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Abstract

This paper considers the normative implications of technical change for tax policy

design. A task-to-talent assignment model of the labor market is embedded into an

optimal tax problem. The impacts of technical change on wage growth across talents

and the substitutability of talents across tasks emerge as key drivers of policy. The

sources of technical change are measured. Evidence of polarization in the demand for

tasks and a twisting of the task-talent productivity function with low talents catching

up in simple tasks and falling behind in more complex ones is found. The optimal

policy response is to reduce marginal income taxes at the bottom and middle of the

income distribution.
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1 INTRODUCTION

Technical change is inherently redistributive, complementing the labor of some while
substituting for that of others. However, while the positive literature documenting the
redistributive nature of technical change is extensive, normative work exploring the pol-
icy implications of such change is not.1 Our paper fills this gap. We make theoretical and
quantitative contributions. On the theoretical side, we embed a talent-to-task assignment
model into an optimal tax framework. The former has been used been used by labor
and trade economists to analyze the implications of technical change for the structure of
wages and employment. We show how the technological parameters emphasized in this
work shape optimal tax formulas. On the quantitative side, we bring a parametric assign-
ment model to the data; we estimate the key parameters and derive the implications of
technical change from the 1970’s to the present day for policy. We find evidence of shifts
to the task-talent productivity function: low talents catch up with high in simple tasks
and fall behind in complex ones. These shifts have two effects. First, they compress wage
differentials and relax incentive constraints at the bottom of the wage distribution, while
expanding such differentials and tightening incentive constraints at the top. To this ex-
tent they are a force for reduced marginal taxes on low incomes and increased marginal
taxes on high ones. Second, they are associated with an an increase in the comparative
advantage of talented workers in complex tasks. This increase raises the sensitivity of
wage differentials to tax policy and is a force for higher marginal tax rates at the bottom
and lower rates at the top. Optimal policy largely depends on the balance of these forces.
Under our benchmark parameterization, the first is dominant over much of the income
range. The overall optimal policy response is to reduce marginal income taxes on low and
middle talent workers, but leave those on higher talent workers largely intact. Transfers
to low talent workers are reduced.

Positive work emphasizes the role of technological change in affecting the demand for
imperfectly substitutable skills or talents. The normative literature largely abstracts from
these things and, instead, focusses on the incentive to supply effort by perfectly substi-
tutable and privately informed workers.2 An exception is Stiglitz (1982) who allows for

1For a historical account of the relationship between skill and technology see Mokyr (1992), Goldin
and Katz (1998), Autor, Katz, and Krueger (1998) and the references therein. Bresnahan, Brynjolfsson, and
Hitt (2002) look at firm level evidence connecting technology and the demand for skills. Autor, Levy, and
Murnane (2003) argue that recent technical change has led to the replacement of “routine” labor in the
middle of the wage distribution. Autor, Katz, and Kearney (2006), Goos and Manning (2007) and Goos,
Manning, and Salomons (2009) document “job polarization”: growth in low and high skill occupations.

2In turn, the positive literature largely abstracts from the intensive labor supply margin.
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imperfect substitutability between the effort of two different talents.3 This assumption
renders relative wages sensitive to the profile of effort across talents and, hence, tax pol-
icy. In particular, Stiglitz identifies a wage compression motive for subsidizing high and
taxing low talents. By doing so the wage of high talents is compressed relative to low and
the former’s incentive constraints are relaxed.

We begin our analysis with a Stiglitz-type environment in which the production func-
tion is defined directly over the imperfectly substitutable labor input of many different
worker types. In this setting with minimal restriction on the production function, we
derive a general formula for optimal taxation. The formula provides a framework for
interpreting subsequent results. Stiglitz (1982)’s wage compression channel remains op-
erative, but now takes a more complex form: the motive to tax a given talent type k at the
margin depends, in part, on the elasticity of the relative wages of all pairs of adjacent tal-
ent types (ordered by wages) with respect to k’s effort. This setting suggests several ways
in which technical change can influence optimal policy. First, factor augmenting technical
change that is biased towards a subset of talents can do so by modifying relative wages
and, hence, tightening or relaxing incentive constraints. Second, technical change that
alters the effect of one talent type’s effort on the relative wages of other talent types im-
pacts policy by strengthening or diluting the wage compression channel described above.
Third, Harrod neutral technical change affects policy if workers’ marginal rates of substi-
tution between consumption and earned income are altered by scalings of consumption
and wages.

We next embed an assignment model into an optimal tax framework.4 In assignment
models, talented workers have a comparative advantage in complex tasks and assorta-
tive matching of workers to tasks occurs. Standard assignment models, however, omit an
intensive effort margin, a societal motive for redistribution and explicitly private talent;
the optimal tax framework adds these things. In the equilibria of our embedded model,
workers sort themselves efficiently across tasks conditional on the effort of other workers.
This induces an indirect production function over the effort of different talents of the
sort that our earlier analysis assumed. Technological parameters that determine relative
task demand and the productivity of task-talent matches in the assignment framework

3Related exceptions include Naito (1999), Rothschild and Scheuer (2013) and Slavík and Yazıcı (2014).
The latter two are most related to our work and we discuss them below.

4The assignment framework is not new, originating with Roy (1950) and being extended by Sattinger
(1975) and Teulings (1995). It has proven to be a rich laboratory for analyzing the role of talent-task dis-
tributions and the productivity of task-talent matches in shaping the wage distribution. Over the last few
years there has been a renewed emphasis on comparative statics in this framework and on its use as a lens
for viewing the implications of technical change, see Costinot and Vogel (2010), Acemoğlu and Autor (2011)
and Autor and Dorn (2013).
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are thus mapped to the variables and elasticities necessary for optimal tax analysis. In
particular, the pattern of comparative advantage of talents across tasks shapes the sen-
sitivity of relative wages to variations in the effort profile and, hence, policy. A local
reduction in marginal taxes that induces a given talent type to increase its effort, de-
presses the (shadow) price of the task to which the type is assigned and, hence, its rela-
tive wage. Workers offset this by migrating into neighboring tasks, mitigating the impact
on their original task’s shadow price. However, the offset is partial since this migration
erodes their productivity relative to neighboring talents. The greater is the comparative
advantage of talented workers in complex tasks, the greater this erosion and the more
sensitive are relative wages to task assignment. Thus, technical change that raises talent-
complexity comparative advantage enhances the policymaker’s ability to influence the
wage structure through taxation. It strengthens the wage compression force identified in
the more reduced form Stiglitz setting.5

We take our model to the data and quantify the implications of 30 years of technical
change in the US for optimal policy. We treat information on occupations, incomes and
hours in the Current Population Survey (CPS) as if it was generated by an equilibrium
of our assignment model and use parametric assumptions and equilibrium restrictions
to recover estimates of key technological parameters for the 1970’s and the 2000’s. To re-
late empirical occupations to the ordered set of tasks in our model, we order the former
by the average wage paid. We recover an empirical proxy for the assignment of tasks
to talents from the distribution of workers across occupations (ordered by wages). The
estimation of parameters determining the demand for tasks is separated from those deter-
mining the productivity of task-talent matches by assuming a Cobb-Douglas technology
for final goods as a function of tasks. This enables us to identify the demand parame-
ters with occupational compensation shares. Parameters determining the productivity
of talent-task matches and, hence, comparative advantage are recovered from the empir-
ical assignment function and the distribution of wages across tasks using the envelope
condition for wages implied by the model. After obtaining these estimates and supple-
menting them with calibrated preference parameters, we calculate optimal tax policies
for the 1970’s and 2000’s.

We find evidence of relative reductions in demand for mid-level tasks and relative
increases in demand for low and high level tasks. We also find evidence of a twisting

5Migration of workers into neighboring tasks depresses the shadow prices of these tasks inducing the
talents occupying them to migrate as well. A ripple effect is created and, so, an adjustment in one talent
type’s effort can induce reassignment of many types, affecting their relative wages and in the process re-
laxing and tightening many incentive constraints. However, the greater is talent-complexity comparative
advantage the more contained the impact of a policy-induced effort adjustment.
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of the talent-task productivity function, with low talent productivity catching up to high
talent in simple tasks and falling behind in more complex ones. The latter is associated
with significant increases in the comparative advantage of more talented workers in more
complex tasks. Moving from the 1970’s to the 2000’s, we find that under our benchmark
estimation/parameterization, optimal marginal tax rates decrease on low and middle tal-
ents, but rise on higher ones.6 Optimal transfers to workers at the first and second income
deciles are reduced. The twisting of the productivity function is the main force at work.
It has two effects. First, it suppresses wage variation at the bottom of the income distri-
bution, while enhancing it at the top. This relaxes incentive constraints on low incomes,
while tightening them on high ones; it is a force for reductions in optimal marginal taxes
on the former and increases on the latter. These effects are slightly enhanced by the rel-
ative reduction of demand for mid-level tasks populated by mid-level talents. Second,
there is a partially offsetting strengthening of the wage compression channel. Higher
comparative advantage of talented workers in complex tasks increases the policymaker’s
motive to apply high marginal taxes on low talents. Such taxes deter low talent effort,
raise low-level task prices and encourage higher talents into these tasks. The relative
productivity of these task migrants is eroded, suppressing their wage premia and relax-
ing incentive constraints. A parallel strengthening of the policymaker’s motive to reduce
marginal taxes on high talents occurs. Of these two forces, the first dominates at most
incomes under our benchmark parametrization.

The remainder of the paper proceeds as follows. After a brief literature review, Sec-
tion 2 provides motivating facts. Section 3 gives optimal tax formulas for economies with
imperfectly substitutable labor types and provides an initial discussion of the implica-
tions of technical change for policy. In Section 4 an assignment model is embedded into
an optimal tax framework. An indirect production function over worker effort is derived
and the parameters of the assignment model related to the relevant terms of the optimal
tax formulas from Section 3. In addition, the implications of technical change for pol-
icy in a simple two talent model are discussed. Section 5 describes how the assignment
model is used to identify estimates of technical change and reports these estimates. In
Section 6, optimal policy for the 1970s and 2000s is computed and the implications of
technical change for policy recovered. The tax formula from Section 3 is used to decom-
pose and account for changes to optimal taxes. Section 7 concludes; appendices contain
proofs and additional details.

6Except for those at the very top who experience reduction.

5



LITERATURE As noted above, our paper bridges the normative optimal taxation liter-
ature and a positive literature that analyzes the role of technical change in driving the
wage distribution. Both literatures are large. Many contributions to the latter have at-
tributed increases in the skill premium to skill-biased technical change, formalizing this
insight in what Acemoğlu and Autor (2011) have called the canonical model, i.e. a model
with two imperfectly substitutable types of workers (skilled and unskilled) and factor-
augmenting technical change directed towards the skilled.7 Recently, a more nuanced
view of the labor market has emerged that recognizes that extreme (i.e. low and high
wage) occupations have grown relative to middle occupations. Partly in consequence,
assignment models have been increasingly adopted to analyze the joint distribution of
workers across wages and occupations and the evolution of this distribution. Acemoğlu
and Autor (2011) and Autor and Dorn (2013) are prominent examples.

Most contributions to the normative literature focus on labor supply. In addition to
Stiglitz (1982), we mention three recent contributions that are quite related to ours and
that give an (interesting) role to labor demand. Rothschild and Scheuer (2013) also de-
velop implications for optimal tax policy in an assignment framework. In contrast to us,
they focus on the two task-many talent case with, in their theory, essentially no restrictions
on the distribution of talent across tasks. In this setting they provide an interesting charac-
terization of optimal taxes and contrast such taxes with those obtained in self-confirming
equilibria in which governments do not recognize their ability to influence the wage dis-
tribution. We focus on many task-many talent cases, but place much stronger restrictions
on the task-talent distribution. This allows us to relate our model to those used in the pos-
itive literature to analyze technical change and to undertake comparative static exercises
which Rothschild and Scheuer (2013) do not do.

Slavík and Yazıcı (2014) apply the logic of Stiglitz (1982) to capital taxation. In their
paper they introduce two sorts of capital, buildings and machines. Following the skill pre-
mium literature, they assume a machine-skill (or machine-talent) complementarity. Thus,
machines raise the marginal product of the talented relative to the untalented and, as in
Stiglitz (1982), this dilutes incentives. It is socially desirable to deter the accumulation of
machines. In quantitative work, Slavík and Yazıcı (2014) show that this creates a rationale
for quite high rates of (machine) capital taxation. Slavík and Yazıcı (2014)’s interesting
contribution is complementary to ours. They endogenize technical change, which we do
not, in the context of a two talent "canonical model", and develop policy implications. We
treat technical change parametrically, but do so in a multi-talent/multi-task assignment
setting.

7Examples include Acemoğlu (2002) and Krusell, Ohanian, Ríos-Rull, and Violante (2000).
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Heathcote, Storesletten, and Violante (2014) analyze optimal income tax progressivity
in a rich dynamic environment. They assume imperfectly substitutable skills, but do not
explicitly model tasks. Our model is static, but we add assignment and, hence, endoge-
nize the substitutability of skills and relate it to technical change. In addition, Heathcote,
Storesletten, and Violante (2014) restrict optimal taxes to a parametric class, we do not.

2 FACTS ON TECHNICAL CHANGE AND TAXATION

We first document some stylized facts that motivate our analysis. Figure 1 displays
changes in average incomes across (1-digit) occupations from the 1970’s to the present.8
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Figure 1: Evolution of average income by occupation over time.

The figure indicates considerable variation in the experience of different occupations,
with some exhibiting significant average income growth and others stagnating. More-
over, occupations with slow average income growth were predominantly middle income
in the 1970’s, while fast growers were mainly low or high income at that time. For ex-
ample, precision production, craft and repair workers had a mid-level income of $33,109
in 1975 (all incomes are expressed in 2005 dollars) and negligible income growth subse-
quently. In contrast, the two occupations with the fastest growing average incomes, ser-
vices and managerial and professional, had average incomes in the mid-1970’s of $12,912

8The data is taken from the March survey of the Current Population Survey (CPS). See Appendix D for
additional details on the data and our sample selection.
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and $40,013, placing them at opposite extremes of the income distribution. Such occu-
pational polarization, with the middle growing more slowly than the extremes, is not
confined to earnings; it is also present in various measures of occupational size and de-
mand. Figure 2, displays changes in the share of employment of different occupations
over time.9 Here managerial/professional and service related occupations that are con-

.4
.6

.8
1

1.
2

1.
4

(1
97

6=
1)

1980 1990 2000 2010
 Year

Managerial and professional Administrative support
Services Precision production
Operators, fabricators, laborers Transportation

Source:  March CPS.

