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Abstract

We provide a nonlinear characterization of the macroeconomic impact of microe-

conomic TFP shocks in terms of reduced-form non-parametric elasticities for effi-

cient economies. We also provide the mapping from structural parameters to these

reduced-form elasticities, under general equilibrium. In this sense, the paper extends

the foundational theorem of Hulten (1978) beyond first-order terms to capture non-

linearities. Key features ignored by first-order approximations that play a crucial role

are: structural elasticities of substitution, network linkages, structural returns to scale,

and the degree to which factors can be reallocated. Higher-order terms are large and

economically interesting: they magnify negative shocks and attenuate positive shocks,

resulting in an output distribution that is asymmetric (negative skewness), fat-tailed

(excess kurtosis), and has a lower mean. They explain how small microeconomic

shocks to critical sectors can have a large macroeconomic impact. To give a sense

of magnitudes: in our benchmark calibration, output losses due to business cycle

fluctuations are 0.6% of GDP, an order of magnitude larger than the cost of business

cycles calculated by Lucas (1987), and are entirely due to a reduction in the mean of

GDP because of nonlinearities in production; and accounting for second-order terms

increases the estimated impact of the price shock to the critical sector of oil in the 1970s

from 0.6% to 2.3% of world GDP.
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1 Introduction

The foundational theorem of Hulten (1978) states that for efficient economies and under
minimal assumptions, the first-order impact on output of a TFP shock to a firm or an
industry is equal to that industry or firm’s sales as a share of output. This surprising
result has led macroeconomists to de-emphasize the role of microeconomic and network
production structures in macroeconomics. After all, if the sales of a firm tell us the
macroeconomic impact of a shock, and we directly observe these sales, then we need not
concern ourselves with the details of the underlying disaggregated structure that gave
rise to these sales.

A stronger form of this irrelevance argument suggests that we can also rule out mi-
croeconomic sources for aggregate fluctuations. If we can write aggregate quantities as
a weighted average of individual-level data, Lucas (1977) and others, argue that idiosyn-
cratic changes cannot explain changes in the aggregates. Since the economy consists of
millions of workers and firms, the law of large numbers implies that idiosyncratic shocks
to individual units should average out to zero with near-certainty, as long as the weights
we use are sufficiently close to zero. However, in order to make this argument, we need
to be able to write aggregates as a weighted average of individual quantities. Hulten’s
theorem gives a formal justification for this average as a first-order approximation and
shows that the appropriate weights are observed expenditure shares. This is called Domar
(1961) aggregation, and not only is it of theoretical interest, but it also underlies much of
national accounting.

Recently, an active theoretical and empirical literature has brought this long-held con-
viction under renewed scrutiny. Broadly speaking, there have been three different ways
in which the diversification argument has been challenged. The first branch questions
the idea that the Domar weights are small in practice, the second points out that variance
may not be the most interesting moment of GDP to focus on, and the last branch shows
that in the presence of frictions, Hulten’s theorem need not hold.

In this paper, we use a new line of attack on the diversification argument: we challenge
the first-order approximation itself. We show that Hulten’s theorem, powerful as it
is, can in practice be very fragile due to significant nonlinearities in how shocks are
mapped to output. We provide a reduced-form characterization of the second-order
terms, and link these to deep parameters using a relatively general structural model.
These second-order terms are shaped by structural elasticities of substitution, network
linkages, structural returns to scale, and the degree to which factors can be reallocated,
in a way that we precisely characterize. Although we maintain a focus on the impact of
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idiosyncratic shocks, we demonstrate that our results have important implications for the
impact of correlated shocks, the average performance of the economy, and the shape of the
distribution of output. These nonlinearities in production generate losses from business
cycle fluctuations, and these losses are an order of magnitude larger than the ones owning
to risk aversion identified by Lucas (1987).

Before describing our contribution in more details, we situate our work in the literature
by briefly summarizing the other three branches. Seminal papers in the first branch by
Gabaix (2011) and Acemoglu et al. (2012) challenge the idea that the expenditure shares
are, in practice, close to zero. Gabaix (2011) points to the existence of very large, or in
his language granular firms, as a possible source of aggregate volatility. If there exist very
large firms, then shocks to those firms will not cancel out with shocks to much smaller
firms, resulting in aggregate fluctuations. Acemoglu et al. (2012), working with a Cobb-
Douglas model in the spirit of Long and Plosser (1983), observed that in an economy
with input-output linkages, the equilibrium size of firms will depend on the shape of
the input-output matrix. Central suppliers will be weighted more highly than peripheral
firms, and therefore, shocks to those central players will not cancel out with shocks to small
firms.1 Carvalho and Gabaix (2013) show how Hulten’s theorem can be operationalized
to decompose the sectoral sources of aggregate volatility.2

The second type of objection to the diversification argument is due to Acemoglu
et al. (2017) who argue that if the Domar weights are fat-tailed and if the underlying
idiosyncratic shocks are fat-tailed, then GDP can exhibit non-normal behavior. Under
these conditions, they argue that the variance of GDP is the wrong moment to focus on.
Stated differently, GDP can inherit tail risk from idiosyncratic tail risk if the distribution
of the Domar weights is fat-tailed. Our paper strengthens, but is distinct from, this
point. We find that, for the empirically relevant range of parameters, the response of
output to shocks is significantly asymmetric. Therefore, the nonlinearity inherent in the
production structure can turn even symmetric thin-tailed sectoral shocks into rare disasters
endogenously. This means that the economy could plausibly experience aggregate tail
risk without either fat-tailed shocks or fat-tailed Domar weights.

The last line of objection to the diversification argument is typified by Baqaee (2016),
Grassi (2017), and Bigio and La’O (2016) who show that the presence of frictions can cause
Hulten’s theorem to fail and that this failure may be extreme. Bigio and La’O (2016) work

1A related version of this argument was also advanced by Horvath (1998), who explored this issue
quantitatively with a more general model in Horvath (2000). Separately, Carvalho (2010) also explores how
the law of large numbers may fail under certain conditions on the input-output matrix.

2Results related to Hulten’s theorem are also used in international trade, e.g. Burstein and Cravino
(2015), to infer the global gains from international trade.
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with a Cobb-Douglas model where financing constraints distort the equilibrium, and this
distortion means that the Domar weights are no longer the correct weights.3 Baqaee (2016)
works with a model with scale economies and imperfect competition. In his environment,
Hulten’s theorem fails, and the model’s propagation and diffusion properties change.
Grassi (2017) shows that the interaction of TFP shocks with the pricing power of firms can
affect the volatility of GDP.

Stepping aside from the diversification argument, Hulten’s theorem has, more gener-
ally, been something of a bugbear for the burgeoning literature on production networks,
since it implies that, as long as we can observe the distribution of sales in the economy,
to a first-order approximation, we do not need to concern ourselves with the underlying
microeconomic details. In other words, from a macroeconomic perspective, it does not
matter whether a firm is large because it produces a crucial intermediate input for other
firms or because it sells a lot directly to the household. So, for example, up to a first order
through the lens of Hulten’s theorem, shocks to Walmart and shocks to the electricity pro-
duction industry, the sales of which both currently stand at about 4% of U.S. GDP, have an
equal impact on GDP.4 Furthermore, under Hulten’s theorem, it does not matter whether
a shock hits in a fragile, complicated ecosystem with high degrees of complementarity or
in a robust, simple, and highly substitutable economy.

Because of this, in a recent survey article Gabaix (2016) writes “networks are a partic-
ular case of granularity rather than an alternative to it.” This has meant that researchers
studying the role of networks have either moved away from efficient models, or that
they have retreated from aggregate volatility and turned their attention to the microeco-
nomic implications of networks, namely the covariance of fluctuations between different
industries and firms.5 However, models with the same sales distributions are only equiv-
alent up to the first order, and in this paper, we highlight the fragility of this first-order
approximation. In particular, we argue that the agenda to trace the network origins of ag-
gregate fluctuations (see Acemoglu et al., 2012) extends beyond the way networks affect
steady-state Domar weights.

We proceed as follows. In Section 2, we derive a general formula describing the second-

3Altinoglu (2016) and Liu (2017) also investigate the impact of credit constraints in production economies
with network structures.

4In Appendix D, we show that this first-order approximation can be arbitrarily bad using a stylized
model with an energy input.

5For instance, Foerster et al. (2011), Atalay (2016), Di Giovanni et al. (2014), and Stella (2015) investigate the
importance of idiosyncratic shocks propagating through networks to generate cross-sectional covariances,
but they refrain from analyzing the impact of these shocks on output. Atalay (2016) is particularly relevant
in this context, since he finds that structural elasticities of substitution in production play a powerful role in
generating covariance in sectoral output. Our paper complements this analysis by focusing instead on the
way complementarities affect GDP.
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order impact on output of idiosyncratic shocks in terms of non-parametric sufficient
statistics: reduced-form macro elasticities of substitution and input-output multipliers.6 We
also explain the implications of this formula for the impact of correlated shocks and for the
average performance of the economy. We then show how these sufficient statistics depend
on deep structural parameters, taking into account general equilibrium forces.7,8 To do so,
in Section 3, we set up a relatively general structural production model, which allows for
any arbitrary network of nested CES production functions, heterogenous returns to scale in
factors, and labor reallocation. In Sections 4, 5, and 6, using some stylized specifications of
the model, we dig into the the roles of structural elasticities of substitution, returns to scale,
factor reallocation, and intermediate inputs.9 In Section 7, we derive an industry-level
network-centrality measure for the special case where every industry has constant returns
to scale. In Section 8, we perform some illustrative exercises to investigate the quantitative
implications of our results. First, using a calibrated structural multi-sector model, we find
that the higher order terms can significantly degrade the average performance of output,
reducing it by 0.6% in our benchmark calibration. Furthermore, output in this model is
also negatively skewed, and has excess kurtosis even though our underlying technology
shocks are lognormal. In addition, we find that negative shocks to crucial industries,
like “oil and gas”, can have a significantly larger negative effect on output than negative
shocks to larger but less crucial industries. Interestingly, the relative ranking of which
industries are more important depends on both the sign and the size of the shock. Second,
we derive and use a simple nonparametric formula, taking into account the observed
change in the Domar weight for crude oil, to analyze the impact of the energy crisis of the
1970s up to the second order. We find that second-order terms amplified the impact of the
oil price shocks from 0.6% to 2.3% of output.

6Studying the second-order terms is the first step in grappling with the nonlinearities inherent in mutli-
sector models with production networks. In this sense, our work illustrates the macroeconomic importance
of local and strongly nonlinear interactions emphasized by Scheinkman and Woodford (1994). Other related
work on nonlinear propagation of shocks in economic networks includes Durlauf (1993), Jovanovic (1987),
Ballester et al. (2006) Acemoglu et al. (2015), Elliott et al. (2014), and especially Acemoglu et al. (2016).

7Our work is connected to the literature showing that macro and micro elasticities can, in principle, be
very different. Houthakker (1955) is the archetypal example, though more recent work by Oberfield and
Raval (2014) and Beraja et al. (2016) also fits into this category, albeit their focus is very different from ours.
Indeed, the reduced-form sufficient statistics we define, the macro elasticity of substitution and the input-
output multiplier, are general equilibrium objects and cannot be directly elicited using simple exogenous
microeconomic variation, but can be estimated by combining such variation with a structural model.

8Some of our results are also related to the literature on the Le Chatelier principle in economics, like
Samuelson (1960) and Milgrom and Roberts (1996), since we show that general equilibrium forces can
increase effective elasticities of substitution by reallocating inputs and factors in response to shocks.

9Some of these results are closely related to the literature on growth and misallocation, especially
Jones (2011), Jones (2013), and Kremer (1993), who have emphasized the importance of reallocation and
complementarities in production for explaining the cross-sectional variation in aggregate GDP and TFP.
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Our results suggest that the Cobb-Douglas functional form, commonly used in the
production network, growth, and multisector macro literatures, is a very special knife-
edge case.10 For this special case, the second-order terms are identically equal to zero,
and therefore, Hulten’s theorem is globally accurate. This means that the issues of com-
plementarity, substitutability, returns to scale, factor reallocation, and network structure,
which play a key role in our results, all disappear when one works with a Cobb-Douglas
model. The empirical literature on production networks, like Atalay (2016), Boehm et al.
(2015), and Barrot and Sauvagnat (2016) all find that structural elasticities of substitution in
production are significantly below one, and sometimes very close to zero, across interme-
diate inputs, and between intermediate inputs and labor (at business cycle frequencies).
Our results suggest we should be wary of Cobb-Douglas functional forms, or first-order
approximations, under these scenarios.

This paper is focused on the implications of nonlinear production for business cycles.
Hence, our quantitative exercises deal with within-country cyclical variations. However,
our theoretical results can be applied just as easily to cross-country differences in output
and TFP. The fact that we find lower TFP in crucial industries, like energy production, can
have large effects on output may also help uncover the microeconomic origins of the large
observed differences in cross-country output and aggregate TFP.

2 General Framework

First, we set up a nonparametric framework that demonstrates both Hulten’s theorem as
well as our second-order approximation. Consider a perfectly competitive economy with
a representative consumer whose consumption-bundle metric is

C = C (c1, . . . , cN) ,

where ci is the household’s consumption of good i. Aggregate consumption C is homoge-
nous of degree one and the household consumes a nonzero amount of every good. The
budget constraint is

N∑
i=1

pici =

M∑
i=1

wili +

N∑
i=1

πi,

10A mixture of analytical tractability, as well as balanced-growth considerations, have made Cobb-Douglas
the canonical production function for networks (Long and Plosser, 1983), multisector RBC models (Gomme
and Rupert, 2007), and growth theory (Aghion and Howitt, 2008). Recent work by Grossman et al. (2016)
shows how balanced growth can occur without Cobb-Douglas.
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where pi is the price and πi is the profit of production unit i. For each labor type i, there
is an endowment of labor li which is supplied inelastically and competitively on a spot
market with a wage wi. These labor markets may be common across producers or good-
specific. Note that, in principle, ci could represent consumption of different varieties of
goods from the same industry, goods from different industries, or even goods in different
periods of time, regions, or states of nature. Similarly, ci could stand in for different types
of leisure, thereby allowing for endogenous labor supply with a disutility of labor.

We interpret C as a cardinal measure of output and note that it is the correct measure of
the household’s “standard of living” in this model. We implicitly rely on the existence of
complete financial markets, and ex ante symmetry of endowments, to ensure the existence
of a representative consumer. Although the assumption of a representative consumer is
not strictly necessary for the results in this section, it is a standard assumption in this
literature since it allows us to unambiguously define and measure changes in real GDP
without contending with the issue of the appropriate price index.11

Each good i is produced by competitive firms using production function

yi = AiFi(li1, . . . , liM, xi1, . . . , xiN),

where Ai is Hicks-neutral technology, xi j are intermediate inputs of good j used in the
production of good i, and li j is labor type j used by i. Once again, in principle, these
production functions may be intertemporal or regional, however, for most of the analysis
we interpret them as industries. Our assumption that labor markets may be segmented
is motivated by increasing evidence, like Acemoglu et al. (2016), Autor et al. (2016), and
Notowidigdo (2011), that labor is not easily reallocated across industries or regions after
shocks. Note that factor-augmenting technology shocks are a special case of this set-up
since such shocks can always be rewritten as Hicks-neutral shocks simply by relabeling
the industry’s factor input as a separate industry. The profits earned by the producer of
good i are

πi = piyi −

M∑
k=1

wklik −

N∑
j=1

p jxi j.

Competitive equilibrium is defined in the usual way, where all agents take prices as
given, and markets for every good and every type of labor clears. Define C(A1, . . . ,AN) to be

11In general, with heterogeneous households, without further assumptions on preferences, there is no
uncontroversial way to boil down welfare into a single number. Although recent papers have relied on
the existence of a representative consumer, Hulten (1978) instead derives his result by defining changes in
real GDP as changes in final goods consumption holding prices fixed, which corresponds to the Laspeyres
quantity index. Our results can be easily extended to cover this alternative set up.
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the equilibrium aggregate consumption as a function of the underlying technology shocks.
Throughout the paper, unless otherwise specified, we refer to C(1, . . . , 1) as the steady-state
output of the model, and we derive results regarding the effects of shocks in the vicinity
of this steady state. The relevant derivatives are all applied at (A1, . . . ,AN) = (1, . . . , 1).

