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This paper is concerned with the problem of identifiability of the parameters of a
high frequency multivariate autoregressive model from mixed frequency time series
data. We demonstrate identifiability for generic parameter values using the pop-
ulation second moments of the observations. In addition we display a construc-
tive algorithm for the parameter values and establish the continuity of the mapping
attaching the high frequency parameters to these population second moments. These
structural results are obtained using two alternative tools viz. extended Yule Walker
equations and blocking of the output process. The cases of stock and flow vari-
ables, as well as of general linear transformations of high frequency data, are treated.
Finally, we briefly discuss how our constructive identifiability results can be used for
parameter estimation based on the sample second moments.
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1. INTRODUCTION

In many applications involving multivariate time series data, we encounter mixed
frequency (MF) data, i.e., data where the univariate component time series are
available at different sampling frequencies. This is particularly true for economic
applications, where for instance unemployment data may be available monthly,
whereas GNP data are available quarterly. To give a more general example,
usually, financial data are observed more frequently than real data. Clearly too, the
higher the dimensionality of the time series in an applications context, the more
likely are mixed frequency data to occur. Given the frequent occurrence of MF
data and the desire to use as much as possible or indeed all the information con-
tained in these data, it is not surprising that a number of different approaches to
MF problems such as parameter estimation have been developed (see e.g. Harvey
and Pierse, 1984; Nijman, 1985; Kohn and Ansley, 1986; Zadrozny, 1990b;
Bernanke, Gertler, Watson, Sims, and Friedman, 1997; Chen and Zadrozny, 1998;
Marcellino, 1998; Mariano and Murasawa, 2003; Aruoba, Diebold, and Scotti,
2007; Wohlrabe, 2008; Ghysels and Wright, 2009; Marcellino and Schumacher,
2010; Ghysels, 2012). These approaches differ as far as their final aims, the model
classes considered and the estimation procedures developed are concerned.

Most of the traditional procedures for model parameter estimation in multi-
variate time series assume that the individual components of the time series are
available at a single frequency. This motivates one of the two basic approaches
to treat MF data: The first approach is to transform the data to a single frequency
before parameter estimation. In contrast, the second approach is to directly use
MF data for estimation, which requires some form of new or less familiar method-
ology. As far as the first approach is concerned, a simple method to deal with MF
data is to transform all data to the lowest sampling frequency, for instance by
taking all observations at the lowest frequency, and then to estimate a model.
Of course, this is straightforward but leads to loss of information. Another possi-
bility to apply estimation methods for single frequency data is to (directly) inter-
polate the low frequency data, so that after such a transformation high frequency
“data” are available for parameter estimation. However, exactly how one should
interpolate is not clear, the more so since such interpolation is required before the
model parameters have been estimated.

As far as the second basic approach, namely direct estimation from mixed fre-
quency data, is concerned, again several different procedures have been devel-
oped: One approach is to estimate a continuous-time model from discrete-time
data (see e.g. Phillips, 1973, 1976; Hansen and Sargent, 1983; Bergstrom, 1988;
Zadrozny, 1988). Of course, once a continuous-time model is available, discrete-
time data can be generated at arbitrary sampling frequencies, see e.g. Chambers
and Thornton (2012). However, there are costs associated with this approach.
Firstly, in a stationary context, the spectral density of a single frequency discrete-
time process is obtained by the so-called aliasing formula from the continuous-
time spectral density (see e.g., Hannan, 1970) and, in a “nonparametric” context,
the function attaching the discrete-time spectrum to the continuous-time spectrum
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is not injective. Hence restrictions to the continuous-time system have to be
imposed in order to guarantee uniqueness from discrete-time data as has been
pointed out already in the famous Nyquist–Shannon sampling theorem. Sec-
ondly, there is no easy relation between model classes of related discrete-time
and continuous-time systems. This observation is sometimes called the embed-
ding problem, see Brockwell (1995). For instance, some discrete-time AR(1)
systems correspond to continuous-time AR(1) systems, other to continuous-time
ARMA(2,1) systems.

The most frequent approaches to direct model estimation from MF data are
MIDAS (mixed-data sampling) regression, where we have a mixed frequency
model (see e.g. Ghysels, Santa-Clara, and Valkanov, 2006; Ghysels, Sinko, and
Valkanov, 2007). Another approach is to use Kalman filtering to generate
missing observations (see e.g. Zadrozny, 1990a; Mariano and Murasawa, 2003).
Of course, the use of an optimal Kalman filter for reconstructing missing observa-
tions requires knowledge of the underlying parameters; so there is some circular-
ity in the logic of this approach, but this can be dealt with through an iterative loop.

In this paper we consider the following setting: We assume a high frequency,
multivariate autoregressive model generating the outputs. Some outputs are not
observed at the highest frequency but instead at an integer submultiple of the
highest frequency or, more generally, a linear transformation of these outputs is
available, thus leading to MF data. Our main focus is on the discussion of the case
of stock variables. No a priori restrictions except for those concerning the order
of the system, stability, and the rank of the innovation variance are imposed. The
final aim of the analysis considered here is to directly estimate the parameters of
the underlying high frequency model from the available MF data. Clearly, once
these parameters are available, then also all variances and covariances of the full
high frequency output process are available and, based on those second moments,
linear least squares approximation problems like interpolation, nowcasting, and
forecasting can be solved. The analysis given here is focused on identifiability
of the parameters of the underlying high frequency model from the second mo-
ments of the observations. The main result given in the paper is that generically
identifiability can be ensured using these second moments. We will use the term
g-identifiability for generic identifiability. Our results are “constructive” in the
sense that we present “realization algorithms”, i.e., algorithms which give the pa-
rameters from the population second moments of the observations. In addition it
is shown that the problem is well-posed in the sense that the parameters depend
continuously on these second moments. Thus, when these population second mo-
ments are replaced by their sample counterparts, this leads to consistent estimation
procedures. We consider that identifiability and well-posedness are fundamental
for understanding certain estimation problems, as has been argued in detail in
Hannan and Deistler (2012). A more abstract analysis is presented in Deistler and
Seifert (1978).

The techniques we use in the paper draw heavily from Chen and Zadrozny
(1998) and Anderson, Deistler, Felsenstein, Funovits, Zadrozny, Eichler, Chen,
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and Zamani (2012) and the approach given for blocking is related to Ghysels
(2012). The paper is organized as follows: In Section 2 the setting and the problem
are described. Section 3 deals with the special case of AR(1) models for the high
frequency process where, for simplicity, we only treat the bivariate case. This case
is simpler than the general case, since here missing observations do not change the
autoregressive structure and an explicit description of the (generic) set of all iden-
tifiable parameters can be derived. Section 4 deals with general AR(p) systems. In
this setting we have not been able to give the explicit description mentioned above.
However, as a “second best” result we do show g-identifiability, which we con-
sider is still a strong result. Actually we obtained an even stronger result namely
that identifiability holds on the complement of a proper algebraic variety. Whereas
in most parts of the paper only the case of stock variables has been considered, the
genericity results are extended to general (linear) aggregation schemes, covering
flow and stock variables, in Section 5. Section 6 is concerned with obtaining ad-
ditional identifiability results by prescribing column degrees, rather than merely
the maximum lag, for the autoregression. In Sections 4–6 the results are based
on extended Yule Walker equations. In Section 7 we introduce a realization al-
gorithm based on blocking the observations in order to obtain g-identifiability.
Blocking of observations has been considered in Filler (2010), Ghysels (2012),
Chen, Anderson, Deistler, and Filler (2012), and Zamani (2014). Section 8
provides an outlook and a conclusion. The Appendix consists of the proofs of
Theorems 1, 2, 3, 5, 6, 7, and 8.

