allowed to be traded.

5.3 Discussion of the Unique Equilibrium under Optimal Security Design

In this section we compare the results from Section 4 and the optimal security design problem of Section

5.2 and discuss the underlying economic mechanism. There are two important differences with the

dynamic lemons market when the optimal security design is introduced: 1) there is non-trivial welfare

improving tranching in the separating equilibrium region; and 2) the pooling equilibrium is selected as

the unique equilibrium in the multiple equilibria region.

Figure 3 illustrates the feedback loop between the asset price and the face value of debt that leads

to these differences. As the face value of the liquid debt φ+D increases, more of the dividend states are

pledged as collateral, more funds are raised for the productive sector and the real output goes up. This

in turn leads to an increase in the collateral asset price φ which is incorporated into the face value of debt

alleviating the adverse selection problem and allowing even more dividend to be pledged as collateral.

To understand this mechanism, we revisit the equilibrium construction in the optimal security design

equilibrium. Suppose that the security designer sells a liquid debt tranche with a face value φ+D and

an illiquid equity tranche. Note that the liquid debt tranche incorporates the resale price of the asset in

the face value since both types of debt issuers’ promise to return φ to the creditors is credible. Recall

that the asset price φ in the centralized market, after substituting for the prices of the debt and equity

tranches qD and qE , is given by the Euler equation:

φ =
β

1− βz

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ sH

D

F̃H(s)ds

}
, (28)
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where it is immediate that φ is increasing in D.

For any D let φ (D) be the asset price in the centralized market satisfying (28). Let φ = φ (sL) and

φP = φ (sH). Recall from Section 4 that φS is the asset price when only the low type sells the asset and

high type retains both the resale price and the dividend. In contrast, the asset price calculation in (28)

assumes that both types of borrowers sell (liquid) debt claims backed by the future resale price at the

minimal as collateral. As a result, φ > φS . On the other hand, φ (sH) is the same as the pooling price

φP . To see this, note that φP is calculated assuming that both types use the resale price and the entire

dividend of the asset as collateral which is equivalent to setting the face value of the liquid debt contract

to φP + sH . The solid line in Figure 4 depicts the function φ(D).13

Next consider the designer’s choice of D as a function of the asset price φ. Optimal security design

chooses D as large as possible making sure that the debt tranche is liquid. As D increases, the debt

tranche incorporates more of the high dividend states. If D is too high, the high type, who knows that

those states are likely, might prefer to retain the debt tranche rather than pooling with the low type.

Hence, the security design can push up D to the point where the high type is indifferent between selling

or retaining the debt. As the asset price increases, selling the debt tranche becomes more attractive to

the high type, allowing the security designer to increase D. Recall D (φ)+ φ be the optimal face value of

debt given the asset price φ.14 The dash dotted line in Figure 4 depicts the function D (φ) for the case

ELs/EHs < 1−(1−ζ)/(1−β).15 The figure illustrates that no matter how low the asset price is, as long

as tranching is feasible, optimal security design involves a debt tranche that incorporates some dividend.

That is, D
(
φ
)
> sL. This is a robust feature of security design that holds regardless of underlying

parameters. Also note that in the region depicted, adverse selection is severe, and even when the asset

price is as high as possible, high type prefers to retain the equity tranche. That is, D
(
φP
)
< sH .

Using these two curves, φ (D) and D (φ) we can find the equilibrium values of the face value of debt

and the asset price, (D∗, φ∗). The equilibrium is where the two curves intersect, ie, when φ∗ = φ (D∗)

and D∗ = D (φ∗). As Figure 4 shows, when ELs/EHs < 1− (1− ζ)/(1− β), the equilibrium face value

of debt D∗ ∈ (sL, sH) . This explains the first difference in the results of the two sections.

Perhaps more interesting is the case when ELs/EHs > 1 − (1 − ζ)/(1 − β) given in Figure 5 where
13Note that φ is strictly increasing for D ∈ [sL, sH), ∂φ/∂D is decreasing and is zero at D = sH .
14D (φ) is constructed as the unique solution to the following equation for a given φ

Tφ(D) = (z − 1)

[
φ+ sL +

∫ D

sL

F̃H(s)ds

]
− zλ

∫ D

sL

[
F̃H(s)− F̃L(s)

]
ds = 0

whenever there is a solution in [sL, sH ]. If there is no solution, ie, if T (sH) > 0, then D(φ) = sH .
15Recall that this is the left boundary of multiple equilibria region in 16. In this region adverse selection leads to a

unique separating equilibrium without security design.
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Figure 4: φ(D) and D(φ) when ELs/EHs < 1− (z − 1)/(sλ(1− β)).
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Figure 5: φ(D) and D(φ) when ELs/EHs > 1− (z − 1)/(sλ(1− β)).

the second difference arises. In this case, adverse selection is less severe and D(φ) function is shifted to

the right as the same asset price can sustain a higher face value of the liquid debt. When the asset price

is above a threshold denoted by φ̂, optimal security design sets the face value of debt to sH which is

captured by the vertical part of D(φ) function. The two curves intersect only at the upper right corner,(
sH , φ

)
. As a result, there is a unique equilibrium for the security design problem and it involves setting

the face value of debt at D∗ = sH .

The scenario depicted in Figure 5 may seem surprising since, as we illustrated in Section 4, without

the possibility of security design there are multiple equilibria in part of this region. With security design,

we obtain a unique equilibrium in which Agent O sells the entire “pass-through” debt tranche in a pooling
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equilibrium. To understand this, note that without security design the high type decides among only

two options: whether to use the resale price and dividend of the asset as collateral versus to retain both

parts. The outcome depends on the asset price. In the good equilibrium φ = φP and the high type

sells the asset. In the bad equilibrium, φ = φS and the high type retains the asset. The bad equilibrium

cannot survive with security design because even if the asset price were φS , the optimal security design

would be able to improve this separating equilibrium by creating a liquid debt tranche with the face

value φS , which in turns would increase the asset price above φS . Both graphs in Figures 4 and 5 in

fact show that the equilibrium asset price in the optimal security design equilibrium is not less than

φ = φ (sL) > φS (since the face value of the liquid debt is never below φ + sL). Given the increase in

the asset price to φ from φS , the high type’s participation constraint is relaxed, this leads to the optimal

security design to incorporate more of the dividend into the debt tranche (that is D > sL). A higher

D will increase the asset price φ and so on. This unravelling process is illustrated in Figure 5 with the

dashed arrows. As the figure shows when the asset price is φ, face value of the debt rises to φ+D
(
φ
)
.

When the face value of the debt increases to φ+D
(
φ
)
, the asset price further increases, and so on. The

process ends when price rises to φP .

The uniqueness of equilibrium does not depend on the restriction to issuing monotone securities. The

following proposition shows that if we allow Arrow securities against the dividend payment and always

pledge the resale value of the asset with the liquid securities, there always exists a unique equilibrium.

Proposition 4. Assume that fL(s)
fH(s) is decreasing in s. The optimal security design under Arrow secu-

rities has two tranches, the liquid tranche y1t(s) and illiquid tranche y2t(s).

y1t(s) = φ+ sL + (s− sL)I(s ≤ D),

y2t(s) = (s− sL)I(s > D).