Since this economy is efficient, an application of the envelope theorem has the following
surprising but powerful implication.

Theorem 2.1 (Hulten). Let λi denote industry i’s sales as a share of output. Then

∂ log C
∂ log Ai

= Ci
Ai

C
= λi,

where Ci = ∂C/∂Ai.

In other words, to a first order, the underlying microeconomic details of the structural
model are completely irrelevant as long as we observe the equilibrium sales distribution.12

Crucially, since Hulten’s theorem is a consequence of the envelope theorem, as long
as the steady state is efficient, it does not matter whether or not factors or inputs are
reallocated in response to a shock. Since this is a first-order approximation, it captures all
the relevant information for both idiosyncratic and correlated shocks — linearity implies
that the impact of a common shock is simply the summation of the impact of idiosyncratic
shocks.

Finally, in the special case where Ai is a labor-augmenting shock, the relevant λi

corresponds to an industry’s wage bill as a share of GDP. This is because if we relabel the
labor input of industry i as a new industry, we can represent a labor-augmenting shock to
i’s labor as a Hicks-neutral shock to this new industry. Applying Hulten’s theorem would
then imply that the output elasticity of a shock to i’s labor are the sales of i’s labor as a
share of GDP — in other words, the wage bill of i as a share of GDP.

Theorem 2.1 has long been a cornerstone of national accounting, starting with Domar
(1961), since it justifies the creation of aggregate measures of inputs like capital and
labor, as well as the construction of aggregate TFP from disaggregated data (see Hulten,
2001). More recently, it has also become prominent in theoretical work: it underlies
the aggregation results used in the literature on the microeconomic origins of aggregate
fluctuations (see Gabaix, 2011; Di Giovanni et al., 2014; Acemoglu et al., 2017; Carvalho
and Gabaix, 2013) and the microeconomic origins of cross-country TFP differences (see
Jones, 2011). It also emerges naturally as the correct measure of network centrality in
perfectly competitive models such as Acemoglu et al. (2012).

12This irrelevance result only holds for technology shocks. Even when Hulten’s theorem is globally true,
demand shocks will have different effects, as shown by, for example Baqaee (2015).
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In this paper, we highlight the fragility of this aggregation result and show that for
quantitatively relevant cases, the first-order approximation can be misleading. In this
section we provide a characterization of the second-order effects in terms of reduced-form
elasticities that we define below. Later on, we show how these reduced-form elasticities
arise from structural primitives using a structural model.

First, recall that for any homogeneous of degree one function f (A1, . . . ,AN), the Mor-
ishima (1967) elasticity of substitution is

1
ρi j

= −
d log(MRSi j)
d log(Ai/A j)

= −
d log( fi/ f j)

d log(Ai/A j)
, (1)

where MRSi j is the ratio of partial derivatives with respect to Ai and A j, and fi = ∂ f/∂Ai.
This is a generalization of the two-variable elasticity of substitution introduced by Hicks
(1932) and analyzed in detail by Blackorby and Russell (1989).

When the homothetic function f corresponds to a CES utility function and Ai to
quantities, ρi j is the associated elasticity of substitution parameter. However, we do not
impose this interpretation, and instead treat it as a reduced-form measure of the curvature
of isoquants. By analogy, and with a slight abuse of language, we define the reduced-form
elasticity of substitution for non-homothetic functions in a similar fashion.

Definition 2.1. For an output function C : RN
→ R, define the macro elasticity of substitution

as
1
ρi j
≡ −

d log(MRSi j)
d log(Ai)

= −
d log(Ci/C j)

d log(Ai)
.

The macro elasticity of substitution ρi j is interesting because it measures changes in
the relative sales shares of i and j when there is a shock to i. This follows from the fact that

d log(λi/λ j)
d log Ai

=
d log[(CiAi)/(C jA j)]

d log Ai
=

d log(Ci/C j)
d log Ai

+ 1 = 1 −
1
ρi j
, (2)

where the first equality applies Hulten’s theorem. Since the second-order impact of a
shock to i can be measured in terms of the rate of change in the sales share of i, the macro
elasticity of substitution will turn out to be an important sufficient statistic. A decrease in
the productivity of i causes λi/λ j to increase when ρi j ∈ (0, 1), and to decrease otherwise.
We say that a j is a macro-complement for i if ρi j ∈ (0, 1), and a macro-substitute otherwise.
When f is a CES aggregator, then this coincides with the standard definition of gross
complements and substitutes. As usual, when f is Cobb-Douglas, i and j are neither
substitutes nor complements. In general, macro-substitutability is not reflexive.

The second object we need to define is the following.
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Definition 2.2. Define the input-output multiplier to be

ξ ≡
N∑

i=1

d log C
d log Ai

=

N∑
i=1

λi.

When ξ > 1, total sales of the shocked factors exceed total income, a symptom of inter-
mediate inputs. The impact of a uniform technology shock is correspondingly amplified
due to the fact that goods are reproducible. Loosely speaking, ξ captures the percentage
change in output in response to a uniform one-percent increase in technology. In this
sense, it captures a notion of returns-to-scale at the aggregate level.

The input-output multiplier is called the intermediate input multiplier in a stylized
model by Jones (2011), but it also appears under other names in many other contexts. It
is also related to the network influence measure of Acemoglu et al. (2012), the granular
multiplier of Gabaix (2011), international fragmentation measure of Feenstra and Hanson
(1996), the production chain length multiplier in Kim et al. (2013), and even the capital
multiplier in the neoclassical growth model.13 It also factors into how the introduction
of intermediate inputs amplifies the gains from trade in Costinot and Rodriguez-Clare
(2014). Although these papers feature multiplier effects due to the presence of round-
about production (either via intermediate inputs or capital), they do not take into account
the fact that this multiplier effect can respond to shocks. This is either because they assume
constant factor shares or because they focus on first-order effects.

Having defined the macro elasticities of substitution and the input-output multiplier,
we are in a position to characterize the second-order terms. We start by investigating the
impact of an idiosyncratic shock.

Idiosyncratic Shocks

Theorem 2.2. Suppose that C is homogenous of degree ξ, then

d2 log C
d log A2

i

=
λi

ξ

∑
j,i

λ j

(
1 −

1
ρi j

)
.

When C is not homogeneous

d2 log C
d(log Ai)2 =

λi

ξ

∑
j,i

λ j

(
1 −

1
ρi j

)
+ λi

∂ log ξ
∂ log Ai

.

13This follows from the fact that we can treat capital as an intertemporal intermediate input. For more
details on how capital can be thought of in this framework, see Hulten (2001).
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In words, the second-order impact of a shock to i is equal to the change in i’s sales
share λi. The change in i’s share of sales is the change in the aggregate sales to GDP ratio,
minus the change in the share of sales of all other industries. The former is measured
by the elasticity of the input-output multiplier ξ, while the latter depends on the macro
elasticities of substitution. Collectively, the sales shares λi, the reduced-form elasticities
ρi j and the reduced-form elasticity of the input-output multiplier d log ξ/d log Ai are
sufficient statistics for how output responds to technology shocks up to a second order.

This result tells us that Hulten’s approximation is globally accurate if reduced-form
elasticities are unitaryρi j = 1 for every j and if the input-output multiplierξ is independent
of the shock Ai. We shall see that this amounts to assuming Cobb-Douglas production and
consumption functions. At the opposite extreme, the output function is nearly singular
if ρi j ≈ 0 for any j. Hence, first-order approximations will perform more poorly as ρi j

approaches zero, either from below or from above. These are the cases of extreme macro-
complementarity or extreme macro-substitutability. In the limiting case

∣∣∣ρi j

∣∣∣ → 0, the
first-order approximation is completely uninformative even for arbitrarily small shocks.
Finally, the first-order approximation also behaves worse when

∣∣∣ρi j

∣∣∣ → ∞, although the
size of the second-order terms remains bounded in this case.14

Therefore, although the Cobb-Douglas special case is very popular in the literature,
it constitutes a very special case where the second-order terms are all identically zero.15

There is increasing evidence for strong complementarities in supply chains, and Theorem
2.2 indicates that Cobb-Douglas functional forms may be a poor guide to understanding
the behavior of the economy in the presence of these complementarities. Finally, Theorem
2.2 also shows that there is an interaction between the macro elasticity of substitution
between i and j and the size of i and j. In the extreme case where either λi or λ j is equal
to zero, the macro elasticity of substitution between the two is irrelevant.

Theorem 2.2 also shows that deviations from Hulten’s theorem need not be restricted
to non-unitary macro elasticities of substitution, they can also arise from variations in
the input-output multiplier ξ. Since the input-output multiplier is the ratio of sales to
GDP, changes in the input-output multiplier can be interpreted as another kind of macro
elasticity of substitution: namely the substitution between the underlying factors (whose
payments are GDP) and the reproducible goods (whose payments are sales). If there
is a strong tendency to substitute between labor and intermediate inputs in response to
shocks, then this will hamper the accuracy of the first-order approximation. In the case

14In Appendix B, we derive a tight bound on the size of the error from the first-order approximation for
a special case.

15See for example Acemoglu et al. (2012), Long and Plosser (1983), Bigio and La’O (2016), Acemoglu et al.
(2017), Bartelme and Gorodnichenko (2015).
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where productivity shocks are labor-augmenting, the input-output multipliers drop out
since C is then homogenous of degree 1.

The second-order approximation to the output function can then be written as

log(C) ≈ log(C) + λi log(Ai) +
λi

ξ

∑
j,i

λ j

(
1 −

1
ρi j

) (
log(Ai)

)2
+ λi

∂ log ξ
∂ log Ai

(
log(Ai)

)2 , (3)

where C is C evaluated at the steady-state technology values. When goods are macro-
complements, the second-order terms amplify the effect of negative shocks and attenuate
the effect of positive shocks relative to the first-order approximation. Instead when goods
are macro-substitutes, the second-order approximation attenuates the negative shocks
and amplifies the positive shocks instead. A similar intuition holds for the input-output
multiplier: if the input-output multiplier is increasing, then the second-order approxi-
mation amplifies positive shocks and dampens negative shocks, and if this multiplier is
decreasing, then the opposite is true.

Correlated Shocks

To consider shocks to several industries at once, we must extend these results to cover the
off-diagonal terms in the Hessian.

Proposition 2.3. Let ξ be the intermediate-input multiplier, or the ratio of total sales to output,
then

d2 log C
d log Ai d log A j

=
λi

ξ

∑
k, j

λk

(
1 −

1
ρ jk

)
+ λi

∂ log ξ
∂ log A j

− λi

(
1 −

1
ρ ji

)
. (i , j)

This result shows that the cross-partials are non-trival, but are characterized by the
same collection of sufficient statistics as the second-derivatives. Even in the simplest case,
where ρi j = ρ for all i and j and ξ is constant, the second-order effect of a common shock is
not simply twice the second-order impact of an idiosyncratic shock.16 We revisit the issue
of how common shocks to different industries may interact with one another in Appendix
D.

16We can also use these ideas to capture the impact of an aggregate shock to the economy, since an
aggregate shock is simply a common shock that affects all industries. If A is an aggregate TFP shock, then
d2 log C
d log A2 = ξ

∑
i

d log ξ
d log Ai

. So, for aggregate shocks, deviations from Hulten’s theorem can only come from the
input-output multiplier.
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Macro Moments

Finally, we can use the second-order terms to approximate an economy’s macroeconomic
moments. First, we begin by looking at average performance.

Proposition 2.4 (Average Performance). Suppose that
(
log Ai

)N
i=1 is a random vector with

covariance matrix Σ and si j is the i jth element of Σ. Then

E(log(C/C)) ≈
1
2

N∑
i=1, j,i

λi

ξ

∑
k, j

λk

(
1 −

1
ρ jk

)
+ λi

∂ log ξ
∂ log A j

− λi

(
1 −

1
ρ ji

) si j + N
∑

i

λisii.

In the special case where the shocks are i.i.d and Σ = s2I, this simplifies to

E(log(C/C)) ≈
1
ξ

s2

2

∑
i

λi

∑
j,i

λ j

(
1 −

1
ρi j

)
+

s2

2

∑
i

λi
d log ξ
d log Ai

.

The logic of proposition 2.4 is best seen by considering its absurd limit: we could have
two economies with identical sales distributions and identical output evaluated at the
steady-state technology. Up to a first order, these two economies are the same. However,
if one of these economies has ρi j = 1 and the other has ρi j > 0 arbitrarily close to 0, then in
the presence of any volatility s > 0, to a second order, the first economy will produce C on
average whereas the second economy will produce nothing.

Proposition 2.4 implies that 1
2 d2 log C/d log A2

i represents both the second-order impact
of a shock to i on GDP, and the log point difference between expected output and its
certainty equivalent in units of variance. Loosely speaking, we can interpret this as the
percent change in output relative to its certainty equivalent in units of variance, with the
caveat that such a description is only approximately true.

The second-order terms will also shape other moments of the distribution of GDP. To
see this, suppose that the second-order terms are negative, corresponding to the case with
high-degrees of complementarity. In this case, the distribution of GDP will endogenously
be skewed to the left and fat-tailed, even if the technology shocks are symmetric and thin-
tailed. This follows from the fact that the second-order terms magnify negative shocks and
attenuate positive shocks, which makes the distribution skewed. Furthermore, since the
negative shocks are magnified, this also fattens the left tail, giving rise to excess kurtosis.

To illustrate this intuition, let log Ai be a normal random variable with mean 0 and
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variance s2. Then the skewness of log GDP is

E


 log(C/C) − µc

σC

3 ≈ 1
σ3

C

d2 log C
d log A2

i

s6

(
d2 log C
d log A2

i

)2

+ 3λ2
i s4

 ,
where

µc = E(log(C/C)) =
1
2

d2 log C
d log A2

i

s2,

and

σ2
c = Var(log(C/C)) =

[
λ2

i + 2
(µc

s

)2
]

s2.

Hence log output is negatively skewed if, and only if, the second-order term is negative.
This asymmetry also helps explain why average log GDP is lower than its deterministic
steady state, since GDP is subject to larger recessions than booms. Next, we consider the
thickness of tails, as measured by kurtosis. In this case, a second-order approximation
gives

E


 log(C/C) − µc

σC

4 ≈ 3

1 +
(µc

s

)2
[
22(µc/s)2 + 7λ2

i

]
(
λ2

i + 2(µc/s)2
)2

 ≥ 3.

So, output has excess kurtosis if, and only if, the second-order terms are nonzero.
To summarize, for a given variance of output, relatively more of the variance is due to

negative, infrequent, extreme deviations, as opposed to symmetric, frequent, and mod-
estly sized deviations (relative to a normal distribution). In Section 8 we revisit these
issues with a calibrated model and show that they are quantitatively significant.

Welfare Costs of Business Cycles

For the majority of the paper, we focus on the performance of log GDP, since this gives
rise to unitless elasticities. This assumption is innocuous for welfare questions. One may
imagine that the losses from uncertainty that we identify depend on the concavity of
the log function. In other words, a consumer with log utility in aggregate consumption
prefers a mean-preserving reduction in uncertainty even when the GDP function is linear.
However, as shown by Lucas (1987), such losses are extremely small in practice. The much
larger effects we identify are nonlinearities in aggregate consumption itself, which are
present even when the utility function is linear in aggregate consumption. The following
proposition formalizes this intuition and shows that the Lucas welfare losses from risk-
aversion, and the losses we identify from nonlinear production, do not interact with
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one-another up to a second-order approximation. In fact, it could easily be the case
that a risk-averse household prefers the economy to be subject to stochastic shocks if the
economy features macro-substitutability and the second-order terms are positive.17

Proposition 2.5. Let u : R → R be a constant relative risk aversion utility function with
parameter γ and let C : RN

→ R be the GDP function. Suppose that TFP shocks have mean A
and a diagonal covariance matrix with kth diagonal element s2

k . Then

E(u(C)) − u(C(A)) = −
1
2
γ

N∑
k

λ2
ks2

k +
1
2

N∑
k

∂2C
∂A2

k

s2
k .