2. HIGH FREQUENCY AR SYSTEMS AND MIXED FREQUENCY DATA

We consider the case where the high frequency system, i.e., the system generating
all outputs at the highest frequency, is a vector autoregression of order p. Let

yt = A1 yt−1 +·· ·+ Ap yt−p +νt, t ∈ Z, (2.1)

where yt is n-dimensional, Ai ∈ Rn×n and (νt | t ∈ Z) is n-dimensional white
noise. Throughout we assume that the high frequency system (2.1) is stable, i.e.,
that

det(a(z)) �= 0 |z| ≤ 1, (2.2)

where a(z) = I − A1z − ·· ·− Apz p. Here z is used for the complex variable as
well as for the backward shift on the integers Z.

We consider the case where the innovation variance �ν = E(νtν
T
t

)
is nonsin-

gular as well as the case where this variance is singular. Then the correspond-
ing autoregressive systems are called regular and singular, respectively. Singular
autoregressive systems are important as models for latent variables and the corre-
sponding static factors in generalized dynamic factor models (GDFMs) (see Forni,
Hallin, Lippi, and Reichlin, 2000; Stock and Watson, 2002; Doz, Giannone, and
Reichlin, 2011). The innovations of such autoregressive systems are dynamic fac-
tors. Singular AR systems occur if the dimension of the minimal static factors is
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larger than the dimension of the minimal dynamic factors, see Deistler, Anderson,
Filler, Zinner, and Chen (2010). The case where singularity is caused by defini-
tional equations is discussed in Phillips (1974).

We assume the lag order p and the rank q of �ν with 1 ≤ q ≤ n to be known.
The parameter space for the high frequency models considered is:

� = {(A1, . . . , Ap
) | det(a(z)) �= 0, |z| ≤ 1

}
×
{
�ν | �ν = �T

ν ,�ν ≥ 0,rk (�ν) = q
}
.

Note that the corresponding set of system parameters

S = {(
A1, . . . , Ap

) | det(a(z)) �= 0, |z| ≤ 1
}

is open in Rn×np. Also note that we have no additional a priori restrictions, unless
the contrary is stated explicitly.

If �ν is of rank q ≤ n, we can write �ν as �ν = bbT where b is an (n × q)
matrix. Accordingly, νt = bεt , where E

(
εtε

T
t

)= Iq . For given �ν, b is unique up
to postmultiplication by an orthogonal matrix. For a particular unique choice of b
see Filler (2010, Prop. 3.1.2).

System (2.1) can be written in companion form as

⎛
⎜⎝

yt
...

yt−p+1

⎞
⎟⎠

︸ ︷︷ ︸
=xt+1

=

⎛
⎜⎜⎜⎝

A1 · · · Ap−1 Ap

In
. . .

In 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=A

⎛
⎜⎝

yt−1
...

yt−p

⎞
⎟⎠

︸ ︷︷ ︸
=xt

+

⎛
⎜⎜⎜⎝

b
0
...
0

⎞
⎟⎟⎟⎠

︸︷︷ ︸
=B

εt , (2.3)

yt = (A1 · · · Ap)︸ ︷︷ ︸
C

xt +bεt . (2.4)

We restrict ourselves to the steady state and thus causal and stationary solution.
The solution of (2.1) or (2.3), (2.4) is of the form

yt = a(z)−1bεt =
(
C (I −Az)−1Bz +b

)
εt , (2.5)

where k(z) = a(z)−1b = C (I −Az)−1Bz +b is the transfer function from (εt ) to
(yt ). The Lyapunov equation, where �p = E(xt xT

t

)
, for the system (2.3) is

�p −A�pAT = BBT . (2.6)

Under the stability assumption (2.2) the system (2.3), (2.4) has a unique sta-
tionary solution, for given (A,B), and the variance of xt can be expressed as

�p =
∞∑

j=0

A jBBT
(
AT
) j

. (2.7)
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Note that this is true also for the singular case, because we have restricted our-
selves to stable systems and stationary solutions.

Of course the system (2.3), (2.4) is a state space system with xt being a state.
For results concerning state space systems and basic system theory needed for this
paper see Kailath (1980, Chap. 6), and Hannan and Deistler (2012, Chap. 1 and 2).
A state space system is called controllable if

rk
(
B,AB, . . . ,Anp−1B

)
= np,

see Hannan and Deistler (2012, Chap. 2), where this is called reachable. As
can be easily seen from (2.7), using the Cayley–Hamilton theorem, the system
(2.3), (2.4) is controllable if and only if �p is nonsingular. A system is called
observable if

rk

⎛
⎜⎜⎜⎝

C
CA
...

CAnp−1

⎞
⎟⎟⎟⎠= np.

Thus the system (2.3), (2.4) is observable if and only if Ap is nonsingular.
A system is both controllable and observable if and only if it is minimal,

i.e., the state dimension np is minimal among all systems with given transfer
function k(z).

A subset of the parameter space � is called generic if it contains a subset that
is open and dense in �. Clearly, the state space system (2.3), (2.4) corresponding
to a regular AR system is always controllable. For the singular AR case, as is well
known, see e.g., Lee and Markus (1967), the corresponding state space systems
are generically controllable. It is immediate that systems (2.3), (2.4) are generi-
cally observable. Thus systems of the form (2.3), (2.4) are generically minimal.

Except for Section 5, we consider the case where there are stock variables only.
Let

yt =
(

y f
t

ys
t

)
,

where the n f -dimensional, say, fast (or to be more precise high frequency)

component y f
t is observed at the highest (sampling) frequency t ∈ Z and the

ns-dimensional slow (or to be more precise low frequency) component ys
t is

observed only for t ∈ NZ (N being an integer N > 1), i.e., for every N -th time
point. Throughout we assume n f ≥ 1.

The matrices

Ai =
(

af f (i) af s(i)
as f (i) ass(i)

)
, i = 1, . . . , p, �ν =

(
σ f f σ f s

σs f σss

)
are partitioned accordingly.
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The central problem considered in this paper is identifiability, i.e., whether, for
given �, the parameters Ai and �ν of the high frequency system are uniquely
determined by the population second moments of the observations. In the case of
stock variables these population second moments are of the form

γ f f (h) = E
(

y f
t+h

(
y f

t

)T
)

, h ∈ Z,

γ s f (h) = E
(

ys
t+h

(
y f

t

)T
)

, h ∈ Z,

γ ss(h) = E
(

ys
t+h

(
ys

t

)T
)
, h ∈ NZ. (2.8)

The observed outputs can be represented by the so-called blocked process

ỹt =

⎛
⎜⎜⎜⎜⎝

yt

y f
t−1
...

y f
t−N+1

⎞
⎟⎟⎟⎟⎠ , t ∈ NZ,

whose covariances are exactly the second moments described above.
Note that if identifiability holds and if in addition there is an algorithm for

obtaining the parameters of the high frequency system from the population sec-
ond moments of the observations, we can reconstruct the missing moments
γ ss(h) = E

(
ys

t+h(ys
t )

T
)
, h ∈ NZ− j, j ∈ {1, . . . , N −1} and thus all γ (h) =

E
(
yt+h yT

t

)
, h ∈ Z. Then linear least squares methods for forecasting, nowcast-

ing, and interpolation of nonobserved output variables can be applied. If such an
algorithm defines a continuous function and thus the problem is well-posed, the
algorithm may be applied to sample second moments, in order to yield consistent
estimators of the system and noise parameters of the underlying high frequency
system and thus of missing second moments. In other words, identifiability and
well-posedness are important in obtaining consistent estimators of the system and
noise parameters, Ai and �ν respectively.

Note however that there are problems which do not require identifiability of
all high frequency parameters. As has been shown in Bai, Ghysels, and Wright
(2013), this may be important for forecasting and as has been shown in Ghysels,
Hill, and Motegi (2014), also analysis of Granger causality does not require iden-
tifiability of all high frequency parameters.