If ELs/EHs < 1−(1−ζ)/(1−β), there is a unique equilibrium for the optimal design, where D ∈ (sL, sH)

and the asset price φ are solutions to the following two equations:

φ =

∫D
sL
sdFH(s)− z

∫D
sL
sdFλ(s)

z − 1
(29)

φ =
β

1− βz

[
z

∫
sdFλ(s)− (z − 1)(1− λ)

∫ sH

D

sdFH(s)

]
(30)

where Fλ(s) = λFL(s) + (1 − λ)FH(s). Otherwise, there is a unique equilibrium where D = sH and

φ = β
1−βz z [λELs+ (1− λ)EHs].

As in Proposition 3, in the former case, the equilibrium of the security design problem strictly Pareto

dominates all equilibria of the case where only the asset can be used as collateral. In the latter case, the
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equilibrium of the security design problem strictly Pareto dominates the separating equilibrium of the

case where only the asset can be used as collateral and replicates the pooling equilibrium.

5.4 Short-Term Repo Contract as an Implementation of the Optimal Secu-

rity Design

The optimal security design is implemented by a one-period repo contract, which is liquid, an equity-like

contract, which is illiquid. The terms of the contract are endogenous. Therefore, our theory offers a

perspective on how adverse selection affects of the terms of short-term repo contracts backed by long-term

assets. The face value of the repo contract is

φ+D.

The expected value of the repo contract for the lender is

qD = φ+ sL +

∫ D

sL

[
λF̃L(s) + (1− λ)F̃H(s)

]
ds.

The value of collateral underlying the repo contract in the beginning of a period to the productive

borrowers is

φ/β = zφ+ z [λELs+ (1− λ)EHs]− (1− λ) (z − 1)

∫ sH

D

F̃H(s)ds

The last term reflects the loss of value from the illiquid equity tranche.

We are now ready to state the terms of the repo contract, including repo rate, R, and haircut, h.

The definition of repo rate is straightforward:

R =
face value

expected loan value
− 1 =

D + φ− qD
qD

. (31)

When the expected quality of the debt contract is low relative to the face value, the repo rate is high.

The asset quality might have two opposing effects on repo rate. When asset quality worsens (improves),

expected loan value is lower (higher), leading to a high (low) repo rate. At the same time, the face value

of the debt might be adjusted down (up), implying a lower (higher) likelihood of default and resulting

in a lower (higher) repo rate.

The definition of repo haircut in our model is:
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h = 1− expected loan value
collateral value

=
(z − 1)qD + λzqE + (1− λ)

∫ sH
D

F̃H(s)ds

φ/β

≈ (z − 1)︸ ︷︷ ︸
productivity

+

∫ sH
D

[
λF̃L(s) + (1− λ)F̃H(s)

]
ds

φ/β︸ ︷︷ ︸
equity/collateral

, if z is close to 1. (32)

It is immediate that repo haircut has two components: the productivity of the borrower’s technology,

and the value of the equity tranche relative to the value of the collateral. The first component arises

because borrowers, who price the collateral asset, value the liquidity service the asset provides, while

lenders, who price the loan, does not value the liquidity service. The term z − 1 is the net value of

the liquidity service. It reflects heterogeneous valuation over the collateral assets between lenders and

borrowers in our model. This component is similar to the difference-in-opinion explanation of haircut

in Geanakoplos (2003) and Fostel and Geanakoplos (2012). The second component arises because of

information friction. It reflects how adverse selection affects the repo contract. This component has

been emphasized by Dang, Gorton, and Holmström (2011) and Gorton and Ordonez (2014).

6 Equilibrium Properties

In this section, we will look at properties of the optimal security with two examples.

Example 1: two point distribution. Suppose that the high quality asset pays one dividend with

probability πH and the low quality asset pays the dividend with probability πL, 0 < πL < πH < 1. In

this case, we obtain closed form solutions for the face value of the debt, D + φ, and the asset price, φ,

as follows:

D =
1

z
z−1λ (πH − πL)− πH

φ,

φ =
β [zλπL + (1− λ)πH ]

1− βz − β (1−λ)(z−1)πH
z
z−1λ(πH−πL)−πH

.

Given these expressions, we can clearly delineate the effect of asset quality in this economy. In this

particular example, we can demonstrate that the effect is monotone: dD
dλ < 0 and dφ

dλ < 0. Moreover, the

effect of productivity z can also be easily assessed. Because ∂D
∂z > 0, more debt is created in good times.

The sensitivity of asset price to productivity is amplified by the endogenous security design.
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The terms of the repo contract can also be expressed in closed form and allow us to examine the

determinants of repo rates and haircuts in this particular example. The repo rate is expressed as

R =

[
1− πH

λ(πH − πL)
+ 1

]
(z − 1) . (33)

It is immediate that repo rate is increasing in the productivity of technology z which measures the

demand for liquidity from the productive borrowers. It is also clear that in this particular example, repo

rate is increasing in λ. That is, a worsening (improving) asset quality leads to a lower (higher) repo rate,

indicating that the face value of the repo debt drops (increases) significantly to eliminate (incorporate)

risk states. To give another perspective on how repo rate is related to the riskiness of the cashflow and

information frictions, we rewrite the above expression using the incentive constraint of the high quality

seller of the repo contract, which is

zqD = πHD + φ,

and obtain

R =
φ+D

qD
− 1 =

φ+D

φ+ πHD︸ ︷︷ ︸
Cashflow Riskiness

z︸︷︷︸
Productivity

−1. (34)

Taking repo debt face value φ+D as given, (34) implies that the interest rate depends on the riskiness

of the high quality assets directly. The degree of information friction plays an indirect role through debt

face value. In fact, if the high quality asset pays dividend for sure, (33) implies that the repo rate R is

z − 1. In this extreme case the repo rate is insensitive to changes in asset quality and driven purely by

the productivity from the productive borrowers, which measures their liquidity demand. This example

illustrates that in our model, repo rates capture more the demand for liquidity and cashflow riskiness of

the repo contract and less so asset quality. This is due to the nature of security design: both high and

low quality borrowers participate in the repo market and repo debts are free from adverse selection.

The repo haircut in this example can be expressed as

h = 1− β +
β

1− λ(πH−πL)
(z−1)[(1−λ)πH+λπL]

. (35)

Suppose z and β are close to 1, from (35) we then have

h ' (z − 1)︸ ︷︷ ︸
Productivity

1− πH
λ (πH − πL)︸ ︷︷ ︸

Information Friction

+ 1− β.
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It demonstrates again the two components in repo haircut highlighted in equation 32: one is related

to the liquidity services of the collateral due to the technology productivity z and the other is related

to the ratio of equity tranche over the collateral asset which is pinned down by the information friction

λ (πH − πL). In this particular example, ∂h
∂λ = πH

λ2(πH−πL) (z − 1) > 0. That is, as the asset quality

deteriorates, haircut monotonically increases. Furthermore, haircut is also increasing in the quality

difference between high and low type πH − πL, a measure of severity of adverse selection. This example

shows again that the haircut of a repo contract is a robust indicator of information frictions over the

asset quality, reflecting the magnitude of adverse selection, while the interest rate reflects the cashflow

riskiness of the repo contract.