Figure 2: Evolution in size of employment by occupation over time.

centrated in the extremes of the income distribution are expanding in size, while mid-
income level occupations operators and fabricators (mostly employed in manufacturing)
are shrinking over time.

Overall, the picture that emerges from the CPS (and other data sources) is one in which
high wage and low wage occupations are growing in size and in average compensation
relative to middle ones. If talent is imperfectly substitutable across occupations, then
these varied occupational fortunes suggest varied fortunes for differently-talented work-
ers. In the remainder of the paper we consider the optimal policy response to such events.
Before doing so it is interesting to document the actual policy response. Table 1 reports
the evolution of average tax rates since the 1970’s. To calculate these rates, we encode the
information provided in CPS into the NBER TAXSIM simulator.10 For each individual
we use information on the year, state of residence, dependents, marital status, total and

9See, inter alia, Goos and Manning (2007), Goos, Manning, and Salomons (2009), Acemoğlu and Autor
(2011) and Autor and Dorn (2013) for related evidence.

10 Gouveia and Strauss (1994) emphasize the usage of effective tax rates as opposed to statutory tax rates
to correctly capture the differences between market and taxable income as well as the worker’s economic
response to statutory tax rates.
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individual income. Effective state and federal tax rates are given both with and without
payroll taxes (note that we are assuming that the burden of the payroll tax falls entirely
on the worker).

Table 1: Average Tax Rates on Real Labor Income.

Taxes Included Decade
Percentiles of Income

10th 25th 50th 75th 90th 99th

State + Federal
70s -4.9 4.6 13.1 17.9 21.5 31.5

00s -21.9 -6.6 7.2 14.9 20.1 34.4

State + Federal + FICA
70s 8.1 17.7 26.8 31.3 32.2 37.4

00s -4.8 10.6 24.9 32.1 36.8 40.7

Notes: Data on individuals is taken from the March CPS. Data for the 70s is from 1977 to
1980. Data for the 00s is from 2001 to 2010. We drop individuals with negative income
and labor income below $100. Also dropped are individuals for which labor income is
less than 60% of total income or more than 120% of total income. Tax rates are computed
using the NBER TAXSIM calculator version 9.2. Rates reported are average tax rates on
labor income of the head of household inclusive of transfer received.

Between the two time periods we observe significant reductions in average tax rates for
those at low incomes, modest reductions at mid-incomes and increases at high incomes.
Incorporating FICA raises average taxes by 13% to 16% at most incomes depending upon
the time period, with smaller increases at the top.11

3 OPTIMAL TAXATION WITH IMPERFECTLY SUBSTITUTABLE

WORKER TYPES

Mirrlees (1971)’s classic model of optimal taxation assumes that workers of different types
are perfect substitutes and that final output is a weighted sum (or integral) of worker ef-
fort, with the weights given by private productivities. Stiglitz (1982) allows for a more
general production function. He assumes that workers are one of two imperfectly sub-
stitutable types and interprets these types as "low" and "high" skilled. In this section, we
generalize Stiglitz (1982) to K-types, but place no interpretation on a worker’s type (the
nature of which is defined implicitly by the production function). Our goal is to derive a
general formula for optimal taxes without placing too much structure on the production

11The relative impact of FICA taxes on different income percentiles changes over time. This is because
the maximum social security taxable earnings is approximately at the 77th percentile in the 70s, while it
increases to the 90th percentile in the 00s.
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function. This provides a framework for interpreting results in the assignment setting of
later sections. In this general (and compared to later sections reduced form) context we
briefly discuss implications of technical change for taxes.12

3.1 PHYSICAL ENVIRONMENT

WORKERS A continuum of workers has identical preferences over consumption c ∈ R+

and effort e ∈ [0, e] described by a utility function U : R+ × [0, e] → R. The function
U is assumed to be concave, twice continuously differentiable on the interior of its do-
main, with for each e ∈ [0, e], U(·, e) increasing and for each c ∈ R+, U(c, ·) decreasing
and strictly concave. First and second partial derivatives of U are denoted Ux and Uxy

with x, y ∈ {c, e}. U satisfies the Inada conditions: for all c > 0, lime↓0 Ue(c, ·) = 0 and
lime↑e Ue(c, ·) = −∞. In addition, U satisfies the Spence-Mirrlees single crossing prop-
erty: −Ue(c, y/w)/{wUc(c, y/w)} is decreasing in w.13 Workers are partitioned across
K ∈ N\{1} “types” with a fraction πk of workers in type group k ∈ {1, . . . , K}. The
fraction of workers with type less than or equal to k is denoted Πk = ∑k

j=1 πj.
Workers sell their labor to firms and pay taxes on the income that they earn. Let T :

R+ → R denote an income tax function. Throughout this section, income tax functions
are assumed to be piecewise-differentiable with directional derivatives less than one. A
worker of type k receiving wage wk solves the problem:

sup
R+×[0,e]

U(c, e) s.t. c ≤ wke− T(wke). (1)

TECHNOLOGY A representative competitive firm hires workers of all types. The firm
uses a production function F : RK

+ → R+ defined directly on the labor inputs of the
different types. The firm solves:

max
RK

+

F(e1π1, . . . , eKπK)−
K

∑
k=1

wkπkek,

where ek is the common effort level of workers of type k. F is assumed to be a con-
tinuously differentiable, constant returns to scale function with k-th partial derivative

12Much of the optimal tax literature is cast in terms of a continuum of types. This literature maintains the
linear production function assumption. Although versions of the results that we give below are available for
continuum (of type) economies, for general constant returns to scale production functions, their derivation
requires stepping outside of the framework of optimal control and maximizing an infinite-dimensional
Lagrangian directly. To avoid technical complications that do not generate additional economic insight we
do not do this.

13If, given U, consumption is a normal good, then this condition is assured.
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Fk. At this stage, we place no further restrictions on F. In classical Mirrlees models
F(e1π1, . . . , eKπK) = ∑K

k=1 akekπk for some positive constants {ak} and workers of dif-
ferent types are perfectly substitutable. However, we allow for and, in this section, focus
upon worker types that are imperfect substitutes in production. Since F defines what it
means for a worker to be of one type or another, the economic nature of a worker’s type
is for the moment left implicit.

TAX EQUILIBRIUM Let G be a fixed public spending amount. Given G, a tax equi-
librium is an income tax function T : R+ → R, an allocation {ck, ek}K

k=1 and a wage
profile {wk}K

k=1 such that (i) for each k = 1, . . . , K, (ck, ek) solves (1), (ii) for each k =

1, . . . , K, wk = Fk(e1π1, . . . , eKπK) and (iii) the goods market clearing condition holds:
G + ∑K

k=1 ckπk ≤ F(e1π1, . . . , eKπK). Let E denote the set of tax equilibria (given G).

Remark 1. This definition restricts attention to symmetric equilibria in which all workers
of a given type make the same consumption and effort choices given the tax schedule.
Although non-symmetric equilibria are possible, they are not socially optimal and we
exclude them. We also restrict attention to deterministic tax schedules. The literature
has considered richer tax mechanisms that randomize over tax rates, see Stiglitz (1982),
Brito, Hamilton, Slutsky, and Stiglitz (1995) and Hellwig (2007). The latter gives sufficient
conditions for deterministic tax mechanisms to be socially optimal in utilitarian settings.

3.2 OPTIMAL POLICY

A government attaches Pareto weight gk to workers of type k, with weights normalized
to satisfy ∑K

k=1 gk = 1. It selects a tax equilibrium to solve:

sup
E

K

∑
k=1

U(ck, ek)gk. (PP)

Let T∗ and {c∗k , e∗k , w∗k}K
k=1 denote an optimal tax equilibrium with worker types indexed

so that w∗k = Fk(e∗1π1, . . . , e∗KπK) is increasing in k.14 . We call:

τ∗k = −
Ue(c∗k , e∗k )

w∗k Uc(c∗k , e∗k )
− 1

14The ordering of worker types’ marginal products is not given exogenously. The labeling of worker
types can always be modified to reflect their marginal product ranking at the optimal allocation.
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the marginal tax rate at income q∗k = w∗k e∗k > 0.15 The equilibrium allocation {c∗k , e∗k , w∗k}K
k=1

satisfies a non-binding upward incentive constraint condition if:

U(c∗k , e∗k ) > U(c∗k+1, q∗k+1/w∗k ). (NUIC)

Under this condition a k-type worker strictly prefers her optimal equilibrium allocation
to that which she could obtain by replicating the income of a k + 1-type worker.16

Our main goal is to determine how technical change, by modifying F, shapes the pro-
file of optimal taxes. The following proposition relates optimal taxes to F and is the first
step in this direction.

Proposition 1. Let T∗ and {c∗k , e∗k , w∗k}K
k=1 denote an optimal tax equilibrium with worker types

indexed so that w∗k = Fk(e∗1π1, . . . , e∗KπK) is increasing in k. Assume that {c∗k , e∗k , w∗k}K
k=1 satisfies

the non-binding upward incentive condition (NUIC). Optimal marginal tax rates satisfy:

τ∗k
1− τ∗k

=
∆w∗k+1
w∗k+1

1−Πk
πk

H∗k Ψ∗k +
K−1

∑
j=1
M∗

k,jφ
∗
k,j, (2)

where:
∆w∗k+1
w∗k+1

:=
w∗k+1−w∗k

w∗k+1
,

H∗k := −
∆eUc(c∗k , e∗k )

Uc(c∗k , e∗k )
e∗k +

∆eUe(c∗k , e∗k )
Ue(c∗k , e∗k )

w∗k
w∗k+1

e∗k + 1,

with ∆eUx(c∗k , e∗k ) :=
Ux(c∗k ,e∗k )−Ux

(
c∗k ,

w∗k
w∗k+1

e∗k

)
e∗k−

w∗k
w∗k+1

e∗k
, x ∈ {c, e},

Ψ∗k :=
K−1

∑
j=k
N ∗k,j

{
1−

gj+1Uc(c∗j+1, e∗j+1)

πj+1χ∗

}(
Uc(c∗k , e∗k )

Uc(c∗j+1, e∗j+1)

)
πj+1

1−Πk
,

with N ∗k,j := ∏
j
i=k+1

Uc(c∗i ,q∗i /w∗i+1)

Uc(c∗i ,e∗i )
,M∗

k,j := Uc(c∗k ,e∗k )
Ue(c∗k ,e∗k )e

∗
k

Ue

(
c∗j ,q∗j /w∗j+1

)
Uc(c∗j ,e∗j )

q∗j
w∗j+1

Ψ∗j
1−Πj

πj

πj
πk

and φ∗k,j =

e∗k
w∗j+1/w∗j

∂w∗j+1/w∗j
∂ek

(e∗1 , . . . , e∗K). χ∗ is the optimal shadow price of resources (i.e. the multiplier on

the goods market clearing constraint).

Proof. See Appendix A.

15The optimal program (PP) only determines T∗ at the points {q∗k}. However, T∗ may be chosen so
that τ∗k is the left derivative of T∗ at q∗k ; if T∗ is differentiable at q∗k , then it is the derivative of T∗. The
Inada conditions on worker utilities ensure that absent taxes workers would always choose e ∈ (0, e).
Consequently, in a tax equilibrium, a wedge between an worker’s marginal rate of substitution and its
wage is due to taxation and not to a boundary condition on effort.

16See footnote 18 for some further discussion of this condition.
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Remark 2. The relative wage-effort elasticities φ∗k,j play an important role in the remainder
of the paper. In particular, φ∗k,k−1 = −φ∗k,k gives the elasticity of complementarity (and the
reciprocal of the Hicks elasticity of substitution) between the k and k− 1 types’ efforts.

We now discuss and interpret the optimal tax formula in (2). This formula has two
main terms, which we label “Mirrlees” and “Wage Compression”:

τ∗k
1− τ∗k

=
∆w∗k+1
w∗k+1

1−Πk
πk

H∗k Ψ∗k︸ ︷︷ ︸
Mirrlees

+
K−1

∑
j=1
M∗

k,jφ
∗
k,j︸ ︷︷ ︸

Wage Compression

.

The “Mirrlees” term is not new: it is the discrete analogue of terms found in continuous-
type models with exogenous productivity (e.g Mirrlees (1971) and Saez (2001)). However,
in contrast to these models, and importantly for the subsequent analysis, the component
∆w∗k+1
w∗k+1

is now endogenous. The second “Wage Compression” term only occurs in models
with imperfectly substitutable labor types, such as ours and is not present in Mirrlees
(1971) or Saez (2001).

MIRRLEES TERM This term has four components.17 Hk is a discrete approximation to
1+Eu,k

Ec,k
, where Ec,k and Eu,k are, respectively, the compensated and uncompensated la-

bor supply elasticities at (c∗k , e∗k ). If worker preferences are additively separable, this
reduces to one plus (a discrete approximation to) the reciprocal of the Frisch elastic-
ity. If preferences are further restricted to be quasi-linear in consumption, Ψ∗k reduces

to ∑K−1
j=k

{
1− gj+1

πj+1

}
πj+1

1−Πk
, where it captures the government’s redistributive motive. 1−Πk

πk

is the reciprocal of the hazard; this plays an important role in conventional optimal tax
analysis since, if types have compact support, it implies zero marginal taxes at the max-
imal income. In our analysis it is a parameter unaffected by technical change and, thus,
plays a smaller role. In contrast, the wage growth (across types) term

∆w∗k+1
w∗k+1

is important
in what follows. To understand its role it is useful to recall briefly the mechanism design
formulation of the government’s problem. In this formulation, the government chooses a
mechanism that maps reported types to incentive-compatible allocations of consumption
and effort.18 The solution to this problem gives an optimal allocation; prices and (opti-
mal) taxes are then selected to ensure implementation of this allocation as part of a tax

17For detailed discussion of the role played by these components in a continuous-type setting see Salanié
(2011). Saez (2001) relates the components of this term to labor supply elasticities, the type distribution and
the government’s redistributive motive.

18The formulation is fully specified in Appendix A.
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equilibrium. The mechanism design problem is:

sup
K

∑
k=1

U(ck, ek)gk

s.t. for each k,

U(ck+1, ek+1) ≥ U
(

ck,
wkek
wk+1

)
(3)

wk = Fk(e1π1, . . . , eKπK)

and

G +
K

∑
k=1

ckπk ≤ F(e1π1, . . . , eKπK).

Condition (3) is the (local downward) incentive-constraint,19 which requires that a k +
1-th type worker is better off reporting her own type, than reproducing the income of
and, hence, mimicking a k-th type worker. Crucially, the wage ratio wk+1/wk appears on
the right hand side of this constraint. Higher values of this ratio reduce the effort that
a k + 1-th type worker must exert to mimic a k-type and, hence, tighten the incentive
constraint and are associated with greater distortions of allocations. Thus, higher wage
growth across the k and k+ 1 types is, other things equal, a force for higher marginal taxes
on the k-th type.