3. IDENTIFIABILITY FOR AR(1) SYSTEMS

In this section we consider the special case of AR(1) systems. In addition, for
simplicity, we restrict ourselves to the case N = 2, n f = ns = 1. Furthermore, we
assume throughout this section that the AR(1) system is regular. This is done for
two reasons. First, it gives an example illustrating the problem. Second, as will be
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shown below, this analysis yields special results; in particular the subset, �I say,
of �, where identifiability is obtained (without imposing additional restrictions),
can be described explicitly. We show that the complement of this set is a so-called
semi-algebraic set, see Bochnak, Coste, and Roy (1998, p. 24, Def. 2.1.4),
i.e., a set of (multivariate) polynomial zeros where in addition inequalities are
imposed, and so we conclude that for generic parameter values identifiability is
obtained. This case has been described in detail in Anderson et al. (2012).

We first consider the case where in addition �ν is diagonal. Using a self-evident
notation, we can write(

y f
t

ys
t

)
=
(

af f af s

as f ass

)
︸ ︷︷ ︸

A

(
y f

t−1
ys

t−1

)
+
(

ν
f

t
νs

t

)
. (3.1)

Now, the one-step-ahead predictor for y f
t−1, t −1 odd, based on observed outputs

is obtained from the following equation:

y f
t−1 = af f y f

t−2 +af s ys
t−2 +ν

f
t−1,

and the two-step-ahead predictor of yt , t even, is obtained from

yt =A2 yt−2 +Aνt−1 +νt .

Combining both equations gives a three-dimensional system on 2Z:⎛
⎜⎝

y f
t

ys
t

y f
t−1

⎞
⎟⎠

︸ ︷︷ ︸
ỹt

=
( A2 0

af f af s 0

)
︸ ︷︷ ︸

Ã

⎛
⎜⎝

y f
t−2

ys
t−2

y f
t−3

⎞
⎟⎠+

(Aνt−1 +νt

ν
f

t−1

)
︸ ︷︷ ︸

ν̃t

. (3.2)

Note that (3.2) is an AR(1) system on 2Z whose outputs ỹt are the observed
variables and thus may serve as a model for the MF data.

As the components of ỹt−2 are linearly independent by the regularity assump-
tion, Ã and �ν̃ = E(ν̃t ν̃

T
t

)
are uniquely determined from the second moments of

(ỹt | t ∈ 2Z). However, not all entries in Ã, �ν̃ are free, since

Ã=
⎛
⎝ a2

f f +af sas f af f af s +af sass 0
as f af f +assas f as f af s +a2

ss 0
af f af s 0

⎞
⎠ , (3.3)

�ν̃ =
⎛
⎝σ f f 0 0

0 σss 0
0 0 0

⎞
⎠+

⎛
⎝af f af s

as f ass

1 0

⎞
⎠(σ f f 0

0 σss

)(
af f as f 1
af s ass 0

)
(3.4)

must hold.
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Here the high frequency system has 6 free parameters, whereas a general AR(1)
system for n = 3 has 15 free parameters. In order to analyze identifiability we
solve (3.3), (3.4) for given Ã, �ν̃ for the high frequency parameters A and �ν .
We see that if af s and as f are both zero, then only a2

ss is unique, otherwise A and
�ν are unique and thus we have nonidentifiability if and only if af s = as f = 0
and ass �= 0 hold.

It is interesting to note that we have identifiability whenever the two component
processes

(
y f

t |t ∈ Z) and
(
ys

t |t ∈ Z) are not orthogonal.
If we drop the assumption σs f = 0 we obtain:

THEOREM 1. Assume that p = 1, n f = ns = 1, �ν > 0 and N = 2. The system

and noise parameters
(

af f af s
as f ass

)
, σ f f , σs f and σss are not identifiable if and only

if they satisfy the equations

af s = 0,

as f + σs f

σ f f
(ass −af f ) = 0, (3.5)

ass �= 0.

The complement of the set of solutions of (3.5) contains an open and dense subset
of �.

The proof is given in the appendix.

Remark 1. An interesting interpretation of Theorem 1 is the following. The
parameters of the underlying high frequency model cannot be obtained if and
only if there is a static linear transformation such that the transformed model has
a diagonal innovation variance and the transformed system matrix is diagonal
with nonzero (2,2) entry. Note that such a transformation must be of the form

T =
( 1 0
−σs f σ

−1
f f 1

)
and that for given T the conditions of nonidentifiability aris-

ing are exactly the same as in (3.5). Thus identifiability for systems with nondi-
agonal innovation variance can be traced back to identifiability for systems with
diagonal innovation variance.

Note that equations (3.3), (3.4) may also be used for identifiability analysis for
n = q > 2 though dealing with the various special cases is more intricate since
scalars are replaced by matrices. We repeat that the advantage of the analysis
given above is that the subset of identifiable parameters is explicitly given, and
that the genericity property stands out clearly.

On the other hand, the analysis above cannot be extended to the case p > 1
since the blocked process (ỹt ) is no longer AR but ARMA in general. This can be
seen from a two-dimensional AR(2) example of the form

yt = A2 yt−2 +νt t ∈ Z,

where A2 is nondiagonal. Note that the fact that AR systems are not closed under
marginalization is well known, see e.g. Amemiya and Wu (1972) and Tiao (1972).
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4. G-IDENTIFIABILITY RESULTS USING EXTENDED YULE WALKER
EQUATIONS

As has been mentioned above, the analysis given in the previous section cannot be
generalized to the case of order p > 1. The reason is that, in general, the blocked
process (ỹt | t ∈ 2Z) will not be AR, or to put it in more general terms, AR pro-
cesses are not closed under marginalization.

In the analysis given below we will not be able to give an explicit characteri-
zation (i.e., explicit restrictions on the system and noise parameters) of the subset
�I of all identifiable systems of �. As a “second best” result, we will show that
�I is generic which means that identifiability holds in typical cases. To repeat,
a subset of the parameter space � is called generic if it contains a subset that is
open and dense in �. We use the term g-identifiability if identifiability can be
ensured on a generic subset of the parameter space.

In this paper we present two approaches to obtain a result on generic iden-
tifiability, which are both “constructive”, i.e., based on algorithms for actually
calculating the (unique) parameters θ ∈ � from the second moments (2.8) of
the observations. The first approach is based on extended Yule Walker equations
(see Chen and Zadrozny, 1998) and is dealt with in this section. The alternative
approach based on the blocking concept is presented in Section 7.

4.1. Derivation of the Extended Yule Walker Equations for Mixed
Frequency Data

By postmultiplying equation (2.1) by yT
t− j , j > 0 and forming expectations, we

obtain Yule Walker equations. The problem with these equations is that matrices
on both the left and right hand side contain unobserved second moments. In order
to overcome this problem, we postmultiply equation (2.1) by

(
y f

t− j

)T
, j > 0 and

form expectations. Thereby we obtain extended Yule Walker equations (XYW,
see Chen and Zadrozny, 1998) as

E

(
yt

((
y f

t−1

)T
,
(

y f
t−2

)T
, . . .

))
= (A1, . . . , Ap)E

⎛
⎜⎝
⎛
⎜⎝

yt−1
...

yt−p

⎞
⎟⎠((y f

t−1

)T
,
(

y f
t−2

)T
, . . .

)⎞⎟⎠ . (4.1)

Let

K := E
(

xt

(
y f

t−1

)T
)

= E
⎛
⎜⎝
⎛
⎜⎝

yt−1
...

yt−p

⎞
⎟⎠(y f

t−1

)T

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

γ f f (0)

γ s f (0)
...