Example 2: Markov process for asset quality and project productivity In this example, we

introduce Markov processes for asset quality and project productivity. Assume that the aggregate state

x follows a Markov process, and parameters such as asset quality λ and productivity z are functions of

the state: where x ∼ G(·),

xt+1

= xt, with probability ρ,

∼ G(x), with probability 1− ρ.

We characterize the stationary Markov equilibrium. Given the state x, denote the end-of-period value

of asset price if tomorrow’s state is x to be φx and the face value of the liquid debt contract Exφ+Dx,

where Exφ ≡ ρφx + (1− ρ)Eφ, Eφ ≡
∫
φxdG(s). From optimal securitization decisions, summarized by

equation (A.1),

Exφ = ρφx + (1− ρ)Eφ

=
zx

zx − 1
λx

∫ Dx

sL

[
F̃H(s)− F̃L(s)

]
ds−

∫ Dx

sL

F̃H(s)ds− sL,

we have

φx = Eφ+
1

ρ

{
zx

zx − 1
λx

∫ Dλ

sL

[
F̃H(s)− F̃L(s)

]
ds−

∫ Dx

sL

F̃H(s)ds− sL − Eφ

}
. (36)

From the Euler equation at the end of the period, after the quality of the asset in the period is revealed,

φx =
β

1− βρzx

{
zx [λxELs+ (1− λx)EHs+ (1− ρ)Eφ]− (1− λ)(zx − 1)

∫ sH

Dx

F̃H(s)ds

}
(37)

(36) and (37) solve jointly (Dx, φx) for all states.

Suppose zx = z and λx = x ∈ [0, 1]. Then, with the process, the quality distribution is persistent

over time but may change with probability 1−ρ. When the quality distribution changes, the distribution
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Figure 6: Asset quality, asset price and terms of the repo contract. The parameter for the numerical

examples are as follows: high quality asset dividend follows a Beta distribution with (a, b) = (10, 1)

and low quality asset dividend follows a Beta distribution with (a, b) = (0.1, 1), λ ∼ U [0, 1], β = .95,

z = 1.01. The solid lines are drawn with ρ = .95 and the dashed lines with ρ = .90.

parameter λ will be drawn from distribution G. We focus on the stationary Markov equilibrium. Security

design and asset price depends on the quality distribution λ. Figure 6 illustrates how the collateral value,

face value, interest rate and haircut of the repo contract respond to shocks to quality distribution.

The upper-left side subfigure show the liquid premium in the asset price, defined as difference between

the actual asset price, φx, and the value of the asset without providing liquidity services, denoted ϕx, as

a percentage of ϕx.

ϕx =
β [(1− ρ)Eϕ+ λxELs+ (1− λx)EHs]

1− βρ
, Eϕ =

∫
ϕxdG(x).

It reflects the liquidity value of the asset. When λ increases, both D and ϕ decrease so that the value

of liquidity services provided by a collateral decreases. But because both high and low quality assets

provides some liquidity service, the liquidity value of collateral decreases more slowly than ϕx. This

is why the liquidity premium decreases in 1 − λ. This shows the liquidity gain from security design is
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higher for assets of lower average quality.

Both the haircut (bottom right subfigure) and the repo rate (bottom left subfigure) change non-

monotonically in λ. For haircut, this is because the value of the equity tranche is non-monotonic. When

the asset quality is on average good (high 1− λ), the information friction is small enough that there is

no need to tranche the cash flow. In this case, no illiquid equity tranche is created. Then, according

to (32), the haircut then only reflects heterogeneous valuation over liquidity between the borrower and

lenders. When the asset quality is on average bad, the repo tranche is also very likely to default and the

value of the equity tranche is small in that case. When the asset quality is in the intermediate range, the

adverse selection is severe and hence the ratio of equity tranche to the asset is high, resulting in large

haircut.

The interest rate on the repo contract, when there is a non-trivial equity tranche, is for the most

part decreasing in asset quality, reflecting the declining default probability and loss from default. The

uptick in the repo rate reflects the opposing effect of changing asset quality mentioned previously when

discussing equation (31): the face value of the debt might increase faster and incorporate more risky

dividend states relative to the expected value of repo debt as asset quality improves.

We observe that in this example when the illiquidity induced by adverse selection is strong (high

λ), haircut is very sensitive to changes in λ while the repo rate barely responds. This is qualitatively

consistent with empirical observations during the repo runs where there were rare changes in repo rates

but haircut skyrocketed.

The red dash lines correspond to lower persistence of the Markov process. When the quality distri-

bution is less persistent, the collateral value is less responsive to the current productivity. When the

high quality state is less persistent, adverse selection becomes more severe in that state, face value and

repo rate decrease and haircut increases in that state.

Alternatively, suppose λx = λ and zx = (1 − x)zL + xzH . Figure 7 illustrates that when firms are

productive, the asset price is high, more repo contracts are issued, repo rate increases and repo haircut

decreases.

Notice that a percentage point increase in productivity leads the collateral asset to increase in value by

more than 10 percentage point. This amplification of productivity shocks reflects the dynamic feedback

loop between the future collateral value and liquidity of the current market. Future collateral value

increases in future productivity. This reduces adverse selection in the current market, further increasing

the collateral value. As productivity increases, the face value of the repo contract backed by a collateral

increases, its interest rate increases and its haircut decreases. As before, the red dash lines correspond
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Figure 7: Productivity, asset price and terms of the repo contract. The parameter for the numerical

examples are as follows: high quality asset dividend follows a Beta distribution with (a, b) = (10, 1)

and low quality asset dividend follows a Beta distribution with (a, b) = (0.1, 1), λ = 0.99, β = .95,

z ∼ U [1.01, 1.02]. The solid lines are drawn with ρ = .95 and the dashed lines with ρ = .90.
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to lower persistence of the Markov process.

Example 3: Portfolio Repo to improve asset quality. In this example, we illustrate the observa-

tion that pooling safe assets with the collateral asset that suffers from information frictions can improve

the liquidity of the repo market. To derive analytical results, we use the two-point distribution used in

Example 1. Denote the fraction of safe assets in the asset pool to be ω. To keep the example tractable,

we assume that the asset pool pays 0 or 1 with probability. Given ω and the quality of the collateral Q,

the probability that the pool pays 1 is ω + (1 − ω)πQ. When there is a non-trivial debt tranche in the

optimal design, we can show that both asset price and the debt threshold of the asset pool are increasing

in ω.

D =
1

(1− ω)
[

z
z−1λ (πH − πL)− πH

]
− ω

φ,

φ =
β [ω (zλ+ (1− λ)) + (1− ω) (zλπL + (1− λ)πH)]

1− βz − β (1−λ)(z−1)[ω+(1−ω)πH ]

(1−ω)[ z
z−1λ(πH−πL)−πH ]−ω

.

This implies that the portfolio repo improves liquidity of the collateral asset.

The liquidity improvement also shows up in the term of the repo contract. Let the interest and

haircut of the pool be Rω and hω. R0 and h0

Rω = R0 =

[
1− πH

λ(πH − πL)
+ 1

]
(z − 1) (38)

That the interest rate does not respond to ω echoes what we learned in Example 1, that the interest

rate does not respond to information frictions.

The haircut

hω = 1− β +
β

1− λ(1−ω)(πH−πL)
(z−1)[ω+(1−ω)((1−λ)πH+λπL)]

.

