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Abstract 
This paper presents a model of technical change that combines two lines of 

research together. It is a task based model, in which automation turns labor tasks 

to mechanized ones, and there is also a continuous addition of new labor tasks, as 

in the expanding variety literature. We impose three simple restrictions on the 

model. The first is that all new tasks are adopted. The second is that all new 

automations are adopted and the third is that the share of labor does not converge 

to zero in the long run. We show that these restrictions imply that unemployment 

due to automation is expected to converge to zero over time.  
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Automation and Unemployment: Help is on the Way 
 

1. Introduction 
This paper examines a theoretical model of the process of automation, or of machines that 

replace workers in various tasks. The paper focuses on the temporary effects of this process 

of automation on labor, mainly on unemployment. It is obvious that if automation replaces 

human labor in various tasks, it increases unemployment, as the replaced workers lose their 

jobs for a period of time, during which they need to search for another job. This is one of 

the short-run costs of the long-run process of economic growth. 

 But the paper shows that the relationship between the long-run process and the 

short-run effect is actually more complex. If we impose certain restrictions on the model, 

to make it fit the basic stylized facts of long-run economic growth, the model has a 

surprising result. The rate of unemployment, which is caused by automation, declines over 

time and converges to zero. 

 As described above the paper examines automation in a model of production by 

tasks, where more and more tasks human labor is replaced by machines. In order to make 

the model more realistic and to fit some basic facts of economic growth, like a positive 

value to the Solow residual, we also assume that the set of tasks increases continuously. 

That assumption actually combines the model of automation with a model of expanding 

variety. We then add to this very general model three plausible working assumptions that 

impose three additional restrictions on the model. 

 The first working assumption is that all the new tasks created are indeed adopted 

by producers. This working assumption leads to the restriction that the elasticity of 

substitution between all tasks must be greater than 1. The second working assumption is 

that all the new automats are indeed adopted, namely that wages are sufficiently high to 

ensure that producers prefer buying the new machine over hiring workers. This working 

assumption leads to another restriction on the rate of creation of new jobs. These two 

assumptions are very plausible in a model of automation and expanding variety. 

 The third and most crucial assumption, which is actually an assumption on the 

future, is that the share of labor in output is bounded below by some positive number, so 

that it does not converge to zero. Many economic studies, the most famous is Kaldor 
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(1961), have found that the share of labor in output is fairly stable, both across countries 

and over time, around an average of 2/3. In recent decades we observe a decline of the 

share of labor, but it is far from going down to zero. This restriction is therefore fully in 

line with our accumulated knowledge of the empirics of modern economic growth, but we 

discuss this assumption thoroughly later in the paper. 

These three additional assumptions lead to the results of the paper and mainly to 

the result that unemployment due to automation should converge to zero. We can try and 

explain this result in the following way. Wages depend on how many sectors produce by 

labor. If there are more such sectors, less workers are employed in each sector, so their 

marginal productivity is higher and their wage is higher as well. Hence, to ensure adoption 

of new automation technologies, wages need to be sufficiently high, which requires that 

creation of new jobs is faster than automation. But that means that automation shifts sectors 

from production by labor to production by machines at a lower and lower rate. Since this 

ratio between the number of automated sectors and the total number of labor sectors 

determines the rate of unemployment due to automation, it converges to zero. 

The process of automation, or more broadly replacing human workers by machines, 

has captivated public debate since the beginning of the industrial revolution. Workers 

feared that mechanization will drive them out of their jobs, will increase unemployment 

and will widen poverty and misery to large parts of society. The issue was dormant most 

of the time, but exploded once in a while, especially during technological breakthroughs. 

The first time fear of mechanization appeared was during the early days of the 

industrial revolution, in the rebellion of the Luddites in 1811-1817. They were mainly 

artisans, who viewed in awe how the mills of the textile industry threatened their economic 

existence. They formed a resistance to mechanization and were finally oppressed by a large 

British army sent to squelch this rebellion. Interestingly, the famous breaking of machines 

by Luddites was not their main activity. 

 This issue came up again during the 1920s, a period of rapid technical change as 

well. On February 26, 1928, Evan Clark, a reporter in the New York Times, published an 

article titled “March of the Machine Makes Idle Hands.” In this article Clark claimed: “It 

begins to look as if machines had come into conflict with men – as if the onward march of 

machines into every corner of our industrial life had driven men out of the factory and into 
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the ranks of the unemployed.” At the time the US rate of unemployment was only 4.2 

percent, but the Great Recession started within less than two years. 

 Recently, the issue came up again to public attention following the financial crisis 

of 2008 and the great recession that followed it. We live in a period of rapid technical 

change, mainly in computers, information technology (IT), robots and artificial intelligence 

(AI). Workers find it hard to adjust to this technological revolution, where the main effect 

is a significant widening of inequality. 

 The economic literature on automation and its effects has increased significantly 

lately. The following survey focuses only on two lines of research, to which this paper 

belongs, one is analysis of automation using task-based models, and the other line studies 

the effect of automation on unemployment. 

Task-based models study economies in which final output is produced by many 

tasks, where each can be performed either by labor or by a machine, once it is invented. 

The first such model is Champernowne (1961), which supplies micro-foundations to the 

aggregate production function. Zeira (1998) embeds such a model in a framework of 

general equilibrium and economic growth and reaches two main results. The first is that 

adoption of new technologies requires that wages be sufficiently high, otherwise producers 

prefer workers over machines. The second is that despite lower demand for labor in 

mechanized tasks, demand for labor in the remaining tasks increases, since working with 

more capital raises marginal productivity of such labor. This raises wages and enables 

adoption of more automation. Zeira (1998) also has two shortcomings, as it implies that 

the Solow Residual is zero and that the share of labor in output goes to zero in the long-

run, which both contrast well-known stylized facts. This paper shows that one way to 

remove these implications is to assume that there is a continuous addition of new labor 

tasks, namely to combine the task-based model with the expanding variety model. 

This line of research, of task-based production and automation is followed in many 

ways. Nakamura and Nakamura (2008) and Nakamura (2009) provide a micro-foundation 

to CES production functions via automation and tasks. Acemoglu (2010) generalizes this 

line of research to models with ‘labor saving technologies.’ Perretto and Seater (2013) 

examine a version of the theory without tasks. Zuletta (2008, 2015) tries to consolidate the 

result of decreasing share of labor with the empirics. Recently, Aghion, Jones and Jones 
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(2017) also offer a variation of the basic task-based model, but unlike this paper they do 

not combine it with the expanding variety model. A paper that combines expanding variety 

with automation is Hémous and Olsen (2018), but it differ significantly from our model. It 

also focuses mainly on the effect of skill, while our paper focuses on unemployment. They 

also assume that automation replaces only unskilled labor, which is different from our 

assumption in Section 8. 