WAGE COMPRESSION TERM The second term in (2) does not appear in standard optimal
tax equations that are derived from models with linear production functions and exoge-
nous wages. In settings with non-linear production functions, such as ours, the effort of
the k-th worker type can affect the marginal rate of transformation and, hence, the ratio
of wages between the j and j + 1-th types. Following the logic of the previous paragraph,
more compressed wage ratios relax incentive constraints and to the extent that the effort
of a given type reduces or enhances such compression it should be encouraged through
taxation. In particular, larger values of the relative wage-effort elasticities φ∗k,j are a force

19Again, the ordering of types is chosen to be consistent with the ordering over optimal wages. By stan-
dard arguments, only local upwards and downwards incentive constraints potentially bind. The problem
omits the local upward incentive-constraints, U(ck, ek) ≥ U

(
ck+1, wk+1ek+1

wk

)
, which here and in Proposi-

tion 1 we assume to be non-binding. Later in our later numerical calculations in Section 5 we verify that
such constraints do not bind. Our treatment of upward constraints follows many contributors who give tax
formulas in the absence of such conditions and verify that they are non-binding in numerical calculations,
see, e.g. Saez (2001) or Rothschild and Scheuer (2013). However, the proof of Proposition 1 indicates how
the optimal tax formula would generalize if such constraints were to be binding.
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for higher marginal taxes on the k-th type. Stiglitz (1982) identifies this wage compression
channel in a two type model. In that case there is only one binding incentive constraint
and −φ∗1,1 = φ∗2,1 = 1/E∗, where E∗ is the elasticity of substitution between the two
worker types (i.e. w2/w1

e2/e1

∂ e2/e1
∂ w2/w1

) at the optimum. Assuming this is positive, compres-
sion of wages between the two types, requires that the effort of the high (resp. low) type
should be relatively encouraged (resp. discouraged). Since the first term in (2) is zero for
k = K = 2, this translates into an optimal marginal income subsidy for high types and an
enhanced marginal income tax for low types.20

THE FORM OF F The functional form for F plays an important role in shaping wage
growth across types ∆w∗k+1/w∗k+1 and relative wage-effort elasticities φ∗k,j and, hence, opti-
mal taxes. In most contributions to the public finance literature F is taken to be a weighted
sum of type efforts and, hence, ∆w∗k+1/w∗k+1 and φ∗k,j are treated as structural and invari-
ant to policy. A natural and weaker alternative is to require F to be a CES function.21 This
assumption permits policy to affect ∆w∗k+1/w∗k+1, but continues to treat the elasticity of
substitution and, hence, the relative wage-effort elasticities as structural. It also places
strong restrictions on the latter requiring that they equal:

φ∗k,j =


− 1
E j = k
1
E j = k− 1

0 otherwise,

where E is the elasticity of substitution between the effort of worker type pairs. Thus, for
each worker type k, the elasticities φ∗k,j are non-zero only locally (i.e. a variation in a type’s
effort only affects its wage relative to others, it does not affect the relative wage of other
type pairs) and all elasticities φ∗k,k and φ∗k,k−1 take common values independent of k.22

TECHNICAL CHANGE The formulas in Proposition 1 point to several channels through
which technical change can influence optimal policy. First, and most simply, it could raise
the return to effort of all workers at a given effort profile {ek} through a pure Harrod

20The motive for this is to compress the relative wage. Moreover, this policy does not imply that high
types have lower average taxes.

21See Heathcote, Storesletten, and Violante (2014) for an analysis of optimal taxation within a special
class of tax functions that makes such an assumption in a rich dynamic setting.

22 Salanié (2011) raises related concerns. He asserts: “It is, unfortunately, quite difficult to specify a pro-
duction function that models the limits to factor substitution with an infinite number of factors.” (Chapter
4, p.111). He emphasizes that the substitutability of similar and dissimilar worker types may be quite
different, but that such differences cannot be accommodated under the CES assumption.
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neutral shift. This can impact policy via the differential labor supply response of different
worker types.23 Second, the technical change could be directed towards some subset of
workers. In particular, it could additively translate the function mapping the workers’
effort profile {ek} to wage growth {∆wk+1/wk+1} by some function. For example, if F is

a CES function of the form F(e1π1, . . . , eKπK) = A
[

∑K
k=1 Dke

E−1
E

k

] ε
ε−1

, then:

∆wk+1

wk+1
≈ − log

(
wk

wk+1

)
= − log

(
Dk

Dk+1

)
+

1
E log

(
ek

ek+1

)

and technically induced variations in the log relative CES weights {log Dk
Dk+1
} additively

translate the map from efforts to wage growth over talents. They do not affect the sensi-
tivity of such wage growth to effort and, in particular, leave the elasticities φk,j unaltered.
Such variations, by modifying the productivity of one type of worker relative to another
at a given effort profile, relax or tighten incentive constraints and, hence, elicit a tax re-
sponse. Third, technical change could alter the sensitivity of wages to the effort profile,
i.e. it could change the functions mapping effort profiles to relative wage-effort elasticities
φk,j. By treating the wage distribution as exogenous and structural, the first and second
channels, but not the third, can be captured. These two channels are also captured by
identifying technical change with adjustments in the weights of a CES production func-
tion over type efforts. The latter treatment, as described above, is consistent with a wage
compression motive via which policy affects relative wages, but it does not allow techni-
cal change to modify the strength of this motive. The assignment framework, which we
adopt below, permits this.

4 ALLOCATIONS WITH ASSIGNMENT

We now consider optimal taxation in a framework with task assignment. As noted in the
introduction, assignment-based frameworks have been used in the positive literature to
formalize the impact of technical change on the distribution of workers across wages and
occupations. As we show below they imply and, hence, micro-found an indirect produc-
tion function over worker efforts. Consequently, we are able to relate key elasticities in the
optimal tax equation (2) to deeper structural parameters that describe the way tasks and
talent interact and the relative demand for (labor input in) tasks. We interpret changes in
these parameters as technical change and conclude this section by deriving implications

23In our later numerical work, we close this channel down by restricting attention to utility functions of
the form log c + h(e).
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of such change for optimal policy in a very simple assignment model.

4.1 PHYSICAL ENVIRONMENT

As before workers are partitioned across types 1, . . . , K with a fraction πk being of type
k. We now explicitly label types as talents. In addition, there is a continuum of tasks
v ∈ [v, v] differentiated by complexity. A k-th talent worker faces a wage schedule ωk :
[v, v]→ R+. The worker solves the problem:

sup
R+×[0,e]×[v,v]

U(c, e) s.t. c ≤ ωk(v)e− T(ωk(v)e). (4)

The productivity of a talent k worker in task v is given by ak(v) ∈ R+. The productiv-
ity functions {ak}, ak : [v, v]→ R+ satisfy the following condition.

Assumption 1. The functions ak : [v, v] → R+, k ∈ {1, . . . , K} are continuous and sat-
isfy for each k ∈ {1, . . . , K − 1} and v′, v ∈ [v, v] with v′ > v, log ak+1(v′) − log ak(v′) ≥
log ak+1(v)− log ak(v).

The latter assumption implies that a is a weakly log super-modular function of tal-
ent and task and that higher talents have a weak comparative advantage in more com-
plex tasks. We often strengthen this assumption by requiring a to be strictly log super-
modular in task and talent: k ∈ {1, . . . , K− 1}, and v′, v ∈ [v, v] with v′ > v, log ak+1(v′)−
log ak(v′) > log ak+1(v)− log ak(v). We also sometimes supplement Assumption 1 with
the absolute advantage condition ak+1 > ak. Task output is linear in effective labor input.
Let Λk be the distribution of talent group k across tasks with (i) Λk([v, v]) = πk and (ii)
density λk defined at almost every v. If workers in talent group k exert effort ek, then for
almost every task v, task output is:

y(v) =
K

∑
k=1

λk(v)ak(v)ek.

Final output Y is produced from task output y : [v, v]→ R+ using a CES-technology:

Y =

A
{´ v

v b(v)y(v)
ε−1

ε dv
} ε

ε−1
ε ∈ R+\{1},

A exp
{´ v

v b(v) ln y(v)dv
}

ε = 1,
(5)

where A > 0 and b : [v, v] → R++ is a continuous function satisfying B(v) = 1, B(v) :=´ v
v b(v′)dv′.
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Remark 3 (Interpreting a and b). The function a captures the idea that different workers
may be more or less effective at performing specific tasks or using task-specific capital.
Assumption 1 implies that more complex tasks are more talent-intensive and more tal-
ented workers have a comparative advantage in these tasks. The formulation of produc-
tion here follows that in the assignment literature, e.g. Costinot and Vogel (2010), with
the important addition of an intensive effort margin. Note that analogous to this litera-
ture, talent refers to relative ability in complex tasks. Unless the comparative advantage
assumption is supplemented with an absolute advantage condition, "talented" workers
need not have greater productivity in all tasks and need not earn higher wages in equi-
librium.24

Later we allow for the possibility that a may change over time. We interpret such
change as technical progress and allow it to depend upon both worker talent and task
complexity. In particular if, for each v and k′ > k, log ak′ (v)

ak(v)
increases, then technical

progress is talent-biased; if for each k and v′ > v, log ak(v′)
ak(v)

increases, then it is complexity-

biased and if for each k′ > k, v′ > v, log ak′ (v
′)

ak(v′)

/
ak′ (v)
ak(v)

increases, then it is biased towards
high talent-high complexity matches. In the latter case, it enhances the comparative ad-
vantage of talent in complex tasks and reduces the substitutability of talent across tasks.

The function b weights task output in the final good aggregator. Variations in b may
be interpreted as stemming from technological or preference-based variations in demand
for different task outputs. We do not explicitly model capital. However, the model may
be extended in this direction, in which case the production functions in (5), under the
assumption B(v) ∈ (0, 1), can be reinterpreted as indirect production functions for labor
across tasks after the substitution of optimal capital. The parameter b(v) is then inter-
preted as the sensitivity of final output with respect to the labor input in task v. It is
influenced not only by variations in demand for different tasks, but also variations in
the capital/labor intensity of tasks. Such variations are stressed by Acemoğlu and Autor
(2011) who emphasize the automatization of middle complexity tasks. A further possi-
bility is that b captures the extent to which workers purchase task output in domestic
markets, produce it at home or purchase it in foreign markets. Shifts in b for some tasks
may reflect the substitution of market for home production as in Buera and Kaboski (2012)
or domestic for foreign production as in Grossman and Rossi-Hansberg (2008).

A representative firm hires workers of all talents to perform tasks and combines task

24The assignment literature refers to a worker’s innate productive attribute as "skill". Since skills are
endogenous, we prefer the word talent. Our model could be reinterpreted as one in which workers exert
effort partly or wholly in acquiring skills rather than working.
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output to produce final output.25 The firm pays a wage ωk(v) per unit of effort to a worker
of talent k in task v and solves:

max
λ,e

A


ˆ v

v
b(v)

{
K

∑
k=1

λk(v)ak(v)ek

} ε−1
ε

dv


ε

ε−1

−
ˆ v

v

K

∑
k=1

ωk(v)λk(v)ekdv. (6)

4.2 TAX EQUILIBRIA AND THE GOVERNMENT’S POLICY PROBLEM

In the assignment setting, the definition of a tax equilibrium is modified as follows.26

TAX EQUILIBRIUM Let G be a fixed public spending amount. Given G, a tax equilibrium
is an income tax function T : R+ → R, an allocation {ck, ek, λk}K

k=1 and a wage profile
{ωk}K

k=1 such that (i) for each k = 1, . . . , K, (ck, ek) and v in the support of Λk solves the
k-th worker’s problem at T and ωk, (ii) {λk, ek} solves (6) at {ωk}, (iii) the final goods
market clears:

G +
K

∑
k=1

ckπk ≤ A


ˆ v

v
b(v)

{
K

∑
k=1

λk(v)ak(v)ek

} ε−1
ε

dv


ε

ε−1

, (7)

and (iv) the labor markets clear, for all k = 1, . . . , K,

πk =

ˆ v

v
λk(v)dv. (8)

Again, let E denote the set of tax equilibria. Proposition 2 below characterizes tax
equilibria. It contains the simple, but important implication that conditional on effort as-
signment in a tax equilibria is efficient.

25The organization of the production process could be further disaggregated into final goods producers
who combine task output into final output and intermediate producers who use labor to produce a single
task and sell their output on an intermediate tasks market. Alternatively, producers of tasks could sell
directly to consumers with aggregation of task output an aspect of worker preferences. These alternatives
are irrelevant for the results and questions we focus upon.

26As before, we constrain the set of mechanisms available to the government to ones that deterministi-
cally condition upon worker incomes. This assumption is standard in the literature and to a first approxi-
mation describes current tax codes. In our setting, it implies that the government cannot observe the task a
worker performs or the amount of task output. The former may reasonably reflect the inherent difficulties
in distinguishing between a worker’s formal job description and the tasks that the worker actually per-
forms. The latter assumption is relaxed in Ales, Kurnaz, and Sleet (2013), where taxation of task output is
permitted. This introduces a motive for indirect taxation similar to Naito (1999). We also limit attention
to tax equilibria in which workers of a given type work the same amount and workers of a given type
distribute themselves across tasks according to a density.
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Proposition 2. Let {ck, ek, λk}K
k=1 and {ωk}K

k=1 be, respectively, the allocation and wage profile
of a tax equilibrium. Then there is a tuple of threshold tasks {ṽk}K−1

k=1 such that:

λk(v) =

0 v ∈ [v, ṽk−1) ∪ (ṽk, v]
b(v)εak(v)ε−1

Bk(ṽk−1,ṽk)ε πk v ∈ (ṽk−1, ṽk),

where Bk(ṽk−1, ṽk) :=
[´ ṽk

ṽk−1
b(v)εak(v)ε−1dv

] 1
ε . All workers of talent k earn a common wage

wk = ωk(v), v ∈ [ṽk−1, ṽk]. Relative wages are given by:

wk+1

wk
=

ak+1(ṽk)

ak(ṽk)
=

Bk+1(ṽk, ṽk+1)
/
{πk+1ek+1}

1
ε

Bk(ṽk−1, ṽk)
/
{πkek}

1
ε

. (9)

Conditional on the effort profile {ek}, the equilibrium allocation of talent to tasks maximizes output
and is efficient.

Proof. See Appendix B.

Efficiency of assignment conditional on effort implies that output is given by the follow-
ing indirect production function over efforts:

F(π1e1, . . . , πKeK) = sup

{
A

{
K

∑
k=1

Bk(ṽk−1, ṽk) {ekπk}
ε−1

ε

} ε
ε−1
∣∣∣∣∣s.t. v ≤ ṽ1 . . . ≤ ṽK−1 ≤ v

}
.