Suppose z and β are close to 1

hω ' 1− β + (z − 1)

[
1−

ω
1−ω + πH

λ (πH − πL)

]
= h0 − ω(z − 1)

(1− ω)λ(πH − πL)
. (39)

The haircut decreases in ω implying that pooling the collateral asset with safe assets reduces information

friction. This theoretical finding corresponds with the empirical finding in Julliard et al. (2018) where

they find the haircuts of repo contracts backed by a portfolio including AAA rated assets receives

(statistically significant) 0.9% to 1.15% lower haircut compared with repo contracts without any AAA

rated assets, controlling for counter-party and collateral characteristics.
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7 Contract Rigidity and Repo Run

As we show in Section 5, optimal security design eliminates fragility and improves welfare. However,

the construction relies on the assumption that borrowers have the flexibility to design securities and

change the terms of the contracts at the beginning of each period. For example, our results imply that

when borrowers are able to update the terms of over-night repo contracts each day then the repo market

is robust to run. In practice, repo contract terms may not be updated daily because of associated

administrative costs or simply inattention. Next, we show that the induced rigidity may be a crucial

source of fragility.

Suppose that the security design, represented by the debt thresholdD, is not updated at the beginning

of each period. Instead, it remains the same with probability γ in each period. Suppose that when the

design is not updated, repo market receives sunspot. Denote the probability that the design is not

updated (or is rigid) and the market receives a sunspot by χ where 1 ≥ γ ≥ χ > 0. As we show when

the design is rigid and the market receives a sunspot, the liquidity of the repo market may deteriorate.

We call a dynamic stationary equilibrium in which the asset price drops after a sunspot a repo run

equilibrium. Let the market price of the asset with rigid design and sunspot by φS and the price when

the design is flexible by φ. We assume that the sunspot of illiquidity arrives at the end of a period, after

securities are traded.

The formal definition of a repo run equilibrium requires a slight modification to Definition 2 since in

a repo run equilibrium there are two possible continuation prices φ and φS .

Definition 3. A dynamic stationary sunspot equilibrium with rigid contracts given χ and γ consists of

asset prices φ, φS , Eφ = φ(1 − χ) + φSχ, security design J (Eφ) ⊆ I (Eφ) and security prices qj for

each j ∈ J (Eφ) such that (i) J (Eφ) solves the security design problem (6) given the expected asset

value Eφ, (ii) security price qjt satisfies equation (8), and (iii) φt solves the Euler equation given by:

φ = β

z
∑
j∈P

qj + λ
∑

j∈J (Eφ)\P

qj

+ (1− λ)
∑

j∈J (Eφ)\P

EHy
j

 , (40)

φS = β
{
zλELs+ (1− λ)EHs+ z

[
γφS + (1− γ)φ

]}
, (41)

where j ∈ P ⊆ J (Eφ) iff Rj ≥ ζ.

Using the modified definition and following similar steps leading to Proposition 3 give the incentive

constraint of owners of high quality collateral which is analogous to (26):

φ(1− χ) + φSχ =
z

z − 1
λ

∫ D

sL

[
F̃H(s)− F̃L(s)

]
ds−

∫ D

sL

F̃H(s)ds− sL, (42)
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We also have two Euler equations for the two prices depending on whether the economy receives a

sunspot or not, equation (40) and (41). Equation (40) can be simplified as

φ = β

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ sH

D

F̃H(s)ds+ z
[
χφS + (1− χ)φ

]}
, (43)

The following proposition shows that in addition to the equilibrium characterized in Proposition 3, there

also exists a sunspot equilibrium where the debt tranche is illiquid when the security design is not

updated and the investors receive a pessimistic sunspot.

Proposition 5. In an environment with rigid design, there exists a cutoff Γ (γ, χ) which is increasing

in γ and χ with

Γ (γ, χ) > 1− z − 1

zλ (1− β)

such that whenever
ELs

EHs
< Γ (γ, χ) , (44)

there exists a unique repo run equilibrium satisfying equation (42), (43) and (41). In the repo run

equilibrium the debt tranche is illiquid when the security design is not updated and the investors receive

a sunspot. In this equilibrium,

(i) The asset price is higher before the run, i.e., φ > φS.

(ii) When (44) holds debt threshold D is strictly lower with repo run than without.

(iii) Debt threshold with repo run is decreasing in probability of rigidity γ and probability of sunspot

given rigidity χ.

(iv) As χ approaches one the unique equilibrium approaches the illiquid equilibrium when only equity

is available as collateral asset.

(v) Compared with the equilibrium without repo run, the asset price φ in the repo run equilibrium is

lower.

(vi) When investors receive a sunspot, the interest rate of the repo contract increases, and its haircut

response is indeterminate.

(vii) Welfare in the run equilibrium is Pareto dominated by the equilibrium without run.

The fact that there exists a non trivial sunspot equilibrium for ELs
EHs

∈ (1− z−1
zλ(1−β) , Γ (γ, χ)) implies

that the sunspot equilibrium may arise in the parameter region, where there exists a liquid passthrough

security in the liquid equilibrium.
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Figure 8: Dynamics of Repo run.

The terms of the repo contract when investors receive a pessimistic sunspot are rigid in the sense

that the book value of the repo contract, D+ φ, does not change. But because the asset price decreases

to a lower level, φS , the effective default threshold increases from D to DS ≡ min(sH , D + φ − φS).

By claim (i), φ > φS . So, DS > D as long as D < sH . When investors receive the sunspot, the repo

contract also becomes illiquid. Only owners with low quality assets trade the asset. In this scenario,

denote the effective interest rate and haircut to be RS and hS respectively and the price of security j

qSj .

RS =
D + φ− qSD

qSD
, (45)

hS = 1− (z − 1)qSD
φS/β

, (46)

where

qSD = φS + sL +

∫ DS

sL

F̃L(s)ds.

In the appendix, we show qSD < qD. Then, repo rate increases, RS > R. The response of haircut is

indeterminate because both φS < φ and qSD < qD.

The dynamics in a typical repo run is illustrated in Figure 8. In the figure before the moment marked

by the equilibrium switch the economy is a “good” equilibrium in which even when the security is rigid

agents expect that the repo tranche will be liquid and the asset price will be high. After the switch a repo

run typically takes two stages. First, the equilibrium switches to the sunspot equilibrium described in
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Proposition 5. Once the economy enters a sunspot equilibrium, haircut of the repo contract immediately

increases, because investors anticipate that the repo contract will be illiquid when a sunspot hits the

economy. At the same time, the asset price and the repo volume decrease. When the sunspot actually

hits the economy, asset price and the repo volume decrease further. The repo rate increases further

while the repo haircut may also increase. This occurs despite that the face value of repo debt remains

unchanged due the contract rigidity. The drop in repo volume and the asset price is higher when the

sunspot hits, because the repo backed by high quality collateral stops circulating entirely. When the

contract terms are updated, the update restores investors’ sentiment about the liquidity of the repo

market, the price and the volume recover partially, to the levels right after equilibrium switch. The

fluctuation driven by sunspots may take place repeatedly as long as the economy remains in the sunspot

equilibrium.