γ f f (−p +1)

γ s f (−p +1)

⎞
⎟⎟⎟⎟⎟⎠= �p

⎛
⎜⎜⎜⎝

In f

0
...
0

⎞
⎟⎟⎟⎠ . (4.2)
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From equation (2.3), i.e., xt+1 =Axt +Bεt , we have that xt =∑∞
i=0AiBεt−i−1

and xt+s =As xt +∑s−1
i=0AiBεt+s−i−1. The block columns of the second matrix

on the right hand side of (4.1) are of the form E

(
xt
(
y f

t− j−1

)T ) = E

(
xt+ j

(
y f

t−1

)T ) =
E

((A j xt +∑ j−1
i=0 AiBεt+ j−i−1

)(
y f

t−1

)T )=A j
E

(
xt
(
y f

t−1

)T )=A j K , j ≥ 0.

Thus the rightmost matrix in the extended Yule Walker equations (4.1) can
be written as (K ,AK ,A2 K , . . . ). From the Cayley-Hamilton theorem and since
A ∈Rnp×np, we see that the second matrix on the right hand side of (4.1) has full
row rank if and only if the matrix consisting of the first np blocks has full row
rank. In this way we have obtained our XYW which are of the form

E

[
yt

((
y f

t−1

)T
, . . . ,

(
y f

t−np

)T
)]

= (A1, . . . , Ap)E

⎡
⎢⎣
⎛
⎜⎝

yt−1
...

yt−p

⎞
⎟⎠((y f

t−1

)T
, . . . ,

(
y f

t−np

)T
)⎤⎥⎦

︸ ︷︷ ︸
=:Z

. (4.3)

The crucial point is that the matrix Z can be written as

Z =
(

K ,AK ,A2 K , . . . ,Anp−1 K
)
, (4.4)

and therefore has the structure of a controllability matrix.
Clearly, the system parameters

(
A1, . . . , Ap

)
of (2.1) are identifiable if Z has

full row rank np, or equivalently, and in the language of linear system theory,
the pair (A, K ) is controllable. Note, however, that contrary to usual controlla-
bility matrices, here K depends on A, which makes the task of verifying generic
controllability more demanding.

Remark 2. Consider again the two-dimensional AR(1) process of Section 3.
In this case the matrix Z in equation (4.3) is rank deficient for ass = 0, as f = 0
even if af s �= 0 which shows that the condition rk(Z) = np is not necessary for
identifiability. For the example discussed in the previous section, where for the
case σs f = af s = as f = 0 the classes of observationally equivalent parameters
consist of two points (corresponding to the two choices of the square root of a2

ss),
the solution set of the XYW is a nontrivial affine subset. This shows that the
XYW do not use the full information contained in the second moments of the
observations.

Remark 3. The advantage of commencing from XYW is that they immediately
give linear and consistent estimators.

4.2. g-Identifiability of System and Noise Parameters

The parameter space in this section is the set � of all
((

A1, . . . , Ap
)
,�ν

)
where(

A1, . . . , Ap
) ∈ S and �ν has rank q. In particular, we assume that there are no



804 BRIAN D. O. ANDERSON ET AL.

cross restrictions between system and noise parameters. We analyze identifiability
of system parameters first.

The next theorem, which is a central result of this paper, shows that the matrix
Z in equation (4.3) is generically of full row rank and thus we have generic iden-
tifiability for

(
A1, . . . , Ap

)
. Note that this holds both for regular and singular AR

systems, for all sampling frequency ratios N , and all n f ≥ 1.

THEOREM 2. The matrix Z in the extended Yule Walker equations (4.3) has
full row rank np on a generic subset of the parameter space �, and thus the
system parameters are g-identifiable.

A proof of this theorem has been given in Anderson et al. (2012) and a more
elegant proof is presented in the appendix.

Let vec denote columnwise vectorization and let us define G = (In,0, . . . ,0).

THEOREM 3. The noise parameters �ν are g-identifiable in � from

vec�ν =
(
(G⊗ G)(I(np)2 − (A⊗A)

)−1
(
GT ⊗ GT

))−1
vecγ (0). (4.5)

Again, the proof is given in the appendix.

Remark 4. From Theorems 2 and 3 we see that the system and noise parame-
ters are g-identifiable, i.e., identifiable on the intersection of the set described in
the proofs of Theorems 2 and 3. Note that the results shown in the proofs of the
theorems are stronger than mere genericity results, because the set where Z has
not full row rank np is a proper algebraic set (see Wonham, 1985, p. 28) and the
same statement holds for the case of noise parameters.

Note that the property that Z has full row rank np depends on
(

A1, . . . , Ap
)

as
well as on �ν whereas the uniqueness of �ν obtained via (4.5) depends only
on
(

A1, . . . , Ap
)
. The first assertion is easy to see by considering the AR(1)

case of the previous section: Consider the special cases af f �= ass , both nonzero,
af s = as f = 0. If �ν is diagonal Z has rank 1 otherwise Z has rank 2.

Remark 5. We have not been able to give an explicit description of those ele-
ments in � which are not identifiable or those parameters where Z is not of full
row rank np.

Remark 6. Although we only have considered the case of two different sam-
pling frequencies, an extension of the results given here to three or more sampling
frequencies is straightforward.

If the system (2.3), (2.4) is not controllable, i.e., if �p is singular, then clearly
we have nonidentifiability even for high frequency data, as the Yule Walker equa-
tions then have no unique solution. Note however, that, as will be shown in Sec-
tion 6, in such a situation identifiability might be obtained by suitably prescribing
the column degrees in a(z).
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5. FLOW VARIABLES AND MORE GENERAL AGGREGATION
SCHEMES

In the previous sections only stock variables have been considered. Here we deal
with the case where the process

(
ys

t | t ∈ Z) consists of flow variables or variables
aggregated by more general schemes. For flow variables the aggregation to the
corresponding observed process, (wt | t ∈ NZ) say, is of the form

wt = ys
t + ys

t−1 +·· ·+ ys
t−N+1 =

(
1+ z +·· ·+ zN−1

)
ys

t , t ∈ NZ. (5.1)

Remember that z denotes the backward shift on Z.
Note that the second moments required in the extended Yule Walker equa-

tions are the autocovariances E
(

y f
t+h

(
y f

t
)T
)
, h ∈ Z and the cross covariances

E

(
ys

t+h

(
y f

t
)T
)

, h ∈ Z. We now show how these cross covariances can be re-

trieved from the cross covariances E
(
wt+h

(
y f

t
)T
)
, h ∈ Z of the observations.

To show this, assume for the moment that wt is available for all t ∈ Z and that
the inverse of the linear transformation (5.1) exists for all t ∈ Z, i.e.,

ys
t = l.i.m.

M→∞

M∑
j=0

h(M)
j wt− j , h(M)

j ∈ Rns×ns , t ∈ Z, (5.2)

where l.i.m. denotes the limit in mean square. Then

γ s f (h) = E
(

ys
t+h

(
y f

t

)T
)

= lim
M→∞

M∑
j=0

h(M)
j E

(
wt+h− j

(
y f

t

)T
)

︸ ︷︷ ︸
γ wy f

(h− j)

. (5.3)

Note that for our purposes the inverse of the linear transformation (5.2) only has
to exist for the special input (wt ). In order to show the existence of the inverse
transformation (5.2), it is more convenient to use the frequency domain rather
than the time domain, see Rozanov (1967) and Hannan (1970). Let

fys ys (λ) = (2π)−1
∞∑

h=−∞
γ ss(h)e−iλh

and

fww(λ) = (2π)−1
∞∑

h=−∞
E

(
wt+h (wt )

T
)

e−iλh

denote the spectral density of (ys
t | t ∈ Z) and (wt | t ∈ Z), respectively. As is well

known, then the spectral density fww(λ) of (wt | t ∈ Z) satisfies

fww(λ) =
(

1+ e−iλ +·· ·+ e−i(N−1)λ
)

Ins fys ys (λ)Ins

(
1+ eiλ +·· ·+ ei(N−1)λ

)
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and thus∫ (
1+ e−iλ +·· ·+ e−i(N−1)λ

)−1
Ins fww(λ)Ins

(
1+ eiλ +·· ·+ ei(N−1)λ

)−1
dλ

=
∫

fys ys (λ)dλ < ∞.