(10)
With F determined in this way, the environment effectively reduces to that in Section 3
and the government’s problem to (PP). Now, however, the function F is micro-founded;
changes in parameters of this production function can be related to changes in the de-
mand for tasks b and the productivity of task-talent matches {ak}. Evaluation of F at a
given effort profile {ek} requires the solution of the problem in (10). This is an assignment
problem identical to those considered in Teulings (1995), Costinot and Vogel (2010) and
Acemoğlu and Autor (2011) (with the important distinction that the labor allocation is
selected as part of an optimal tax equilibrium rather than being pinned down paramet-
rically).27 Solving the assignment problem at an effort profile {ek} reduces to finding a

27In fact the analysis on p. 758-60 of Costinot and Vogel (2010) in which the labor input across "skills" is
changed in particular ways represents a partial exploration of the indirect production function.
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sequence of task thresholds {ṽk}K−1
k=1 satisfying the discrete boundary value problem:

ak+1(ṽk)

ak(ṽk)
=

Bk+1(ṽk, ṽk+1)
/
{πk+1ek+1}

1
ε

Bk(ṽk−1, ṽk)
/
{πkek}

1
ε

, (11)

with ṽ0 = v and ṽK = v.
Proposition 1 identifies relative wage-effort elasticities φk,j as key determinants of the

wage compression channel and, hence, marginal taxes. Before turning to their determi-
nation in the assignment setting, we first deal with a difficulty in applying Proposition 1.
This proposition requires workers to be ordered by their (optimal) wage. In the current
section, however, they are indexed and ordered by their talent, i.e. by their ability to do
complex tasks. Proposition 2 implies that the two orderings are identical in a tax equilib-
rium with task thresholds {ṽ∗k}

K−1
k=1 if and only if for k = 1, . . . , K − 1, ak+1(ṽ∗k )

ak(ṽ∗k )
> 1. The

latter condition is satisfied if Assumption 1 is supplemented with the absolute advantage
condition, for all k = 1, . . . , K− 1 and v ∈ [v, v], ak+1(v) > ak(v). Of course, absolute ad-
vantage is stronger than is needed. In the remainder of this paper, we will only consider
equilibria in which the two orderings are identical and, in particular, we will assume they
are identical in all optimal equilibria.

If each log(aj+1/aj) is differentiable, then in a tax equilibrium, with wages increasing
in talent, the elasticity terms φk,j from the optimal tax formulas in Proposition 1 can be
expressed as:

φk,j = −
∂ log(wj+1/wj)

∂ log ek
=

−
∂ log(aj+1/aj)

∂ log ṽj
∏

j−1
l=k

(
∂ log ṽl+1

∂ log ṽl

)
∂ log ṽk
∂ log ek

j ≥ k

− ∂ log(aj+1/aj)

∂ log ṽj
∏k−2

l=j

(
∂ log ṽl

∂ log ṽl+1

)
∂ log ṽk−1

∂ log ek
j < k

. (12)

Thus, φk,j depends upon the local comparative advantage of talents j and j + 1, the sensi-
tivity of the k− 1 or k-th task threshold to the effort of the k-th talent and the sensitivity
of thresholds intermediate between j and k to one another. Only under very special con-
ditions is the induced production function F a CES function. Once such case occurs when
for each k and v, ak(v) = αk, for a sequence of positive (and increasing) constants αk.
Then, each

∂ log(aj+1/aj)

∂ log ṽj
= 0 and φk,j = 0, talents are perfectly substitutable across tasks

and F is linear. Another, although not one consistent with talent-complexity comparative
advantage except when K = 2,28 occurs when the ak functions are indicators for the sub-
intervals [v, ṽ1], (ṽ1, ṽ2], . . ., (ṽK−1, v]. Then workers are as substitutable as the tasks into
which they are locked.

28Nor with smoothness or continuity of the ak functions.
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For more general cases, however, relative wage-effort elasticities are complicated func-
tions of technological parameters and the effort profile {ek} and, hence, indirectly policy.
Thus, they are not structural. In the appendix, we prove:

Lemma 1. Each
∂ log ṽj

∂ log ṽj+1
,

∂ log ṽj+1
∂ log ṽj

and ∂ log ṽk
∂ log ek

is positive; each ∂ log ṽk−1
∂ log ek

is negative. If
∂ log(aj+1/aj)

∂ log ṽj

> 0, then φk,j < 0 if j ≥ k and φk,j > 0 if j < k. In addition, φk,k ∈ [−1/ε, 0] and φk,k−1 =

[0, 1/ε].

Proof. See Appendix B.

The economics behind Lemma 1 is straightforward. Consider a small increase in ek

(perhaps in response to a policy change). This raises output in tasks [ṽk−1, ṽk], placing
downward pressure on [ṽk−1, ṽk]-shadow prices and, hence, the wages of talent k work-
ers. These workers respond by populating tasks that are both below ṽk−1 and above ṽk,
thus moderating the impact of the increase in ek on their wages. However, the impact is
not fully offset: as ṽk−1 falls and ṽk rises, k-talents move into tasks in which they have a
comparative disadvantage relative to, respectively, k− 1 and k + 1-talent workers. Thus,
wk/wk−1 falls and wk+1/wk rises. Moreover, as k-talents spill into neighboring tasks, out-
put of these tasks increases, depressing their shadow prices and inducing neighboring
talents to migrate into new tasks. Workers of talent k + 1 move into tasks above ṽk+1,
while workers of talent k− 1 talents move into tasks below ṽk−1. A ripple effect is created
with each task threshold ṽj above k rising and each threshold below k falling. Since rela-
tive wages between adjacent talents are determined by productivity ratios at thresholds
(i.e. by aj+1(ṽj)/aj(ṽj)), an effort change by talent k workers can affect relative wages
across the whole spectrum of talents and be a motive for encouraging or discouraging
that effort’s talent.

Expressions for the threshold elasticities
∂ log ṽj

∂ log ṽj+1
,
∂ log ṽj+1

∂ log ṽj
and ∂ log ṽk

∂ log ek
are given in the

proof of Lemma 1. They point to the role of the parameters b and a in influencing the sen-
sitivity of task assignment and, hence, relative wages to a given talent’s effort. Suppose
that workers of talent j− 1 encroach on the tasks performed by talent j workers. The latter
will respond by migrating into more complex tasks. If there is much demand and, hence,
high b-values for tasks immediately above ṽj, then these tasks will absorb this migration
and ṽj will change little. Conversely, if b-values in this neighborhood are low, then talent
j-workers will migrate further up through the task set. In the former case, the impact on
the wj+1/wj wage differential will be muted; in the latter case, it will be enhanced. The
a function and task-talent complementarity plays a dual role. Greater comparative ad-
vantage of high talents in complex tasks reduces the sensitivity of thresholds to a given
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talent’s effort: workers are less substitutable across tasks. On the other hand, relative
wages are much more sensitive to any threshold adjustment that does occur.

4.3 AN EXAMPLE: TECHNICAL CHANGE IN THE TWO TALENT MODEL

In this section we use a simple two talent-many task assignment framework to highlight
implications of technical change for tax policy.

PHYSICAL ENVIRONMENT The number of talents is restricted to K = 2 which, for
concreteness, we label low (L) and high (H). Low and high talents have productivities
aL(v) and aH(v) in task v, with, as before, the function a weakly log super-modular in
k ∈ {L, H} and v ∈ [v, v]. Preferences are restricted to be quasi-linear in consumption:

U(c, e) = c− e1+γ

1 + γ
,

where γ > 0. The government’s objective is Paretian with weights gk, k ∈ {L, H} and to
ensure that the government is motivated to redistribute from high to low talents: gL > πL.

In this setting, the Mirrlees and Wage Compression components of tax formulas can
be combined. Substituting for the “talent premium” w∗H

w∗L
= aH(ṽ∗)

aL(ṽ∗)
and relative incomes

q∗H
q∗L

= aH(ṽ∗)
aL(ṽ∗)

e∗H
e∗L

, the optimal marginal tax equations (2) reduce to:

τ∗L
1− τ∗L

=

(
gL

πL
− 1
){

1−
(

aL(ṽ∗)
aH(ṽ∗)

)1+γ {
1− 1
E∗

}}
≥ 0 (13)

and

τ∗H
1− τ∗H

=

(
gH

πH
− 1
)(

aL(ṽ∗)e∗L
aH(ṽ∗)e∗H

)1+γ 1
E∗ ≤ 0, (14)

where E∗ = E(ṽ∗; a, b) denotes the value of the elasticity of substitution at the optimum
and this is given by:

E(ṽ; a, b) := −
∂ log eH

eL

∂ log wH
wL

= ε +
1

∂ log aH/aL
∂v (ṽ)

[
bH(ṽ)
BH(ṽ)

+
bL(ṽ)
BL(ṽ)

]
≥ ε, (15)

with BL(ṽ) :=
´ ṽ

v b(v)εaL(v)ε−1dv, BH(ṽ) :=
´ v

ṽ b(v)εaH(v)ε−1dv and for k ∈ {L, H},
bk(ṽ) := b(ṽ)εak(ṽ)ε−1. Equations (13) to (15) indicate the role of a = (aL, aH) and b in

23



shaping taxes. Technical change that induces increases in the optimal relative wage aH(ṽ∗)
aL(ṽ∗)

either directly or indirectly through an increase in the threshold task is associated with
a rise in marginal taxes on low talents and a fall in marginal subsidies on high talents.
Similarly, technical change that is associated with a reduction in the optimal value of the
elasticity of substitution E∗ is associated with a rise in marginal taxes on low talents and
a rise in marginal subsidies on high talents. Of course, while changes in a and b directly
affect the functions aH

aL
(·) and E(·; a, b), they also prompt adjustments in relative efforts

and the threshold task (as does the policy response itself). These sometimes offsetting
adjustments complicate analysis of the impact of technical change on aH(ṽ∗)

aL(ṽ∗)
and E∗ and,

hence, taxes.
To proceed further, combine the workers’ equilibrium first order conditions:(

1− τH

1− τL

)
aH(ṽ)
aL(ṽ)

=

(
eH

eL

)γ

with the relative wage condition (9) to get:

wH

wL
=

aH(ṽ)
aL(ṽ)

=

(
BH(ṽ)
BL(ṽ)

) γε
1+γε

(
πL

πH

) γ
1+γε

(
1− τH

1− τL

) 1
1+γε

.

The latter shows explicitly how the a and b functions and relative marginal taxes deter-
mine the threshold and, hence, relative wages. Substituting for optimal marginal taxes
from (13) and (14) gives:

aH(ṽ∗)
aL(ṽ∗)

=

(
BH(ṽ∗)
BL(ṽ∗)

) γε
1+γε

(
πL

πH

) 1+γ
1+γε

×


gH − (πH − gH)

(
aH(ṽ∗)
aL(ṽ∗)

)(1+γ)(ε−1) (BH(ṽ∗)
BL(ṽ∗)

)−(1+γ)ε
1
E∗

gL − (gL − πL)
(

aL(ṽ∗)
aH(ṽ∗)

)1+γ (E∗−1
E∗
)


1

1+γε

. (16)

It follows easily from (16) that if ε ≥ 1 (so that goods, and, hence, efforts of different talents
are gross substitutes) and if E(·; a, ·) is (locally) constant with respect to small variations in
ṽ and small complexity-biased perturbations of b that raise BH/BL, then the latter lead to
increases in ṽ∗ and w∗H/w∗L. Increases in the relative demand for more complex tasks raise
the relative shadow price of such tasks and encourage less talented workers to migrate
into them (ṽ∗ rises). However, such task-upgrading erodes the comparative advantage of
low talents; the talent premium rises. These effects are mitigated by adjustments in rela-
tive efforts that occur in response to wage adjustments and that are reinforced by changes
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to tax policy. In particular, from (13), marginal taxes on low talents rise suppressing effort
of these types and, hence, the rise in the talent premium.

The preceding discussion supposed that the elasticity of substitution E∗ is constant in
response to a shifts in task demand; in general it is not. It may rise or fall as a direct effect
of the change in b or the indirect effect of changes in ṽ∗ on 1

∂ log aH/aL
∂v (ṽ∗)

{ bH(ṽ∗)
BH(ṽ∗) +

bL(ṽ∗)
BL(ṽ∗)

}
.

These changes modify the sensitivity of the log productivity ratio log(aH/aL) and the log
weight ratio log(BH/BL) to ṽ∗ and, hence, the sensitivity of the talent premium to relative
efforts. They may act to reinforce or offset the responses just described. To the extent that
E∗ is increased, the government is encouraged to reduce relative taxation of low talents
and to permit a further increase in the talent premium. The reverse is true if E∗ falls.

Now, assume that aH(v) = aL(v) exp{α1 + α2(v− v)} so that α1 controls the absolute
advantage of high talents (in the lowest task) and α2 controls their comparative advan-
tage in more complex tasks. If, as before ε > 1 and bH(ṽ∗)

BH(ṽ∗) +
bL(ṽ∗)
BL(ṽ∗)

is locally constant,
then small technologically induced increases in α2 will, from (16), both raise the talent
premium and reduce the elasticity of substitution E∗.29 Low talent marginal taxes τ∗L will
rise both because aH

aL
(ṽ∗) rises and because the wage compression channel is enhanced via

the reduction in E∗: as workers become less substitutable, the government is encouraged
to offset the rise in the talent premium by discouraging low talent effort through taxa-
tion. Increases in α1 work in a related way, but absent any reinforcing adjustment in E∗.
As in the case of complexity-biased perturbations in the b functions, adjustments in the
bH(ṽ∗)
BH(ṽ∗) +

bL(ṽ∗)
BL(ṽ∗)

term (either direct through changes to the bk functions or indirect through
adjustments to ṽ∗) may work to reinforce or dampen these effects.

SUMMARY Technical change that increases the talent wage premium and reduces the
substitutability of talents is associated with higher optimal marginal taxes on low talents.
Change that increases the talent income premium and the substitutability of talents is
associated with lower marginal subsidies on high talents. In general, the technical pa-
rameters a and b influence both talent premia and talent substitutability with the latter a
fairly complicated function of parameters and endogenous task assignment. The analysis
is still more complicated in settings with multiple talents. Such settings seem essential,
however, for exploring the implications of recently documented changes in the patterns of
wage premia across talents and skills. In particular, to capture the policy implications of
technologically-driven job polarization, a model with more than two talents is required.