Notice that the equilibrium switch can be triggered either by a switch of self-fulfilling beliefs from the

equilibrium without repo run to an equilibrium with repo run, or by a small shift in the fundamental.

Suppose the fundamental of the economy, represented by asset quality λ or productivity z, is initially

such that condition (44) does not hold. As the fundamental deteriorates and condition (44) holds, even if

the change in fundamentals is very small, a sunspot equilibrium might emerge, leading to a discontinuous

drop in market liquidity and the asset price.

8 Conclusion

Our paper studies optimal security design in a dynamic lemons setup. We show that the implementation

of optimal security design involves liquid short-term repo contracts. Because optimal security design

helps coordinate investors’ inter-temporal decisions, the dynamic lemons market under optimal security

design is robust to multiple-equilibrium fragility induced by inter-temporal mis-coordination. We derive

dynamic equilibrium properties of repo rates, haircuts and volume in relation to real productivity and

adverse selection levels. We also show that repo run may emerge when there is rigidity in security design.

At the aggregate, our paper provides some insights on the liquidity formation of the financial market

over the productivity cycle and the asset quality cycle.
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A Appendix

A.1 Proof of Lemma 1

Proof. If two securities, yj and yk, are both liquid, ELyj ≥ ζEHyj and ELyk ≥ ζEHyk. Then combining

the two security retains liquidity. Similarly, combining two illiquid securities results in an illiquid security.

To see the second statement, first note that replacing the two securities with their combination is clearly

feasible. In addition, when yj , yk and yj + yk all trade in a pooling (separating) equilibrium, qjk, the

price of yj + yk, is the sum of qj and qk, the prices of ya and yb. Now consider the liquid case. Ignoring

the irrelevant terms, Agent O’s payoff when the two securities are separate is:

λ

∫ {
a
[
zqj − yj(s)

]
+ a

[
zqk − yk(s)

]}
dFL(s) + (1− λ)

∫ {
a
[
zqj − yj(s)

]
+ a

[
zqk − yk(s)

]}
dFH(s)

and when they are combined is:

λ

∫ {
a
[
zqjk −

(
yj(s) + yk (s)

)]}
dFL(s) + (1− λ)

∫ {
a
[
zqjk −

(
yj(s) + yk (s)

)]}
dFH(s).

Since qjk = qj + qk, when the liquid securities are combined agent O’s payoff is unchanged.

Next consider the illiquid case. Once again ignoring the irrelevant terms, Agent O’s payoff when the

two securities are separate is:

λ

∫ {
a
[
zqj − yj(s)

]
+ a

[
zqk − yk(s)

]}
dFL(s) + (1− λ)

∫ {
ayj(s) + ayk(s)

}
dFH(s)

and when they are combined is:

λ

∫ {
a
[
zqjk −

(
yj(s) + yk (s)

)]}
dFL(s) + (1− λ)

∫ {
a
(
yj(s) + yk (s)

)}
dFH(s).

Once again, when the illiquid securities are combined agent O’s payoff is unchanged.

A.2 Proof of Proposition 2

Proof. First note that the feasible set is compact, convex and nonempty so the optimization problem

must have a solution. Moreover, since the objective function is bounded above, the solution must be

finite. The Lagrangian of the optimization problem is

L (x; γ, µ, µx) =

∫ sH

sL

F̃H(s)x(s)ds+

∫ sH

sL

γ(s)

[
s− sL −

∫ s

sL

x(j)dj

]
ds

+ µ

{∫ sH

sL

[
F̃L(s)− ζF̃H(s)

]
x(s)ds+ (1− ζ)φ

}
+

∫ sH

sL

µx(s)x(s)ds.
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Note that for any feasible x and for γ ≥ 0, µ ≥ 0 and µx ≥ 0 we have

L (x; γ, µ, µx) ≥
∫ sH

sL

F̃H(s)x(s)ds.

Let L (γ, µ, µx) = maxx L (x; γ, µ, µx) . Let L∗ = minγ≥0,µ≥0,µx≥0 L (γ, µ, µx) . Note that L∗ is the value

of the original optimization problem. We can rewrite L (x; γ, µ, µx) as

L (x; γ, µ, µx) =
∫ sH
sL

{
F̃H(s) + µ

[
F̃L(s)− ζF̃H(s)

]
−
∫ sH
s

γ(j)dj + µx(s)
}
x(s)ds

+µ(1− ζ)φ+
∫ sH
sL

(∫ sH
s

γ(j)dj
)
ds.

Let η (s) =
∫ sH
s

γ(j)dj. We can rewrite the problem as:

L (x; η, µ, µx) =
∫ sH
sL

{
F̃H(s) + µ

[
F̃L(s)− ζF̃H(s)

]
− η (s) + µx(s)

}
x(s)ds

+µ(1− ζ)φ+
∫ sH
sL

η (s) ds.

Now note that the quantity inside the curly brackets must be zero or otherwise the value of the opti-

mization problem would be infinite. Consider the following dual problem of the optimization problem,

min
µ≥0

minη≥0,µx≥0 µ(1− ζ)φ+

∫ sH

sL

η (s) ds

s.t. F̃H(s) + µ
[
F̃L(s)− ζF̃H(s)

]
− η (s) + µx(s) = 0.

Note that the value of this problem is L∗. Let Hµ (s) = F̃H(s) + µ
[
F̃L(s)− ζF̃H(s)

]
. We can rewrite

the above problem one more time as:

min
µ≥0

miny≥0 µ(1− ζ)φ+

∫ sH

sL

η (s) ds

s.t. η (s) ≥ Hµ (s) ,

and the constraint that η(s) is a decreasing function in s. Note, hµ (s) ≡ ∂Hµ(s)
∂s = −fH (s)

[
1 + µ

(
fL(s)
fH(s) − ζ

)]
.

Clearly Hµ (sL) > 0 and Hµ (sH) = 0. Since µ > 0 we must have hµ (sL) < 0. To see this suppose

hµ (sL) ≥ 0. Then it must be the case that 1 +µ
(
fL(s)
fH(s) − ζ

)
≤ 0. Since fL(s)

fH(s) is decreasing, this implies

that hµ (s) > 0 for all s ∈ (sL, sH ] contradicting that Hµ (sH) = 0.

Since fL(s)
fH(s) is decreasing in s one of the following must be true:

(i) There exists a unique cutoff ŝµ ∈ (sL, sH) such that hµ (s) < 0 for s < ŝµ and hµ (s) > 0 for

s > ŝµ,

(ii) hµ (s) < 0 for all s ∈ (sL, sH).

In case (i) the function Hµ (s) crosses from positive to negative once, eventually increasing to zero at

sH . In case (ii) Hµ (s) decreases to zero at sH . Let s∗µ ∈ (sL, sH) be the unique s for which Hµ (s) = 0

if it exists, otherwise let s∗µ = sH .

41



Note that for given µ ≥ 0 optimal ηµ is given by:

ηµ (s) =

 Hµ (s) if s ≤ s∗µ
0 if s > s∗µ

.

Plugging this into the minimization problem we get:

min
µ≥0

µ(1− ζ)φ+

∫ s∗µ

sL

(
F̃H(s) + µ

[
F̃L(s)− ζF̃H(s)

])
ds.