The first term, which is quantitatively small, is the traditional Lucas cost arising from
curvature in the utility function. The second term, which is quantitatively large, is due
to the curvature inherent in production. Proposition 2.5 is stated for CRRA utility and
idiosyncratic shocks for expositional clarity. In the appendix, we prove the result for more
general utility functions and shocks.

3 Structural Model

Theorem 2.2 implies that the macro elasticities of substitution ρi j and the elasticity of the
input-output multiplier d log ξ/d log Ai are sufficient statistics for the second-order impact
of shocks. However, these sufficient statistics are reduced-form elasticities, and unlike λi

and ξ, they are not readily observable. Furthermore, since they are general equilibrium
objects, they cannot be identified through exogenous microeconomic variation. So, on the
one hand, while careful empirical work can identify structural elasticities in production,
the leap from micro-estimates to macro-effects is hazardous. On the other hand, while the
macro elasticities could, in principle, be identified using exogenous macro-variation, such
a reduced-form exercise will be susceptible to a form of the Lucas critique, because the
estimated elasticities could shift in unpredictable ways. This is because the reduced-form
macro elasticities will not necessarily be stable deep parameters. Worse still, plausibly
exogenous macroeconomic variation is notoriously difficult to come by.

17These ideas also relate to the concepts of fragility, resilience, and antifragility in Taleb (2013). In
Section 3, we find that economies with immobile factors and structural complementarities are fragile, in the
sense of having large negative second derivatives, whereas economies with mobile factors and structural
complementarities are resilient, in the sense of having smaller negative second derivatives. However, we
find that economies with mobile factors and structural substitutabilities are antifragile in the sense that their
average performance improves with uncertainty.
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In this section, we make the mapping from structural micro parameters to the reduced-
form macro elasticities explicit for a relatively general class of structural models. This
helps to bridge the gap between estimates of microeconomic structural parameters and
the macroeconomic elasticities of interest. More generally, the structural model shows
that this mapping is highly nontrivial and clarifies some of the general equilibrium forces
which must be accounted for.

Let

C

C
=

∑
k

bk

(
ck

ck

) σ−1
σ


σ
σ−1

,

with ∑
k

pkck =
∑

k

wLk +
∑

k

wklk +
∑

k

πk,

where we divide labor into an industry-specific component lk, which cannot be reallocated
across industries, and a common component Lk, which can be allocated to any industry.
Here, w is the wage for the common labor and wk is the wage for the industry-specific
labor. We normalize

∑
i bi = 1. Any variable with an overline x is a normalizing constant

denoted in the same units as x.
Let industry k’s production function be given by

yk

yk
= Ak

ak

(Lk

Lk

)βk
(

lk

lk

)1−βk

θk−1
θk

+ (1 − ak)
(

Xk

Xk

) θk−1
θk


θk
θk−1

,

where Ak is a Hicks-neutral shock, and Xk is a composite intermediate input which is
combined with labor with elasticity of substitution θk. The labor input is a geometric
average of industry-specific and common labor inputs. Therefore, βk can be interpreted as
a measure of the degree to which industry k’s labor can be reallocated. Since lk is industry-
specific, in equilibrium, it is always equal to a constant, and so we can also treat βk as
technological returns-to-scale in labor. These two interpretations are equivalent for the
purposes of this model. As before, this specification includes factor-augmenting shocks
as a special case.

The composite intermediate input Xk is defined by

Xk

Xk

=

∑
l

ωkl

(
xlk

xlk

) εk−1
εk


εk
εk−1

,
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and xlk are intermediate inputs from industry l used by industry k. We normalize
∑

kωik =

1. Market clearing in each market requires that

yk = ck +
∑

l

xlk.

The production functions here allow the accommodation of any pattern of nested CES
production functions, even those with more than two nests, and networks as a special
case.

Proposition 3.1. Let Di logλ be the sales elasticities column vector whose jth element is d logλ j/d log Ai.
Then, at steady state, Di logλ can be written explicitly as a function of observable expenditure
shares ai, bi, ωi j at steady state, structural elasticities σ, θi, εi, and structural returns to scale βi.

The proof can be found in the appendix. Using this proposition, and equation (2), we
can easily deduce the reduced-form macro elasticities:

d2 log C
d log A2

k

=
dλk

d log Ak
=
λk

ξ

∑
j,k

λ j

(
1 −

1
ρkj

)
+ λk

d log ξ
d log Ak

,

with

1 −
1
ρkj

=
1
λk

dλk

d log Ak
−

1
λ j

dλ j

d log Ak
, (4)

and
d log ξ
d log Ai

=
1
ξ

∑
i

dλk

d log Ai
. (5)

In what follows, we work with increasingly complex special cases to show the various
channels through which the reduced-form elasticities ρi j and ξ operate, both qualitatively
and quantitatively.

4 Macro Elasticities of Substitution

In this section, we restrict ourselves to the case with no intermediate inputs. This means
that the input-output multiplier is constant ξ = 1, and the deviations from Hulten’s
theorem only occur due to non-unitary macro elasticities of substitution. Since there are
no intermediate inputs, ak = 1 for every k. We emphasize how the following key structural
parameters shape the macro elasticities of substitution: micro elasticities of substitution
between sectors σ, the degree to which labor can be reallocated, and returns to scale in
production.
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Different degrees of labor reallocations and returns to scale can be expected depending
on the time scale of the response to shocks. At short horizons, labor and other factors such
as capital are difficult to adjust, but such adjustments become easier at longer horizons.
Some of these dynamic effects can be captured by comparative statics exercise in our
model. We continuously move from no reallocation to full reallocation in labor markets
by considering production functions with different βk ∈ [0, 1]. As mentioned before,
this parameter can either be interpreted as decreasing returns to scale in labor, or a
geometric average of mobile and immobile workers, where the immobile workers are
residual claimants of the firm’s revenues net of other costs. Hence, the production function
of good k is

ck = AkL
βk

k .

Proposition 4.1. [Limited Labor Reallocation] Consider the following special case of the structural
model in Section 3. Aggregate consumption is CES with micro elasticity of substitution σ and
expenditure share bi at steady state. Each good is produced using labor. Assume uniform labor
reallocation/returns to scale β ∈ [0, 1] for every k. Then

ρi j =
σ(1 − β) + β

σ(1 − β) + β + (1 − σ)
, λi = bi, ξ = 1,

d log ξ
d log Ai

= 0.

To build intuition, we first consider two polar cases with either βk = 0 for every k or
βk = 1 for every k.

We start with the case in which βk = 0 for every k. This is an endowment economy
where the household simply consumes the output of every industry, and there are no
intermediate inputs. Labor cannot be moved to increase the production of any good,
either because production is simply an endowment or because labor cannot be reallocated
across industries in response to shocks. The latter case proxies for a situation where there
are infinite adjustment costs in reallocating workers across industries. Then we can write

C

C
=

∑
k

bkA
σ−1
σ

k


σ
σ−1

.

Unsurprisingly, for this special case, the macro and micro elasticity of substitution coincide

ρi j = σ, λi = bi, ξ = 1,
d log ξ
d log Ai

= 0.
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Theorem 2.2 then implies that

d2 log C
d log A2

i

= bi(1 − bi)
(
1 −

1
σ

)
.

It can immediately be seen that the second-order term changes sign depending on whether
σ is greater or less than one. Hence, the second-order term amplifies negative shocks and
attenuates positive shocks if σ < 1 relative to the first-order approximation, and the
opposite is true if σ > 1. Since σ ∈ [0,∞) this means that ρ ∈ [0,∞) for this example.

In the Cobb-Douglas case σ = 1, the second-order term is identically equal to zero and
the first-order approximation is globally accurate. The quality of the Hulten approxima-
tion deteriorates as we move away from σ = 1 in both directions. To understand why, it
is useful to consider the extreme limits σ→ 0 and σ→∞.

We first consider the Leontief limit σ → 0 where the first-order term becomes com-
pletely uninformative. To understand why this happens, consider how the sales share λi

changes in response to a shock. We write

d log(λi/λ j)
d log Ai

=
d log(pi/p j)

d log Ai
+

d log(yi/y j)
d log Ai

=
d log(pi/p j)

d log Ai
+

d log(Ai/A j)
d log Ai

.

When labor cannot be reallocated, the ratio of the quantities yi/y j is equal to the exoge-
nously given Ai/A j. However, close to the Leontief limit, the change in the sales share of i is
very extreme, since the relative price of i to j goes to zero if the shock to i is positive, and to
infinity if the shock is negative. Intuitively, this is because with extreme complementarity
the scarcest good is the only one that has a positive marginal product. The extreme reac-
tion of relative prices means that sales shares react very strongly to productivity shocks,
and this means that the deviations from the first-order approximation can be extreme. In
this world, the second-order approximation amplifies the impact of negative shocks and
attenuate the impact of positive shocks relative to the first-order approximation.

We then consider the perfect substitutes limit σ → ∞. Then negative shocks are
attenuated and positive shocks are amplified, but the effect is not nearly so dramatic.
In this case, because goods are perfect substitutes, relative prices are always equal to 1.
Therefore, ratio of the sales of i relative to j will move one-for-one with the ratio of the
endowment of i relative to j. The situation is depicted graphically in Figure 1a.

Having analyzed the case with no labor reallocation, consider now the polar opposite
case, where labor can be costlessly reallocated across industries and be used with con-
stant returns to scale so that βk = 1 for every k. The macro elasticity of substitution in
this example is not necessarily equal to the structural micro elasticity of substitution in
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Figure 1: log GDP as a function of productivity log(Ai) in the economy with constant
returns for different values of σ.

consumption:

ρi j =
1

2 − σ
, λi = bi, ξ = 1,

d log ξ
d log Ai

= 0.

Theorem 2.2 then implies that

d2 log C
d log A2

i

= bi(1 − bi) (σ − 1) .

As before, σ > 1 amplifies positive shocks and σ < 1 amplifies negative shocks, while
the Cobb-Douglas case σ = 1 still ensures that the second-order terms are identically
zero. However, this time, the second-order term becomes singular when the goods are
highly substitutable rather than when they are highly complementary. Once again, we
can unpack this result by noting that

d log(λi/λ j)
d log Ai

=
d log(pi/p j)

d log Ai
+

d log(yi/y j)
d log Ai

=
d log(A j/Ai)

d log Ai
+

d log(Ci/C j)
d log Ai

.

The ratio of relative prices is always equal to A j/Ai, but the quantity of goods produced is
endogenous since labor can be costlessly reallocated.

Contrary to what one may have assumed, a near-Leontief production function is not
sufficient for generating large deviations from Hulten’s theorem, as long as factors can
be reallocated freely. With perfect reallocation of workers, the market always allocates
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workers to equate marginal products. This means that relative prices reflect relative
productivities. So, near the Leontief limit, if i receives a negative productivity shock,
workers are reallocated to that industry to reinforce the “weak link”, since otherwise the
price of that good would soar. On the other hand, if i receives a positive productivity
shock, workers are reallocated to other industries, to prevent the prices from collapsing.
This means that near the Leontief limit, the relative sales shares responds one-for-one to
changes in relative technology. So, while the second-order terms still amplify negative
shocks and attenuate positive shocks, because they are negative, their magnitude is much
smaller than in the case where labor could not be reallocated.

In the perfect substitutes limit, equating marginal products means a near-complete
reallocation of workers to the most productive industry. This means that a positive shock
to i will cause the sales share of i to increase dramatically relative to the rest, because while
relative prices pi/p j = A j/Ai, relative quantities change very rapidly. So, the second-order
terms amplifies positive shocks and attenuates negative shocks relative to the first-order
approximation, but their magnitude is much larger than in the case where labor could
not be reallocated, because now the market can take advantage of the shocks to equate
marginal products. Once again, the situation is depicted graphically in Figure 1b.

To recap, in the case where labor cannot be freely allocated, a negative shock can
cause a large downturn due to complementarity but a positive shock does not make much
of a difference. On the other hand, when labor can be allocated, a negative shock can
be mitigated by a reallocation of workers to the affected industry, but a positive can be
amplified many times if goods are substitutable. These results are closely related to the
findings in Jones (2011), who noted that in a model like this, the relevant CES parameter
used in aggregating microeconomic TFP shocks depends on whether or not factors are
allocated through the market or assigned exogenously.

Finally, having analyzed the cases with no labor reallocation (β = 0) and with full labor
reallocation/constant returns to scale (β = 1), we revisit the general case with β ∈ (0, 1).
The situation is depicted graphically in Figure 2. The macro elasticity of substitution is
now an intermediate value between the perfect reallocation and the no-reallocation cases.

As usual, in the Cobb Douglas case σ = 1, the macro elasticity is equal to 1, and
Hulten’s approximation is globally accurate. Therefore, regardless of β ∈ (0, 1), the macro
elasticity of substitution is always equal to 1 for a Cobb-Douglas model. This follows from
the fact that in this case, the distribution of workers across sectors does not depend on the
shock. Therefore, the degree to which workers can be reallocated is irrelevant, since they
are not reallocated anyway.

When σ < 1, negative shocks are amplified and positive shocks are attenuated relative
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to the first-order approximation, and the opposite is true when σ > 1. However, we can
show that ρ(σ) < (−(1 − β)/β, β/(1 + β)), so the macro elasticity of substitution is bounded
away from 0 as long as β > 0. Furthermore, whether or not i and j are macro-complements
or macro-substitutes does not depend on β. Therefore, partial reallocation preserves the
general intuition of the last two sections, but dampens the size of the effects. Figure 2
illustrates these facts where we can see that the size of the second-order term looks like
an average of the two polar cases and always has the same sign.
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Figure 2: The left panel plots the macro elasticity of substitution ρ against the structural
elasticity of substitution σ for the model from Proposition 4.1. The second panel plots
expected log GDP relative to its certainty equivalent, in units of variance, as a function of
the structural elasticity of substitution for the same model.

5 A Network Irrelevance Result

Now we extend the model to allow for intermediate inputs and arbitrary network in-
terconnections. In this section, we provide a benchmark irrelevance result where the
deviations from Hulten’s approximation do not depend on the network structure. The
key assumptions required for obtaining this irrelevance result are: (1) a constant input-
output multiplier equal to unity, (2) uniformity of the micro structural elasticities. In
Sections 6 and 7, we weaken each of these assumptions, in turn, and characterize the
importance of the network structure in shaping the second-order terms.

To obtain our benchmark result, assume that structural micro elasticities are uniform
across all agents and all inputs so that σ = θ j = ε j for every j. In this case, the model
becomes a generalization of the canonical Cobb-Douglas network model of Acemoglu
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et al. (2012) and Long and Plosser (1983), as well as the CES competitive network model of
Baqaee (2016). Furthermore, assume that βk = 1 or βk = 0 for all k — the case with either full
reallocation or no reallocation. Finally, technology shocks are labor-augmenting, which
implies that ξ ≡ 1.

Proposition 5.1 (Network Irrelevance). Consider the following special case of the structural
model in Section 3. Network interconnections are arbitrary, micro elasticities are uniform across
all agents and all inputs so that εk = θk = σ, and shocks are labor-augmenting. Then

ρi j = ρ, ξ = 1,
d log ξ
d log Ai

= 0,

where

ρ =

 σ if labor cannot be reallocated
1

2−σ if labor can be reallocated
.

This implies that
d2 log C
d log A2

i

= λi(1 − λi)
(
1 −

1
ρ

)
,

where λi = wiLi/PcC.
First, note that, once again the Cobb-Douglas specification σ = 1 is the special case

where labor reallocation becomes irrelevant. This is again a consequence of the fact that
the distribution of workers does not depend on the shock in equilibrium, and therefore,
reallocation of workers (or alternatively, returns to scale in labor) is irrelevant. However,
this is only true in the Cobb-Douglas special case. Generically, returns to scale and factor
reallocation will have a large effect on how the economy behaves.

Second and more importantly, when σ , 1, there is a deviation from Hulten’s ap-
proximation, but the structure of the network remains irrelevant up to the second order,
since the second-order approximation only depends on sales λi, the micro elasticity of
substitution σ, and the extent of labor reallocation.