29In this case the task threshold ṽ∗ falls: the increased productivity of high talents in complex tasks
reduces the relative shadow price of such tasks and encourages high talents to downgrade their tasks.
Despite some erosion of their comparative advantage, their relative wages rise.
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5 MEASURING TECHNICAL CHANGE

In this section, we measure the extent of technical change in the US. Our main data source
is the Current Population Survey (CPS).30 We proceed as if this data were generated by
a (sub-optimal) tax equilibrium and use parametric assumptions and equilibrium restric-
tions from our model to identify and estimate the technological parameters a and b in
the 1970’s and 2000’s. In Section 6, we calculate optimal tax equilibria at these estimated
parameters.

5.1 DETERMINING TYPES AND TASKS

MAPPING EMPIRICAL OCCUPATIONS TO ORDERED SETS OF TASKS The CPS categorizes
workers into M = 302 distinct occupations; it also provides information on worker earn-
ings and hours worked from which a measure of wages can be imputed. Our model
involves an interval of tasks ordered by complexity. To relate empirical occupations to
modeled tasks, we utilize the model’s implication that equilibrium wages are rising in
task complexity. We normalize the task space to [v, v] = [0, 1] and sub-divide this interval
into M sub-intervals of length ∆v = 1

M , Vm = [vm−1, vm]. We calculate the imputed av-
erage wage in each occupation using 1970’s data and rank occupations according to this
wage. The m-th ranked occupation is then mapped to the m-th subinterval Vm.31

RECOVERING THE EMPIRICAL ASSIGNMENT FUNCTION ṽ The model in Section 4 fea-
tured a finite number of talents; this facilitated the derivation of analytical results. How-
ever, for the remainder of the paper we find it convenient to treat worker talent symmet-
rically with task complexity and to assume that workers are distributed uniformly across
an interval of talents, k ∈ [k, k].32 Thus, a worker’s talent should now be an interpreted
as an index (and a rank), the implications of which for productivity are captured by a
function: a : [k, k] × [v, v] → R+. In particular, we shall restrict a so that higher talent-
indexed workers have a comparative advantage in higher complexity-indexed tasks (oc-
cupations).33 The set [k, k] is normalized to [0, 1].

The continuous analogue of the task thresholds {ṽk} is a task assignment function:

30Further details of our use and treatment of the data are given in Appendix D.
31This approach is essentially that taken by Acemoğlu and Autor (2011).
32The convenience is two fold. First, since occupational (task) data is discrete, assuming a continuous set

of talents avoids having to deal with talent groups that are distributed across adjacent occupations. Second,
it allows us to apply numerical optimal control methods to solve the problem.

33Note that although the distribution over the (ordinal) talent index is uniform, the distribution over
(cardinal) productivities is not. It is induced endogenously by a and by the assignment of talent to tasks.
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ṽ : [k, k] → [v, v]. This function is strictly increasing in our model; denote its inverse
by k̃. Under the assumption that workers are distributed uniformly across talent indices,
k̃ is the distribution of workers across tasks. Consequently, we treat the distribution of
workers across ordered occupations as the empirical counterpart of k̃ and ṽ to be the
inverse of this. A formal statement of the continuous talent-continuous task model can
be found in Appendix C.

5.2 ESTIMATING b

To facilitate identification of the a and b functions, we restrict the elasticity of substitu-
tion between task outputs to be one (ε = 1). Then b(v) is simply the elasticity of final
output with respect to task v output and, hence, the share of total compensation paid to
workers in task v. Thus, estimates of b may be be calculated from compensation shares
independently of knowledge of the a’s. Specifically, under the Cobb-Douglas restriction,
the firm’s first order conditions from the continuous-talent version of (6), imply for almost
all (k, v):

ω(k, v) = Y
a(k, v)b(v)

y(v)
. (17)

In the continuous talent setting, task output is given by y(v) = a(k̃(v), v)e(k̃(v))k̃v(v),
with k̃v the derivative of k̃. Combining this with (17) and integrating over Vm gives total
labor income in occupation m in terms of the b-function:

ˆ
Vm

ω(k̃(v), v)e(k̃(v))k̃v(v)dv = Y
ˆ
Vm

b(v)dv.

Average income in occupation m, im, is then obtained by dividing both sides by the mass
of workers in the occupation, Sm:

im :=
1

Sm

ˆ
Vm

ω(k̃(v), v)e(k̃(v), v)k̃v(v)dv =
Y
Sm

ˆ
Vm

b(v)dv.

Thus, the average value of b in occupation m, bm∆v :=
´ vm

vm−1
b(v)dv, is:

bm =
Smim

∆vY
, ∀ m = 1, . . . , M. (18)
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We identify Y with per capita labor income.34 A smooth estimate of the b-function is ob-
tained by fitting a LOWESS model to {vm, log bm} data.35 Figure 3 displays estimates of
b for the 1970’s and the 2000’s. The figure shows that b rises (slightly) for low and (sig-
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Figure 3: Evolution of log(b(v)) across decades.

nificantly) for high v-occupations, but falls for intermediate ones. The picture is consis-
tent with the phenomenon of job polarization as discussed in Section 2. This polarization
feature is robust to different sample selection assumptions, see Appendix D for further
details.

Figure 4 sharpens intuition concerning the relation of different v’s to the data by show-
ing the location of different sectoral occupations in the space of v’s. The figure overlays
the values of b(v) with a bar graph displaying the employment shares of occupations
belonging to particular sectors. Figure 4a does this for services and Figure 4b for manu-
facturing.36 The service sector is associated mostly with extreme and, especially, “low”
v occupations (the bar on the right in Figure 4a refers to managers and administrative
support), while manufacturing is mostly middle v occupations (although with a wider
range).

34In 2005 dollars we have Y70 = $36, 998 and Y00 = $45, 260. M is 302. In aggregate data using GDP
deflator (table 1.1.9 in NIPA) and total non farm payroll (BLS) we get a value of real compensation per
worker equal to Y70 = $37, 114 and Y00 = $53, 304. However deflating using CPI we get values consistent
with our sample: Y70 = $37, 966 and Y00 = $45, 151.

35The LOWESS scatterplot smoothing builds up a smooth curve through a set of date points by fitting
simple linear or quadratic models to localized subsets of data. We use a smoothing parameter of 0.4.

36Not shown are occupations that constitute less than 2% of the workforce of each sector.
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(b) Manufacturing.

Figure 4: Occupations and v. Histograms: shares of occupations over v.
Plots: smoothed values for log(b(v)) over v and across decades.

5.3 ESTIMATING a

The envelope condition from the task choice component of the worker’s equilibrium
problem, w(k) = maxv∈[v,v] ω(k, v), implies that:

d log w(k̃(v))
dk

=
∂ log ω(k̃(v), v)

∂k
=

∂ log a(k̃(v), v)
∂k

=
∂α

∂k
(k(v), v), (19)

where α(k, v) := log a(k, v). An empirical counterpart for d ln w(k̃(v))
dk is constructed in three

steps. First, information from the CPS on weeks and usual hours worked in the previous
year and self reported yearly labor income is used to impute workers’ average hourly
wages. Second, wages are averaged over occupation to construct empirical counterparts
of w(k̃(v)). Third, a LOWESS smoother is applied to the log of this series and to k̃, deriva-
tives of each function are calculated and d log w(k̃(v))

dk =
d log w(k̃(v))

dv

/
∂k̃(v)

∂v is found. Figure 5

displays log w(k) by talent across decades. From the 20th to the 80th talent percentile, log
wages are linear in talent. In the 2000’s, fast growth in wages occurs over the top two tal-
ent deciles, while in the 1970’s it occurs only over the top decile. Finally for both decades
(but especially for the 1970’s) wages grow more rapidly over the bottom two deciles. In
our benchmark quantitative environment we set:

∂α

∂k
(k, v) = α1 + α2 · v. (20)

Thus, α2 captures comparative advantage. We later consider the alternative specification
∂α
∂k (k, v) = α3 · v2 in which comparative advantage is increasing with task complexity.
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Figure 5: log(wages) over talents across decades.

Benchmark estimates of α1 and α2 are obtained by regressing d log w(k̃(v))
dk onto a constant

and the task index v. The regression is weighted by the share of workers in each v. Results
are reported in Table 2.37 They show a significant increase in the comparative advantage
parameter α2 between the 1970’s and 2000’s. Loosely, this is driven by the increase in
wage growth over high talents occurring between the 1970s and the 2000s.

Table 2: Estimation of Productivity Function.

Decade Parameters

α1 α2

70s 1.07 1.72

(0.25) (0.28)

00s 0.41 3.01

(0.32) (0.22)

Notes: N = 302. Estimation of α1 and
α2 from Equation (19). Standard errors in
parenthesis.

To complete the parametrization of the production function it remains to determine
TFP, A. This is obtained by dividing aggregate per capita income by the approximation

37Previous version of this paper estimated the value of α2 looking at the distribution of the income
distribution via a simulated method of moments. The identifying features being the variance and skewness
of the distribution and it’s changes over time. Using this procedure we also found a positive value of α2
growing over time.
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to the aggregator exp{
´ v

v b(v) log{y(v)}dv}:

A =
Y

exp{∑M
m=1 bm log{e(α1+α2vm)k̃m emSm}}

,

with em average hours worked in occupation m and α1 and α2 the previously estimated
productivity parameters.

6 QUANTITATIVE IMPLICATIONS FOR POLICY

In this section, we compute the optimal policy response to the technical change derived in
Section 5. Calculation of policy requires a specification of worker and societal preferences
and the amount of resources devoted to public spending. We briefly turn to this and then
give our quantitative results.

6.1 SELECTION OF REMAINING PARAMETERS AND COMPUTATIONAL PRO-

CEDURE

We assume that worker preferences are given by:

U(c, e) = log c− e1+γ

1 + γ
.

Note that the choice of U has no impact on the estimation of b(v) and a(k, v). We follow
Chetty, Guren, Manoli, and Weber (2011) and set the Frisch labor supply elasticity to
1/γ = 0.75.

We identify the share of output allocated to public spending with the aggregate tax
to income ratio in our CPS sample. On this basis, (G/Y)70 = 16.2% and (G/Y)00 =

14.0%; we set the G/Y ratio to the intermediate value of 15%.38 Finally, in our benchmark
calculations a utilitarian government is assumed: gk = πk for all talents k.

To calculate optimal policy at our selected and estimated parameters, we first formu-
late the government’s optimization as an optimal control problem. Details of this for-
mulation are given in Appendix C. We then solve the problem numerically using the
GPOPS-II software.39

38Using NIPA data (Table 1.1.6) would have implied that (G/Y)70 = 23.9% and (G/Y)00 = 19.3%.
However, since we are concerned with spending financed out of income taxation (paid by our subsample
of labor income earners) we use the alternative CPS-generated estimates.

39GPOPS-II is a flexible software for solving optimal control problems. For additional details refer to
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6.2 OPTIMAL TAX RESULTS

Table 3 reports optimal average and marginal tax rates as a function of income percentiles
for the 1970s and the 2000s. Over this time period, average rates rise at low incomes and
fall at high and, especially, middle incomes. Transfers to the lowest decile are reduced.
Marginal rates fall at low and mid incomes and rise at higher incomes (except at those in
the very top percentile, where marginal subsidies increase.)

Table 3: Optimal Tax Rates on Real Labor Income.

Decade
Percentiles of Income

10th 25th 50th 75th 90th 99th

Averages
70s -11.9 -7.3 6.9 22.3 26.1 22.2

00s -2.3 -1.1 5.6 19.9 26.1 21.9

Marginals
70s 20.3 34.1 44.3 40.3 23.9 -0.6

00s 15.3 25.4 39.7 42.2 27.4 -2.2

To understand the evolution of optimal tax reported in Table 3, we return to the tax for-
mula (2) derived earlier.

ACCOUNTING FOR OPTIMAL TAXES

As observed previously, tax formula (2) allows us to decompose optimal tax rates into
“Mirrleesian” and “Wage Compression” components. In particular, let τM

k denote the
“Mirrleesian” marginal tax rate in the absence of the wage compression term:40

τM
k =

∆w∗k+1
w∗k+1

1−Πk
πk
H∗k Ψ∗k

1 +
∆w∗k+1
w∗k+1

1−Πk
πk
H∗k Ψ∗k

,

and define the wage compression component to be the residual τWC
k = τ∗k − τM

k . In Fig-
ure 6, we plot the Mirrleesian component τM

k and the overall optimal marginal rate τ∗k at
each income percentile k and for each decade.

Patterson and Rao (2013).
40That is set the wage compression term to 0 in (2) and rearrange. For convenience, we continue to state

tax formulas and their components in their discrete, rather than continuous forms.
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Figure 6: Decomposing taxes. Solid curve: Mirrleesian tax, τM. Dashed
curve: overall tax, τ∗.

Figure 6 shows that technical change deforms the Mirrleesian component pushing it to the
right except at the lowest and highest talent. In addition, it raises the wage compression
component at lower incomes and reduces it at higher ones. Overall the wage compression
term becomes quantitatively more important.

EVOLUTION OF THE MIRRLEES TERM We further decompose the Mirrlees term into its
redistributive Ψ and wage growth parts in Figure 7.41
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Figure 7: Mirrlees term decomposition.

41The other components are constant over time under our assumptions.
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The main impact of technical change is upon wage growth (with some slight reinforce-
ment from the redistributive term Ψ∗). This is largely driven by shifts to the a function.
As noted previously, our estimates suggest that the productivities of low talents catch up
with high in less complicated tasks and fall behind in more complex ones. At any effort
profile and, in particular, at the optimal one, this shift compresses the wage distribution
at the bottom and stretches it at the top. Shifts in the b function and in task demand
from the middle to the extremes slightly reinforce the effect. The impact of the latter is,
however, surprisingly small. This is largely because, in relevant areas of the task space,
modest adjustments in the tasks of workers ṽ∗ are consistent with quite large variations
in the density of workers across tasks k̃∗v. Consequently, increases in the demand for low
and high tasks are met with increases in the number of workers performing these tasks,
but relatively little adjustment in task assignment and, hence, relative productivities and
wages, see Appendix E. The overall effect of these changes is to relax incentive constraints
and reduce marginal taxes at the bottom, but to tighten them and raise marginal taxes at
the top.