The first order condition for this problem is:

(1− ζ)φ+

∫ s∗µ

sL

[
F̃L(s)− ζF̃H(s)

]
ds+

∂s∗µ
∂µ

Hµ

(
s∗µ
)
≥ 0

Because Hµ

(
s∗µ
)

= 0,

(1− ζ)φ+

∫ s∗µ

sL

[
F̃L(s)− ζF̃H(s)

]
ds ≥ 0

with complementary slackness.

Let s∗ ∈ (sL, sH ] be the unique s for which

(1− ζ)φ+

∫ s∗

sL

[
F̃L(s)− ζF̃H(s)

]
ds = 0

if it exists. If

(1− ζ)φ+

∫ sH

sL

[
F̃L(s)− ζF̃H(s)

]
ds > 0

for all s ∈ [sL, sH ], then s∗ = sH .

If s∗ < sH then µ > 0, s∗µ = s∗, and

L∗ = µ(1− ζ)φ+

∫ s∗

sL

(
F̃H(s) + µ

[
F̃L(s)− ζF̃H(s)

])
ds =

∫ s∗

sL

F̃H(s)ds.

If s∗ = sH then µ = 0, s∗µ = sH , and

L∗ =

∫ sH

sL

F̃H(s)ds.

To complete the proof note that x (s) = 1 for s ∈ [sL, s
∗] and x (s) = 0 for s ∈ [s∗, sH ] achieves the value

L∗ and it is feasible, and must be optimal for the original problem.

A.3 Proof of Proposition 3

Proof. Observe that to maximize (23) agent O must set D as large as possible subject to satisfying the

constraint (24). We first show that either there is a unique D that satisfies (24) with equality, or (24) is
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not binding. Let

T (x) ≡ (z − 1)

[
φ+ sL + λ

∫ x

sL

F̃L(s)ds+ (1− λ)

∫ x

sL

F̃H(s)ds

]
− λ

∫ x

sL

[
F̃H(s)− F̃L(s)

]
ds

= (z − 1)

[
φ+ sL +

∫ x

sL

F̃H(s)ds

]
− zλ

∫ x

sL

[
F̃H(s)− F̃L(s)

]
ds.

Observe that,

T (sL) = (z − 1) (φ+ sL) > 0, T ′(x) = (z − 1)F̃H(x)− zλ
[
F̃H(x)− F̃L(x)

]
,

T ′(sL) = z − 1 > 0, T ′(sH) = 0,

T ′′(x) = −(z − 1)fH(x) + zλ [fH(x)− fL(x)] = fH(x)

[
z(λ− 1) + 1− zλ fL(x)

fH(x)

]
.

When fL(x)
fH(x) is monotonically decreasing in s, T (x) is quasi-concave with T (sL) > 0. So, there is either

a unique D that satisfies T (D) = 0 or T (x) > 0 for all x ∈ [sL, sH ].

Case (i): Constraint (24) is binding. In this case the face value of the debt contract that solves the

security design problem is given by:

φ =
z

z − 1
λ

∫ D

sL

[
F̃H(s)− F̃L(s)

]
ds−

∫ D

sL

F̃H(s)ds− sL. (A.1)

In addition, the asset price φ satisfies (25). Substituting for qD and qE we rewrite (25) as:

φ =
β

1− βz

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ sH

D

F̃H(s)ds

}
. (A.2)

Substituting φ in (A.1) using (A.2), the equilibrium can be solved by a single equation of D, Γ(D) = 0,

where

Γ(D) =
β

1− βz

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ sH

D

F̃H(s)ds

}
− z

z − 1
λ

∫ D

sL

[
F̃H(s)− F̃L(s)

]
ds+

∫ D

sL

F̃H(s)ds+ sL
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Observe that:

Γ′(D) =
β

1− βz
(1− λ)(z − 1)F̃H(D)− z

z − 1
λ
[
F̃H(D)− F̃L(D)

]
+ F̃H(D)

=

[
β

1− βz
(1− λ)(z − 1) + 1− z

z − 1
λ

]
F̃H(D) +

z

z − 1
λF̃L(D).

Γ′′(D) = −
[

β

1− βz
(1− λ)(z − 1) + 1− z

z − 1
λ

]
fH(D)− z

z − 1
λfL(D)

= fH(D)

{
z

z − 1
λ

[
1− fL(D)

fH(D)

]
− β

1− βz
(1− λ)(z − 1)− 1

}
Γ(sL) = sL

[
1 +

β

1− βz
(1− λ)(z − 1)

]
+

β

1− βz
[zλELs+ (1− λ)EHs] > 0

Γ′(sL) =
β

1− βz
(1− λ)(z − 1) + 1 > 0

Γ′(sH) = 0.

Once again Γ(s) is quasi-concave if fL(D)
fH(D) is monotonically decreasing in D. Because Γ(sL) > 0, there

is a unique equilibrium. The constraint (24) is binding iff Γ(sH) < 0. We rewrite Γ(sH) as:

Γ(sH) =
βz

1− βz
[λELs+ (1− λ)EHs]−

z

z − 1
λ

∫ sH

sL

[
F̃H(s)− F̃L(s)

]
ds+

∫ sH

sL

F̃H(s)ds+ sL

=
EHs

(1− βz) (z − 1)

[
λz (1− β)

(
ELs

EHs
− 1

)
+ z − 1

]
.

Hence, Γ(sH) < 0 iff
ELs

EHs
< 1− z − 1

zλ (1− β)
.

Case (ii): Constraint (24) is not binding.

A.4 Proof of Proposition 4

Claim 1. Assume that fL(s)
fH(s) is decreasing in s. The optimal securities are

y1t(s) = φ+ sL + (s− sL)I(s ≤ D),

y2t(s) = (s− sL)I(s > D).

for some D ∈ (sL, sH ].
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Proof. The maximization

arg max
x,m

∫ sH

sL

F̃H(s)x(s)ds, (A.3)

s.t.

∫ s

sL

x(j)dj ≤ s− sL,∀s ∈ [sL, sH ], (A.4)∫ sH

sL

[
F̃L(s)− ζF̃H(s)

]
x(s)ds+ (1− ζ)φ ≥ 0, (A.5)∫ s

sL

x(j)dj ≥ 0,∀s ∈ [sL, sH ] (A.6)

First note that the feasible set is compact, convex and nonempty so the optimization problem must have

a solution. Moreover, since the objective function is bounded above, the solution must be finite. The

Lagrangian of the optimization problem is

L (x; γ, µ, ν) =

∫ sH

sL

F̃H(s)x(s)ds+

∫ sH

sL

γ(s)

[
s− sL −

∫ s

sL

x(j)dj

]
ds

+ µ

{∫ sH

sL

[
F̃L(s)− ζF̃H(s)

]
x(s)ds+ (1− ζ)φ

}
+

∫ sH

sL

ν(s)

[∫ s

sL

x(j)dj

]
ds.

Note that for any feasible x and for γ ≥ 0, µ ≥ 0 and ν ≥ 0 we have

L (x; γ, µ, ν) ≥
∫ sH

sL

F̃H(s)x(s)ds.