Therefore each row of
(
1+ e−iλ +·· ·+ e−i(N−1)λ

)−1
Ins is an element of the

frequency domain L2 ( fwwdλ) of fww and by the isomorphism between the fre-
quency and the time domain the inverse transformation (5.2) is well defined. From
(5.3) we then obtain

fys y f (λ) = (2π)−1
∞∑

h=−∞
γ s f (h)e−iλh

=
(

1+ e−iλ +·· ·+ e−i(N−1)λ
)−1

Ins fwy f (λ) (5.4)

and thus γ s f (h), h ∈ Z. In this way, we get all covariances in the extended Yule
Walker equations. Note that whereas for the case of stock variables these covari-
ances are the covariances of the observations, in the case considered here, they
have to be reconstructed as described above.

A completely analogous derivation holds if we replace (5.1) by the more gen-
eral aggregation scheme

wt = k0 ys
t + k1 ys

t−1 +·· ·+ kN−1 ys
t−N+1, k0 nonsingular. (5.5)

Thus, taking into account that generically Z has row rank equal to np, we obtain
the following result:

THEOREM 4. Given the aggregation scheme (5.5) for the slow variables
(wt | t ∈ NZ), the system and noise parameters of the high frequency system (2.1)
are g-identifiable from γ f f (h) and γwy f (h), h ∈ Z.

Note that if we set k0 = I and kj = 0, j = 1, . . . , N − 1, we have the case of
stock variables. Thus Theorems 2 and 3 are special cases of Theorem 4. As is
immediately seen, Theorem 4 also covers the case where the slow variables are
formed by a mixture of stock and flow variables.

6. G-IDENTIFIABILITY FOR PRESCRIBED COLUMN DEGREES

In this section we are interested in identifiability of mixed frequency AR systems
for the case that the column degrees of a(z) rather than the degree of a(z) are
prescribed. Let p1, . . . , pn denote these prescribed column degrees. Let �(p1,...,pn)

denote the subspace of � where the highest degree of the respective i-th column
of a(z) is bounded by pi and let ( Ā1, . . . , Āp) denote all columns of (A1, . . . , Ap)
which are not prescribed to be zero.
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Prescribing column degrees may be essential in obtaining identifiability for
at least two reasons. First, consider the high frequency case only. Note that
for the regular AR case, �p is always nonsingular and thus no identifiability
issues occur. In the case of singular AR systems, however, �p might be singu-
lar and thus even from high frequency data we might not have identifiability. If
this occurs, identifiability (from high frequency data) can be obtained by suit-
ably prescribing column degrees, see Deistler, Filler, and Funovits (2011). Sec-
ond, let us consider the mixed frequency case. For singular AR systems where
in addition �p is singular, of course, Z cannot be of full row rank. Appropri-
ately prescribing column degrees leads to a modification of the matrix Z , as
described below, which generically entails identifiability of the parameters of
the high frequency system. As has been mentioned above, singular AR systems
serve as models for latent variables or for static factors in dynamic factor mod-
els, see Deistler et al. (2010) and they occur in the case of definitional equations,
see Phillips (1974).

In the high frequency case, if �p is singular, identifiability can be obtained by
selecting a basis for the row space of �p consisting of the first basis rows. Let S�p

denote the matrix formed by these basis rows where S is a
∑n

i=1 pi ×np selector
matrix, for more details see Deistler et al. (2011). Thus, in the high frequency case,
by prescribing appropriate column degrees we can always obtain identifiability.
Clearly, for �p singular, the system (2.3), (2.4) is not controllable and thus not
minimal. A controllable system, however, is obtained as follows: We shall first
consider the case pi > 0, i = 1, . . . ,n.

Let us define

x̄t+1 = Āx̄t + B̄εt , (6.1)

where x̄t = Sxt , Ā = SAST , B̄ = SB. Equation (6.1) has been called the quasi-
companion form in Deistler et al. (2011).

It immediately follows that

yt = ( Ā1, . . . , Āp)x̄t +bεt . (6.2)

Note that in the case of nonzero column degrees only “structural” zeros and
ones, i.e., elements of A and B independent of the parameters (A1, . . . , Ap)
and �ν , are deleted in A and B. Thus, in this case of prescribed column de-
grees, identifiability of (A1, . . . , Ap) and �ν is equivalent to the identifiability of
( Ā1, . . . , Āp) = (A1, . . . , Ap)ST and �ν .

Completely analogously to Section 4.1 we can derive the modified extended
Yule Walker equations for our reduced equation (6.2)

E

(
yt

(
(y f

t−1)T , . . . , (y f
t−np+s )

T
))

= ( Ā1, . . . , Āp)E
(

x̄t

(
(y f

t−1)T , . . . , (y f
t−np+s )

T
))

= ( Ā1, . . . , Āp)
(

K̄ ,ĀK̄ ,Ā2 K̄ , . . . ,Ānp−s−1 K̄
)

︸ ︷︷ ︸
=:Z̄

, (6.3)
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where s is the number of prescribed zero columns in (A1, . . . , Ap) and Ā ∈
R

(np−s)×(np−s) and where �̄p = E(x̄t x̄ T
t ) and K̄ = �̄p

( In f

0

)
. Now obviously the

parameter matrices ( Ā1, . . . , Āp) are identifiable if the matrix Z̄ has full row rank.
In an analogous way as in the two preceding sections we obtain:

THEOREM 5. For prescribed nonzero column degrees p1, . . . , pn the system
parameters ( Ā1, . . . , Āp) and the noise parameters �ν are g-identifiable with
respect to the parameter space �(p1...pn). Moreover this statement remains true
for more general aggregation schemes (5.5).

The proof of this theorem is in Appendix D.
We now consider the case where there is at least one i such that pi = 0. In this

case we define two subprocesses of (yt ): Let yr
t = S1 yt contain all components

y(i)
t of yt with pi > 0, and let yz

t = S2 yt contain all components y(i)
t with pi = 0.

It is easy to see that yr
t is again an AR process. We obtain the following theorem:

THEOREM 6. For prescribed column degrees p1, . . . , pn the system parame-
ters ( Ā1, . . . , Āp) and the noise parameters �ν are g-identifiable with respect to
the parameter space �(p1...pn) if

(
yr

t

)
contains at least one fast component. More-

over this statement remains true for more general aggregation schemes (5.5).

The proof of this theorem can be found in Appendix E.

7. AN ALTERNATIVE APPROACH: G-IDENTIFIABILITY RESULTS VIA
BLOCKING

In this section we describe an alternative approach for obtaining g-identifiability
results, namely blocking. We present this approach for three reasons: First, it
provides additional insights into the structure of the problem; second, all second
moments of the observations are used (note that in the XYW equations the avail-
able autocovariances of the slow process have not been used), and third, it leads
to an alternative estimation procedure.

Blocking has been used in signal processing for a number of purposes, see
Bittanti, Colaneri, and De Nicolao (1988). For blocking in case of mixed fre-
quency data see Filler (2010), Ghysels (2012), Chen et al. (2012), and Zamani
(2014). Here we draw to a great extent from fundamental results in system theory
and again the reader not familiar with these results is referred to Kailath (1980)
and Hannan and Deistler (2012).