The second line of research examines the short-run effects of automation, mainly 

unemployment, in addition to the long-run effects. Hrdy (2017) surveys this literature. 

Cortes, Jaimovich and Siu (2017) relate this issue to the jobless recovery, as experienced 

after the great recession. Other recent contributions are Autor (2015) and Sachs (2017). 

Nakamura and Nakamura (2018) examine the effect of automation on frictional 

unemployment. Most relevant to this paper is a series of papers by Acemoglu and Restrepo 

(2017a, 2017b, 2018a, 2018b) that examine the labor market effects of automation in a 

task-based model.1 Similar to this paper they assume that new labor tasks are continuously 

added, but they differ by assuming also that old tasks are destroyed as new ones arrive. We 

show in Section 7, that this destruction does not fit the restrictions on our model, and that 

is why we reach different results on automation unemployment. The Acemoglu and 

Restrepo papers also differ from ours in assuming that labor productivity increases with 

tasks. We show in an appendix that this cannot change our main result, that unemployment 

due to automation converges to zero. 

 The paper is structured as follows. Section 2 presents the model, while Section 3 

describes the derivation of the equilibrium. Section 4 analyzes economic growth in the 

model. Section 5 examines the size of unemployment and how it evolves over time. Section 

6 examines the case of a balanced growth path. Section 7 examines some potential 

extensions of the model, like making better machines and eliminating tasks. Section 8 

presents another extension to the model that introduces different skill levels and enables us 

to analyze a version of skill-biased technical change. Section 9 summarizes the paper. The 

Appendix presents three extensions to the main model that do not affect its main result. 

                                                 
1  Acemoglu and Restrepo (2018b) is the basic model, Acemoglu and Restrepo (2017b) extend it to 
demography and Acemoglu and Restrepo (2017a) examines it empirically. Acemoglu and Restrepo (2018a) 
presents a less technical summary of their work in the area. 



 5 

 

2. The Model 
Consider an economy that produces a single final good, which is used both for consumption 

and for investment. In period t the final good is produced by a continuum of intermediate 

goods [0, ]tj T∈  in the following way: 

(1)  

1

0

( ) .
tT

t tY x j dj
θ

θ
 

=  
  
∫  

The quantity Yt is final output, while ( )tx j  is the quantity of the intermediate good j. The 

intermediate goods can be thought of as tasks as well. The parameter θ is smaller than 1. 

 Each intermediate good can be produced by two alternative technologies, by human 

labor or by a machine, if such a machine has already been invented. Machines can be 

thought of as robots or automata. If produced by labor, a unit of good j is produced by one 

unit of labor. It is then also called job j.2 If intermediate good j is produced by machines, 

that replace labor for this task, each machine costs k(j) units of capital and it produces one 

unit of the intermediate good. We assume that the function k is increasing. We also assume 

that capital has to be invested one period ahead and we assume for the sake of simplicity 

that it fully depreciates within one period, so that the rate of depreciation of capital is 1. 

We assume that automation technologies are available for the following set of 

intermediate goods [0, ]tj M∈ , where Mt is the technology frontier and it grows over time: 

1 for allt tM M t−≥ . We assume that as it grows, Tt increases as well, as there are new tasks 

created in order to build and take care of the new machines in use. Hence, 1t tT T −≥  for all 

t. Later, we add further restrictions on θ, on the function k, and on the growth of M and T. 

These restrictions are required for the equilibrium to satisfy the assumptions we mention 

in the introduction, that all new tasks are used, that all new automation is adopted, and that 

the share of labor does not diminish to zero. 

Agents in this economy supply one unit of labor in each period and work in specific 

jobs, or tasks. We assume that the overall population is 1. If a task j becomes automated in 

period t, all those who worked in this sector lose their jobs. During period t they search for 

                                                 
2 Appendix B deals with the case of rising productivity of labor over tasks. 
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a new job and we assume that from period t + 1 on they work in another job.  Hence, the 

number of unemployed in period t due to loss of job j, is the number of people who used 

to work in that task in the previous period, 1( )tl j− . In the benchmark simple case we present 

here, the unemployment due to automation is the only type of unemployment. Appendix C 

examines the model with an additional type of unemployment, of mismatch between 

workers and tasks.3 

This model identifies tasks and jobs, although in the real world, a job might involve 

a number of tasks. For example, a taxi driver drives a car, makes commitments to 

passengers, and collects fees. Hence, if self-driving cars become common, taxi drivers 

might lose their jobs due to automation, although they can still do the other tasks involved 

with taxi driving. Hence, our identification of tasks and job is a reasonable simplification. 

We denote the wage rate in the economy at period t by wt. We further assume that 

the economy is small and open. The final good is tradable, while the intermediate goods 

are assumed to be non-tradable. The economy is open to capital mobility and the world 

interest rate is constant over time and is equal to r. We denote the sum of the interest rate 

and the rate of depreciation by 1R r= + . All markets are perfectly competitive and 

expectations are rational. 

 

3. The Equilibrium 
 

3.1 First Order Conditions of Final Production 

We assume that the price of the final good is the numeraire and the price of intermediate 

good j in period t is ( )tp j . The profits of producers of the final good are described by: 

  

1

0 0

( ) ( ) ( ) .
t tT T

t t tprofits x j dj p j x j dj
θ

θ
 

= − 
  
∫ ∫  

Firms decide first how many intermediate goods to use, or how many tasks to apply. If we 

assume that all the new tasks are applied in production, it means that the following first 

order condition must hold for all tT T< : 

                                                 
3 Nakamura and Nakamura (2018) examine the diverse effects of automation on mismatch unemployment. 
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(2)  11 ( ) ( ) ( ) 0.t t t tY x T p T x Tθ θ

θ
− − >  

Hence, if 0θ ≤  this FOC cannot hold. This means that our first working assumption, 

namely that all the new tasks are used in production by the profit maximizing producers, 

leads to our first additional restriction: 

 

Restriction 1: The coefficient θ is positive: 0θ > . 

 

Due to Restriction 1 the elasticity of substitution between tasks 1/ (1 )θ−  is higher than 1. 

 The second FOC is with respect to the quantity used of each intermediate good, 

( )tx j , and it states that: 

(3)  
1

( ) .
( )
t

t
t

Yp j
x j

θ−
 

=  
 

 

Note, that this FOC together with restriction 1, imply that condition (2) holds for all T. 