EVOLUTION OF THE WAGE COMPRESSION TERM Adjustment of the wage compression
terms is in the opposite direction to the adjustment of the Mirrlees term previously de-
scribed. Figure 8 displays this adjustment. It shows that the wage compression term rises
at low incomes and falls, becoming more negative, at higher ones. These changes are

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

k

Φ
∗

 

 
70s
00s

Figure 8: Evolution of the wage compression term.

largely attributable to adjustments in the relative wage elasticities φ∗k,j. The k-th talent’s

34



wage compression term is given by:

Φ∗k =
K−1

∑
j=1
Mk,jφ

∗
k,j. (21)

Equation (21) expresses Φ∗k as a weighted sum of relative wage elasticities, with the
weights depending upon the marginal incentive benefit of adjusting each pair of rela-
tive wages. Mechanically, φ∗k,j is positive if j ≥ k and negative otherwise, so that all φ∗k,j
are positive if k = 1 and all are negative if k = K. For some intermediate k, positive and
negative terms cancel and the wage compression term is zero. An increase in the lowest
talent’s effort pushes all higher talents upwards through the task spectrum, raising the
relative wages of all adjacent talents. This tightens all incentive constraints and is unde-
sirable. Consequently, the lowest talent has the highest wage compression term and that
talent’s effort should be deterred at the margin. For the highest talent, this argument is
reversed. An increase in the highest talent’s effort pushes all lower talents downwards
through the task set, compressing relative wages. This relaxes incentive constraints and
should be encouraged at the margin with lower marginal taxes on high talent incomes.
For intermediate talents these effects wholly or partially offset, leading to wage compres-
sion terms that are smaller in absolute value.
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Figure 9: Effort elasticity of tasks.

Figure 9 shows the impact of technical change on relative wage elasticities (normal-
ized by population shares) φ∗k,j/πk, j = 1, . . . , K for low, mid and high talents (labelled
L, M and H).42 It indicates that almost all φ∗k,j rise in absolute value. This is largely a

42Note the global impact of relative wages to an effort adjustment, an example of the ripple effect de-
scribed previously.

35



consequence of the rise in the comparative adjustment parameter α2 which, although it
dampens the assignment response to adjustments in effort, raises the sensitivity of rela-
tive wages to any reassignment that occurs. Changes in the b function has only moderate
effects on these elasticities, see Appendix E.

COMBINING TERMS Although the Mirrlees and wage compression terms evolve in op-
posite directions, it is the adjustment to the Mirrlees term that dominates over most in-
comes. Consequently, marginal tax rates fall at low and rise at high incomes (up to the top
income percentiles), although not as much as they would have done absent adjustments
to the wage compression term.

6.3 ALTERNATE PRODUCTIVITY FUNCTION

As discussed in Subsection 5.3, in our benchmark estimation the increase in the growth
rate for log wages at higher talents leads to the identification of a growing comparative
advantage over time. In this section we explore an alternative formulation of the produc-
tivity function aimed at fitting more closely the high and increasing growth rate of wages
for high talents. Specifically, we set ∂a

∂k (k, v) = α3 · v2. Proceeding as in Subsection 5.3
we find a value of α3 = 0.79 (0.03) for the 1970’s and a value of α3 = 0.91 (0.04) for
the 2000’s.43 As in our benchmark, there is an increase in the degree of comparative ad-
vantage over time. Given the quadratic nature of the productivity function the change in
overall top to bottom talent inequality in wages is greater than in our benchmark setting.
In Table 4 we display the resulting optimal behavior of average and marginal tax rates
over percentiles of the income distribution.

Table 4: Optimal Tax Rates on Real Labor Income, Alternate Case.

Decade
Percentiles of Income

10th 25th 50th 75th 90th 99th

Averages
70s -3.3 0.9 7.8 20.3 24.7 20.8

00s -12.5 -8.7 4.0 21.6 28.3 23.7

Marginals
70s 17.2 28.8 40.0 38.9 24.3 -1.8

00s 20.0 32.5 44.5 44.8 29.5 -1.5

Note: Estimates of tax rates determined using ∂a
∂k = α3 · v2 .

43In addition, to emphasize the behavior of wages for higher talents we estimate α3 without weighting
by the shares of talent in each occupation.
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Relative to the benchmark, the striking difference is the sharp fall in average and increase
in marginal rates over the time period.44 Now, the rise in comparative advantage dom-
inates. It strengthens the wage compression channel and increases wage growth across
talents. This increases the motive for redistribution towards the bottom.

7 CONCLUSION

We relate the positive literature on technical change to normative work on optimal taxa-
tion by embedding an assignment model into an optimal tax framework. The assignment
component induces an indirect production function over worker efforts enabling us to
map technical parameters determining the productivity of task-talent matches and the
demand for tasks to the variables and elasticities relevant for optimal tax analysis. We in-
vestigate the implications of changes in these parameters for optimal taxes, measure the
extent of this change in US data and evaluate its implications for optimal policy.

The impacts of technical change on wage growth across talents and the substitutability
of talents across tasks emerge as key drivers of policy. The twisting of the task-talent
productivity function with low talents catching up in simple tasks and falling behind in
more complex ones compresses wage differentials at the bottom, while expanding them at
the top. It is a force for less redistribution and lower marginal taxes from the middle to the
bottom and more redistribution and higher marginal taxes from the top to the middle. On
the other hand, increased complementarity between talent and task complexity reduces
the substitutability of talents and gives the government more tax leverage over the wage
distribution. It is a force for higher marginal tax rates at the bottom. A key message of
this paper is that policy depends upon the balance of these forces.

Theoretical public finance has traditionally focused on labor supply not demand and
has rarely considered the implications of technological change for policy. It has much to
learn from labor economics, but it is also well placed to develop the policy implications
of labor economists’ findings. Our paper is a first step in this direction. We conclude
by describing three extensions that we leave for future research. First, our assignment
model places strong restrictions on the distribution of workers across task productivities.
These restrictions permit identification of key parameters and underpin our strategy for
bringing the model to the data; they are also typical of a segment of the literature. How-
ever, they are inconsistent with intra-occupational wage variability except insofar as the
latter reflects the coarseness of occupations as measures of tasks or errors in occupational
coding. Second, the model assumes that the matching of talents to tasks is frictionless.

44This evolution is, however, much more similar to that of actual policy reported in Table 1.
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Thus, our quantitative work is best viewed as capturing the long run policy response
to technical change after the (possibly slow) reassignment of workers to tasks following
such change.45 The role of income taxation in supplementing other sources of insurance
during transitions is omitted. Third, we have treated technical change parametrically.
Relaxing these restrictions remain important topics for further research.46
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APPENDIX: FOR ONLINE PUBLICATION

A PROOFS FROM SECTION 3

We first formalize a planning problem in a space of simple direct mechanisms and then
recover an optimal tax equilibrium from its solution.

IMPLEMENTATION VIA SIMPLE, DIRECT MECHANISMS A simple, direct mechanism is a
tuple {ck, ek}K

k=1 of message-contingent consumptions and effort recommendations and
a severe penalty. The mechanism implicitly defines a set of shadow wages and incomes:
wk = Fk(π1e1, . . . , πKeK) and qk = wkeK. The planner and the workers play the following
game. First, the planner selects a mechanism. Second, each worker sends a message
k ∈ {1, . . . , K}, exerts an effort and generates a publicly observable income q. Third, if a
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worker sends the message k and generates the income qk, she receives the consumption ck.
Otherwise she receives the severe penalty. The latter is assumed to be sufficient to deter
a worker who has sent message k from generating an income q 6= qk. Without loss of
generality, attention is restricted to mechanisms that induce workers to report truthfully
conditional on almost all other workers doing so. Thus, the mechanism is constrained to
satisfy, for all k ∈ {1, . . . , K} and j ∈ {1, . . . , K}\{k},

U(ck, ek) ≥ U(cj, qj/wk). (A.1)

The planner’s problem is then:

sup
K

∑
k=1

U(ck, ek)gk (A.2)

s.t. for all k ∈ {1, . . . , K} and j ∈ {1, . . . , K}\{k}

U(ck, ek) ≥ U
(

cj,
Fj(e1π1, . . . , eKπK)

Fk(e1π1, . . . , eKπK)
ej

)
. (A.3)

and

G +
K

∑
k=1

ckπk ≤ F(e1π1, . . . , eKπK). (A.4)

Let {c∗k , e∗k}K
k=1 denote a solution to (A.2) with corresponding shadow wages {w∗k}K

k=1,
w∗k = Fk(e∗1π1, . . . , e∗KπK). Agent types may be ordered according to their shadow wages
and relabeled accordingly.47 Consequently, there is no loss of generality in assuming
that a k-th type has the k-th highest wage; we make this assumption below. A (k, j)-th
incentive compatibility constraint (A.3) is local if j ∈ {k − 1, k + 1}. Lemma A.1 below
is a well known consequence of the Spence-Mirrlees single crossing property and the
structure of the incentive constraints in settings with exogenous wages; it continues to
hold in the present setting.48

Lemma A.1. Assuming types are labeled according to their ranking in the wage distribution, then
(i) ck+1 ≥ ck and qk+1 ≥ qk, (ii) only "local" incentive constraints bind.

Proof of Proposition 1. Let χ∗ denote the optimal multiplier on the resource constraint and
η∗k,j the optimal multiplier on the (k, j)-th incentive constraint. In light of the previous
lemma only local incentive constraints are potentially binding and, hence, only the η∗k,k−1
and η∗k,k+1 are potentially non-zero. The first order condition for e∗k reduces to:

−Ue(c∗k , e∗k ) =
χ∗w∗k πk

D∗k
,

47Formally, let κ : {1, . . . , K} → {1, . . . , K} denote a permutation of 1, . . . , K such that for k = 1, . . . , K− 1,
w∗

κ(k+1) ≥ w∗
κ(k). Then types may be relabeled according to k′ = κ−1(k).

48We omit the proof. It can be shown as an application of Theorems 3 and 4 in Milgrom and Shannon
(1994).
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where:

D∗k :=gk + η∗k,k−1 − η∗k+1,k

Ue

(
c∗k , q∗k

w∗k+1

)
Ue(c∗k , e∗k )

w∗k
w∗k+1

+ η∗k,k+1

− η∗k−1,k

Ue

(
c∗k , q∗k

w∗k−1

)
Ue(c∗k , e∗k )

w∗k
w∗k−1

+
χ∗πk

Uc(c∗k , e∗k )
Φ∗k +

χ∗πk
Uc(c∗k , e∗k )

Υ∗k ,

Φ∗k :=
Uc(c∗k , e∗k )

πk

K−1

∑
j=1

η∗j+1,j

χ∗

Ue

(
c∗j ,

q∗j
w∗j+1

)
Ue(c∗k , e∗k )

w∗j e∗j
w∗j+1e∗k

φ∗k,j,

and

Υ∗k :=
Uc(c∗k , e∗k )

πk

K−1

∑
j=1

η∗j−1,j

χ∗

Ue

(
c∗j ,

q∗j
w∗j−1

)
Ue(c∗k , e∗k )

w∗j e∗j
w∗j+1e∗k

φ∗k,j−1.

The first order condition for c∗k reduces to:

Uc(c∗k , e∗k ) =
χ∗πk

gk + η∗k,k−1 − η∗k+1,k

Uc

(
c∗k ,

q∗k
w∗k+1

)
Uc(c∗k ,e∗k )

+ η∗k,k+1 − η∗k−1,k

Uc

(
c∗k ,

q∗k
w∗k−1

)
Uc(c∗k ,e∗k )

.

Define the consumption-effort wedge:

τ∗k
1− τ∗k

= −
w∗k Uc(c∗k , e∗k )

Ue(c∗k , e∗k )
− 1.

Combining expressions gives:

τ∗k
1− τ∗k

=
Uc(c∗k , e∗k )

πk

η∗k+1,k

χ∗

Uc

(
c∗k , q∗k

w∗k+1

)
Uc(c∗k , e∗k )

−
Ue

(
c∗k , q∗k

w∗k+1

)
Ue(c∗k , e∗k )

w∗k
w∗k+1


+

η∗k−1,k

χ∗

Uc

(
c∗k , q∗k

w∗k−1

)
Uc(c∗k , e∗k )

−
Ue

(
c∗k , q∗k

w∗k−1

)
Ue(c∗k , e∗k )

w∗k
w∗k−1


+ Φ∗k + Υ∗k .

Under (NUIC), for all k, η∗k,k+1 = 0, Υ∗k = 0 and the previous expression reduces to:

τ∗k
1− τ∗k

=
Uc(c∗k , e∗k )

πk

η∗k+1,k

χ∗

Uc

(
c∗k , q∗k

w∗k+1

)
Uc(c∗k , e∗k )

−
Ue

(
c∗k , q∗k

w∗k+1

)
Ue(c∗k , e∗k )

w∗k
w∗k+1


+ Φ∗k .

Again under (NUIC), the first order equation for c∗k+1 implies the following recursion for
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η∗k+1,k:

η∗k+1,k

χ∗
=

(
1−

gk+1Uc(c∗k+1, e∗k+1)

χ∗πk+1

)
πk+1

Uc(c∗k+1, e∗k+1)
+

η∗k+2,k+1

χ∗

Uc

(
c∗k+1,

q∗k+1
w∗k+2

)
Uc(c∗k+1, e∗k+1)

,

with ηK∗+1,K∗ = 0. Iterating on this recursion, setting Ψ∗k :=
η∗k+1,k

χ∗
Uc(c∗k ,e∗k )

1−Πk
and using the

definition of H∗k in the proposition gives (2). A standard appeal to the taxation princi-
ple establishes that the solution to the planning problem is an optimal tax equilibrium
allocation and that τ∗k is the optimal marginal tax rate for the k-th type.

B PROOFS FROM SECTION 4

Proof of Proposition 2. Let T, {ck, ek, λk}K
k=1 and {ωk}K

k=1 denote a tax equilibrium at spend-
ing level G. Since workers of a given type select the highest possible wage, it follows that
for each k there is a wk < ∞ such that for every v ∈ Supp Λk, ωk(v) = wk and for v /∈ Supp
Λk, ωk(v) ≤ wk. Without loss of generality, assume that the firm’s first order conditions
hold at each k and almost every v ∈ Λk(v):

ωk(v) = b(v)
(

Y
y(v)

) 1
ε

ak(v).

If v ∈ [v, v]\∪k
k=1 Supp(Λk), then y(v) = 0 and for all k, ωk(v) = b(v)

(
Y

y(v)

) 1
ε ak(v) =

∞ > wk. Since this a contradiction, [v, v]\∪k
k=1 Supp(Λk) must be of measure zero and

almost all tasks are performed. Without loss of generality, we select versions of tax equi-
libria in which all tasks are performed. For all v and v′ in Supp Λk with v > v′,

1 =
ωk(v)
ωk(v′)

=
b(v)

(
Y

y(v)

) 1
ε ak(v)

b(v′)
(

Y
y(v′)

) 1
ε ak(v′)

<
b(v)

(
Y

y(v)

) 1
ε ak+j(v)

b(v′)
(

Y
y(v′)

) 1
ε ak+j(v′)

<
ωk+j(v)
ωk+j(v′)

.