In this section we restrict ourselves to the case that �p > 0, Ap is nonsingular,
and to the case of stock variables. The idea of blocking has been developed already
in Section 3 for the AR(1) case. For convenience of the presentation, let us assume
throughout in this section that N = 2 holds: The results presented here for N = 2
can also be obtained for general N where in Theorem 7 the additional assumption
that A is diagonalizable has to be introduced. Note that the set of θ such that A is
diagonalizable is generic, see e.g., Felsenstein (2014, Lemma 3.4.2).
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We commence from the high frequency process (yt | t ∈ Z). In blocked form

this process can be written as (Yt | t ∈ 2Z), where Yt =
( yt

yt−1

)
. Let L2 denote

the Hilbert space of all scalar square integrable random variables over an under-
lying probability space (�,A,P). By the results obtained by Akaike (1974) and
Kalman (1965) (see also Hannan and Deistler, 2012, Chap. 2) we have the follow-
ing state construction: We project all one-dimensional “future” random variables
y(i)

t+h, h > 0 on the Hilbert space spanned by all past variables y(i)
t− j , j ≥ 0 - here

y(i)
t is the i-th component of yt . The Hilbert space spanned by these projections,

called the state space, is finite dimensional if and only if the spectral density of
(yt ) is rational, and in this case every basis of the state space forms a minimal state
of a stable and miniphase state space system with (yt ) as outputs and the innova-
tions of (yt ) as inputs. The dimension of the state space is the so-called McMillan
degree of the transfer function corresponding to such a stable and miniphase
system. Note that miniphase means that there is a causal inverse to the system
and thus the transfer function of a minimal, stable, and miniphase system has
no zeros inside the unit circle. Such a transfer function corresponds to the Wold
decomposition.

Note that the state spaces of (yt | t ∈ Z) for even t and (Yt | t ∈ 2Z) are the same
and both processes are AR processes with corresponding minimal state dimension
smaller than or equal to np and equal to np if and only if Ap is nonsingular and
�p > 0. In particular, we have from (2.3) the state space representation, for p > 1
(for p = 1 see Section 3),

xt+1 = A2︸︷︷︸
Ab

xt−1 + (B,AB)︸ ︷︷ ︸
Bb

(
εt

εt−1

)
, (7.1)

Yt =
(

In 0 0 · · · 0
0 In 0 · · · 0

)
A2xt−1 +

(
b A1b
0 b

)(
εt

εt−1

)
(7.2)

for t ∈ 2Z, where, if for notational simplicity we consider the case of p even, the
minimal state is given as

xt+1 =
⎛
⎜⎝

Yt
...

Yt−p+2

⎞
⎟⎠ .

Now, for the mixed frequency case, for stock variables and N = 2, we use the

blocked observed process as (ỹt |t ∈ 2Z), ỹt =
( yt

y f
t−1

)
exactly as in Section 3.

Also note that the second moments of (ỹt |t ∈ 2Z) are precisely the second mo-
ments (2.8) of the observations.
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From (7.1), (7.2) we obtain the following state space representation
for (ỹt | t ∈ 2Z)

xt+1 = Abxt−1 + Bb

(
εt

εt−1

)
, (7.3)

ỹt =
(

In 0 0 · · · 0

0
(

In f ,0
)

0 · · · 0

)
A2

︸ ︷︷ ︸
Cb

xt−1 +
(

b A1b

0
(

In f ,0
)

b

)
︸ ︷︷ ︸

Db

(
εt

εt−1

)
. (7.4)

Whereas in (7.1), (7.2), as easily can be seen, the driving noise
((

εt

εt−1

)
| t ∈ 2Z

)
are innovations for (Yt | t ∈ 2Z), the

(
εt

εt−1

)
are not innovations for ỹt , at least

in the regular case, as is already clear from considering the dimensions of the
respective vectors.

The spectral density of (ỹt | t ∈ 2Z), using (7.3), (7.4), can be represented as

f ỹ

(
z2
)

=
(

Cb

(
Inp

(
z2
)−1 − Ab

)−1

Bb + Db

)

×
(

BT
b

(
Inpz2 − AT

b

)−1
CT

b + DT
b

)
, (7.5)

where the spectral factor on the right side of (7.5) is “fat” and not miniphase. On
the other hand, the spectral density of (ỹt | t ∈ 2Z) can be written as

f ỹ

(
z2
)

= k
(

z2
)

kT
(

z−2
)
, (7.6)

where k
(
z2
)

is a stable and miniphase spectral factor (not to be confused with k(z)
below (2.5)). Thus for a suitable quadruple

(
Āb, B̄b, C̄b, D̄b

)
denoting a minimal,

stable and miniphase state space system, we have

k
(

z2
)

=
(

C̄b

(
Inp

(
z2
)−1 − Āb

)−1

B̄b + D̄b

)
. (7.7)

The question of the relation of the state dimensions of minimal, stable and
miniphase state space systems for (ỹt | t ∈ 2Z) and (Yt | t ∈ 2Z) arises. The next
theorem states that despite the fact that the unobserved outputs have been omitted
in ỹt , generically the McMillan degrees of the transfer function corresponding to
(7.1), (7.2) and in k

(
z2
)

in (7.7) are the same.
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THEOREM 7. For
((

A1, . . . , Ap
)
,�ν

) ∈ �, if Ap is nonsingular, �p > 0, and
if for eigenvalues of A such that λi �= λj it follows that λ2

i �= λ2
j holds, the

McMillan degree of a causal and miniphase spectral factor k
(
z2
)

of f ỹ
(
z2
)

is
equal to np.

The proof of this theorem is given in the appendix. This proof is based on the
fact that for a process the rank of the Hankel matrix of the covariances Hγ is the
same as the rank of the Hankel matrix of a miniphase transfer functionHk , which
is the McMillan degree.

Remark 7. It is easy to show that the assumptions of Theorem 7 define a
generic subset of the parameter space �.

The next theorem shows the relation between
(

Āb, C̄b
)

and (Ab,Cb):

THEOREM 8. Under the assumptions of Theorem 7 the matrices (Ab,Cb) and(
Āb, C̄b

)
in (7.5) and (7.7) respectively are the same up to basis change, i.e.,

Āb = T −1 AbT, (7.8)

C̄b = CbT (7.9)

for a suitably chosen nonsingular np ×np matrix T .

Again, the proof of this theorem is given in the appendix.

Remark 8. Note that Theorem 7 is essential for (7.8), (7.9) because it ensures
that Āb and Ab are of the same dimension. Also note that the result of Theorem 8
holds despite the fact that the states in (7.3), (7.4) and in the minimal, stable
and miniphase system corresponding to (7.7) are not the same, even up to basis
change.

These considerations lead us to the following procedure set out below in the
next paragraphs, subject to the following assumptions. In addition to the assump-
tions of Theorem 7 we assume (a) that the pair

((
In f 0 · · · 0

)
,A) is observable,

which is generic, see Anderson et al. (2012), and (b) that the eigenvalues of A
are distinct, which also is generic, as is easy to see, since the eigenvalues are the
inverse of the zeros of deta(z).

The matrices
(

Āb, C̄b
)

can be obtained from the Hankel matrix of covariances
Hγ as shown in the proof of Theorem 8 in the appendix, see equations (G.1)
and (G.2). Thus for a given S the matrices

(
Āb, C̄b

)
depend continuously on the

covariances of the observations.
We are left with the task to find the root of the matrix Āb, say Ā, and to find the

transformation T corresponding to the basis change to yield A= T ĀT −1 where
A has the companion structure (2.3). By our assumptions, the eigendecomposition
of A is A = QQ−1 where  = diag(λ1, ...,λnp) contains the eigenvalues, and
Q = (

q1, ..,qnp
)

where qi are the eigenvectors. Now it immediately follows that
Ā = T −1 QQ−1T and Āb = T −1 Q2 Q−1T , which is an eigendecomposition



812 BRIAN D. O. ANDERSON ET AL.

of Āb. Note that under our assumptions T −1 Q and 2 can be determined from
Āb. Now we have

C̄bT −1 Q =
( (

In 0 · · · 0
)A2 Q((

In f ,0
)

0 · · · 0
)AQ

)
, (7.10)

where we used (0 In · · · 0)A2 = ( In 0 · · · 0)A. Since Q is a matrix of eigenvectors
for both A and A2, we can determine the eigenvalues λi of A by considering a
submatrix of (7.10):(

In f 0 · · · 0
)A2qi = ( In f 0 · · · 0

)
λ2

i qi , (7.11)(
In f 0 · · · 0

)Aqi = ( In f 0 · · · 0
)
λi qi . (7.12)

Generic observability of
((

In f 0 · · · 0
)
,A) guarantees that the first n f compo-

nents of qi are not all zero (by the so-called PBH test, see Kailath, 1980, p. 135)
and thus we obtain λi . Ā can be determined as follows:

Ā= T −1 QQ−1T = T −1AT . (7.13)

Now we partition T in p block-rows Ti with dimension n × np. From (7.13) we
obtain

A1T1 + A2T2 + ...+ ApTp = T1Ā (7.14)

Ti = Ti+1Ā, i = 1, ..., p −1.