From the FOC (3) we get that the demand for the intermediate good is: 

  
1

1( ) ( ) .t t tx j Y p j θ
−
−= ⋅  

Substituting this demand in the production function (1), we get the following equilibrium 

condition in the market for goods: 

(4)  1
0

( ) 1.tT

tp j dj
θ
θ

−
− =∫  

 

3.2 Prices of Intermediate goods 

Consider a firm producing an intermediate j with machines. Such a firm produces a quantity 

x, sells it at a price ( )tp j and its profits are: 

  ( ) ( ) .tp j x Rk j x−  

Due to perfect competition and to free entry, profits must be zero. Hence: 

(5)  ( ) ( ) ( ).tp j p j Rk j= =  

Consider next a firm that produces an intermediate good by labor. Let the size of 

the group of workers in the firm who remain from the previous period be denoted by l. The 
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firm receives a number of new workers, who search for a job, which is denoted by z. Hence, 

the profit of the firm at the present is: 

  [ ] [ ]( ) (1 ) (1 ) .t tp j l z q w l z q+ − − + −  

Due to perfect competition and free entry, the price of such an intermediate good is equal 

to the cost of labor: 

(6)  ( ) .t tp j w=  

 

3.3 Determination of Wages 

Equations (5) and (6) describe the supply prices of the goods produced by machines and 

by labor. We substitute them in the equilibrium condition in the goods market (4) and get: 

(7)  1 1 1
0

( ) 1.t t

t

M T

tM
R k j dj w dj

θ θ θ
θ θ θ

− − −
− − −+ =∫ ∫  

To analyze how equation (7) determines the wage rate, note that the first addend on the left 

hand side of (7) is a function of Mt. Denote this function by φ: 

  1 1
0

( ) ( ) .
M

M R k j dj
θ θ
θ θϕ

− −
− −= ∫  

It is easy to see that the function φ is increasing and concave. Equation (7) also 

implies that in order for wages to be positive, the function φ should satisfy for each Mt: 

(8)  ( ) 1.tMϕ <  

Note, that the process of automation can follow two cases. The first and the most important 

and interesting one is that M grows unboundedly: t tM →∞→∞ . In that case assumption 

(8) means that the function φ is bounded from above by 1. It also implies that k(j) is not 

only increasing in j, but that it grows unboundedly with j. The second case is that M is 

bounded: *tM M≤  for all t. In this case of bounded automation, assumption (8) means 

that ( *) 1Mϕ < . In the following analysis we refer mainly to the case of unbounded 

automation, as it is more interesting, but we include the discussion on bounded automation 

as well, for the sake of completeness. 

Given (8), we derive from the equilibrium condition (7) the following equilibrium 

value of the wage rate: 



 9 

(9)  

1

.
1 ( )

t t
t

t

T Mw
M

θ
θ

ϕ

−

 −
=  − 

 

 

3.4 The Share of Labor 

In this sub-section we calculate the share of labor in output in this economy. From the FOC 

(3) we get for each good that is produced by labor: 

  
1 1

1 1( ) .t
t t t t

t t

EY x j w w
T M

θ θ− −= =
−

 

The variable Et is the amount of employment in period t. This equation is based on the 

result that the equilibrium allocation of labor between the various intermediate goods 

between M and T is equal, since all sectors face the same wage and the same price. From 

this equation we get that the share of labor in output is: 

  ( ) 1 .t t
t t t

t

w E T M w
Y

θ
θ

−
−= −  

Substituting the equilibrium wage from equation (9) we get that the equilibrium 

share of labor in output is: 

(10)  1 ( ).t t
t

t

w E M
Y

ϕ= −  

In a similar way it can be shown that the share of capital in output is ( )tMϕ . 

 Equation (10) implies that as mechanization M increases, the share of labor in 

output declines, but by less and less due to the concavity of φ. Furthermore, the declining 

share of labor is bounded below by 0, as assumed above. We next introduce another 

working assumption, which states explicitly that the share of labor does not converge to 

zero, but to some positive number. For this assumption to hold, we need to add a second 

restriction on the function k. Since the function φ is increasing and since Mt is an increasing 

sequence, and due to the boundedness in (8), it has a least upper bound: 

  { }sup ( ) : .tA M tϕ= < ∞  

According to (8) this upper bound should be lower than or equal to 1. To make sure that 

the share of labor would not go to zero over time, we add the following restriction: 
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Restriction 2: The least upper bound A is strictly lower than 1: A < 1. 

 

 Note, that due to the concavity of the function φ and to its boundedness, the share 

of labor might decline over time, but it actually converges to a constant level, 1 – A, so that 

we can say, that from some time on it is basically quite stable, as found in many empirical 

studies. Furthermore, if we add a realistic assumption to the model, that capital is used also 

in labor tasks, in structures for example, then the decline of the share of labor is even more 

moderate, as it does not begin at 1, but at a lower level. This is shown explicitly in 

Appendix A. Hence, this result of a fairly stable share of labor, would look even more 

realistic in such an extension of the model, which does not affect its main results. 

 

3.5 A Necessary Condition for Technology Adoption 

Producers adopt the technology that enables them to produce at a lower cost. Hence, they 

produce by machines only if: 

  ( ) .tRk j w≤  

This condition implies that the goods produced by machines are between 0 and some upper 

bound. This upper bound is equal to Mt, namely all the invented machines are used in 

production, if the following condition holds: 

(11)  ( ).t tw Rk M≥  

From here on we assume that this condition holds for each period and this is our third 

working assumption. Note, that if this condition is not satisfied in some period, automation 

stops at some finite time and does not go beyond it. This third working assumption will 

lead us to the third restriction. 

 From inequality (11) we can derive a condition for technical change and automation 

that must be satisfied in this economy. Substituting the wage rate (9) in inequality (11) 

implies that: 

  [ ]1 1

1 1

1 ( ) 1 ( )( ) 1 ( ) .
( )

( )

t t
t t t t

t
t

M MT M k M R M
M

k M R

θ θ
θ θ

θ θ
θ θ

ϕ ϕϕ
ϕ

− −
− −
− −

− −
− ≥ − = =

′
 

An alternative way of writing this inequality is: 



 11 

(12)  
( )1 .

1 ( )
t

t t t

M
T M M

ϕ
ϕ
′

≤
− −

 

This inequality leads to our third restriction: 

 

Restriction 3: The numbers of tasks and of mechanized tasks, T and M respectively, satisfy 

in each period t the inequality (12). 