This network irrelevance result is driven by the fact that the micro elasticities of sub-
stitution and labor reallocation are the same in all industries, and ξ ≡ 1 (since technology
shocks are labor augmenting). This makes the ρi j independent of the network structure,
and ensures that the input-output multiplier ξ is inoperative. In Sections 6 and 7 we show
that weakening either of these two assumptions breaks this irrelevance result. First, in
Section 6, we show how input-output multipliers become variable in the presence of inter-
mediate inputs and Hicks-neutral shocks. Then, in Section 7, we show how heterogeneity
in the structural elasticities of substitution interact with the existence of general network
linkages to accentuate output nonlinearities.
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6 Input-Output Multiplier

So far, we have kept ξ constant and shown how macro elasticities of substitution can
cause large deviations from Hulten’s theorem. In this section, we instead focus on how
variability in ξ can also generate large deviations from Hulten’s theorem, even when ρi j

are well-behaved.
We consider the simplest model with both intermediate inputs (a non-trivial network)

and Hicks-neutral technology shocks , weakening one of the assumptions (that shocks are
labor augmenting) required for the network irrelevance result of Section 5. Indeed we
find that this change upsets the result in the sense that the details of the network matter
for at the second order in a way that we make precise.

To demonstrate the effect of a variable intermediate-input multiplier ξ, consider a spe-
cial case where there are no deviations from Hulten’s theorem arising from substitutability
across sectors. In other words, consider the economy with a single good (N = 1) and with
full labor reallocation/constant returns to scale (β1), where total output is given by

Y

Y
= A

a
(

L

L

) θ−1
θ

+ (1 − a)
(

X

X

) θ−1
θ


θ
θ−1

.

Suppose that labor is an endowment, and so L/L = 1. GDP is given by C = Y − X, where
X are intermediate inputs.

Proposition 6.1 (Variable IO multiplier). Consider the following special case of the structural
model in Section 3. There is a single good which is used both for consumption and as an intermediate
input in production. Assume full labor reallocation/constant returns to scale. Then

ξ =
1
a
,

d log ξ
d log A

= (1 − a) (θ − 1),

where θ is the micro structural elasticity of substitution in production between labor and the
intermediate input and 1 − a is the intermediate input share in steady-state.

This implies that
d2 log C
d log A2 = ξ

d log ξ
d log A

=
1 − a

a
(θ − 1).

Proposition 6.1 shows that although in partial equilibrium, the production function is
homogenous in TFP, in general equilibrium, aggregate output is not homogeneous of
degree 1. Furthermore, output is not homogenous of any degree in equilibrium, since ξ
varies in response to the shock. Hence, Hulten’s approximation is exact whenever there
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are no intermediate inputs (a = 1) or the economy is Cobb-Douglas θ = 1. Otherwise, any
non-unitary elasticity of substitution (θ − 1) is increased by a factor (1 − a)/a , which is
singular when the labor share goes to zero. The details of the network matter through the
parameter 1 − a which indexes the steady-state intermediate input share.

Intuitively, this results from the fact that output is used as its own input, and if θ , 1,
then the intermediate input share of GDP changes with the shock, an effect which a first-
order approximation neglects. The larger is the steady-state intermediate input share, the
larger is the effect of this change in the intermediate input share. Figure 3 plots log C as
a function of log A for the case where θ ≈ 0, θ = 1, and θ = 2. As expected, the Cobb-
Douglas special case leads to a log-linear relationship where Hulten’s approximation is
globally true. However, for the case where θ < 1, negative shocks are amplified and
positive shocks are attenuated, and the reverse is true when θ > 1.

In the case where θ = 1, the intermediate input-multiplier is 1/a, since a one percentage
increase in TFP would increase output by 1 + (1 − a) + (1 − a)2 + . . . percentages. This is
because the increase in TFP makes intermediate inputs more productive, which makes
output more productive, which makes intermediate inputs more productive, and so on.
When θ , 1, this effect is either attenuated or amplified depending on whether the
economy can substitute between intermediate inputs and labor relatively more or less
than the Cobb-Douglas benchmark. In the limit where θ = 0, output is linear in TFP
rather than log-linear with slope 1/a, whereas when θ = 2, output is hyperbolic in TFP.18

7 General Networks

In Section 5, we showed that as long as shocks are labor-augmenting and structural
elasticities of substitution are homogeneous, departures from Hulten’s theorem do not
depend on the network structure. In this section, we allow for heterogeneity in the
structural elasticities of substitution as well as Hicks-neutral shocks. We consider arbitrary
network structures with full reallocation/constant-returns-to-scale, and we characterize
the way in which the structure of the network matters at the second order.

Along the way, we uncover two important insights. First, we show that the macro
elasticities of substitution are some weighted average of the underlying structural micro
elasticities of substitution and this average depends on the network structure. Further-

18In this example, the economy with extreme complementarity θ = 0 has C = A/a, where 1/a is the sales
to output ratio in steady state. Therefore, although Hulten’s approximation fails in log terms, Hulten’s
theorem is globally accurate in linear terms. This is an artefact of the fact that we have only one good. In
Appendix C, we generalize this example to multiple goods, and show that output can be very strongly
nonlinear even with full labor reallocation.
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Figure 3: Output as a function of productivity shocks log(A) with variable input-output
multiplier effect with steady-state intermediate input share 1 − a = 0.9.

more, we show that the structural elasticities of substitution in j’s production matters only
so far as j is exposed to the shock in a heterogenous fashion. Second, we show that when
there are constant-returns-to-scale at the micro level, only an industry’s role as a supplier
of inputs matters in terms of how output responds to shocks, up to the second order.

To do this, we need another definition.

Definition 7.1. The N × N input-output matrix Ω is the the matrix whose i jth element is
equal to the steady-state value of

Ωi j =
p jxi j

piyi
.

The Leontief inverse is
Ψ = (I −Ω)−1.

Intuitively, the i jth element ψi j of the Leontief inverse is a measure of i’s total reliance
on j as a supplier. It captures both the direct and indirect ways through which i uses j in
its production.

Proposition 7.1. Consider the structural model in Section 3 with full labor reallocation/constant
returns to scale (βi = 1 for every i). For every i and k, define

κi =bi(1 − σ)[λk − ψik] +
∑

j

ω ji(1 − a j)λ j(θ j − 1)[
∑

l

ωl jψlk − ψ jk]

+
∑

j

ω ji(1 − a j)λ j(1 − ε j)[
∑

l

ωl jψlk − ψik] + (θk − 1)ωki(1 − ak)λk.
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Then the sales elasticities vector is given by

Dkλ
′ = κ′Ψ, . (6)

Recall, from (4) and (5), that we can easily use this proposition to recover the macro
elasticities of substitution and the elasticity of the input-output multiplier.

We decompose Proposition 7.1 into something more interpretable by relabeling the
industries such that we can assume θi = εi for every i. To do this, for every industry
i, relabel its composite intermediate input Xi to be a new industry which uses no labor.
Then, without loss of generality, we can impose the assumption that for every industry
εi = θi, as long as we keep in mind that we need to adjust the input-output matrix under
this relabeling scheme.

Then define

CovΩ( j)(Ψ(m),Ψ(i)) =
∑

k

Ω jkψkiψkm −

∑
k

Ω jkψki


∑

k

Ω jkψkm

 .
In words, this is the covariance between the mth and ith column of the Leontief inverse
using the jth row of the input-output matrix as the distribution. What makes this different
to a standard covariance is that the weighting distribution, Ω( j), do not necessarily have
to sum to one. More generally, we could write Covb(c, d), which takes the covariance of
vectors c and d according to a weighting vector b. Now we can reinterpret (6) in the
following way.

Proposition 7.2 (Second-Order Network Centrality). Consider the structural model in Section
3 with full labor reallocation/constant returns to scale (βi = 1 for every i). Without loss of generality,
assume εi = θi for every i. Then

d2 log C
d log A2

i

= (σ − 1)Varb(Ψ(i)) +
∑

j

(θ j − 1)λ jVarΩ j(Ψ(i)), (7)

Recall that

d2 log C
d log A2

k

=
dλk

d log Ak
=
λk

ξ

∑
j,k

λ j

(
1 −

1
ρkj

)
+ λk

d log ξ
d log Ak

,

with

1 −
1
ρi j

=
1
λi

dλi

d log Ai
−

1
λ j

dλ j

d log Ak
, and

d log ξ
d log Ai

=
1
ξ

∑
i

dλk

d log Ai
.
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Finally, using these relationships and the following fact

λm
d logλm

d log Ai
= (σ − 1)Covb(Ψ(i),Ψ(m)) +

∑
j

(θ j − 1)λ jCovΩ( j)(Ψ(i),Ψ(m)),

we can deduce the full set of reduced-form elasticities. This means that the macro elas-
ticities are effectively a weighted average of the underlying structural elasticities of sub-
stitution, where the weighting does not need to sum to 1 and the weights depend on the
network structure. In the special case where all industries have the same size λ, the macro
elasticities take an especially simple form:

1 −
1
ρmi

= (σ − 1)Covb(Ψ(i),Ψ(m) −Ψ(i)) +
∑

j

(θ j − 1)λ jCovΩ( j)(Ψ(i),Ψ(m) −Ψ(i)),

dξ
d log Ai

= (σ − 1)Covb(Ψ(i),
∑

m

Ψ(m)) +
∑

j

(θ j − 1)λ jCovΩ( j)

Ψ(i),
∑

m

Ψ(m)

 .
Equation (7) gives, as a special case, the constant returns irrelevance result of Section 5,

since in the case where all structural elasticities of substitution are the same, the formula
collapses to the one in Proposition 5.1. Equation 7 is also related to the concentration
centrality defined by Acemoglu et al. (2016), but generalizes their result by allowing for
heterogeneity in the interaction functions, non-symmetric network structures, and micro-
founds its use for production networks. It has a simple intuition: the second-order impact
of a shock to i depends on how the sales share λi changes. This, in turn, depends on
how demand for i changes— which is composed of demand from the household and
demand from other industries, indexed by j. The extent to which the structural elasticity
of substitution θ j, for industry j, matters depends on how unequally j is exposed to i
through its different inputs, and on how big j is. If j is small, or is exposed in the same
way to i through all of its inputs, then the extent to which it can substitute amongst
its inputs is irrelevant. The same holds for the household, which can substitute across
consumption goods with elasticity σ. Therefore, non-unitary elasticities can be amplified
by concentrated linkages.

A simple example, motivated by a universal intermediate input like electricity, helps
explain some of the intuition of Proposition 7. Consider an example where

C =

∑
i

bic
σ−1
σ

i


σ
σ−1

,
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and

ci =
(
ail

ε−1
ε

i + (1 − ai)E
ε−1
ε

i

) ε
ε−1

.

Assume that the universal intermediate input E is produced using labor with constant
returns to scale. For this example, industry i’s steady-state sales share is λi = bi, the
intermediate input share of industry i is 1 − ai, and the sales share of electricity is λE =∑

i λi(1 − ai). This economy is depicted in figure 4.

...21 N-1 N

E

HH

ε

σ

Figure 4: An illustration of the economy with a universal intermediate input which we
treat as energy. Each industry has gross labor share ai and substitutes across labor and
energy with elasticity ε. The household can substitute across goods with elasticity of
substitution σ

For this example, (7) implies that

d2 log C
d log A2

E

= λE(1 − λE)(σ − 1) +
∑

i

λi(1 − ai)ai(ε − σ). (8)

We know from Section 5 that the first term is the second-order term if there was no network
structure (or if the structural elasticities of substitution were homogeneous), the second
term is a correction that takes into account the fact that ε , σ. We simplify this example
further by supposing that all final sectors are equally sized λi = 1/N, and that M ≤ N
sectors use electricity with steady-state intermediate input share 1−ai = 1−a, while N−M
use no electricity at all (1 − ai = 0). We set a to ensure λE stays constant. Then (8) implies

d2 log C
d log A2

E

= λE(1 − λE)(σ − 1) + (ε − σ)λE

(
1 −

N
M
λE

)
.

For concreteness, take ε < σ < 1. Then the second-order term is negative and decreasing
in M, since negative shocks to electricity have a smaller impact on output if electricity is
not an input into everything, and therefore, the household can substitute to consumption
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goods that do not rely on electricity.
When every sector uses electricity M = N, this simplifies further to

d2 log C
d log A2

E

= λE(1 − λE)(ε − 1),

and the elasticity of substitution in consumption σ drops out completely. Hence, even if
σ is much greater than ε, this makes no difference to the second-order term. However,
severing just one link between electricity and final goods can significantly increase the
second-order term and even flip its sign, as long as consumption is sufficiently more
substitutable than production. The fact that σ is irrelevant when M = N is a manifestation
of the general principle stated in proposition 7.2. Since the household is symmetrically
exposed to shocks from the electricity industry, it does not matter how well the household
can substitute amongst its own inputs. In Appendix D, we show that this result holds
much more generally. We also show how heterogeneity in intermediate input shares, as
well as decreasing returns to scale in energy production, affects these results.19

More intuition about (7) can be gleaned by focusing on regular economies. We call
an economy regular if its input-output matrix satisfies Ω1 = c11 and Ω′1 = c21 for some
scalars c1 and c2, and the household’s consumption expenditures are 1

N 1. Intuitively, a
regular economy is symmetric. If an economy is regular, as a matter of accounting, it must
be the case that c1 = c2 = 1 − a, where a is the value-added share of gross output. Three
leading examples of regular economies are the ring, the completely connected, and the
completely disconnected examples in Figure 5.

Consider the “island” economy where each industry only buys inputs from itself
Ω = (1 − a)I, the complete economy where each industry buys from every other industry
in equal proportions Ω = (1 − a)/N11′, and a ring economy. Suppose that all structural
elasticities of substitution in production and consumption are the same σ = θi = εi, and
labor is fully mobile βi = 1. Then, for the ring economy

d2 log C
d log A2

i

= (σ − 1)
1

Na

(
2

1 − (1 − a)N − 1 −
1

Na

)
,

19Another noteworthy special case of Proposition 7.2 is for nested CES production functions which appear
frequently in various literatures, even those not concerned with the role of input-output relationships (e.g.see
Oberfield and Raval, 2014). In this case the macro elasticities take an especially simple form where they
are a weighted average of the micro elasticities of substitution within and across the different nests, where
the weights depend on the relative expenditure shares. The details for this special case can be found in
Appendix F.
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Figure 5: Three examples of regular economies – a ring, a complete network, islands.

for the island economy

d2 log C
d log A2

i

= (σ − 1)
1

Na

(2
a
− 1 −

1
Na

)
,

and for the complete network

d2 log C
d log A2

i

= (σ − 1)
1

Na

( 1
aN

+ 1 −
2
N

)
.

These economies are identical up to a first-order approximation, but their second-order
properties can be very different. Especially when a ≈ 0 and N , 1, the island economy
can be vastly more nonlinear than the complete economy when judged by the size of the
second-order term.

Figure 6 plots the degradation in the average performance of these economies as
function of the labor share a. For a fixed intermediate input share, the impact of a
microeconomic shock is much greater in the island economy than in the complete and
ring economies. This difference is especially great for low values of a as long as N , 1.
This is driven by the strength of diversification in each of these economies, and equation (7)
can provide intuition for this fact: since σ < 1, for a fixed intermediate input share a, more
concentrated linkages (higher variance Ψ(i)’s) degrade the average performance of output.
The island economy, with the least diversified links, is the worst performing, whilst the
complete economy, with complete diversification, performs the best. When a negative
shock hits a sector, the impact of the shock diffuses over all sectors in the complete economy
but is concentrated on the affected sector in the island economy. Hence, output drops by
more in the latter case due complementarities in consumption and production. The ring
constitutes an intermediate case with less diversification than the complete economy but

31



more diversification than the island economy.20

On the other hand, as we reduce a, we see that all of these economies perform worse.
In the language of Elliott et al. (2014), we can think of this as varying integration rather than
diversification, since the input-output matrix Ω scales with 1 − a increasing the intensity
of network connections uniformly. As a approaches zero, the intermediate input share
approaches unity, and the elements of Leontief inverse Ψ(i) become larger and larger, as
does their variance. This magnifies the size of the terms in (7).21 Proposition 7.2 allows us
to easily characterize the best-performing and worst-performing networks as measured
by their certainty-equivalents when we vary the gross labor share.
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Figure 6: E(log(C)/C) as a function of the gross labor share a. For this example, the shocks
are idiosyncratic with mean zero and standard deviation one (in logs), the structural
elasticity of substitution σ = 1/2, and the number of industries N = 3. If σ > 1, the sign of
this plot would flip, but the relative magnitudes would be preserved.