Using the fact that we know T1 from

C̄b Ā−1
b =

(
T1(

In f ,0
)

T2

)
(7.15)

we can calculate the remaining Ti from Ti = T1Ā−i+1, i = 2, .., p. Finally, we
obtain the desired companion form A= T ĀT −1, where the free system parame-
ters are in the first n rows and are uniquely determined. Thus we have shown part
of the following theorem:

THEOREM 9. Under the assumptions of Theorem 7 and the additional as-
sumptions that the pair

((
In f 0 · · · 0

)
,A) is observable and that the eigenvalues

λi of A are distinct, the system parameters
(

A1, . . . , Ap
)

as well as the noise
parameters are uniquely determined from the population second moments of the
observations.

It remains to show uniqueness of the noise parameters �ν . Note that given
the system parameters

(
A1, ..., Ap

)
the noise parameters �ν can be generically

determined as in Section 4.2. However, under our assumptions, we can show that
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�ν is uniquely determined as follows: As easily can be shown that (compare
Section 4.1)

γ (h) = GAh�pGT (7.16)

holds where again G = (In,0, . . . ,0). Thus⎛
⎜⎜⎜⎜⎜⎝

γ (0)
γ (2)
γ (4)

...
γ (2(np −1))

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

G
GA2

GA4

...

GA2(np−1)

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
O2

�pGT (7.17)

holds and under our assumptions (compare (F.1) in Appendix F, note thatO2A2 =
O ) the matrixO2 has full column rank and therefore �pGT is unique. Hence using
(7.16) all missing second moments can be reconstructed. Now �ν can be obtained
via the “high frequency Yule Walker equation”:

�ν = γ (0)− (A1, ..., Ap
)⎛⎜⎝

γ (−1)
...

γ (−p +1)

⎞
⎟⎠ . (7.18)

Note that the assumptions of Theorem 9 do not determine a largest set where
identifiability holds: Consider again the set described in Theorem 1 for the two di-
mensional AR(1) case. For ass = 0, as f = 0 the assumption that Ap is nonsingular
is violated.

The approach via blocking is again constructive as is the approach via XYW.
Note that we have implicitly proposed an algorithm for obtaining a unique param-
eter which is identifiable in �. It is straightforward to show that θ depends on the
second moments of (ỹt ) in a continuous way: First note that by equations (G.1)
and (G.2)

(
Āb, C̄b

)
continuously depends on the second moments of the process

(ỹt ). Next we show that
(

A1, ..., Ap
)

continuously depends on
(

Āb, C̄b
)
. In order

to see this, note that the eigenvalues λ2
i are continuous functions of the matrix

entries and under our assumptions the eigenvectors have the same property, when
the eigenvectors are suitably normalized. By equations (7.11), (7.12) also the λi

are continuous functions of
(

Āb, C̄b
)

and by (7.13) the same holds for Ā. The
equation (7.15) and the argument below show that it is also true for T and thus for
A. The continuous dependence of �ν on the second moments of the observations
is easily seen from (7.16), (7.17), and (7.18).

Note that
(

Āb, C̄b
)

is contained in an Euclidean space of dimension np(np +
n + n f ) whereas

(
A1, ..., Ap

)
has n2 p free parameters, see Section 3. The set of

all stable and observable
(

Āb, C̄b
)

corresponding to our parameter space is a set of
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the form Āb = T −1A2T , C̄b =
(

In 0 0 · · · 0
0 (In f ,0) 0 · · · 0

)
A2T , where A corresponds

to θ ∈ � and det (T ) �= 0. Note that an estimate of
(

Āb, C̄b
)

is not necessarily
contained in this set and thus has to be projected.

We have not been able to describe a relation between the generic set corre-
sponding to XYW and the generic set corresponding to blocking.

One advantage for blocking, as has been already said, seems to be that all
second moments of the observations are used in contrast to the case of XYW.
Accordingly, one could hope for better results when working with real data.

8. OUTLOOK AND CONCLUSIONS

This paper deals with identifiability of system and noise parameters of a multi-
variate (high frequency) AR system when only mixed frequency observations are
available. No a priori assumptions are imposed on the high frequency system ex-
cept for its degree, stability and the rank of the innovation variance. The main
result is that identifiability holds, (possibly) except for the parameters in a “thin”
set, which is the union of two proper algebraic sets (which are lower dimensional).
Thus “typically” we have identifiability and, in particular, we have identifiability
on a set containing an open and dense subset of the parameter space. This holds
for all “aggregation intervals” N for the slow component of the observations and
whenever there is at least one fast component in the observations. Our approach
is different from the well known MIDAS approach (see Ghysels, 2012) and we
also do not use a relation to continuous-time systems and more generally, let us
repeat, we do not impose a priori restrictions in addition to the general ones men-
tioned above. Despite the fact that for most parts of the paper we discuss the case
of stock variables, we show that the central results hold for very general (linear)
aggregation schemes for the slow variables, including stock and flow variables as
special cases.

The final aim of identifiability analysis is to obtain estimators. Note that, as has
been pointed out above, the identifiability analysis given in the previous sections
is “constructive”, i.e., it not only ensures generic uniqueness of the AR-parameters
for given population second moments (2.8), but also provides an algorithm for ac-
tually calculating these parameters from the population second moments. In sys-
tem theory, following terminology introduced by Kalman (see Ho and Kalman,
1966), such an algorithm is called a realization algorithm. Continuity of these al-
gorithms leads to consistent estimators. This suggests two estimation algorithms:
one based on the extended Yule Walker equations as suggested by Chen and
Zadrozny (1998), and the second using a subspace algorithm for the blocked ob-
servations, see Deistler, Peternell, and Scherrer (1995). Both algorithms may also
be used for obtaining initial estimators for numerically maximizing the Gaussian
likelihood.

To summarize, we consider the identifiability analysis given here to be impor-
tant for the overall problem of parameter estimation for the mixed frequency case.
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Despite the fact that we have not been able to explicitly describe the set of
nonidentifiable systems (except for the AR(1) case), it has been shown that we
have identifiability for “almost all” parameters. In addition, by its constructive
nature, our realization algorithms lead to consistent estimation procedures. We
admit - and this is ongoing work - that there are a number of important open
questions concerning estimation. This includes a comparison of the estimators
discussed above by Monte Carlo simulation and by their asymptotic variances. Of
special interest is also, on the one hand, an analysis of the information loss due to
mixed frequency data relative to the case of high frequency data and, on the other
hand, of the information gain when using mixed frequency data compared to the
use of data at the slow rate only.
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APPENDIX A: Proof of Theorem 1

Note that Ã (3.3) does not depend on σs f and thus is unaffected whether σs f is set equal
to zero or not. Only (3.4) is changed to

�ν̃ =
⎛
⎝σ f f σs f 0

σs f σss 0
0 0 0

⎞
⎠+

⎛
⎝af f af s

as f ass
1 0

⎞
⎠(σ f f σs f

σs f σss

)(
af f as f 1
af s ass 0

)
. (A.1)

Thus af f , af s , and σ f f are unique for given Ã, �ν̃ .
We are left with the problem to uniquely solve equation systems (3.3) and (A.1) in the

variables as f , ass , σs f , and σss . For this purpose we distinguish two cases, namely the
case af s = 0 and the case af s �= 0, considering that we already know af s .