 

 

 

 

 

 

 

 

  

 

 

Figure 1: The Curve φ 

 

 As mentioned above, there are two possible cases of automation dynamics, one 

where M is unbounded and one where M is bounded. If M is unbounded then boundedness 

of the share of capital by A implies that the function φ looks as described in Figure 1. 

Hence, in this case we can derive from Figure 1 the following result. 

 

Proposition 1: If Mt is unbounded, the number of labor jobs Tt – Mt increases to infinity 

faster than Mt. 

Proof: If M is unbounded, restriction 2 implies that the function φ is an increasing and 

concave function, which is everywhere bounded above by A, as described in Figure 1. We 

know that the tangent to the curve intersects the vertical axis at ( ) ( )M M Mϕ ϕ′− . It is easy 

to see that: 

Mt φ’(Mt) 
φ(M) 

M 

A 

Mt 
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  ( ) ( ) .MM M M Aϕ ϕ →∞
′− →  

Since ( )Mϕ  also converges to A, it follows that: 

  ( ) 0.MM Mϕ →∞
′ →  

Note that inequality (12) implies that: 

  
( ) .

1 ( )
M M M

T M M
ϕ
ϕ
′

≤
− −

 

Since the numerator converges to 0 and the denominator converges to 1 0A− > , this proves 

the Proposition. 

 

4. Economic Growth 
In this section we calculate output per worker and from it we derive its rate of growth. We 

will show that if output grows unboundedly, the amount of labor tasks is unbounded as 

well. This section also examines the size of the Solow Residual and shows that it is positive 

in this model, as all empirical studies show. 

 From equations (9) and (10) we get that output per worker in this model is equal to: 

(13)  
( )

[ ]

1

1 .
1 ( ) 1 ( )

t tt t
t

t t
t

T MY wy
E M M

θ
θ

θϕ ϕ

−

−
= = =

− −
 

From equation (13) we learn that if M is bounded, then output per worker y might be 

bounded if T – M is bounded as well. If M is unbounded, then according to Proposition 1 

T – M is unbounded and so is y. We therefore conclude that output per worker goes to 

infinity if the level of automation M is unbounded. 

 Given the level of output per worker in each period we can calculate its rate of 

growth. From equation (13) we get: 

(14)  ( ) 1

1

( )1 1ln ln .
1 ( )

t t
t t t

t

M My T M
M

ϕθ
θ θ ϕ

−

−

′ ∆−
∆ = ∆ − +

−
 

Hence, the rate of growth of output per worker, namely of labor productivity, depends on 

both the rate of growth of mechanization, M, and on the rate of growth of jobs performed 

by labor, T – M. We next show that in the long-run the rate of growth of output per worker 

depends only on the rate of growth of T – M. 
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Proposition 2: The dynamics of automation satisfy in the long-run: 

  1

1

( ) 0.
1 ( )

t t
t

t

M M
M

ϕ
ϕ

−
→∞

−

′ ∆
→

−
 

Proof: Both in the case that M is bounded in the long-run, and in the case that M is not 

bounded and is increasing to infinity, 1 ( )tMϕ−  converges to 1 – A and 1 – A is positive. 

As a result, its rate of growth converges to zero. But this rate of growth is equal to: 

  [ ] 1

1

( )ln 1 ( ) .
1 ( )

t t
t

t

M MM
M

ϕϕ
ϕ

−

−

′− ∆
∆ − =

−
 

This proves the Proposition. 

 

From Proposition 2 it follows that in the long-run the only variable that affects the 

rate of growth of labor productivity is the rate of growth of the number of labor tasks. 

Equation (14) and Proposition 2 imply that in the long-run, the rate of growth of output per 

worker is equal to: 

  ( )1ln ln .t t ty T Mθ
θ
−

∆ ≅ ∆ −  

We can therefore conclude that in this model, that combines the Zeira (1998) tasks model 

of automation and the Romer (1990) model of expanding variety, the long-run rate of 

growth is determined by the expanding variety and not by automation. The intuition behind 

this result is actually Proposition 1, according to which automation progresses more slowly 

than the expansion of variety. Interestingly, the shares of labor and of capital are 

determined by the automation part of this combined model, rather than the expanding 

variety part of it.  

 We next turn to calculate the Solow Residual in this economy and to examine 

whether it is indeed positive as all empirical tests show. The amount of capital is calculated 

by using the first order condition (3) to get that the amount of capital in task j is: 

 
1 1

1 1 1( ) ( ) ( ) ( ) ( ) ( ) .t t t t tK j x j k j Y p j k j Y R k j
θ

θ θ θ
− − −
− − −= = =  

Summing over [0, Mt] we get: 

  1 11 1
0 0

( ) ( ) ( ).t tM M

t t t t tK K j dj Y R R k j dj Y R M
θ θ
θ θ ϕ

− −
− −− −= = =∫ ∫  
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Hence, the share of capital in output is ( )Mϕ , and also the capital-labor ratio is: 

(15)  ( ).t t
t

t

K y M
E R

ϕ=  

 This enables us to calculate the Solow residual, which is defined by: 

  ln ( ) ln .t
t t t

t

KSR y M
E

ϕ
 

= ∆ − ∆  
 

 

Using equations (14) and (15) we find that the Solow residual is equal to: 

(16)  [ ] [ ]1 1
1

1 11 ( ) ln( ) ( ) .t
t t t t t t

t

MSR M T M M M
M

θ θϕ ϕ
θ θ − −

−

∆− − ′= − ∆ − +  

Since both mechanization and the number of tasks performed by labor increase over time, 

the Solow residual is positive, according to equation (16). Furthermore, since according to 

Proposition 2, [ ]( ) /M M M Mϕ′ ∆  is converging to 0 over time, the Solow residual 

converges to the rate of growth of output per worker times the share of labor. This is close 

to what we find in many empirical studies. 

 

5. The Rate of Unemployment 
We next turn to describe unemployment in the economy. The group of unemployed are 

people who worked in the previous period, but their tasks become automated in the present, 

in period t. Once they leave their job due to automation, they search for another job and 

remain unemployed for one period. 