Proposition 7.3 (Ranking Networks). Consider different versions of the structural model in
Section 3 with full labor reallocation/constant returns to scale (βi = 1 for every i). Without loss
of generality, assume εi = θi for every i. We rank networks by the second-order approximation to
E(log(C/C)) for i.i.d shocks.

20This analysis allows us to connect with one of the most surprising, and well-known, results in the
literature on production networks due to Dupor (1999) who showed that, for a Cobb-Douglas economy,
all regular economies with the same a have the same output function C(A1, . . . ,An). In this sense, there
is nothing more unstable about rings versus complete graphs. Since λi = 1

Na in steady state, Hulten’s
theorem can be used to extend this intuition to non Cobb-Douglas economies up to a first order. However,
the examples in this section show that this result is only true up to a first-order approximation, and this
first-order approximation can, in practice, be very poor.

21Our results show that the issues of integration and diversification, whose importance for volatility has
been recognized by Koren and Tenreyro (2013) and Kurz and Senses (2016), also affect average performance
when the output function is not loglinear.
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1. When all micro elasticities are below one (σ < 1 and θ j < 1 for every j), the degenerate
network (ai = 1 for every i) performs the best. The performance of a network can be arbitrarily
bad in the limit of a zero gross labor share (ak → 0 for every k).

2. When all micro elasticities are above one (σ > 1 and θ j > 1 for every j), the degenerate
network (ai = 1 for every i) performs the worst. The performance of a network can be
arbitrarily good in the limit of a zero gross labor share (ak → 0 for every k).

Intuitively, when the structural elasticities are less than one, we are in a world with
complementarities, and so performance is improved if there are no intermediate inputs
at all, minimizing the magnitude of the elements of the Leontief inverse Ψ(i)’s in (7). On
the other hand, performance can be made arbitrarily bad by increasing the intermediate
input share, driving the elements of the Leontief inverse to infinity.

A final implication of equation (7) is that even with variable elasticities, in this context,
only the industry’s role as a supplier matters, not its role as a consumer. This generalizes
Proposition 4.1 in Baqaee (2016), showing that even with different CES parameters, the
output elasticity of a TFP shock to k only depends on k’s role as a supplier.

Proposition 7.4 (Direction of Diffusion). Consider the structural model in Section 3 with full
labor reallocation/constant returns to scale (βi = 1 for every i). Consider two industries k and l
that sell the same share to all other industries and the household (ωik = ωil for each i and bk = bl).
Then

d log C
d log Ak

=
d log C
d log Al

, and
d2 log C
d log A2

k

=
d2 log C
d log A2

l

.

This is an implication of the full labor reallocation/constant-returns-to-scale assump-
tion at the micro level, and this result would break down otherwise. The intuition is that
output then depends only on the prices of consumption goods. Furthermore a change in
the size of the ith industry will not affect its price. Hence, a productivity shock will travel
downstream from suppliers to their consumers, by lowering their marginal costs, but it
will not travel upstream from consumers to their suppliers, since the supplier’s price does
not depend on its size. The general model of Section 3 does not satisfy this property since
it allows for imperfect labor reallocation/decreasing returns to scale. In Appendix E, we
work through an explicit example to show how decreasing returns to scale will break this
result. Other ways to break this result are explored by Baqaee (2016), who studies a CES
network with scale economies and fixed costs of operating.
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8 Quantitative Illustration

In this section, we perform some illustrative quantitative simulations to gauge whether
or not the nonlinearities we have identified are likely to be important in the data. We
perform two exercises. First, we calibrate a multi-sector model to match input-output
data and use the best available information to calibrate the structural elasticities of sub-
stitution. We shock this model and compare its performance relative to the first-order
approximation. This first exercise necessarily imposes an unrealistic degree of homogene-
ity across the structural elasticities of substitution due to a lack of information.22 In the
second exercise, we study the macroeconomic impact of the energy crisis of the 1970s
using a non-parametric generalization of Hulten (1978) that takes the second-order terms
into account. Both exercises suggest that production is highly nonlinear.

8.1 A Quantitative Structural Model

In this section, we quantitatively explore the importance of the nonlinearities in production
that we have emphasized. To do this, we calibrate a simplified version of the structural
model in Section 3. To calibrate the model, we need estimates for the industry-specific
structural elasticities of substitution. Unfortunately, disaggregated estimates of these
elasticities do not exist. We rely instead on on estimates from Atalay (2016) and Comin et al.
(2015) who estimate a small number of structural elasticities. These are the elasticities of
substitution between value-added and intermediate inputs, amongst intermediate inputs,
and among consumption goods. For our model, this imposes θi = θ, and εi = ε. We set
θ = 0.3, σ = 0.4, and ε = 0.0001.

Our values of θ and σ are on the lower end of the values estimated by Atalay (2016)
and Comin et al. (2015). We justify this by the fact that we use more disaggregated data,
and for more disaggregated data, the elasticities of substitution are smaller for reasons
emphasized by Oberfield and Raval (2014). Indeed, firm-level estimates like Boehm et al.
(2015) suggest that the firm-level elasticity of substitution between intermediate inputs
and value-added θ is zero.

We verify that the benchmark model with these values of (σ, ε, θ) matches the volatility
of observed industry-level sales shares. We target

∑
i λiσλi = 0.0197, where λi is the

time-series average and σλi is the time-series standard deviation of industry i’s Domar
weight. A Cobb-Douglas model would imply that this should always be zero, since the

22In Appendix D we use a more stylized example but zoom in on how heterogenous elasticities of
substitution can give an outsized importance to an industry even though it is small – a situation that is
impossible for a first-order approximation.
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Domar weights would be constant. We also consider two robustness cases, one with
more substitutability (σ, θ) = (0.6, 0.8) and one with less substitutability (σ, θ) = (0.3, 0.1)
than the benchmark model. As expected, the volatility of the Domar weights approaches
zero as the model approaches the Cobb-Douglas limit. Our benchmark model matches∑

i λiσλi = 0.0197, but the more substitutable economy undershoots with 0.0110 and the
less substitutable economy overshoots with 0.0413.

We work with the 88 sector US KLEMS annual input-output data from Dale Jorgenson
and his collaborators, dropping the government sectors. The dataset contains sectoral
output and inputs from 1960 to 2005. The advantage of this dataset over the more detailed
input-output table from the BEA is that it contains both price and quantity data, which
allows for the construction of sectoral gross TFP at annual frequency. We use the sector-
level TFP series computed by Carvalho and Gabaix (2013) using the methodology of
Jorgenson et al. (1987).23

We calibrate the expenditure share parameters to match the input-output table, using
1982 (the middle of the sample) as the base year for the calibration. For our benchmark
results, we set sectoral TFP log Ai ∼ N(−Σii/2,Σii), where Σii is the sample variance of
∆ log TFP for the industry i. We work with uncorrelated sectoral shocks since the average
correlation between sectoral growth rates is extremely small (less than 5%). Our results
are not significantly affected if we matched the whole covariance matrix of sectoral TFP
instead.

Table 1 displays the mean, standard deviation, and skewness of log GDP for various
specifications. For comparison, the table also shows these moments for GDP growth and
aggregate TFP growth.24

Our benchmark model, without reallocation, assumes that the labor market for each
sector is completely segmented so that no workers can be reallocated across industries in
response to shocks. The benchmark model has three important ingredients that we have
emphasized in the paper: (1) non-unitary structural elasticities of substitution, (2) labor
market segmentation, (3) network structures. In table 1, we not only show the macro
moments for our benchmark model, we also show these moments for every combination
of these three ingredients. Since the model is nonlinear, these ingredients interact with
one another, and therefore, this is as far as we can go in providing a decomposition of the

23As shown by Diewert (1976), TFP accounting with the Tornqvist index is equivalent to assuming that the
production function is a translog function of inputs, which is consistent with our emphasis on accounting
for the second-order impact of shocks. For a review of these issues, see also Diewert and Nakamura (1993).

24Since our model has inelastic factor supply, its output is more comparable to aggregate TFP than GDP.
As shown by Gabaix (2011) and Carvalho and Gabaix (2013), elastic capital and labor supply would further
amplify TFP shocks.
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importance of the various channels. The model with full reallocation has (1) and (3) but
not (2). The log-linear approximation has (3) and (2) but not (1).25 The “no network, no
reallocation” model has (1) and (2) but not (3). The “no network, full realloction” model
has (1) but not (2) or (3). To emphasize the importance of these nonlinearities in production,
we also display the results for a linear (as opposed to log-linear) approximation. Finally,
we also include results for more volatile shocks, which we discuss in detail later. For now,
let’s consider each moment of in turn.

We start with the mean. In the benchmark model, the mean is −0.0057 log points. This
means that the welfare cost of business cycles are 0.57% of output. These costs are entirely
due to nonlinearities in production. They are an order of magnitude larger than the wel-
fare gains of around 0.05% of output arising from risk aversion in consumption estimated
by Lucas (1987).26 In the model with full reallocation the mean is −0.0026, while for the
model with no network but labor market segmentation it is −0.0014. These numbers
are significantly smaller than the benchmark model but they are still non-trivial. Hence,
all three ingredients are important. The model with “no network and full reallocation”
yields an almost zero mean. This confirms our finding from Section 4 that low structural
elasticities of substitution, without either labor market segmentation or intermediate in-
puts, cannot generate substantial deviations from linearity. Lastly, under the log-linear
approximation the mean is −0.0010, and under the linear approximation it is exactly 0 –
this is due to the fact that the TFP shocks have a negative mean in logs but not in levels.

Now, consider the standard deviation. The benchmark has a standard deviation
of 0.0117, which is a slight amplification relative to the log-linear model. Overall, the
standard deviation is fairly constant across specifications, which is intuitive since larger
second-order terms will magnify some shocks but attenuate other shocks, leaving the
variance relatively stable. The only case where the standard deviation is substantially
different is the case with no intermediate inputs. In this case, the input-output multiplier
ξ is counterfactually equal to one. The lack of an input-output multiplier means that the
model generates less variance than the log-linear model, which has ξ ≈ 2.

Skewness fits the same pattern as the results on the mean. The benchmark model
generates strong skewness in output, which is substantially mitigated if we remove either
the network or allow reallocation of workers. Reducing substitutability significantly
decreases the mean and increases the negative skewness of output. As expected, the
log-linear, linear, and almost log-linear models generate no skewness or a slight positive

25For this case, labor market segmentation is irrelevant.
26As shown by proposition 2.5, looking at log consumption rather than consumption does not alter these

results by much. We manually computed the same numbers for GDP instead of log GDP and the results are
very similar.
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Mean Standard Deviation Skewness

GDP Data – 0.0238 -0.6190
TFP Data – 0.0147 -0.2888
Benchmark -0.0057 0.0117 -0.5229
Full reallocation -0.0026 0.0110 -0.0745
Log Linear Hulten -0.0010 0.0110 0.0000
Linear Hulten 0.0000 0.0110 0.0432
No Network, no reallocation -0.0014 0.0053 -0.0420
No Network, full reallocation 0.0000 0.0053 0.0301
(θ, σ) = (0.1, 0.3) -0.0102 0.0138 -1.2864
(θ, σ) = (0.6, 0.8) -0.0035 0.0112 -0.1648
High Volatility Benchmark -0.0117 0.0180 -0.8821
High Volatility Hulten -0.0015 0.0155 0.0000

Table 1: Simulated and estimated moments. For GDP and aggregate TFP, we use the
demeaned growth rates. For the model, we use the sample moments of log GDP. The
simulated moments are calculated from 50,000 draws.

skew (since the lognormal distribution is positively skewed).
For comparison, we also compute the same moments for the second-order approxi-

mation of the model in logs. The second-order approximation performs well in approx-
imating the mean and standard deviation of the underlying structural model, but does
less well on higher moments like skewness and kurtosis (though these are in the right di-
rection). For the benchmark model without reallocation, the second-order approximation
to log GDP has mean of −0.0056, with a standard deviation of 0.0113, skewness −0.3679.
The moments for other parameterizations are shown in Appendix G.

In figure 7 we plot the histograms for the model with no reallocation for different
values of ε and θ. The model exhibits significant negative skewness when the elasticity of
substitution is low, but it also has excess kurtosis or fat tails. For instance, the benchmark
model has an excess kurtosis of 0.96, meaning that it is subject to occasional and endoge-
nous large negative fluctuations (rare disasters). These features become significantly more
pronounced as θ and σ are lowered, to the point where the model with θ = 0.1 and σ = 0.3
has excess kurtosis of 3.47. We do not formally tabulate our results for kurtosis since our
sample size of 45 observations is far too small to be able to estimate kurtosis with any
degree of confidence in the data.

Unlike Acemoglu et al. (2017) or Barro (2006), to achieve rare disasters, we do not need
to assume fat-tailed exogenous shocks nor rule out “rare bonanzas” a priori, instead these
features are endogenously generated by the nonlinearities in the model. This can be seen
in figure 8, where we plot the histograms for the benchmark model and for a log-linear
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Figure 7: The distribution of GDP for the benchmark calibration, as well as two robustness
cases.

approximation subject to the same shocks. To drive this point home, we also simulate
and plot the benchmark model with more volatile shocks. We double the variance of the
sectoral shocks, which roughly corresponds to the average variance of sectoral TFP shocks
during the 1970s and before the Great Moderation. For the log-linear model, increasing
the variance of lognormal shocks has no effect on the skewness or kurtosis of GDP, since
these standardized moments are scale invariant. However, for the benchmark model,
more volatile shocks significantly increase the deviations from normality and dramatically
decrease the economy’s average performance to −0.012. Excess kurtosis increases to 2.3
for the benchmark model when shocks are more volatile. These results suggest that
complementarities are likely to be significantly more costly in eras or countries where
volatility is high.

Finally, we consider the response of GDP to shocks to specific industries. It turns out
that for a large negative shock, the “oil and gas” industry produces the largest negative
response in GDP – this despite the fact that the oil and gas industry is not the largest
industry in the economy. Figure 9 plots the response of GDP for shocks to the oil and gas
industry as well as for the “retail trade (excluding automobiles)” industry. The retail trade
industry has a similar sales share, and therefore, to a first order, both industries are equally
important. As expected, the nonlinear model is significantly more fragile to both kinds
of shocks (negative shocks are amplified and positive ones are attenuated). However,
output is more sensitive to oil and gas for large negative shocks. On the other hand,
output is more sensitive to the retail industry for positive shocks. The strong asymmetry
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Figure 8: The left panel shows the distribution of GDP for the benchmark model and
log-linearized model. The right panel shows these for shocks whose variance is twice as
high.

is consistent with the empirical findings of Hamilton (2003) that oil price increases are
much more important than oil price decreases.27

8.2 The Effect of Oil Shocks

The oil shocks of the 1970s serve as a useful example of the way industry-level shocks
can have macroeconomic consequences. To recap the history, in October 1973, the Arab
members of OPEC proclaimed an oil embargo limiting shipments of oil to the United
States and some of its allies (including Japan and the United Kingdom). Although the oil
embargo was lifted in 1974, coordinated action by OPEC kept prices elevated throughout
the mid-1970s. The price of crude oil increased from $3.5 a barrel in 1972 to $11 a barrel
in 1974. In 1979, OPEC implemented a second round of price increases which caused
the price of crude to soar to $31 a barrel. At the same time, the Iranian revolution in
1979, as well as the ensuing Iraqi invasion of Iran in 1980, caused further disruptions to
global crude oil supply. The price peaked at $37 in 1980. Starting in the early 1980s, with
the departure of the Shah, OPEC’s pricing structure collapsed as Saudi Arabia flooded
the market with inexpensive oil. In real terms, the price of crude oil declined back to
its pre-crisis levels by 1986. According to the NBER’s business cycle dating committee,

27Figure 9 may give the impression that the relative ranking of industries is stable as a function of the size
of the shock. The oil industry is always more important than the retail trade industry for negative shocks,
and always less important for positive shocks. However, this need not be the case. In Appendix G we plot
GDP as a function of shocks to the oil industry and the construction industry. The construction industry
is than the oil industry. Therefore, the first-order approximation implies that it should be more important.
The nonlinear model also behaves the same way for positive shocks, and small negative shocks. However,
for very large negative shocks, the oil and gas industry once again becomes more important.
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Figure 9: The effect of TFP shocks to the oil and gas industry and the retail trade industry.
Both industries have roughly the same sales share, and so they are equally important
up to a first-order approximation (dotted line). The nonlinear model is more fragile to
both shocks than the log-linear approximation. The oil and gas industry is significantly
more important than retail trade for large negative shocks. The histogram is the empirical
distribution of sectoral TFP shocks pooled over the whole sample.

both oil price shocks coincided with recessions in the US. Although our structural model
suggests that the “oil and natural gas” extraction industry is important, it abstracts away
from trade, by assuming all intermediate inputs are sourced domestically, with net im-
ports showing up only in final demand. Hence, the Domar weight of the oil and natural
gas industry measures domestic production, rather than domestic consumption. Since
the oil price shocks did not directly affect the productivity of domestic oil production,
this means that they are not measured in our sectoral TFP data (which is for domestic
production). Furthermore, our industry classification is too coarse to isolate crude oil sep-
arately from other petrochemicals. Therefore, in this section, we pursue a non-parametric
calibration of the impact of the oil price shocks up to second-order terms for the world as
a whole, avoiding strong structural assumptions as well as the complications arising from
international trade.