Let L (γ, µ, ν) = maxx L (x; γ, µ, ν) . Let L∗ = minγ≥0,µ≥0,µx≥0 L (γ, µ, ν) . Note that L∗ is the value of

the original optimization problem. We can rewrite L (x; γ, µ, ν) as

L =

∫ sH

sL

{
F̃H(s) + µ

[
F̃L(s)− ζF̃H(s)

]
+

∫ sH

s

[ν(j)− γ(j)] dj

}
x(s)ds

+ µ(1− ζ)φ+

∫ sH

sL

(∫ sH

s

γ(j)dj

)
ds

Now note that the quantity inside the curly brackets must be zero or otherwise the value of the opti-

mization problem would be infinite. Consider the following dual problem of the optimization problem,

min
µ≥0

minγ≥0,ν≥0 µ(1− ζ)φ+

∫ sH

sL

(∫ sH

s

γ(j)dj

)
ds

s.t. F̃H(s) + µ
[
F̃L(s)− ζF̃H(s)

]
+

∫ sH

s

[ν(j)− γ(j)] dj = 0.

Note that the value of this problem is L∗. Let Hµ (s) = F̃H(s) + µ
[
F̃L(s)− ζF̃H(s)

]
. Let η(s) =∫ sH

s
γ(j)dj, ξ(s) =

∫ sH
s

ν(j)dj. We can rewrite the above problem one more time as:

min
µ≥0

minη,ξ≥0 µ(1− ζ)φ+

∫ sH

sL

η(s)ds

s.t. Hµ (s) + ξ(s)− η(s) = 0.
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and the constraints that η(s) and ξ(s) are decreasing functions in s.

Note, hµ (s) ≡ ∂Hµ(s)
∂s = −fH (s)

[
1 + µ

(
fL(s)
fH(s) − ζ

)]
. Clearly Hµ (sL) > 0 and Hµ (sH) = 0. Since

µ > 0 we must have hµ (sL) < 0. To see this suppose hµ (sL) ≥ 0. Then it must be the case that

1 + µ
(
fL(s)
fH(s) − ζ

)
≤ 0. Since fL(s)

fH(s) is decreasing, this implies that hµ (s) > 0 for all s ∈ (sL, sH ]

contradicting that Hµ (sH) = 0.

Since fL(s)
fH(s) is decreasing in s one of the following must be true:

(i) There exists a unique cutoff ŝµ ∈ (sL, sH) such that hµ (s) < 0 for s < ŝµ and hµ (s) > 0 for

s > ŝµ,

(ii) hµ (s) < 0 for all s ∈ (sL, sH).

In case (i) the function Hµ (s) crosses from positive to negative once, eventually increasing to zero

at sH . In case (ii) Hµ (s) decreases to zero at sH .

Note that for given µ ≥ 0 optimal ηµ and ξµ are given by:

ξµ(s) =

 −Hµ(ŝµ) if s ≤ ŝµ,

−Hµ(s) if s > ŝµ.

ηµ (s) =

 Hµ (s)−Hµ(ŝµ) if s ≤ ŝµ,

0 if s > ŝµ.

This is because ξµ and ηµ must be decreasing in s. When s > ŝµ, Hµ(s) is increasing. So it is feasible to

let ηµ(s) = 0 and ξµ(s) = −Hµ(s) in this region. When s < ŝµ, Hµ(s) is decreasing in s. The optimal

η and ξ would be ξµ(s) = −Hµ(ŝµ) and ηµ(s) = Hµ (s) −Hµ(ŝµ). Plugging this into the minimization

problem we get:

min
µ≥0

µ(1− ζ)φ+

∫ ŝµ

sL

(Hµ (s)−Hµ(ŝµ)) ds

= min
µ≥0

µ(1− ζ)φ+

∫ ŝµ

sL

{
F̃H(s)− F̃H(ŝµ) + µ

[
F̃L(s)− ζF̃H(s)−

(
F̃L(ŝµ)− ζF̃H(ŝµ)

)]}
ds

The first order condition for this problem is:

Γ(ŝµ) ≡ (1− ζ)φ+

∫ ŝµ

sL

[
F̃L(s)− ζF̃H(s)−

(
F̃L(ŝµ)− ζF̃H(ŝµ)

)]
ds ≥ 0

with complementary slackness.

∂Γ(s∗)

∂s∗
= (s∗ − sL)fH(s∗)

(
fL(s∗)

fH(s∗)
− ζ
)
.
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By definition of ŝµ,
fL(s∗)
fH(s∗) − ζ = − 1

µ . So, ∂Γ(s∗)
∂s∗ = −(s∗ − sL) fH(s∗)

µ < 0. And Γ(sL) = (1 − ζ)φ > 0.

Then, if there exists a solution for Γ(s∗) = 0, the solution is unique and it satisfies

(1− ζ)φ+

∫ s∗

sL

[
F̃L(s)− ζF̃H(s)−

(
F̃L(s∗)− ζF̃H(s∗)

)]
ds = 0

Otherwise,

(1− ζ)φ+

∫ s∗

sL

[
F̃L(s)− ζF̃H(s)−

(
F̃L(s∗)− ζF̃H(s∗)

)]
ds > 0

for all s ∈ [sL, sH ] and s∗ = sH .

If s∗ < sH then µ > 0, ŝµ = s∗, and

L∗ =

∫ s∗

sL

[
F̃H(s)− F̃H(s∗)

]
ds.

If s∗ = sH then µ = 0, s∗µ = sH , and

L∗ =

∫ sH

sL

F̃H(s)ds.

To complete the proof note that
∫ s
sL
x(j)dj = s − sL for s ∈ [sL, s

∗] and
∫ s
sL
x(j)dj = 0 for s ∈ [s∗, sH ]

achieves the value L∗ and it is feasible, and must be optimal for the original problem.

Proof. Given Claim 1 that the optimal security design under Arrow securities has two tranches, the

liquid tranche y1t(s) and illiquid tranche y2t(s).

y1t(s) = φ+ sL + (s− sL)I(s ≤ D),

y2t(s) = (s− sL)I(s > D).

The equilibrium is solved by the following two equations, representing the incentive constraint of an

owner with high quality collateral and the Euler equation for the asset price. In the incentive constraint,

z

[
φ+ sL +

∫ D

sL

(s− sL) dFλ(s)

]
−

[
φ+ sL +

∫ D

sL

(s− sL) dFH(s)

]
≥ 0

One can easily verify that the left hand side of the incentive constraint is decreasing in D as long as

the monotone likelihood ratio assumption holds. This confirms the conjecture of the optimal security

design.

The Euler equation for the asset price is

φ =
β

1− βz

[
z

(
sL +

∫
(s− sL)dFλ(s)

)
− (z − 1)(1− λ)

∫ sH

D

(s− sL) dFH(s)

]
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The equilibrium value of D is determined by

0 = Γ(D) =
β

1− βz

[
z

(
sL +

∫
(s− sL)dFλ(s)

)
− (z − 1)(1− λ)

∫ sH

D

(s− sL) dFH(s)

]

−
sL +

∫D
sL

(s− sL)dFH(s)− z
[
sL +

∫D
sL

(s− sL)dFλ(s)
]

z − 1

Γ(sL) =
β

1− βz

[
z

(
sL +

∫
(s− sL)dFλ(s)

)
− (z − 1)(1− λ)

∫ sH

sL

(s− sL) dFH(s)

]
+ sL > 0

Γ′(D) =
β(z − 1)(1− λ)DfH(D)

1− βz
− DfH(D)− zD [λfL(D) + (1− λ)fH(D)]

z − 1

= DfH(D)

{
β(z − 1)(1− λ)

1− βz
− 1− z [λfL(D)/fH(D) + (1− λ)]

z − 1

}
= DfH(D)

{
β(z − 1)(1− λ)

1− βz
− 1− z(1− λ)

z − 1
+
zλfL(D)/fH(D)

z − 1

}
If β(z−1)(1−λ)

1−βz − 1−z(1−λ)
z−1 < 0, there exists a unique D∗ such that Γ′(D) > 0 if and only if D < D∗.