The number of unemployed due to automation is denoted by A
tU . This is the 

number of people who were employed in period t – 1 in the jobs that later become 

automated in period t. The number of workers in period t – 1 in job j is 1( )tl j−  and it is 

equal to: 

(17)  1
1

1 1

( ) .t
t

t t

El j
T M

−
−

− −

=
−

 

Hence, the total number of unemployed due to automation in period t is equal to: 

(18)  
1

1
1

1 1 1 1

( ) .
t

t

M
A t t t

t t
t t t tM

E M MU l j dj
T M T M

−

−
−

− − − −

∆ ∆
= = ≤

− −∫  

Due to restriction 3, this inequality can be written in the following way: 
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(19)  1

1 1 1

( ) .
1 ( )

A t t t
t

t t t

M M MU
T M M

ϕ
ϕ

−

− − −

′∆ ∆
≤ ≤

− −
 

This upper bound on unemployment due to automation leads to the next Theorem: 

 

Theorem 1: The unemployment due to automation, A
tU , converges to zero over time: 

0A
t tU →∞→ . 

Proof: There are two cases. The first is that automation stops at some future period and the 

second is that it does not. If automation stops at some future period, then from that period 

on 0tM∆ = . Hence, unemployment due to automation becomes 0 from that period on and 

the theorem holds. In the second case automation continues infinitely. Of course, M could 

go to infinity or be bounded, as discussed above, but it would keep on increasing. In this 

case the theorem follows immediately from an application of Proposition 2 to the inequality 

(19). This proves that if automation continues infinitely, the unemployment it causes 

converges to zero. QED. 

 

 This is a surprising result. The intuition behind it is not trivial, but it is based on the 

need of wages to be sufficiently high in order for automation to be adopted. According to 

equation (9), wages can be high in two cases. One is if the share of labor 1 ( )Mϕ−  

converges to zero. If it does not, the wage can be sufficiently high only if the number of 

labor jobs, T – M, is large enough, since otherwise there will be too many workers crowding 

each job and their marginal productivity will not rise sufficiently. Once the number of labor 

jobs is large, it means that the share of jobs being automated each period is declining. This 

is the intuition behind this surprising result. 

 

6. A Balanced Growth Path  

The stylized facts of economic growth are that the rate of growth of the countries of the 

frontier has been rather stable over a long period of time. GDP per capita in the US has 

grown at an average annual rate of 1.8 percent at least since 1870 and has been stable over 

most of the period. This is why many economists examine a balanced growth path, as an 

important case for many growth models. This section analyzes this specific case as well, 



 16 

by assuming that technology grows at a constant rate. In order to have a full numerical 

example, we first assume that the function of the cost of machinery, k, is described by: 

(20)  ( ) (1 ) .k j a j α= +  

In this case the function φ is equal to: 

(21)  ( ) ( )
1

1 1
1( ) 1 1 .

1
M aR M

θ θ αθ
θ θ

θϕ
θ αθ

− − −
− −

−  = − + + −  
 

Note that this function is bounded only if 1 0θ αθ− − < , or if (1 ) /α θ θ> − . We therefore 

assume that this inequality holds. In this case the function φ satisfies: 

  ( )1
1( ) .

1MM aR A
θ
θ

θϕ
θ αθ

−
−

→∞

−
→ =

+ −
 

Clearly, if a is sufficiently large, the limit A is smaller than 1. 

 We assume for the balanced growth case, that the rate of growth of automation is 

constant over time: 

  .M
M g

M
∆

=  

We also assume that the rate of growth of new jobs is constant over time as well: 

  .T
T g

T
∆

=  

Restriction 3, which assumes that inequality (12) holds for each T and M, enables us to 

establish a relationship between the two rates of growth. 

 If we substitute the specific function φ, from (21), and its derivative into equation 

(11), we get the following inequality: 

  ( ) ( ) ( ) ( )1 11 1 1 .t t t tT M aR M A M A
θ αθ
θ θ− −
 ≥ + + − + +  

 

This inequality implies that in the long-run the two growth rates of M and T must satisfy: 

  .
1T M Mg g gαθ

θ
≥ >

−
 

Hence, the rate of growth of new jobs must be higher than the rate of automation, as implied 

in the general case by Proposition 1. We next assume for the sake of simplicity that: 

  .
1T Mg gαθ

θ
=

−
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We can now return to equation (14), which describes the rate of growth of output 

per worker, and substitute in it the rates of growth of M and of T. We get that in this example 

the rate of growth of output is equal to: 

  
1

1

1 1 ( )ln ln( ) .
(1 )(1 ) (1 )

M
M aRy T M g

A M A M

θ
θ

αθ
θ

θ
θ θ

−
−

−

−
∆ = ∆ − +

− + + +
 

Over time, as M grows to infinity, the rate of growth of output converges to: 

(22)  1ln .T MMy g gθ α
θ→∞

−
∆ → =  

Hence, in the case of a balanced growth path of technology, the rate of growth of output 

per worker converges to a constant long-run rate as well, which is equal to Mgα . This 

means that we have a balanced growth path in the long-run, where the rate of growth of 

output per worker is determined by the rate of growth of the number of jobs, which is 

reflecting also the rate of growth of automation. 

 We next examine the bound of the rate of unemployment due to automation in this 

case of balanced growth path. Combining inequality (19) with the function φ in this 

example at (21), leads to the following inequality: 

(23) 
( ) ( )

( ) ( )

1 1
1 1

1
1 1 1

1
1 1

1
1 1

( ) ( ) (1 )
11 ( ) 1 1 1

1

( ) (1 ) .
11 1 1

1

A t t t t t
t M

t t
t

t
M

t

M M M aR M MU g
M M aR M

aR Mg
aR M

θ αθ
θ θ

θ θ αθ
θ θ

θ θ αθ
θ θ

θ θ αθ
θ θ

ϕ
θϕ

θ αθ

θ
θ αθ

− −
− −

− −
− − −

− − −

− − −
− −

− − −
− −

′∆ +
≤ =

−−  − − + + −  

+
≤

−  − − + + −  

 

Note that the denominator is converging to 1 – A as time goes on, while the numerator 

converges to zero, since (1 ) /α θ θ> − . Hence, the unemployment due to automation goes 

to zero in this case of a balance growth path as well. 

 

7. Improved Machines and Disappearing Tasks 
In this section we deal briefly with two possible critiques of our model, or more precisely 

with two potential variations of the model in which the unemployment due to automation 

might not diminish to zero over time. The first extension is that in addition to automation 
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and creating new jobs, technical change also enables us to reduce the cost of machines 

continuously, as in Sachs (2017) and as discussed in Acemoglu and Restropo (2018a). In 

that case, the condition that the wage exceeds the cost of machines (restriction 3) becomes 

less stringent and it might even affect the validity of Theorem 1. The second extension is 

that unlike our assumption that all tasks are used in production, we might experience 

disappearance of some of the older tasks, as in Acemoglu and Restropo (2018b).   