It follows that v′ /∈ Λk+j and so sup Λk ≤ inf Λk+j. Since the supports Λk cover [v, v], it
follows that they partition [v, v] into sub-intervals [ṽ0, ṽ1], [ṽ1, ṽ2], . . ., ṽK−1, ṽK], with ṽ0 =
v, ṽK = v and cl Λk = [ṽk−1, ṽk]. By assumption each Λk has a density λk (concentrated
on [ṽk−1, ṽk]). Since wk = ωk(v), v ∈ (ṽk−1, ṽk), we have for all such v:

wk = b(v)
(

Y
ak(v)ekλk(v)

) 1
ε

ak(v). (B.1)
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Hence, from the labor market clearing condition:

πk =

ˆ ṽk

ṽk−1

λk(v)dv =
Y

wε
kek

ˆ vk

vk−1

b(v)εak(v)ε−1

And so:

wk = Bk(ṽk−1, ṽk)

(
Y

πkek

) 1
ε

, (B.2)

where Bk(ṽk−1, ṽk) :=
[´ vk

vk−1
b(v)εak(v)ε−1dv

] 1
ε . Substituting (B.1) into (B.2) gives for v ∈

(ṽk−1, ṽk),

λk(v) =
b(v)εak(v)ε−1

Bk(ṽk−1, ṽk)ε
πk.

In addition, for v < ṽk−1 and v > ṽk, λk(v) = 0.

Now for v ∈ (ṽk−1, ṽk), wk+1 > ωk+1(v) = b(v)
(

Y
y(v)

) 1
ε ak+1(v) and wk = ωk(v) =

b(v)
(

Y
y(v)

) 1
ε ak(v). Hence: wk+1

wk
>

ak+1(v)
ak(v)

. Conversely, for v ∈ (ṽk, ṽk+1), wk+1 = ωk+1(v) =

b(v)
(

Y
y(v)

) 1
ε ak+1(v) and wk > ωk(v) = b(v)

(
Y

y(v)

) 1
ε ak(v). Consequently, wk+1

wk
<

ak+1(v)
ak(v)

.

Then, by continuity of ak and ak+1, wk+1
wk

=
ak+1(ṽk)

ak(ṽk)
. Combining the last equality with (B.2)

gives the desired expression in the proposition.
Finally, given the effort allocation {ek}K

k=1 consider assigning workers so as to maxi-
mize output, i.e. solving:

max
{λk}

[ˆ v

v
b(v) {λk(v)ekak(v)}

ε−1
ε dv

] ε
ε−1

.

subject to for each k, πk =
´ v

v λk(v)dv. This is a strictly concave maximization whose
unique solution is determined by the first order conditions. Straightforward manipula-
tion of these conditions establishes that the λk solved for above attains the solution to this
problem.

Proof of Lemma 1. Totally differentiating:
aj+1

aj
(ṽj) =

Bj+1(ṽj,ṽj+1)

Bj(ṽj−1,ṽj)

(
ejπj

ej+1πj+1

) 1
ε , with respect to

ṽj−1 and ṽj holding ej/ej+1 fixed gives:

∂ log ṽj

∂ log ṽj−1
=

− ∂ log Bj
∂ log ṽj−1

∂ log aj+1

/
aj

∂ log ṽj
− ∂ log Bj+1

∂ log ṽj
+

∂ log Bj
∂ log ṽj

− ∂ log Bj+1
∂ log ṽj+1

∂ log ṽj+1
∂ log ṽj

.
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Let Lj−1 = − ∂ log Bj
∂ log ṽj−1

− ∂ log Bj
∂ log ṽj

∂ log ṽj
∂ log ṽj−1

. It follows that:

Lj−1 = −
∂ log Bj

∂ log ṽj−1

1−
∂ log Bj
∂ log ṽj

∂ log aj+1

/
aj

∂ log ṽj
+

∂ log Bj
∂ log ṽj

+ Lj

 .

Thus, if Lj > 0, then Lj−1 > 0. For j = K− 1, ṽj+1 = ṽK = v and
∂ log ṽj+1

∂ log ṽj
=

∂ log ṽK
∂ log ṽK−1

= 0.

Hence, LK−1 = − ∂ log BK
∂ log ṽK−1

> 0. It follows by induction that for all j ∈ {k, . . . , K − 2},
Lj > 0 and, hence,

∂ log ṽj

∂ log ṽj−1
=

− ∂ log Bj
∂ log ṽj−1

∂ log aj+1

/
aj

∂ log ṽj
+

∂ log Bj
∂ log ṽj

+ Lj

> 0.

Similarly, for all j ∈ {1, . . . , k− 1},

∂ log ṽj

∂ log ṽj+1
=

∂ log Bj+1
∂ log ṽj+1

∂ log aj+1

/
aj

∂ log ṽj
− ∂ log Bj+1

∂ log ṽj
+

∂ log Bj
∂ log ṽj

− ∂ log Bj
∂ log ṽj−1

∂ log ṽj−1
∂ log ṽj

.

Let Mj+1 =
∂ log Bj+1
∂ log ṽj+1

− ∂ log Bj+1
∂ log ṽj

∂ log ṽj
∂ log ṽj+1

. It follows that:

Mj+1 =
∂ log Bj+1

∂ log ṽj+1

1−
∂ log Bj+1

∂ log ṽj

∂ log aj+1

/
aj

∂ log ṽj
− ∂ log Bj+1

∂ log ṽj
+ Mj

 .

Thus, if Mj > 0, then Mj+1 > 0. For j = 1, ṽj−1 = ṽ0 = v and
∂ log ṽj−1

∂ log ṽj
=

∂ log ṽ0
∂ log ṽ1

= 0.

Hence, M1 =
∂ log B1
∂ log ṽ1

> 0. It follows by induction that for all j ∈ {1, . . . , k − 1}, Mj > 0
and, hence,

∂ log ṽj

∂ log ṽj+1
=

∂ log Bj+1
∂ log ṽj+1

∂ log aj+1

/
aj

∂ log ṽj
− ∂ log Bj+1

∂ log ṽj
+ Mj

> 0.

Next, taking logs and totally differentiating ak+1
ak

(ṽk) =
Bk+1(ṽk,ṽk+1)

Bj(ṽk−1,ṽk)

(
ekπk

ek+1πk+1

) 1
ε with re-

spect to log ek gives:

∂ log ṽk
∂ log ek

=
1
ε

 1
∂ log ak+1/ak

∂ log ṽk
+ Mk + Lk

 > 0.
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Similarly, taking logs and totally differentiating ak
ak−1

(ṽk−1) =
Bk(ṽk−1,ṽk)

Bj(ṽk−2,ṽk−1)

(
ek−1πk−1

ekπk

) 1
ε with

respect to log ek gives:

∂ log ṽk−1

∂ log ek
= −1

ε

 1
∂ log ak/ak−1

∂ log ṽk−1
+ Mk−1 + Lk−1

 < 0.

The implications for the elasticities φk,j described in the lemma then follow immediately
from (12).

Complete characterization of the sensitivity of task thresholds to the perturbation of a
given talent’s effort is provided in the next lemma.

Lemma B.1. The threshold sensitivities satisfy:

∂ log ṽj

∂ log ek
= (δj,k−1 − δj,k)

1
ε

,

where:

δj,k =

(−1)j+k ∏k−1
l=j

(
− ṽl

Bl

∂Bl
∂ṽl

)
nj−1mk+1/nK−1 1 ≤ j ≤ k ≤ K− 1

(−1)j+k ∏
j−1
l=k

(
ṽl

Bl+1

∂Bl+1
∂ṽl

)
nk−1mj+1/nK−1 K− 1 ≥ j > k ≥ 1,

for j = 1, . . . , K− 1, δj,K = δj,0 = 0, the ni satisfy the recursion, i = 2, . . . , K− 1,

ni =

{
ṽi

ai+1/ai

∂(ai+1/ai)

∂ṽi
− ṽi

Bi+1

∂Bi+1

∂ṽi
+

ṽi

Bi

∂Bi

∂ṽi

}
ni−1 +

(
ṽi

Bi

∂Bi

∂ṽi

)(
ṽi−1

Bi

∂Bi

∂ṽi−1

)
ni−2

with n0 = 1 and n1 = ṽ1
a2/a1

∂(a2/a1)
∂ṽ1

− ṽ1
B2

∂B2
∂ṽ1

+ ṽ1
B1

∂B1
∂ṽ1

and the mi satisfy the recursion, i =
K− 2, . . . , 1, :

mi =

{
ṽi

ai+1/ai

∂(ai+1/ai)

∂ṽi
− ṽi

Bi+1

∂Bi+1

∂ṽi
+

ṽi

Bi

∂Bi

∂ṽi

}
mi+1 +

(
ṽi+1

Bi+1

∂Bi+1

∂ṽi+1

)(
ṽi

Bi+1

∂Bi+1

∂ṽi

)
mi+2.

with mK−1 = ṽK−1
aK/aK−1

∂(aK/aK−1)
∂ṽK−1

− ṽK−1
BK

∂BK
∂ṽK−1

+ ṽK−1
BK−1

∂BK−1
∂ṽK−1

and mK = 1.

Proof of Lemma B.1. Given an (equilibrium) effort profile {ek}K
k=1, (equilibrium) produc-

tion maximizing task thresholds {ṽk} are determined by the conditions, k = 1, . . . , K− 1,

Bk(ṽk−1, ṽk)

{πkek}
1
ε

=
Bk+1(ṽk, ṽk+1)

{πk+1ek+1}
1
ε

ak(ṽk)

ak+1(ṽk)
.

with ṽ0 = v and ṽK = v. Hence, there are K − 1 unknowns (and K − 1 equations). The
threshold sensitivities may be computed by taking logs in the preceding equations and
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totally differentiating with respect to log ek. This leads to the equations:

Γ∆vk = Ek,

where:

Γ :=


α1ṽ1 − ṽ1

B2

∂B2
∂ṽ1

+ ṽ1
B1

∂B1
∂ṽ1

− ṽ2
B2

∂B2
∂ṽ2

0 0 . . . 0
ṽ1
B2

∂B2
∂ṽ1

α2ṽ2 − ṽ2
B3

∂B3
∂ṽ2

+ ṽ2
B2

∂B2
∂ṽ2

− ṽ3
B3

∂B3
∂ṽ3

0 . . . 0
0 ṽ2

B3

∂B3
∂ṽ2

α3ṽ3 − ṽ3
B4

∂B4
∂ṽ3
− ṽ3

B3

∂B3
∂ṽ3

− ṽ4
B4

∂B4
∂ṽ4

. . . 0
...

...
...

...
...

...


∆vk = (

∂ log v1
∂ log ek

. . . ∂ log vk
∂ log ek

. . . ∂ log vK−1
∂ log ek

)′ and Ek = (0 . . .− 1
ε

1
ε . . . 0)′ with non-zero elements

in the k− 1 and k-th rows. Thus,
∆vk = Γ−1

k Ek.

and in fact:
∂ log vj

∂ log ek
= (δj,k−1 − δj,k)

1
ε

,

where δj,k is the (j, k)-th element of Γ−1
k . Since Γk is a tridiagonal matrix, explicit formulas

for its inverse are available. Applying these formulas gives the expression in the text.

C CONTINUOUS TALENT-CONTINUOUS TASK MODEL

In this appendix, we briefly describe the continuous talent (and continuous task) assign-
ment model and its optimal control formulation. In our quantitative work, we treat the
data as a discrete approximation to this model and solve it using the open-source numer-
ical optimal control software GPOPS-II. Workers are now distributed across an interval of
talents k ∈ [k, k] according to a distribution function Π : [k, k] → [0, 1] with strictly pos-
itive and continuously differentiable density π. As before there is a continuum of tasks
ranked by complexity v ∈ [v, v]. The productivity of talent-task combinations is given by
a function a : [k, k]× [v, v]→ R++ satisfying the following assumption.

Assumption 2. (i) a is twice continuously differentiable on the interior of [k, k]× [v, v] with first
derivatives ai, i ∈ {k, v} and second derivatives aij, i, j ∈ {k, v}. (ii) (strict absolute advantage)

ak > 0, (iii) (strict comparative advantage, log supermodularity) ∂2 log a
∂k∂v > 0.

Otherwise technologies and preferences are as in the main text. An allocation is a
triple of measurable functions c : [k, k] → R+, ν : [k, k] → [v, v] and e : [k, k] → R+

describing the consumption, task and effort assignments of each talent type.49 As before,
task output is linear in labor input. The task output density y : [v, v] → R+ satisfies for

49The implicit assumption that all talents are assigned to a specific consumption, task and effort is with-
out loss of generality. It may be shown, along the lines of Proposition 2, that assignment of talents to tasks
is strictly increasing in talent given strict comparative advantage.
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all k, ˆ ν(k)

v
y(v)dv =

ˆ k

k
a[k′, ν(k′)]e(k′)π(k′)dk′. (C.1)

If ν is differentiable with derivative νk, then (C.1) can be re-expressed as, for all k:

y(ν(k)) = a[k, ν(k)]e(k)
π(k)
νk(k)

, (C.2)

Heuristically, the numerator is total output of type k, while the denominator gives the
tasks over which the type k workers are "spread". The shadow wage is given by:

w[k, v] = b(v)
(

y(v)
Y

)− 1
ε

a[k, v].

We restrict planners and policymakers to smooth allocations and mechanisms. This per-
mits the application of optimal control techniques.

OPTIMAL CONTROL FORMULATION OF GOVERNMENT’S PROBLEM We formulate the
government’s problem as a mechanism design problem and recover optimal taxes from
this. Mechanisms are analogous to those considered previously in Appendix A. Each
worker reports its talent k and, conditional on this, is assigned a consumption c, task ν
and effort e. The combination of mechanism and truthfully reported talent imply utility
and normalized shadow wage and income levels for each type:

ψ(k) = U(c(k), e(k))

ϕ(k) = w[k, ν(k)]/Y
1
ε

ρ(k) = ϕ(k)e(k).

In addition, let ω(k, v) = w[k, v]/Yε. A worker claiming to be type k′ must reproduce the
observable income level ρ(k′). Incentive-compatibility thus requires for all k, k′ and v′:

U(c(k), e(k)) ≥ U
(

c(k′),
ρ(k′)

ω(k, v′)

)
. (C.3)

Let U = {(u, e) ∈ R × [0, e] : u = U(c, e) for some c ∈ R+} and let C : U → R+ be
defined according to u = U(C[u, e], e). The next proposition gives simpler necessary and
sufficient conditions for incentive-compatibility.