Proposition 8.1. Up to the second order in the vector ∆, we have

log (C(A + ∆)/C(A)) =
1
2

[λ(A + ∆) + λ(A)]′
(
log(A + ∆) − log(A)

)
.
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The idea of averaging weights across two periods is due to Leo Törnqvist (1936).
Proposition 8.1 relates the impact of the oil shocks on GDP to the size of the shock and the
corresponding Domar weights before and after the shock.28

We measure the price of oil using the West Texas Intermediate Spot Crude Oil price
from the Federal Reserve Database. Global crude oil production, measured in thousand
tonne of oil equivalents, is from the OECD. World GDP, in current USD, is from the World
Bank national accounts data. The choice of the pre and post Domar weight is not especially
controversial. Crude oil, as a fraction of world GDP, increased from 5% in 1972 to 31%
in 1980. Reassuringly, the Domar weight is back down to its pre-crisis level by 1986 (see
figure 10). This means that, taking the second-order terms into account, we need to weight
the shock to the oil industry by 1/2(5 + 31) = 18%. Hence, the second-order terms amplify
the shock by a factor of 18/5 ≈ 3.6.

1970 1980 1990 2000 2010
0
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0.35

Figure 10: Global expenditures on crude oil as a fraction of world GDP.

28One can always compute the full nonlinear impact of a shock on output by computing
∫ A+∆

A λ(Ã) d log Ã,
and our formula approximates this integral by performing a first-order (log) approximation of the Domar
weightλ(Ã) or equivalently a second-order (translog) approximation of GDP. In theory, if TFP is a continuous
diffusion then one can disaggregate time-periods and compute the impact of shocks over a time period [t, t+δ]

as
∫ t+δ

t λ(As) d log(As) which can be seen as a repeated application of Hulten’s theorem at every point in
time over infinitesimal intervals of time. However, when TFP has jumps, then this decomposition no longer
applies. In any case, even when it does apply, and when the required high-frequency data regarding TFP
shocks and Domar weights is available, it can only be useful ex post to asses the changes in GDP over an
elapsed period of time due to the TFP shocks d log(As) to a given sector given the observed path of Domar
weight λ(As). It is of no use ex ante to predict how these future shocks will affect GDP because one would
need to know how the Domar weight will change over time as a result of the shocks, and hence of no use
to run counterfactuals. This latter part is precisely what the second-order approximation at the heart of our
paper accomplishes.
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Calibrating the size of the shock to the oil industry is more tricky, since it’s not directly
observed. If we assume that oil is an endowment, then we can measure the shock simply
via changes in the physical quantity of production. To do this, we demean the log growth
rate in global crude oil production, and take the shock to be the cumulative change in
demeaned growth rates from 1973 to 1981, which gives us a shock of −13%.

Putting this altogether, the first-order impact on GDP is therefore

0.05 × −0.13 = −0.0065.

On the other hand, the second-order impact on GDP is

1
2

(0.05 + 0.31) × −0.13 = −0.0234.

Hence, accounting for the second-order terms amplifies the impact of the oil shocks
significantly, so that oil shocks can be macroeconomically significant even without any
financial or demand side frictions.29

9 Conclusion

The paper points to many unanswered questions. For instance, it shows that the macroe-
conomic impact of a microeconomic shock depends greatly on how quickly factors can be
reallocated across production units. Since our structural model is static, we are forced to
proxy for the temporal dimension of reallocation by resorting to successive comparative
statics. In ongoing work, we investigate the dynamic adjustment process more rigorously
and find that although we can think of the no-reallocation and perfect-reallocation cases as
the beginning and end of the adjustment, the speed of adjustment also greatly depends on
the microeconomic details. This means that the dynamic response of output to different
shocks is greatly affected by issues like geographic or sectoral mobility of labor, even with
perfect and complete markets that allow us to abstract from distributional issues. Our
model also lacks capital accumulation and reallocation, and incorporating these into the

29As noted by Hamilton (2013), first-order approximations of efficient models assign a relatively small
impact to oil price shocks. Hence, the literature has tended to focus on various frictions that may account
for the strong statistical relationship between oil shocks and output. Our calculations suggests that non-
linearities in production, even in an efficient model, may help to explain the outsized effect of oil shocks.
Furthermore, our calculation also makes no allowance for amplification of shocks through endogenous
labor supply and capital accumulation, which are the standard channels for amplification of shocks in the
business cycle literature. Hence, coupled with the standard amplification mechanisms of those models, we
would expect the reduction in aggregate output to be even larger.
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present analysis is an interesting area for future work.
Finally, although our results assume away market frictions beyond impediments to

reallocation, the forces we identify are unlikely to disappear in richer models with ineffi-
cient equilibria. As suggested by the results of Jones (2011) and Baqaee (2016), networks
and macro-substitutability can amplify or attenuate the underlying frictions. A systematic
characterization of these effects seem to us to be valuable areas for further work. It would
also be interesting to extend these results to allow for endogenous network formation,
richer contracting, and more complex strategic behavior by firms.30
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A Proofs

Proof of theorem 2.1. Since the first welfare theorem holds, the equilibrium allocation solves

C(A1, . . . ,AN) = max
ci,xi j,li j

C(c1, . . . , cn)+
∑

i

µi

AiFi

(
(li j) j, (xi j) j

)
−

∑
j

xi j − ci

+∑
i

λi

Li −

∑
j

l ji

 ,
where Li is the endowment of each labor type, and µi and λi are Lagrange multipliers.
The envelope theorem then implies that

∂C
∂Ai

= µiFi

(
(li j) j, (xi j) j

)
= µiyi.

If we can show that µi is equal to the price of i in the competitive equilibrium, then we are
done.

To prove this note that competitive equilibrium requires that

∂C/∂ci

∂C/∂c1
=
µi

µ1
=

pi

p1
,

for every i, since the household consumes a nonzero amount of every good. In other
words, we have

∂C
∂ci

=
pi

p1

∂C
∂c1

. (9)

Hence, using Euler’s theorem on homogenous functions we can write

C =
∑

i

∂C
∂ci

ci =
∂C/∂c1

p1

∑
i

pici. (10)

Define the expenditure function for the household to be e(p,C). Since C is homogenous of
degree one, we can write e(p,C) = e(p)C. In other words, we must have that∑

i

pici = e(p)C.

Normalize the unit cost of consumption e(p) = 1, so that∑
i

pici = C.
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Combine this with (10) to get
∂C
∂c1

= p1,

which can be substituted into (9) to yield pi = µi for every i.
�

Proof of Theorem 2.2. Differentiate
∑

i λi = ξ to get

λi
d logλi

d log Ai
= ξ

d log ξ
d log Ai

−

∑
j,i

λ j
d logλ j

d log Ai
,

= ξ
d log ξ
d log Ai

−

∑
j,i

λ j
d logλ j/λi

d log Ai
−

∑
j,i

λ j
d logλi

d log Ai
,

which using (2), we can rewrite as

λi
d logλi

d log Ai
= ξ

d log ξ
d log Ai

+
∑
j,i

λ j

(
1 −

1
ρi j

)
− (ξ − λi)

d logλi

d log Ai
,

Rearrange this to get

ξ
d logλi

d log Ai
= ξ

d log ξ
d log Ai

+
∑
j,i

λ j

(
1 −

1
ρi j

)
. (11)

Finally, Theorem 2.1 implies that

d2 log C
d log(Ai)2 = λi

d logλi

d log Ai
.

Substitute (11) into the expression above to get the desired result. Lastly, if C is homoge-
neous, Euler’s theorem implies that∑

i

d C
d Ai

Ai

C
=

∑
i

λi = ξ,

hence, d log ξ/d log Ai = 0. �

Proof of Proposition 2.3.
d2 log C

d log A j log Ai
=

dλi

d log A j
. (12)

47



By definition
d logλi

d log A j
=

(
1
ρ ji
− 1

)
+

d logλ j

d log A j
, (13)

which simplifies to
dλi

d log A j
= λi

(
1
ρ ji
− 1

)
+
λi

λ j

dλ j

d log A j
. (14)

Now apply theorem 2.2 to the second summand to obtain the desired result. �

Proof of Proposition 2.4. The second-order approximation to log C is given by

log(C/C) =
∑

i

λi d log Ai +
1
2

∑
i j

∂2 log C
∂ log Ai∂ log A j

d log Ai d log A j.

Take expectations of both sides and substitute the result from proposition 2.3 to get the
desired result. �

Proof of Proposition 2.5. We prove a slightly more general formulation with arbitrary vari-
ance covariance matrix and an arbitrary twice-differentiable utility function.

E( f (g(A))) ≈ E
(

f (g(A)) + f ′(g(A))∇g(A)(A − A) +
1
2

f ′′(g(A))(A − A)′
(
∇g(A) ◦ ∇g(A)′

)
(A − A)+

1
2

f ′(g(A))(A − A)′∇2g(A)(A − A)
)
,

= f (g(A)) +
1
2

f ′′(g(A))tr
((
∇g(A) ◦ ∇g(A)′

)
Σ
)

+
1
2

f ′(g(A))tr
(
∇

2g(A)Σ
)
.

Now apply Hulten’s theorem to get

= f (g(A)) +
1
2

f ′′(g(A))
N∑
k, j

λkλ jσ jk +
1
2

f ′(g(A))
N∑
j,k

∂2g
∂Ak∂A j

σ jk,

with idiosyncratic shocks, this simplifies to

= f (g(A)) +
1
2

f ′′(g(A))
N∑
k

λ2
kσ

2
k +

1
2

f ′(g(A))
N∑
k

∂2g
∂A2

k

σ2
k .

Finally, observe that f ′(g(A)) = 1 and f ′′(g(A)) = −γ for CRRA utility with risk aversion
parameter γ. The second summand is the Lucas term (which equals zero when f is linear),
and the third summand is our term. �
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Proof of Proposition 3.1. Define qi to be the ideal price index for intermediate inputs used
by industry i. The second-order approximation is given by

dλi

d log Ak
=bi(1 − σ)

d log pi

d log Ak
+ (15)∑

j

[
ω ji(1 − a j)λ j

{
(θ j − 1)

(
1( j = k) −

d log q j

d log Ak
+

d log p j

d log Ak

)
+(1 − ε j)

(
d log pi

d log Ak
−

d log q j

d log Ak

)
+

dλ j

d log Ak

1
λ j

}]
,

d log qi

d log Ak
=

∑
j

ωi j
d log p j

d log Ak
, (16)

d log yi

d log Ak
=

d logλi

d log Ak
+ λk −

d log pi

d log Ak
, (17)

0 =
∑

i

aiβiλi

θi(1 − βi) + βi

[
d log yi

d log Ak
+ θi

[
d log pi

d log Ak
−

d log w
d log Ak

]
− 1(i = k)

]
, (18)

d log yi

d log Ak
=θi

[
1 −

ai

θi(1 − βi) + βi
− (1 − ai)

]−1 {[ ai

θi(1 − βi) + βi
+ (1 − ai)

]
d log pi

d log Ak

−
ai

θi(1 − βi) + βi

d log w
d log Ak

− (1 − ai)
d log qi

d log Ak

}
+ 1(i = k), (19)

To see this, note that first-order conditions for industry i are given by

qi = pi

(
yi

Aiyi

) 1
θi

(1 − ai)
(

1

Xi

) θi−1
θi

X
−1
θi
i .

We can rearrange the intermediate input demand function as

Xi =

(
qi

pi

)−θi

(1 − ai)
θi

(
yiAi

Xi

)θi−1

yi,

and

xi j =

(
p j

qi

)−εi

ωεi
i j

(
Xi

xi j

)εi−1

Xi.

Using the input demand functions, the household demand functions, and market clearing,
we can deduce that

yi = bσi

(
C
ci

)σ−1 (
pi

pc

)−σ
C +

∑
j

(
pi

q j

)−ε j

ω
ε j

ji

X j

x ji

ε j−1 (
q j

p j

)−θ j (
1 − a j

)θ j

 y jA j

X j

θ j−1

y j.
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Multiplying both sides of this equation by pi/pcC gives a recursive characterization of
expenditure shares:

λi = bσi

(
C
ci

)σ−1 (
pi

pc

)1−σ

+
∑

j

(
pi

q j

)1−ε j

ω
ε j

ji

X j

x ji

ε j−1 (
q j

p j

)1−θ j (
1 − a j

)θ j

 y jA j

X j

θ j−1

λ j. (20)

On the other hand, we know from cost minimization that

qi =

∑
j

ωεi
i j

(
Xi

xi j

)εi−1

p1−ε j

j


1

1−ε j

. (21)

The first-order condition for labor for industry i is given by

w = pi

(
yi

Aiyi

) 1
θi

aiβi

(
zi

li

)βi
θi−1
θi

l
θi−1
θi
βi−1

i , (22)

where zi is a labor-augmenting productivity shock. We can rearrange the labor demand
function as

li =

(
w
pi

) −θi
θi(1−βi)+βi (

aiβi
) θi
θi(1−βi)+βi

(
yi

Aiyi

) 1
θi(1−βi)+βi

(
zi

li

) (θi−1)βi
θi(1−βi)+βi

.

Summing this across i and equating it to labor supply l gives

l =
∑

i

(
w
pi

) −θi
θi(1−βi)+βi (

aiβi
) θi
θi(1−βi)+βi

(
yi

Aiyi

) 1
θi(1−βi)+βi

(
zi

li

) (θi−1)βi
θi(1−βi)+βi

. (23)

Finally, substituting the input demand back into the production function of i yields a
relationship between i’s price (marginal cost) and the price of its inputs as well as output,
since the industry potentially exhibits diminishing returns to scale

(
yi

Aiyi

)
= ai

(pi

w

) θi
θi(1−βi)+βi

(
yi

Aiyi

) 1
θi(1−βi)+βi (

aiβi
) θi
θi(1−βi)+βi

(
zi

li

) θi
θi(1−βi)+βi


θi−1
θi

+ (1 − ai)θi

(
pi

qi

)θi−1 ( yi

Aiyi

) θi−1
θi

(
1

Xi

)θi−1

. (24)
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Last, we set consumption to be numeraire so that pc = 1 and observe that by definition

yi =
λiC
pi
. (25)

The set of equations (20), (21), (23), (24), and (25) collectively define the equilibrium. To
derive the second-order approximation, observe that

d2 log C
d log A2

k

=
dλk

d log Ak
.