We first turn to the first possible extension of the model and assume that in addition 

to automation and new jobs, technical change can also create new improved machines to 

perform the automated jobs. To analyze the effect of such an extension, assume that the 

capital cost of machinery k declines. Without loss of generality, consider the case of the 

balanced growth path, which is discussed in Section 6, and assume that the parameter a 

from equation (20) is changing. Note that from equation (23) we get: 

  
( ) ( )

1
1

1
1 1

(1 ) .
1 1 1

1

A t
t M

t

MU g
aR M

θ αθ
θ

θ θ αθ
θ θ

θ
θ αθ

− −
−

− −
− −

+
≤

−  − − + + −  

 

Hence a reduction in the cost of machines, or of automation, increases the bound on 

unemployment due to automation on the RHS of this inequality, so that such technical 

changes can potentially weaken our main argument. 

We next show that this possibility is rather limited, as a cannot decline too much. 

As equation (21) shows, a reduction of a increases the share of capital ( )Mϕ  and if a 

becomes too low, the share of capital might reach 1 and in this case the share of labor 

becomes zero. This strongly contradicts our restriction 2. Hence, the cost of machinery a 

cannot fall by too much and that means that the rate of unemployment still converges to 

zero over time. Hence, the result of Theorem 1 still holds in this case as well. 

As mentioned in the introduction, Acemoglu and Restrepo (2018a, 2018b) assume 

that in addition to automation and creation of new jobs, some of the older jobs are 

disappearing. They assume that the disappearing jobs are exactly the set [ ]0, 1tT − , so that 

the set of total tasks remains of size 1. But this assumption cannot be applied to our model 

with its three restrictions. To understand it consider a more general specification, where 

the active tasks in each period are [ ],t tN T , where t t tN M T< < . 
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There are two main reasons why we think that this extension cannot be applied to 

our model. The first reason is that due to our first restriction, 0θ > . That means that the 

derivative of profits with respect to N is negative. Hence, producers have an incentive to 

reduce N to 0, namely to use all tasks that were developed in the past. Hence, a positive 

value to N contradicts profit maximization when the first restriction holds.  

The second reason to doubt whether tasks can disappear in our model is more 

descriptive and it rests on our understanding of what tasks are. We think that they list all 

the required needs of the human society at a given state of development. Clearly, these 

needs grow, but it is less likely that they disappear. We are still growing wheat and barley 

and olives and figs, as in ancient times. We are still producing transportation, though not 

by animals, but by machines. We still have poetry and art and theater as in ancient times. 

Tasks don’t seem to disappear over time, but rather change. 

There are two more differences between our model and the Acemoglu and Restrepo 

papers. The first is that they derive the rate of growth of M and T from profit maximization 

of an R&D sector, while we impose less structure on their dynamics. The second difference 

is that they assume that labor has increasing productivity over tasks. We examine this 

possibility in Appendix B and find that even in this extension the main result of the model, 

that unemployment due to automation converges to zero, still holds. 

 

8. Skill, Wages and Technical Change 
Finally, we add to our model of automation the issue of skill. The relationship between 

skill and automation has received much attention in the public debate.4 Many have claimed 

that the recent automation, mainly by Artificial Intelligence, is biased toward workers of 

high skill and thus hurts workers with low skill quite significantly. Another claim has been 

that this skill bias has been one of the main reasons for the decline of the share of labor in 

recent decades. We discuss these two claims below. 

Assume that there are two skill levels, high and low. Assume that the number of 

high skilled in the population is H and the number of low skilled is L, and 1H L+ = . For 

simplicity assume that these shares are constant over time. We also abstract in this section 

                                                 
4 Acemoglu and Restropo (2018) discuss the issue of skill and its mismatch with automation as well. A recent 
discussion of skill in a model of automation by tasks appears also in Alesina, Battisti and Zeira (2018). 
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from the issue of unemployment, by assuming that q is equal to 0. Instead of unemployment 

we examine the effect on the wages of high and low skilled. Studying the extension with 

unemployment would lead to similar effects to those of the benchmark model in aggregate, 

but this section focuses on labor income instead. 

Labor tasks can be high or low skilled. There is an indicator function of tasks S, 

that is equal to 1 if the task requires high skill and to 0 if it requires low skill. We denote: 

(24)  
1( , ) ( ) .

y

x

d x y S j dj
y x

=
− ∫  

This means that d is the density of skilled tasks between x and y. The rest of the economy 

is as in the benchmark model and hence the prices of the intermediate goods satisfy: 

  1

0

( ) 1.
tT

tp j dj
θ
θ

−
− =∫  

The supply prices of the intermediate goods, or tasks, are: 

  

( ), if 0

( ) , if and ( ) 1.

, if and ( ) 0

t
H

t t t t
L
t t t

Rk j j M

p j w M j T S j

w M j T S j

≤ ≤


= ≤ ≤ =
 ≤ ≤ =

 

We further assume that all automations are adopted. This means that: 

(25)  ( ).L
t tw Rk M≥  

Clearly this condition holds also for the wage of high skilled, as it is even higher. 

We next turn to calculate the wages of high and low skilled. Substituting the supply 

prices in the equilibrium condition we get: 

  1 11 ( ) ( ) ( ) ( ) [1 ( )] .
t t

t t

T T
H L

t t t
M M

M w S j dj w S j dj
θ θ
θ θϕ

− −
− −= + + −∫ ∫  

Some calculation leads to: 

(26)  ( ) ( ) [ ]1 11 ( ) ( , ) 1 ( , ) .H Lt
t t t t t t

t t

M w d M T w d M T
T M

θ θ
θ θϕ − −
− −−

= + −
−

 

From the first order conditions of tasks we get that skilled non-automated tasks satisfy: 

(27)  ( ) ( ) ( ) ( )
1 1

1 1( ) .
,

H H
t t t t

t t t t

HY x j w w
T M d M T

θ θ− −= =
−

 

Similarly, each low skilled task that is not automated satisfies: 
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(28)  ( ) ( ) ( ) ( )
1 1

1 1( ) .
1 ,

L L
t t t t

t t t t

LY x j w w
T M d M T

θ θ− −= =
 − − 

 

Dividing (27) by (28) we get: 

(29)  ( )
1

1 ,
.