There exists a most one solution for the equation Γ(D) = 0.

Γ(sH) =
βz

1− βz
[(1− λ)EHs+ λELs]−

[1− (1− λ)z]EHs− zλELs
z − 1

= EHs
[

βz

1− βz
(1− λ)− 1− (1− λ)z

z − 1
+

(
βz

1− βz
λ+

zλ

z − 1

)
ELs
EHs

]
.

The condition for there to be a unique D ∈ (sL, sH) in equilibrium is

ELs
EHs

≤ −

(
βz

1−βz + z
z−1

)
(1− λ)− 1

z−1(
βz

1−βz + z
z−1

)
λ

= 1− z − 1

λz (1− β)
.

A.5 Proof of Proposition 5

Proof. Let C1 (D) = z [λELs+ (1− λ)EHs]− (1−λ)(z−1)
∫ sH
D

F̃H(s)ds and C2 = zλELs+(1−λ)EHs.

Note that C1 (D) > C2 for D ∈ (sL, sH ]. From equations (43) and (41) we get:

φS = β
1−βz

[
1−(1−χ)βz
1−β(γ−χ)zC2 + βz(1−γ)

1−β(γ−χ)zC1 (D)
]

φ = β
1−βz

[
βzχ

1−β(γ−χ)zC2 + 1−βzγ
1−β(γ−χ)zC1 (D)

]
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From the above equations it is immediate that φ > φS proving (i). Letting

Λ =
((1− χ)− β (γ − χ) z)

1− β (γ − χ) z

we get

φ(1− χ) + φSχ =
β

1− βz
[(1− Λ)C2 + ΛC1 (D)]

=
β

1− βz

[
zλELs+ ((1− Λ) + Λz) (1− λ)EHs− Λ(1− λ)(z − 1)

∫ sH

D

F̃H(s)ds

]
.

Substituting into (42) we see that equilibrium can be solved by a single equation of D, Γ(D) = 0, where

Γ(D) = β
1−βz

[
zλELs+ ((1− Λ) + Λz) (1− λ)EHs− Λ(1− λ)(z − 1)

∫ sH
D

F̃H(s)ds
]

− z
z−1λ

∫D
sL

[
F̃H(s)− F̃L(s)

]
ds+

∫D
sL
F̃H(s)ds+ sL

Observe that:

Γ′(D) =
β

1− βz
Λ(1− λ)(z − 1)F̃H(D)− z

z − 1
λ
[
F̃H(D)− F̃L(D)

]
+ F̃H(D)

=

[
β

1− βz
Λ(1− λ)(z − 1) + 1− z

z − 1
λ

]
F̃H(D) +

z

z − 1
λF̃L(D).

Γ′′(D) = −
[

β

1− βz
Λ(1− λ)(z − 1) + 1− z

z − 1
λ

]
fH(D)− z

z − 1
λfL(D)

= fH(D)

{
z

z − 1
λ

[
1− fL(D)

fH(D)

]
− β

1− βz
Λ(1− λ)(z − 1)− 1

}
Γ(sL) = sL

[
1 +

β

1− βz
Λ(1− λ)(z − 1)

]
+

β

1− βz
[zλELs+ (1− λ)EHs] > 0

Γ′(sL) =

[
β

1− βz
Λ(1− λ)(z − 1) + 1

]
> 0

Γ′(sH) = 0.

Γ(s) is quasi-concave if fL(D)
fH(D) is monotonically decreasing in D. Because Γ(sL) > 0, there is a unique

equilibrium. In this unique equilibrium D < sH iff Γ(sH) < 0. We write Γ(sH) as:

Γ(sH) = β
1−βz [zλELs+ ((1− Λ) + Λz) (1− λ)EHs]

− z
z−1λ

∫ sH
sL

[
F̃H(s)− F̃L(s)

]
ds+

∫ sH
sL

F̃H(s)ds+ sL

or

Γ(sH) =
EHs

(1− βz) (z − 1)
[(β (z − 1) ((1− Λ) + Λz) (1− λ)− z (1− βz)λ+ (1− βz) (z − 1))

+ (1− β)λz ELsEHs

]
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Hence Γ(sH) < 0 iff

ELs

EHs
<

(1− βz) (1− z (1− λ))− β (z − 1) ((1− Λ) + Λz) (1− λ)

(1− β)λz
≡ Γ (γ, χ) .

It is easy to see that Γ (γ, χ) > 1− (z − 1) / (zλ (1− β)) iff z > 1. Note that:

∂Γ

∂Λ
= β(z−1)(1−λ)

1−βz

[
EHs−

∫ sH
D

F̃H(s)ds
]

> 0.

This means that as Λ increases, Γ shifts up. As a result when (44), Γ crosses zero at a higher value,

implying that the face value D is increasing in Λ.

Since no repo run equilibrium corresponds to Λ = 1, we see that debt threshold D is strictly lower

with repo run than without (proving (ii)). As χ approaches one, Λ approaches zero and the unique

equilibrium approaches the illiquid equilibrium when only equity is available as collateral asset (proving

iv). Moreover,
∂Λ

∂γ
=

−βzχ
(1− β (γ − χ) z)

2 < 0

and
∂Λ

∂χ
=

βγz − 1

(1− β (γ − χ) z)
2 < 0

Hence if probability of rigidity or sunspot increases, D decreases (proving (iii)). Claims (v) and (vii) are

immediate.

For claim (vi), notice that

qSD = φS + sL +

∫ DS

sL

F̃L(s)ds

= φ+D −DS + sL +

∫ DS

sL

F̃L(s)ds

= φ+D −
∫ DS

sL

FL(s)ds.

Because

qD = φ+ sL +

∫ D

sL

EF̃Q(s)ds

= φ+D −
∫ D

sL

EFQ(s)ds,

where EF̃Q(s) = λF̃L(s) + (1− λ)F̃H(s), EFQ(s) = λFL(s) + (1− λ)FH(s). Because∫ D

sL

EFQ(s)ds <

∫ D

sL

FL(s)ds <

∫ DS

sL

FL(s)ds,
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we have qSD < qD.

qD
φ

=
φ+ sL +

∫D
sL

EF̃Q(s)ds

φ

= 1 +
sL
φ

+

∫D
sL

EF̃Q(s)ds

φ
.

qSD
φS

=
φ+D −

∫DS
sL

FL(s)ds

φ+D −DS

≈ 1 +
DS

φ
−
∫DS
sL

FL(s)ds

φ

= 1 +
sL
φ

+

∫DS
sL

F̃L(s)ds

φ

Because F̃L(s) < EF̃Q(s) but DS > D, haircut could either increase or decrease.
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