To find this, we must find the first-order approximation of the changes to λi. To this end,
linearize the system of equations that collectively define the equilibrium. This gives

dλi

d log Ak
=bσi

(
C
ci

)σ−1

(1 − σ)
(

pi

pc

)1−σ d log pi

d log Ak
(26)

+
∑

j

ω
ε j

ji

(
1 − a j

)θ j

y jA j

X j

θ j−1 (
pi

q j

)1−ε j
X j

x ji

ε j−1 (
q j

p j

)1−θ j

λ j[
(θ j − 1)

(
1( j = k) +

d log p j

d log Ak
−

d log q j

d log Ak

)
+ (1 − ε j)

(
d log pi

d log Ak
−

d log q j

d log Ak

)
+

d logλ j

d log Ak

]
,

d log qi

d log Ak
=

∑
j

ωεi
i j

(
Xi

xi j

)εi−1 (p j

qi

)1−εi d log p j

d log Ak
, (27)

d log yi

d log Ak
=

d logλi

d log Ak
+ λk −

d log pi

d log Ak
, (28)

0 =
∑

i

1
θi(1 − βi) + βi

(
w
pi

)− θi
θi(1−βi)+βi

(
yi

Aiyi

) 1
θi(1−βi)+βi

(aiβi)
θi

θi(1−βi)+βi

(
zi

li

) θi−1
θi(1−βi)+βi

[
d log yi

d log Ak
− 1(i = k) + θi

(
d log pi

d log Ak
−

d log w
d log Ak

)]
(29)
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(
θi − 1
θi

) (yiAi

yi

) 1−θi
θi

[
d log yi

d log Ak
− 1(i = k)

]
=

θi − 1
θ2

i (1 − βi) + θiβi
ai

[(pi

w

)θi
(

yi

Aiyi

) (
aiβi

)θi

] θi−1
θi

1
θi(1−βi)+βi

[
θi

(
d log pi

d log Ak
−

d log w
d log Ak

)
+

(
d log yi

d log Ak
− 1(i = k)

)]
+ (θi − 1)(1 − ai)θi

(
pi

qi

)θi−1 ( yi

Aiyi

) θi−1
θi

(
1

Xi

)θi−1

[
d log pi

d log Ak
−

d log qi

d log Ak
+

1
θi

(
d log yi

d log Ak
− 1(i = k)

)]
, (30)

Evaluating these derivatives at the steady-state, where Ai = 1, pi = qi = 1, xi j = (1 − ai)ωi j,
ci/C = bi, yi/Y = λi, li/yi = βiai gives the desired result. �

Proof of Proposition 4.1. The first-order equation for the allocation of labor is

ββiA
θ−1
θ

i Lβ
θ−1
θ

i = λLiC−
1
θ .

where λ is the Lagrange multiplier on labor. Using the first-order conditions and the labor
market clearing condition implies that

Li =

 βiA
θ−1
θ

i∑
β jA

θ−1
θ

j


1

1−β θ−1
θ

.

Substituting this into the utility function gives

C =

∑
i

β
θ

θ(1−β)+β

i A
θ−1

θ(1−β)+β

i


θ(1−β)+β
θ−1

.

Then for this economy

ρi j = ρ =
θ(1 − β) + β

θ(1 − β) + β + (1 − θ)
,

where β = 0 corresponds to
ρ = θ,

which is the same as no reallocation case. On the other hand, for β = 1,

ρ =
1

2 − θ
,
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which is the same as the fully reallocative case. Note that this explodes when θ ≥ 2,
since in that case, the reallocative solution is more substitutable than perfectly substitutes!
For ρ ∈ (0, 1) we get something in between the perfectly reallocative and no reallocation
special cases. �

Proof of Proposition 5.1. First consider the case with reallocation, and note that

β̃k =
pθk yk

pθc C
= λi

pθ−1
k

pθ−1
c

.

Substitute this into the expression for C in proposition E.1 to get

C =

∑
k

λk
pθ−1

k

pθ−1
c

Aθ−1
k αkzθ−1

k


1
θ−1

L.

On the other hand, we have that

αk =
wθLk

pθk yk

(
Akzk

)1−θ
.

Substitute this into the previous expression to get

C =

∑
k

ak
wθ−1

k

pθ−1
c

(
Akzk

Akzk

)θ−1


1
θ−1

L.

Finally, substitute in pc = wL/C and rearrange to get the result.
Next, consider the case without reallocation and note that

β̃k =
pθk yk

pθc C
,

and

αk =
wθ

k Lk

pθk yk

,

which we can substitute into the expression for GDP in proposition E.1 to get our desired
expression. �
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Proof of Proposition 6.1. Consumption is given by

C = AY

a
(

L

L

) θ−1
θ

+ (1 − a)
(

X

X

) θ−1
θ


θ
θ−1

− X.

The first-order condition gives

X

X
=

(
YA

)θ−1
(1 − a)θX

−θ
Y.

Substituting this into the production function gives

Y =
AYa

θ
θ−1(

1 − (1 − a)θ
(
YA/X

)θ−1
) θ
θ−1

.

This means that

C =
AYa

θ
θ−1(

1 − (1 − a)θ
(
YA/X

)θ−1
) 1
θ−1

.

Finally, note that
d log C
d log A

= ξ.

�

Proof of Proposition 7.1. We can write

d log pi

d log Ak
= aiλk +

∑
j

(1 − ai)ωi j
d log p j

d log Ak
− 1(i = k).

We can solve this to get
d log pi

d log Ak
= λk − ψik,

where ψik is the ikth element of the Leontief inverse. This says that the change in the price
of i depends on the change in the real wage λk to the intensity with which i consumes from
k. We know that ψkk ≥ ψik. This expression, which greatly simplifies matters, stems from
constant-returns-to-scale, which means that relative prices don’t depend on quantities.
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Next, we know that

dλi

d log Ak
=bi(1 − σ)

d log pi

d log Ak
+ (31)∑

j

[
ω ji(1 − a j)λ j

{
(θ j − 1)

(
1( j = k) −

d log q j

d log Ak
+

d log p j

d log Ak

)
+(1 − ε j)

(
d log pi

d log Ak
−

d log q j

d log Ak

)
+

dλ j

d log Ak

1
λ j

}]
,

(32)

where
d log q j

d log Ak
= λk −

∑
l

ω jlψlk.

Combining these facts, we can write

Dλ′ = κ′Ψ,

where

κi =bi(1 − σ)[λk − ψik] +
∑

j

ω ji(1 − a j)λ j(θ j − 1)[
∑

l

ωl jψlk − ψ jk]

+
∑

j

ω ji(1 − a j)λ j(1 − ε j)[
∑

l

ωl jψlk − ψik] + (θk − 1)ωki(1 − ak)λk.

We can interpret κi as how λi changes conditional on the change in prices holding fixed
other λ−i. �

Proof of Proposition 7.2. In the special case where θ j = ε j,

ci = bi(1 − σ)(λk − ψik) +
∑

j

λ jω ji(1 − a j)(θ j − 1)[ψik − ψ jk] + (θk − 1)ωki(1 − ak)λk.
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Therefore,

dλm

d log Ak
= c′Ψem,

=
∑

i

ciψim,

= (1 − σ)

λkλi −

∑
i

biψikψim


+

∑
i

∑
j

ω jiλ j(1 − a j)(θ j − 1)
[
ψimψik − ψ jkψim

]
+ λk(θk − 1)

∑
i

ωki(1 − ak)ψim,

= (σ − 1)

∑
i

biψikψim −

∑
i

biψik

∑
i

biψim


+

∑
j

(θ j − 1)λ j

∑
i

ω ji(1 − a j)ψimψik −

∑
l

ω jl(1 − a j)ψlk + 1( j = k)


∑

i

ω ji(1 − a j)ψim




+ λk(θk − 1)
(
ψkm + 1(k = m)

)
,

= (σ − 1)

∑
i

biψikψim −

∑
i

biψik

∑
i

biψim


+

∑
j

(θ j − 1)λ j

∑
i

ω ji(1 − a j)ψimψik −

∑
l

ω jl(1 − a j)ψlk


∑

i

ω ji(1 − a j)ψim




+ λk(θk − 1)
(
ψkm + 1(k = m)

)
+ (1 − θk)λk

∑
i

ωki(1 − ak)ψim,

where the third and fourth line make repeated use of the fact that

Ψ − I = ΨΩ

and
λ′ = b′Ψ.

To complete the proof, observe that d2 log C d log A2
k = dλk/d log Ak, and substitute m =

k. �

Proof of Proposition 7.4. Denote the ith standard basis vector by ei. Then, by assumption,
Ωek = Ωel. Repeated multiplication implies that Ωnek = Ωnel. This then implies that
(Ψ − I)ek = (Ψ − I)el. In steady state, λk = b′Ψek = b′Ψel = λl, since b′ek = b′el by
assumption. So the first-order impact of a shock is the same. Furthermore, substitution
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into (7) shows that the second-order impact of a shock is also the same. �

Proof of Proposition 8.1. Let C2nd(A + ∆) be the quadratic function of ∆ that provides a
second-order approximation to output at point A as a function of ∆. The quadratic
approximation lemma from Diewert (1976) implies that

log
(
C2nd(A + ∆)/C2nd(A)

)
=

1
2

[
∇ log C2nd(A + ∆) + ∇ log C2nd(A)

]′ [
log(A + ∆) − log(A)

]
. (33)

Hulten (1978) then implies that ∇ log C(A) = λ(A) and ∇ log C(A + ∆) = λ(A + ∆). The
result follows since ∇ log C2nd(A) = ∇ log C(A), ∇ log C2nd(A + ∆) = ∇ log C(A + ∆) up to
the first order in ∆, and log

(
C2nd(A + ∆)/C2nd(A)

)
= log

(
C(A + ∆)/C(A)

)
up to the second

order in ∆. �

B A Bound on the Approximation Error

When GDP is homogeneous of degree 1 and the macro elasticities of substitution are
all constant, we can bound the size of the first-order approximation error in terms of
observable expenditure shares before the shock.

Proposition B.1. Assume that ξ is constant and equal to 1 and that ρi j is constant and equal to
ρ for every i , j (at and away from steady state). Denote λi at steady state by λi. Then

C(Ai) =

(
λi.A

ρ−1
ρ

i + (1 − λi)
) ρ
ρ−1

,

where with some abuse of notation, we denote output as a function of Ai by C(Ai). Furthermore, if
λi < 1/2, then ∣∣∣∣∣∣log

(
C

C

)
− λi log (Ai)

∣∣∣∣∣∣ ≥ 1
2

∣∣∣∣∣ρ − 1
ρ

∣∣∣∣∣λi(1 − λi)
∣∣∣log (Ai)

∣∣∣2 . (34)

whenever (1 − Ai)(ρ − 1) < 0.

Proposition B.1 shows that when ρi j are uniform and constant, we can globally char-
acterize output with a CES aggregator, where the relevant weights are the steady-state λi.
Furthermore, if λi < 1/2, then we can put a lower bound on the size of the approximation
error from Hulten’s theorem.
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Proof of Proposition B.1. Using theorem 2.2, we know that

d2 log C
d log z2

i

=

(
ρ − 1
ρ

)
λi(zi) (1 − λi(zi)) .

We wish to provide a lower bound for d2 log C
d log z2

i
over some interval I with zi ∈ I. Note that if

λi < 1/2 then λi(zi) (1 − λi(zi)) is minimized at minz∈I λ(z).
First, consider ρ ≤ 1. In this case, minz∈I λ(z) = λ(maxz∈I z). If I = [z, zi], then

minz∈I λi(zi) (1 − λi(zi)) = λi(1 − λi).
Next, consider ρ > 1. In this case, minz∈I λ(z) = λ(minz∈I z). If I = [zi, z], then

minz∈I λi(zi) (1 − λi(zi)) = λi(1 − λi).
Therefore, as long as (ρ − 1)(zi − zi) < 0, then

min
z∈I

d2 log C
d log z2

i

=
ρ − 1
ρ

λi(1 − λi).

Finally, Taylor’s theorem states that

log(C) = log(C) + λi log(zi/zi) +
1
2

d2 log C
d log z2

i

∣∣∣∣∣∣
z̃∈I

(
log(zi/zi)

)2 , (35)

≥ log(C) + λi log(zi/zi) + min
z̃∈I

1
2

d2 log C
d log z2

i

∣∣∣∣∣∣
z̃∈I

(
log(zi/zi)

)2 , (36)

≥ log(C) + λi log(zi/zi) +
1
2

(
ρ − 1
ρ

)
λi(1 − λi)

(
log(zi/zi)

)2 . (37)

Rearrange this to get the desired result. �

C Generalization of Section 6 to Multiple Goods

For the example is Section 6, the economy with extreme complementarity θ = 0 has
C = A/a, where 1/a is the sales to output ratio in steady-state. Therefore, in this example,
although Hulten’s approximation fails in log terms, Hulten’s theorem is globally accurate
in linear terms. In other words, our examples so far may suggest that extreme comple-
mentarities can only have outsized effects, in linear terms, if we restrict the movement of
labor across industries.

However, this impression is false. To see this, consider a slightly more complex exam-
ple where we generalize the example above by allowing multiple industries. Aggregate
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consumption is Cobb-Douglas across goods (σ = 1) with equal weights (bi = 1/N). Each
good is produced using labor and the good itself as an intermediate input. We assume
full labor reallocation/constant returns to scale (βi = 1). We have

C =
∏

i

c1/N
i ,

and

Yi = YiAi

ai

(
Li

Li

) θi−1
θi

+ (1 − ai)
(

Xi

Xi

) θi−1
θi


θi
θi−1

,

with
Yi = ci + Xi,

and perfect reallocation of labor. Then we have the following.

Proposition C.1. Consider the following special case of the structural model in Section 3. Aggre-
gate consumption is Cobb-Douglas across goods with equal weights, where each good is produced
using labor and the good itself as an intermediate input, with expenditure share on labor ai in
steady state and micro elasticity of substitution θi. Assume full labor reallocation/constant returns
to scale. Then

1 −
1
ρi j

= (θi − 1)
( 1
ai
− 1

)
,

and
∂ log ξ
∂ log Ai

=
1
N

(θi − 1)
( 1
ai
− 1

)
.

In Figure 11 we plot output as a function of TFP shocks in linear terms. As promised,
this economy features strong aggregate complementarities in the sense that a negative TFP
shock can cause a drastic reduction in output even in linear terms, despite the fact that
labor can be costlessly reallocated across sectors. This happens because, in equilibrium, a
negative shock to industry i does not result in more labor being allocated to production
in industry i. This follows from the fact that consumption has a Cobb-Douglas form, and
so the income and substitution effects from a shock to i offset each other. Since no new
labor is allocated to i, if i faces a low structural elasticity of substitution θi ≈ 0, its output
falls dramatically in response to a negative shock. This can then have a large effect on
aggregate consumption. Of course, Cobb-Douglas consumption is simply a clean way to
illustrate this intuition. If the structural elasticity of substitution in consumption σ < 1,
then these effects would be even further amplified.
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Figure 11: GDP for the Leontief case θi ≈ 0 with two industries.

Proof of Proposition C.1. First, consider

max
Xi

Yi − Xi,

which has the first-order condition

Xi = Yi(1 − ai)θi

(
AiYi

Xi

)θi−1

= Yi(1 − ai)A
θi−1
i ,

where we use the fact that Xi = Yi(1 − ai). Substitute this into the production function for
Yi to get

Yi =
AiYia

θi/(θi−1)Li/Li(
1 − (1 − a)Aθi−1

i

) θi
θi−1

.

Substitute this into ci = Yi − Xi to get

ci =
AiYia

θi/(θi−1)Li/Li(
1 − (1 − a)Aθi−1

i

) 1
θi−1

.

Substitute these into the utility function to get aggregate consumption when labor can-
not be reallocated. To get aggregate consumption when labor is reallocated, maximize
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aggregate the non-reallocative solution with respect to Li.

Cr

C
=


N∑
i

b
σ

i

 AiYia
θi
θi−1

i /Li

(1 − (1 − ai)A
θi−1
i )

1
θi−1


σ−1

1
σ−1

L.