1 ( , )

H
t tt

L
t t t

d M Tw L
w d M T H

θ− 
=  − 

 

From this equation we see that the skill premium, H L
t tw w , increases with d. It 

means that if the density of high skilled jobs among the new jobs increases, the skill 

premium increases as well. If the number of high skilled workers increases, the skill 

premium declines. Hence the rise in the skill premium in the last three decades, despite the 

parallel rise in education, can be interpreted as a rise in the share of skilled tasks among 

new jobs. It is important not to interpret it strictly a strict skill biased technical change 

(SBTC). There is of course an implicit connection, as the new tasks are usually created to 

deal with the new automation. But it is possible that the determination whether a new task 

is high or low skilled might not always reflect technological considerations. It could reflect 

also social considerations. For example, if the workers in a certain job prefer to interact 

with highly educated people, it might affect the definition of the job. 

To simplify notation we use from here on, ( , )t td d M T= . From equations (26) and 

(29) we can solve the two wage levels, of high and low skilled. The wage of low skilled is: 

(30)  

11

1 1 .
1 ( )

L t t
t

t

T M d Hw d d
M d L

θθ
θ θθ

ϕ

−−

  − − = + −    −      
 

The wage of high skilled is: 

(31)  

11

(1 ) .
1 ( ) 1

H t t
t

t

T M d Lw d d
M d H

θθ
θ θθ

ϕ

−−

  −  = + −    − −     
 

We can now rewrite condition (25) for technology adoption in the following way and get: 

  ( )1 1 1 .
1 ( )

t

t t t

M d H d d
T M M d L

θϕ
ϕ

 ′ − ≤ + −  − −    
 

Hence, the dynamic condition imposed by the model on the number of labor jobs remains 

similar to that in the benchmark case. 
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Equations (27) and (28) enable us to find the share of labor in output: 

 ( ) 1 1(share of labor) ( ) (1 )( ) .
H L

H Lt t
t t t t t

t

w H w L T M d w d w
Y

θ θ
θ θ

− −
− −

 +
= = − + − 

 
 

Applying (30) and (31) we get: 

(32)  (share of labor) 1 ( ).t tMϕ= −  

This result means that the share of labor in output does not depend at all on d, namely on 

the density of high skilled tasks in the economy. 

 We can now relate this section to the extensive literature on skill biased technical 

change. If we interpret a rise in high skilled jobs in newly created jobs as SBTC, it fits the 

standard view by having the same effect on the skill premium. But in this model the skill 

premium is not affected at all by automation, only by the type of new tasks created. Also, 

according to our model, the recently observed decline in the share of labor cannot be caused 

by skill biased technical change. Hence, SBTC alone cannot explain all the recent 

developments in the labor markets. It can account for some of the widening skill premium, 

but to explain the decline in the share of labor we need other explanations, like the decline 

in the power of unions, or a rise in monopoly power in the economy, as suggested by Barkai 

(2017) and by Autor, Dorn, Katz, Patterson and Van Reenen (2017), or a rise in monopsony 

power in labor markets, as suggested by Benmelech, Bergman and Kim (2018). 

 

9. Summary 
This paper presents a simple model that enables us to analyze the relationship between the 

long-run process of automation and the short-run phenomenon of unemployment. Our 

model implies that the part of unemployment that should be attributed to automation is 

actually declining over time and converges to zero in the long-run. This is a surprising 

result and its intuition depends on the need of wages to be sufficiently high in order to 

enable continuous adoption of technologies. The wage depends on having sufficient 

number of new jobs created. As the number of new jobs rises sufficiently fast, sooner the 

share of jobs that are automated each period will be relatively small and as a result the rate 

of unemployment as well. 

 The model supplies a strong result and that is a good reason to treat it with some 

caution. In general, economic models should help us to explain processes and mechanisms 
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and dwell less on predicting future developments. We think that this model should be 

treated in a similar way. Its main message is that although automation causes 

unemployment, by turning tasks that used to be performed by labor into tasks that are 

performed by machines, it might also ignite a mechanism that reduces this unemployment 

as well. One reason is that automation also contributes to creation of new labor jobs, to 

produce and to maintain the new machines. If the number of the new jobs grows sufficiently 

fast, the labor jobs will absorb automation better and better, since automation will affect a 

smaller and smaller share of this growing set of tasks. This is a point to bear in mind when 

we consider the effect of automation on unemployment and on the labor market in general. 

The prediction that the unemployment due to automation is converging to zero 

should be dealt with caution for an additional reason. It relies on the assumption that the 

share of labor in output does not converge to zero over time. This sounds like a reasonable 

assumption, as shares of labor tend to be quite stable and are around two thirds across 

countries and over long periods of time. But no one knows for sure how the future will 

look like. If indeed the share of labor will continue to decline and even go all the way to 

zero, then it might as well happen that the unemployment due to automation will remain at 

a stable size and will not converge to zero. We shall wait and see…  
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Appendix 
A. Adding Capital Costs to Production by Labor 

Assume the following addition to the benchmark model, that production by labor of 

intermediate good j requires not only one worker, but also a structure of size s. Assuming 

that this capital also fully deteriorates within one period, it can be shown that the price of 

such a good becomes: 

(A.1)  ( ) .t tp j w Rs= +  

Substituting this price in the equilibrium condition (4) we get that the wage rate is equal: 

(A.2)  

1

.
1 ( )

t t
t

t

T Mw Rs
M

θ
θ

ϕ

−

 −
= − − 

 

 We next turn to calculate the share of labor in output in this economy and in a 

similar way to the calculation of equation (10) we get: 

(A.3)  [ ]
1

1 1

1 ( )
1 ( ) .

( )

tt t
t

t
t t

Mw E M Rs
Y

T M

θ

θ

ϕ
ϕ

−

−
= − −

−
 

This equation implies that even at the start of automation, when 0tM =  and ( ) 0tMϕ =  as 

well, the share of labor is lower than 1. This is of course the result of using capital, mainly 

structures, even before automation, or even before the industrial revolution. We next show 

that as automation proceeds and is unbounded, the share of labor in output converges to 1 

– A, as in the benchmark model. 

 To see this consider the condition for adopting automation: 

(A.4)  ( ).t tw Rs Rk M+ ≥  

From this condition we get, using (A.2) that: 

(A.5)  [ ]
1 11 1( ) ( ) 1 ( ) .t t t tT M Rk M Mθ θϕ
− −− ≥ −  

Inequality (A.5) enables us to find a bound to the discrepancy between the share of labor 

in (A.3) and 1 ( )tMϕ− : 

(A.6)  [ ] [ ]
[ ]

1 1

1 11 1

1 ( ) 1 ( ) 1 ( ) .
( )( ) 1 ( )( )

t t t

t
t tt t

M M MRs Rs s
k MRk M MT M

θ θ

θ θ

ϕ ϕ ϕ

ϕ− −

− − −
≤ =

−−
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The RHS of (A.6) is monotonically decreasing in any case, so this discrepancy is reduced 

over time. The RHS converges to zero if automation is unbounded. In the case of bounded 

automation the share of labor converges to some other constant than 1 – A. 