Proposition C.1. Let (ν, e, c) be a smooth mechanism that induces a smooth task output function
y. The mechanism is incentive-compatible if and only if: (i) (Monotonicity) vk ≥ 0 and ρk ≥ 0
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hold and (ii) (Envelope) the envelope conditions for utility and shadow wages hold:

ψk(k) = −Ue (C[ψ(k), e(k)], e(k)) e(k)
ak[k, ν(k)]
a[k, ν(k)]

(C.4)

ϕk(k) = ϕ(k)
ak[k, ν(k)]
a[k, ν(k)]

. (C.5)

Proof. (Necessity). Let (ν, e, c) be a smooth incentive-compatible mechanism. Incentive
compatibility implies that w[k, ν(k)] ≥ w[k, ν(k′)] and w[k′, ν(k′)] ≥ w[k′, ν(k)]. Since
w[k, v] = b(v) (y(v)

/
Y )−

1
ε a[k, v] and a is strictly log supermodular, it follows that if

k > k′, then ν(k′) > ν(k). Hence, ν is increasing. To verify (C.5), we apply (envelope)
Theorem 4.3 of Bonnans and Shapiro (2000) to: max[v,v] U

(
c(k′), ρ(k′)

/
ω(k, v′)

)
. This re-

quires U to be continuously differentiable, ω(·, v) to be continuously differentiable and
ω(k, ·) to be continuous. The first two properties hold by assumption (and the definition
of ω and w, see (C.2)), the latter holds if y is continuous. Suppose that y is discontinuous
at v and, without loss of generality assume y(v) > y(vn) for some sequence vn → v. Let
kn = ν−1(vn), then for n large enough, w[kn, vn] < w[kn, v], which is a contradiction. Then
Theorem 4.3 and Remark 4.14, p.273-4 in Bonnans and Shapiro (2000) and the definition of
w imply that the function ϕ, ϕ(k) = maxv∈[v,v] w[k, v], is differentiable with ϕk = ϕ ak

a > 0.
Let ρ(k) = ϕ(k)e(k) and:

Υ[k, k′] = U
(

c(k′),
ρ(k′)
ϕ(k)

)
.

Incentive-compatibility requires that: Υ[k, k] ≥ Υ[k, k′] and Υ[k′, k′] ≥ Υ[k′, k]. Hence,
U
(

c(k), ρ(k)
ϕ(k)

)
−U

(
c(k′), ρ(k′)

ϕ(k)

)
≥ U

(
c(k), ρ(k)

ϕ(k′)

)
−U

(
c(k′), ρ(k′)

ϕ(k′)

)
. The assumed Spence-

Mirrlees condition and the increasingness of ϕ, then imply that ρ and c are increasing
also. Additionally, since (ν, e, c) is continuous by assumption and w is continuous, The-
orem 4.3 in Bonnans and Shapiro (2000) can again by applied to show that: ψ(k) =
maxk′∈[k,k] Υ(k, k′) is differentiable with:

ψk(k) = −Ue (C[ψ(k), e(k)], e(k)) e(k)
ϕk(k)
ϕ(k)

= −Ue (C[ψ(k), e(k)], e(k)) e(k)
ak[k, v(k)]
a[k, v(k)]

.

Sufficiency. Let (ν, e, c) be a smooth mechanism satisfying the conditions in the propo-
sition. The definition of ϕ, the envelope condition for wages (C.5) and the smoothness
of ν imply the first order condition: wv[k, ν(k)]νk = 0. The smoothness of the various
functions also implies that wv exists and is given by:

wv[k, v] =
{

bv(v)
b(v)

− 1
ε

yv(v)
y(v)

+
av[k, v]
a[k, v′]

}
w[k, v] (C.6)

An worker’s optimization over v and k′ is separable: regardless of the report choice
of k′, it is optimal for the worker to select a task v that maximizes its wage w[k, v]. Let k∗

denote a non-decreasing measurable selection from v−1. Then, using (C.6), the first order
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condition wv[k, ν(k)]νk = 0 and log supermodularity, for v̂ > v(k),

w[k, v]− w[k, ν(k)] =
ˆ v

ν(k)
wv[k, v′]dv′

=

ˆ v̂

ν(k)

{
bv(v′)
b(v′)

− 1
ε

yv(v′)
y(v′)

+
av[k, v′]
a[k, v′]

}
w[k, v′]dv′

=

ˆ v̂

ν(k)

{
− av[k∗(v′), v′]

a[k∗(v′), v′]
+

av[k, v′]
a[k, v′]

}
w[k, v′]dv′ < 0.

and similarly for v̂ < v(k). Consequently, the mechanism induces a k-worker to choose
the task assignment v(k).

Let k2 > k1, then by the envelope condition for wages, for k′ ∈ [k1, k2], ϕ(k′) =
w[k′, ν(k′)] ≥ w[k1, ν(k1)] = ϕ(k1). Combined with the monotonicity and concavity of
U, this implies −Ue (c(k′), e(k′)) e(k′) + Ue

(
c(k′), ϕ(k′)

ϕ(k1)
e(k′)

)
ϕ(k′)
ϕ(k1)

e(k′) < 0. The enve-
lope condition for reports and the smoothness of the mechanisms imply:

Υk̂[k, k]k̂k =

{
Uc(c(k), e(k))ck(k) + Ue(c(k), e(k))e(k)

ρk(k)
ρ(k)

}
k̂k = 0.

The definitions of Υ and ρ and the preceding discussion then imply:

Υ[k1, k2]− Υ[k1, k1] =

ˆ k2

k1

Υk̂[k1, k′]dk′

=

ˆ k2

k1

{
Uc(c(k′), e(k′))ck(k′) + Ue

(
c(k′),

ρ(k′)
ϕ(k1)

)
ρk(k′)
ϕ(k1)

}
dk′

=

ˆ k2

k1

{
−Ue

(
c(k′), e(k′)

)
e(k′) + Ue

(
c(k′),

ρ(k′)
ϕ(k1)

)
w[k′, ν(k′)]
w[k1, ν(k1)]

e(k′)
}ρk(k)

ρ(k)
dk′ ≤ 0.

A similar inequality obtains for k1 > k2 and so the mechanism induces a k-worker to
make a truthful report k.

It is convenient to define:

ξ(k) :=
ˆ k

k

(
π(k′)a[k′, ν(k′)]e(k′)

νk(k′)

) ε−1
ε

b(ν(k′))νk(k′)dk′ (C.7)

and

ζ(k) =
ˆ k

k
C[ψ(k′), e(k′)]π(k′)dk′. (C.8)

Together ψ, ϕ, ξ and ζ along with ν form a set of state variables for the optimal control
formulation of the planning problem with private information. The envelope conditions
(C.4) and (C.5) supply laws of motion for ψ and ϕ. Equations (C.9) and (C.10) give laws
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of motion for ξ and ζ:

ξk(k) = e(k)ϕ(k)π(k) (C.9)
ζk(k) = C[ψ(k), e(k)]π(k). (C.10)

Finally, the definition of ϕ(k) implies a law of motion for ν:

νk(k) =
(

ϕ(k)
b(ν(k))a[k, ν(k)]

)ε

π(k)a[k, ν(k)]e(k), (C.11)

The monotonicity conditions on mechanisms needed to ensure incentive-compatibility
are omitted and checked ex post. The effort function e is the control. The government’s
problem becomes:

max
ψ,ϕ,ζ,ξ,ν,e

ˆ k

k
ψ(k)g(k)dk (C.12)

subject to the laws of motion (C.4), (C.5) and (C.9) to (C.11) and the boundary constraints:

ζ(k) ≤ ξ(k)
ε

ε−1

0 = ξ(k) 0 = ζ(k) v = v(k) v(k) = v̄.

In this problem there is one control (e) and five states (ψ, ϕ, ζ, ξ, ν). Routine manipulation
of the first order and co-state equations yields the following expression for the optimal
effort-consumption wedge:

−w[k,ν∗(k)]
U∗c (k)
U∗e (k)

− 1 =

H∗(k)1−Π(k)
π(k)

ϕ∗k(k)
ϕ∗(k)

ˆ ∞

k

(
1− g(t)U∗c (t)

pζ∗π(t)

)
U∗c (k)
U∗c (t)

N ∗(k, t)
π(t)

1−Π(k)
dt︸ ︷︷ ︸

Mirrlees

− I∗(k)
[

pϕ∗
k (k)

pϕ∗(k)
+

ak[k, ν∗(k)
a[k, ν∗(k)]

]
pϕ∗(k)

pζ∗π(k)

(
−U∗c (k)

U∗e (k)

)
︸ ︷︷ ︸

Wage Compression

, (C.13)

where U∗x (k) := Ux(c∗(k), e∗(k)) x ∈ {c, e} and similarly for U∗xz(k), I∗(k) := −1
ε

w[k,ν∗(k)]
e∗(k)

is the elasticity of the k-talent wage with respect to effort holding the task allocation fixed,
H∗ := {−U∗ec

U∗e
+ U∗ee

U∗e
}e∗ + 1 is (1 + Eu)/Ec, where Eu and Ec are, respectively, the uncom-

pensated and compensated labor supply elasticities, N ∗(k, t) = exp
{
−
´ t

k
e∗(s)U∗ce(s)
ϕ∗(s)U∗c (s)

}
,

pζ∗ = E
[´ k

k
1

U∗c (t′′)
π(t′′)dt′′

]−1
is the optimal shadow resource multiplier and pϕ∗ is the

optimal co-state on the shadow wage ϕ. The Mirrlees and wage compression components
are labeled.
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D DATASET

Our main data source is the Current Population Survey (CPS) administered by the US
Census Bureau and the US Bureau of Labor Statistics. We focus on the March release of
the survey.50 Data is available continuously from 1968 to 2012. On average each year
of data contains about 150,000 observations, from 2001 the sample size has increased to
approximately 200,000. The CPS contains detailed information on the demographic and
work characteristics of each individual. For additional details on the CPS refer to Heath-
cote, Perri, and Violante (2010) and Acemoğlu and Autor (2011). The CPS data includes
a self reported estimate of hours worked from 1976 onwards. This question as well as
questions on income are for the previous calendar year. Hence our sample covers the
years 1975 to 2011 (interviews from 1976 to 2012). In the body of the paper we group ob-
servations in two groups. We call “the 70s” observations relating to years 1975-1979 (i.e
interviewed in years 1976-1980), we call the “00s” observation relating to years 2000-2011
(interviews in 2001-2012).
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(b) Distribution of log-labor income.

Figure D.1: Estimates on entire sample.

The model analyzed is highly stylized. In order to make data and model compati-
ble (and to reduce the likelihood of measurement error) we further restrict our sample.
We drop individuals for whom income, age, sex, education, sector, occupation is not re-
ported. We consider individuals of working age, i.e. between the ages of 25 and 65. We
drop individuals with no formal education and the unemployed. Following Heathcote,
Perri, and Violante (2010), we also drop underemployed individuals: those working less
than 250 hours per year or earning less than $100 per year (dropping an additional 196,684
observations). Our final sample comprises of 2,039,123 individual/year observations. All
variables are weighted with the provided weights and dollar denominated variables are

50Data is taken from: Miriam King, Steven Ruggles, J. Trent Alexander, Sarah Flood, Katie Genadek,
Matthew B. Schroeder, Brandon Trampe, and Rebecca Vick. Integrated Public Use Microdata Series, Current
Population Survey: Version 3.0. [Machine-readable database]. Minneapolis: University of Minnesota, 2010.
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deflated using CPI to 2005 dollars.51 In Figure D.1b we display the evolution of the dis-
tribution of log labor income between the “70s” and the “00s”. The main feature that
emerges is the widening of the distribution in the “00s” relative to the “70s”.

ALTERNATE SAMPLE SELECTION

We briefly explore the impact of our sample selection on the estimated values of b(v).
In Figure D.1a we consider the CPS sample before applying our sample selection (but
after removal of individuals with missing information or an unclassifiable occupation).
As can be seen polarization is still apparent. However for low v occupations we observe
little change between the two decades. Note that a similar result would appear using the
sample selection of Acemoğlu and Autor (2011). This is because the authors only remove
individuals who worked less than one week in the previous year or are less than 16 years
of age.

E COUNTERFACTUALS

In this appendix we separately evaluate the impact of change in the a and b functions on
optimal policy. To do so, we first hold the parameters of a fixed at their 1970s values,
while allowing those of b to change to their 2000s values; we compute the corresponding
optimal tax equilibrium. We then repeat the exercise holding the parameters of b fixed,
while allowing those of a to change. We compare the resulting tax equilibria to those in
which both functions are at their 1970s or 2000s levels.

ASSIGNMENT Figure E.1 shows the impact of the empirical a and b changes together
and isolation on density of workers across tasks. Changes in b alone lead to quite large
changes in the relative “number” of workers performing tasks. In particular, the polariz-
ing adjustments in task demand (growth at the extremes relative to the middle) occurring
between the 1970s and the 2000s induce growth in the density of workers at the extremes
and, hence, job polarization in the associated optimal tax equilibrium. Changes in a alone
have an opposite (if more modest) effect: the number of workers performing mid-level
tasks grows relative to the extremes. This reflects productivity growth in low tasks by
low talents and in high tasks by high talents inducing reductions in shadow task prices at
the top and the bottom and movements of some lower and higher talents into mid-level
tasks. However, when changes in the b and a parameters are combined, it is the former
that dominates.

51CPI for all urban consumers, all goods.
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Figure E.1: Relative changes in k̃∗v from the 1970s to the 2000s. Allowing
b to change, a to change and both a and b to change.

Although, the b parameter change induces quite large changes in the numbers of
workers performing particular tasks, this is achieved with only modest occupational re-
assignments of given workers. As shown in Figure E.4, low-mid level talents reduce their
task assignment, but by no more than 2%, high-mid level talents increase their task as-
signment, but by no more than 3%.
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Figure E.2: Relative changes in task assignment ṽ∗ induced by the shift
in b from 1970 to 2000.

WAGE CHANGES An implication of the modest change in task assignment induced by
the shift in the b function is that equilibrium wage growth over talents is also only mod-
estly altered by this shift. As shown in Figure E.3, b changes alone induce very slight
compression in wages across low-to-mid talents and very slight stretching and expansion
of wages across mid-to-high talents. Changes in the a function also depress wage growth
across talents at the bottom and raise it at the top, but the effect is much more pronounced.
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Figure E.3: Equilibrium wage growth ∆w∗/w∗ for the parameter com-
binations (a70, b70), (a70, b00), (a00, b70) and (a00, b00).

MARGINAL TAX CHANGES The shift in the b function alone has limited impact on the
relative wage-effort elasticities and on the wage compression term. Combined with its
small impact on wage growth over talents, it has a correspondingly modest effect on
marginal taxes, see Figure E.4a. In contrast, the shift in the a function has a much more
significant impact on wage growth and on the relative wage-effort elasticities. It has a
much more significant effect on optimal marginal taxes and accounts for most of the ad-
justment between the 1970s and the 2000s.
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Figure E.4: Marginal tax effects.
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