�

D A Quantitative Illustration in the Case of Electricity

Finally, we end with a simple illustration of some of the limitations of our quantitative
exercise. Due to data limitations, we assumed uniform symmetry of εi. In this section,
we instead work with a stylized representation of the economy, still calibrated to match
the relevant expenditure shares, but highlight the unique role an industry like power
generation can have when the elasticities of substitution can be heterogeneous. This
exercise helps shed some light on how we can reconcile the fact that an industry like
electricity production is a small part of the economy, but a priori, we think that it is
a critical industry. This tension between size and importance is exemplified by a 2013
speech from Lawrence Summers: “Electricity is only four percent of the economy, and
so if you lost eighty percent of electricity you couldn’t possibly have lost more than
three percent of the economy, ... we understand that somehow, even if we didn’t exactly
understand in the model, that when there wasn’t any electricity there wasn’t really going
to be much economy.”

Consider an economy where

C =

∑
i

bic
σ−1
σ

i


σ
σ−1

,

and

ci =

(
ail

εi−1
εi

i + (1 − ai)E
εi−1
εi

i

) εi
εi−1

,

with
E =

∑
i

Ei = AlβE,

where β ∈ [0, 1].

Proposition D.1. Consider the special case of the structural model in Section 3 outlined above
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where each good is produced with a structural elasticity of substitution εi from labor and energy
with steady-state shares ai and 1− ai. All industries, except energy, have constant returns to scale
and hire their workers from a common labor market. However, energy is produced with decreasing
returns to scale β < 1. Let A denote TFP shocks to the energy industry, then at steady state,

d2 log C
d log A2 =

∑
i(1 − ai)λi[(σ − 1)(1 − λE) + ai(εi − σ)]

1 +
1−β
λlλE

∑
i(1 − ai)λi

[
ai(εi − σ) + (1 − β)(1 − λE)λE(σ − 1)

] , (38)

where λE is the Domar weight of energy and λl is the Domar weight of labor.
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Figure 12: A calibration of the first-order and second-order terms as a function of σ with
εi = 0.01 and AE = 0.2.

We calibrate (38) for different values of consumption elasticity of substitution σ assum-
ing βE = 0. To calibrate the model, we set (1− ai) to match the Eith element of the Leontief
inverse. We then set bi equal to the sales share of the ith industry. This calibration pre-
serves the equilibrium steady-state size of all industries, as well as the total dependence of
each industry on electricity. Finally, we set εi = 0.01 to reflect the low structural elasticity
of substitution energy inputs have with labor. Figure 12 plots the first and second-order
terms of the Taylor approximation to log(GDP), following (3), for an 80% reduction in
the productivity of the energy industry AE = 0.2. In our calibration, λE ≈ 0.04, so the
first-order loss from an 80% decline in electricity generation is just over 3%. However, the
second-order losses are roughly −0.5 × log(0.2)2 = −1.318, or 73% when σ = 1, and they
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are even larger if σ < 1.
We can also use the second-order terms to approximate the expected value of log GDP

in the presence of shocks to the energy industry. If we take Cobb-Douglas consumption
as a benchmark, then if the energy industry experiences volatility with variance v, then
average GDP will be around v/2 times lower than its certainty equivalent. So despite
the electricity industry being smaller 4% of GDP, it can transmit idiosyncratic shocks to
expected GDP 1-for-2. This may help explain why unreliable electricity production in
developing countries can have very harmful effects on output (see Allcott et al., 2016).

We can simplify proposition D.1 by considering a special case where all industries use
electricity by the same amount.

Corollary. For the model of proposition D.1, in the special case where ai = a for all i, denote the
expenditure-weighted average

∑
i λiεi by ε. Then we have

d2 log C
d log A2 =

(1 − a)a(β + a(1 − β))(ε − 1)
a(1 − β)ε + β

,

this simplifies to

d2 log C
d log A2 =

 λE(1 − λE) ε−1
ε , β = 0

λE(1 − λE)(ε − 1), β = 1

regardless of the value of σ. Our decomposition is ξ = 1 + λE, and

d2 log C
d log A2 =λE

∂ log ξ
∂ log A

+
λE

1 + λE

∑
i

λi

(
ρEi − 1
ρEi

)
,

=
λE

1 + λE

(1 − a)a(β + a(1 − β))(ε − 1)
a(1 − β)ε + β

+
1

1 + λE

(1 − a)a(β + a(1 − β))(ε − 1)
a(1 − β)ε + β

.

The fact that σ disappears when ai are symmetric is a manifestation of general principle
stated in Section 7. Since the household is symmetrically exposed to shocks from the
electricity industry, it does not matter how well the household can substitute amongst its
inputs! This example suggests that there are three attributes of the energy sector that make
it important to the economy. First, energy appears with a low elasticity of substitution in
production, or εi is low for every i, second, energy appears in every production function,
or ai � 0 for every i, and finally, energy is produced inelastically, or β � 0. All three of
these attributes must be present in order for a negative shock to industry E to have large
second-order effects on output.
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The result below formalizes the idea that although the energy industry E and another
industry i , E can have the exact same share of sales and, therefore, first-order effects on
the economy. Their second-order impact can be arbitrarily different from one another. Let
bi = 1/N, ai = 1 − 1/N. If β = 1, then

d2 log C
d log A2

E

=
N − 1

N
(ε̄ − 1) ,

and if β = 0, then
d2 log C
d log A2

E

=
N − 1

N

(
ε̄ − 1
ε̄

)
,

while
d2 log C
d log A2

i

=
N − 1

N
(σ − 1) i ∈ {1, . . .N}.

However, λi = λE = 1/N.
Finally, we turn our attention to the non-trivial way in which common shocks will

affect this economy. Suppose that we split energy production into hydroelectric power
and wind, and we calibrate the expenditure shares so that λh = λw = 1/N, where h and
w denote hydro and wind. For simplicity, suppose that there is only one final goods
producer λ3. Suppose that ρhw = ρwh = ρ and ρh3 = ρw3 = ρ. Finally, assume ξ is constant.
Then the second-order impact of a shock to hydro is

1
2

1
N2

(
1 −

1
ρ

)
+

1
2

1
N

N − 2
N

1 −
1
ρ

 ,
whereas the second-order impact of a common shock to hydro and wind is

1
N

( 2
N
− 1

) (
1 −

1
ρ

)
+

2
N

N − 2
N

1 −
1
ρ

 .
We see that the effect of the common shock is not simply twice that of the idiosyncratic
shock (which would be the case if the Hessian was diagonal). Furthermore, the sign on
(1 − 1/ρ) flips when comparing the idiosyncratic and the common shock. The differ-
ence between the second-order approximation of a common shock and the sum of two
idiosyncratic shocks is

−
1
N

N − 1
N

(
1 −

1
ρ

)
+

1
N

N − 2
N

1 −
1
ρ

 .
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We take 1 − 1/ρ < 0, since hydro and wind are macro-complements with the rest of the
economy. Then the difference between the idiosyncratic shock and the common shock
is greater if the two forms of power generation are macro-substitutes than if they are
macro-complements. Intuitively, the closer a substitute that wind is for hydro, the bigger
the difference between the impact of an idiosyncratic shock and the impact of a common
shock.

Proof of Proposition D.1. Denote electricity’s sales as a share of GDP by λE. Then

λE =
∑

i

(1 − ai)
(

pE

pi

)1−εi

λi,

while

λi = bi

(
pi

pc

)1−σ

,

and
p1−εi

i = aiw1−εi + (1 − ai)p
1−εi
E ,

and

pE =
wl1−β

E

Aβ
,

and
lE =

(pE

w

)
βE.

Finally, we know that
C = wl + (1 − β)pEE,

where consumption is the numeraire. These equations can be differentiated to give

d2 log C
d log A2 =

dλE

d log A
=

∑
i

(1 − ai)
(

pE

pi

)1−εi
[
(1 − εi)

[
d log pE

d log A
−

d log pi

d log A

]
λi +

dλi

d log A

]
,

we also have that

dλi

d log A
= bi

(
pi

pc

)1−σ

(1 − σ)
[
d log pi

d log A
−

d log pc

d log A

]
,

and

λE =
d log w
d log A

λl + (1 − β)
d log pEE
d log A

λE =
d log w
d log A

λl + (1 − β)
(

dλE

d log A
+ λ2

E

)
. (39)
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Next, note that
d log pi

d log A
= ai

d log w
d log A

+ (1 − ai)
d log pE

d log A
, (40)

and
d log pE

d log A
=

d log w
d log A

+ (1 − β)
d log lE

d log A
− 1, (41)

d log lE

d log A
=

1
λE

dλE

d log A
+ λE −

d log w
d log A

.

Combining the last two equations gives

d log pE

d log A
= β

d log w
d log A

+ (1 − β)
[

1
λE

dλE

d log A
+ λE

]
− 1, (42)

Combine this with (39) to get

d log w
d log A

=
λE

λl
−

1 − β
λl

(
dλE

d log A
+ λ2

E

)
.

Substitute this equation into (42) to get

d log pE

d log A
= β

λE

λl
+

[
1 − β
λE
−
β(1 − β)
λl

] (
dλE

d log A
+ λ2

E

)
− 1,

Substitute these into (40) to get

d log pi

d log A
= (ai + (1 − ai)β)

(
λE

λl
−

1
λl

(
dλl

d log A
+ λ2

E

))
+ (1 − ai)

(1 − β)
λE

(
dλE

d log A
+ λ2

E

)
− (1 − ai)

Some tedious algebraic manipulation, as well as the fact that

λl = 1 − (1 − β)λE

gives the desired result. �

E Tractable Special Case with Uniform Elasticities

GDP as a function of the underlying productivity shocks can be written in closed form
when θ = ε = σ. In this case, the network model collapses into the same setup as the one in
Section 1, we basically recover the same result except the weight parameters have to now
be “weighted” by the network. Let A and z denote the vector of TFP and labor-augmenting
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technology shocks.
In this special case, we have

pθy = β′(I − diag(1 − α) diag(A)θ−1Ω)−1pθc C,

p1−θ = (I − diag(1 − α) diag(A)θ−1Ω)−1 diag(A)θ−1 diag(α ◦ zθ−1)w1−θ,

wθ = diag(A)θ−1 diag(L)−1 diag(α ◦ zθ−1)pθy,

and
C = w′L.

Define the Leontief inverse to be

Ψ = (I − diag(1 − α) diag(A)θ−1Ω)−1,

and define the network-adjusted consumption share to be

β̃′ = β′Ψ,

noting that in the case where α = 1, we have β = β̃.

Proposition E.1. In the case where labor cannot be reallocated,

C =

∑
k

β̃
1
θ

k A
θ−1
θ

k α
1
θ

k z
θ−1
θ

k L
θ−1
θ

k


θ
θ−1

.

In the case where labor can be perfectly reallocated,

C =

∑
k

β̃kAθ−1
k αkzθ−1

k


1
θ−1

L.

Proof. For perfect reallocation, note that the vector w is now a constant which can be set
to 1 without loss of generality. Then

p1−θ = Ψ diag(A)θ−1α.

We know that
C =

wL
pc
,
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which by definition is

C =
(
β′p1−θ

) 1
θ−1 L.

Substitute the formula for p1−θ to get the desired result. �

Proposition E.2. At the steady-state, when labor cannot be reallocated,

d2 log C
d log A2

i

=
(
θ − 1
θ

)
λiaiψii(ψii − λi) −

(θ − 1)2

θ

∑
k,i

ak
λ2

iψ
2
ik

λk
(43)

+ (θ − 1)λi(2ψii − 1) − (θ − 1)λiaiψ
2
ii. (44)

If i buys from no one else, then this simplifies to

d2 log C
d log A2

i

=
(
θ − 1
θ

)
λi(1 − λi). (45)

When labor can be reallocated

d2 log C
d log A2

i

= (θ − 1)λi
(
ψii − 1 + ψii − λi)

)
,

when i buys from no one else, then this simplifies to

d2 log C
d log A2

i

= (θ − 1)λi (1 − λi) .

F Nested Networks with Heterogeneous Micro Elasticities

Now we turn our attention to examples where the macro elasticities of substitution can
vary in response to shocks. These examples show that having heterogeneous (but con-
stant) micro elasticities of substitution can lead to variable elasticities at the aggregate
level.

Consider a simple nested CES production network with a single final goods producer

Y =

∑
k

βkx
θ−1
θ

k


θ
θ−1

,

where

xk =

 Nk∑
i

1
N

x
εk−1
εk

ik


εk
εk−1

,
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and
xik = AikLik.

This is the simplest example of a network with non-uniform micro-elasticities of substi-
tution. Since we only consider labor-augmenting shocks, we still have that ξ = 1 and
d log ξ/dAi = 0.

We consider three cases: (1) labor cannot be reallocated at all, (2) labor can be reallocated
within the inner nest but not the outer nest, (3) labor can be fully reallocated. Using these
examples, we see how extreme complementarity or substitutability can propagate through
the network. Define

ρr =

 εr if labor cannot be reallocated within industry r,
1

2−εr
if labor can be reallocated within industry r,

and

ρ =

 θ if labor can be reallocated across industries,
1

2−θ if labor can be reallocated across industries.

Then we can show the following.

Proposition F.1. Consider the following special case of the structural model in Section 3. There
is a nested CES network structure with heterogeneous micro elasticities of substitution and labor-
augmenting shocks. The macro elasticity of substitution is given by

1 −
1
ρi j

=


1 − 1

ρk
i, j ∈ Nk

a
(
1− 1

ρr

)
+b

(
1− 1

ρk

)
+c

(
1− 1

ρ

)
a+b+c , i ∈ Nk, j ∈ Nr

, (46)

where a, b, c are positive and a = 1
λ(i)

r
−

1
λr

, b = 1
λ

( j)
k

−
1
λk

, and c = 1
λr

+ 1
λk

with λ(i)
r being good i’s

expenditure share of total expenditure, and λr is industry r’s expenditure share of GDP.

This example shows how networks can mix elasticities of substitution, such that the
macro elasticities of substitution are not constant even though all the micro elasticities
of substitution are constant. In the special case where the network has a simple nested
structure, the macro elasticities of substitution take an especially simple form: a harmonic
average of the effective elasticities of substitution within and across the different nests,
where the weights depend on the relative expenditure shares. The effective elasticity of
substitution here is the micro elasticity of substitution adjusted for the general equilibrium
effect of reallocation. This example also shows that if any of the effective elasticities of
substitutions are close to zero, from below or from above, then this will strongly affect the
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macro elasticity of substitution. In other words, near-singularities will be propagated to
macro elasticities regardless of where they show up in the nests. This gives a simple way
of deducing the ultimate impact of complementarity or substitutability within nests, up
to a second order, by simply averaging across them with appropriate weights.

For these special cases, we can go one step further and even provide the expression
for output in closed form.

Proposition F.2. For the case with no-reallocation, GDP as a function of productivity shocks is
given by

C =

∑k

βk

 Nk∑
i

1
N

(
AikLik

) εk−1
εk


εk
εk−1

θ−1
θ


θ
θ−1

.

Proposition F.3. For the case with sectoral reallocation, GDP as a function of productivity shocks
is given by

C =


∑

k

βk


 Nk∑

i

( 1
N

)εk

Aεk−1
ik


1

εk−1

Lk


θ−1
θ


θ
θ−1

.

Proposition F.4. For the case with full reallocation, GDP as a function of productivity shocks is
given by

C =

∑
k

βθk

 Nk∑
i

( 1
N

)εk

Aεk−1
ik


1

εk−1 (θ−1)
1
θ−1

L.

G Additional Tables and Figures

Mean Standard Deviation Skewness

Model without reallocation -0.0056 0.0113 -0.3679
Model with full reallocation -0.0036 0.0110 -0.1081
(θ, σ) = (0.1, 0.3) -0.0089 0.0117 -0.6496
(θ, σ) = (0.6, 0.8) -0.0035 0.0112 -0.1648

Table 2: For each model, we compute the second-order approximation of log GDP as a
translog function (quadratic in log of TFP shocks). We then simulate the quadratic model
with 50,000 draws of TFP shocks.
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Figure 13: The effect of TFP shocks to the oil and gas industry and the construction
industry. Construction has a bigger sales share, but oil and gas is more important for large
negative shocks. This graph shows that the ranking of which industry is more important
is not monotonic in the size of the shock.
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