 

B. Growing Productivity of Labor 

In this appendix we assume that the productivity of labor is not constant, but it increases 

with tasks, namely the amount of workers required to produce one unit of intermediate 

good j is equal to ( )n j , where n is a decreasing function. As a result the price of a task 

produced by labor is: 

(A.7)  ( ) ( ).t tp j w n j=  

Substituting these prices into the equilibrium condition (4) in the benchmark model, which 

holds here as well, leads to the following equilibrium wage rate: 

(A.8)  

1

( , ) ,
1 ( )

t t
t

t

M Tw
M

θ
θψ

ϕ

−

 
=  − 

 

where we use the following notation: 

  1( , ) ( ) .t

t

T

t t M
M T n j dj

θ
θψ

−
−= ∫  

 We next turn to calculate the share of labor in this extension of the model. Note that 

from the first order condition of the final good (3) we get in this case: 

  
1 1

1 1( ) ( ) .t t tx j Y w n jθ θ
− −
− −=  

Hence, the amount of labor producing good j is equal to: 

  
1

1 1( ) ( ) ( ) ( ) .t t t tl j x j n j Y w n j
θ

θ θ
− −
− −= =  

Summing up the amount of labor for all labor produced tasks we get that aggregate 

employment is described by: 

(A.9)  
1

1( ) ( , ).t

t

T

t t t t t tM
E l j dj Y w M Tθψ

−
−= =∫  

We therefore get, using also equation (A.8) that the share of labor in output is: 

(A.10)  1 ( , ) 1 ( ).t t
t t t t

t

w E w M T M
Y

θ
θψ ϕ

−
−= = −  
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Hence, the share of labor in this extension is the same as in the benchmark model. 

 We finally turn to the condition for adoption of automation, which is equal in this 

extension to: 

(A.11)  ( ) ( ).t t tw n M Rk M≥  

Raising by the power of / (1 )θ θ−  we get from (A.11): 

(A.12)  1 1 ( )( , ) ( ) .
( )

t
t t t

t

MM T n M
M

θ
θ ϕψ

ϕ
− −
≥

′
 

 We next turn to the upper bound of unemployment due to automation: 

  
1

1
1 1

1 1 1( ) ( ) .t

t

MA
t t t t t tM

U l j dj M n M Y w
θ
θ θ

−

− −
− −

− − −= ≤ ∆∫  

Using (A.9) we get: 

  
1

11

1 1 1 1

( )( ) .
( , ) ( , )

A t t
t t t t

t t t t

E n MU M n M M
M T M T

θ
θ θ
θ

ψ ψ

−
− −

−−

− − − −

≤ ∆ ≤ ∆  

Using inequality (A.12) we get: 

(A.13)  
1

1

1 1

( ) ( ) .
1 ( ) ( )

A t t t
t

t t

M M n MU
M n M

θ
θϕ

ϕ

−
−

−

− −

 ′∆
≤  −  

 

Since the RHS of (A.13) converges to zero, so does the equilibrium unemployment due to 

automation.  

 

C. Unemployment Due to Mismatch and Automation 

In this appendix we extend the model to include unemployment due to mismatch. Assume 

that agents belong to overlapping generations. Each one lives L periods, supplying one unit 

of labor in each period. Each generation is a continuum of size 1/L, so the overall 

population is 1. In the analysis below we assume for simplicity that the number of cohorts 

is L = 2. Workers try to work in each period but might find themselves unemployed during 

that period for two reasons, one is mismatch between the worker and the job and the other 

is due to losing their job to automation. 

We assume that workers can fit a specific task or not. If they fit, it becomes their 

job, while if they don’t, they lose this job, remain unemployed for one period and then 

search in the next period for another job. This is mismatch unemployment. We assume that 
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the probability of not fitting a job is q, and it is equal across workers and across tasks. 

Workers can also be unemployed if their task becomes automated in the second period. 

Assume that the information that a task is automated arrives at the beginning of the period, 

so that workers, who search for a new job, do not try this job. Only those who worked in 

the job in the past need to leave it and search for a new job, so that q of them become 

unemployed. Hence, unemployment due to automation hits older workers only. 

There are three groups of unemployed in the population. The first group are young, 

who enter the job market for the first time and some of them find themselves mismatched 

to the job they try. Their number is: / 2q . The young do not suffer from unemployment 

due to automation. The second group of unemployed are older workers, who have not 

found a job yet, and are still looking for it. They sample new jobs in their second period of 

life and q of them suffer from mismatch. Their total number is 2 / 2q . 

The third group of unemployed are people who were matched well and worked in 

the previous period, but the tasks they found become automated in the present, in period t. 

Once they leave their job due to automation, they search for another job and q of them do 

not find one. The number of unemployed of this third group, of older workers, is denoted 
A

tU . This is the rate of unemployment due to automation. 

The number of the third group of unemployed due to automation, is the number of 

young people who were employed in period t – 1 in the jobs that later become automated 

in period t, when the workers are already old. Notice that young workers are not distributed 

equally across jobs, since the set of jobs is increasing and every period new jobs are added. 

The new jobs don’t have older workers from the past, so they employ more young workers. 

The number of old people in each job affects the number of young in the job and that 

correlation has a result that the distribution of old and young in a job is not equal across 

jobs. This makes the calculation of the size of unemployment due to automation quite 

complicated. As an alternative, we can try to find an upper bound to this unemployment. 

The unemployed due to automation in period t are people who worked as young in 

these jobs in period t – 1. The number of young workers in period t – 1 in job j, which we 

denote by 1( )y
tl j− , is bounded from above by the total number of workers in the job. This 

number is equal across jobs and hence we get: 
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(A.14)  1
1

1 1

( ) .y t
t

t t

El j
T M

−
−

− −

≤
−

 

Hence, the total number of unemployed due to automation in period t satisfies: 

(A.15)  
1
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Note that due to restriction 3, this inequality can be written in the following way: 

(A.16)  1

1 1 1
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This upper bound on unemployment caused by automation shows that the main result of 

the paper, in Theorem 1, holds in this extension as well. 

 Note that in this case the total rate of unemployment, Ut, satisfies: 

  
2

.
2 2t t
q qU →∞→ +  

This means that the long-run rate of unemployment is due to mismatch only and not to 

automation. 
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