We start with the case af s �= 0. It is easy to see that the missing parameters as f , ass , σs f
can be recovered using (3.3) and (A.1). Subsequently σss can be recovered using equa-
tion (A.1).

In the event that af s = 0, then A2 is lower triangular, with (2,2) entry a2
ss . First,

observe that the (2,3) and (2,1) entries of �ν̃ are respectively σ f f as f + σs f ass and
af f

(
σ f f as f +σs f ass

)+σs f . It is immediate that σs f is available.

Next, if ass = 0, a fact which is immediately known from the (2,2) entry of A2, then
the (2,3) entry of �ν̃ is simply σ f f as f and since σ f f is obviously nonzero, the value of
as f can be obtained. Also, the (2,2) entry of �ν̃ is as f

(
σ f f as f +σs f ass

)+σss and one
immediately has σss .

It therefore remains to consider the situation where ass �= 0. The following quantities
α and β, corresponding to the (2,1) entry of A2 and the (2,3) entry of �ν̃ , are known:

as f af f +assas f = α,

σ f f as f +σs f ass = β.

By eliminating as f , we obtain

−a2
ssσs f + (β −af f σs f

)
ass +af f β = ασ f f
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Using this equation and the value for a2
ss available from A2, it follows that ass is

uniquely determined if and only if

β −af f σs f �= 0.

Introducing the expression above for β, this yields:

as f σ f f +assσs f −af f σs f �= 0.

To sum up, identification is possible except for parameters satisfying

af s = 0,

ass �= 0,

as f σ f f +assσs f −af f σs f = 0.

The set of nonidentifiable points as described by equations (3.5) is a so-called semi-
algebraic set, see Bochnak et al. (1998, p. 24, Def. 2.1.4), i.e., a set of (multivariate) poly-
nomial zeros where in addition inequalities may be imposed. Here, in particular, the set of
all identifiable parameters, which is a complement of the semi-algebraic set above, contains
a generic subset of the parameter space, viz. the complement of the set defined by the zeros
of the polynomial equalities alone.

APPENDIX B: Proof of Theorem 2

The proof uses the following well known result, see e.g. Lee and Markus (1967),
Wonham (1985), and Bochnak et al. (1998):

Let f : � → R be a polynomial function. If there exists a θ∗ ∈ � such that f (θ∗) �= 0,
then the set of zeros of f is a proper algebraic set and in particular its complement in �
is generic.

In a first step, we have to show that Z is a rational function of θ ∈ �. It follows imme-
diately that Z is rational if we can show that K is a rational function of θ ∈ �. Vectorizing
the Lyapunov equation (2.6) we obtain

vec�p = (A⊗A)vec�p +vecBBT

and thus

vec�p =
(

I(np)2 − (A⊗A)
)−1

vecBBT . (B.1)

Note that the absolute value of all eigenvalues λj ofA is smaller than one by the stability
assumption (2.2). Therefore the same holds for the eigenvalues of (A⊗A) since the eigen-
values of (A⊗A) are λi λj i, j = 1, . . . ,np and thus

(
I(np)2 − (A⊗A)) is nonsingular.

This implies that vec�p is a rational function in
((

A1, . . . , Ap
)
,�ν

)
having no poles in �.

Thus K and A j K and subsequently Z are rational in
((

A1, . . . , Ap
)
,�ν

)
on �. Without

loss of generality we may restrict ourselves to the case where K is a vector and thus Z
is square. Multiplying Z by det

(
I(np)2 − (A⊗A)

)
we obtain a polynomial in the entries

of
((

A1, . . . , Ap
)
,�ν

)
since det

(
I(np)2 − (A⊗A)

)
has no zeros. Thus the set of zeros of

the determinant of the polynomial matrix det
(
I(np)2 − (A⊗A)

)
Z is the same as the set
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of zeros of the determinant of Z and thus is an algebraic set in �, compare Bochnak et al.
(1998, p. 23).

Now consider a point θ∗ in � given by

A=

⎛
⎜⎜⎜⎝

0 · · · 0 ρC
In

. . .

In 0

⎞
⎟⎟⎟⎠ , B = E1 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , (B.2)

where ρ ∈ (0,1) and

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · · · · 0

0 1
. . .

...
...
. . .

. . .
. . .

...
0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

is a so-called circulant matrix and define e1 ∈Rn, where the first component is one and all
others are zero. We will show that for this point in the parameter space, det(Z) �= 0 holds.

Note that for an AR(p) process wt of a system with parameters θ∗ the covari-
ance γ (0) is diagonal and the covariances γ ( j), j = 1, .., p − 1 are zero, which is
easily seen by looking at the Wold decomposition wt =∑∞

j=0 ρ j C j e1εt− j p . Obviously,

γ (0) =∑∞
j=0 ρ2 j C j e1eT

1

(
C j )T is nonsingular. Thus �p > 0 holds and this implies that(B,AB, . . . ,Anp−1B) is of full row rank, see (2.7). Now it is immediate that Z is of full

row rank since, as �p is diagonal, Z = (
�pE1,A�pE1, . . . ,Anp−1�pE1

)
is a multiple of(B,AB, . . . ,Anp−1B). Thus det(Z) �= 0 holds.

Thus the set of zeros of det(Z) is a proper algebraic set, i.e., an algebraic set of dimension
smaller than the dimension of �. Therefore its complement in the parameter space, which
corresponds to all controllable pairs, is the complement of a proper algebraic set and hence
is open and dense in the parameter space.

APPENDIX C: Proof of Theorem 3

We commence from identifiable system parameters
(

A1, . . . , Ap
)
. Through columnwise

vectorization of

γ (0) = E
(

yt yT
t

)
= G�pGT

we obtain

vecγ (0) = (G⊗ G)vec�p.

This together with (B.1) gives

vecγ (0) = (G⊗ G)
(

I(np)2 − (A⊗A)
)−1

(GT ⊗ GT )vec�ν, (C.1)

where we used that BBT = GT �νG.
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Note that
(
I(np)2 − (A ⊗ A)

)
is nonsingular. For A1 = ·· · = Ap = 0, the matrix(

I(np)2 − (A⊗A)
)−1 is triangular with ones on its diagonal. Thus, in view of the par-

ticular form of G, (G ⊗ G)
(
I(np)2 − (A⊗ A)

)−1(GT ⊗ GT ) is a principal submatrix

of
(
I(np)2 − (A⊗A)

)−1 with the same property and is therefore nonsingular. (G ⊗ G)(
I(np)2 − (A⊗A)

)−1(GT ⊗ GT ) is a function rational in
(

A1, . . . , Ap
)

having no poles.
Thus the set of zeros of this function is a proper algebraic set on � not depending on �ν .
On the complement of this proper algebraic set we have

vec�ν =
(

(G⊗ G)
(

I(np)2 − (A⊗A)
)−1 (GT ⊗ GT

))−1
vecγ (0). (C.2)

APPENDIX D: Proof of Theorem 5

The proof is along the same lines as the proof of Theorem 2. A point θ∗ ∈ �(p1...pn)

where Z̄ has full row rank is constructed as follows: Let

ai (z) = ei − [A1
]
�,i z −·· ·− [Ap

]
�,i z p

denote the i-th column of a(z) and let

CE =
([

Ap1

]
�,1 , . . . ,

[
Apn

]
�,n
)

be the so-called column-end matrix of a(z). Then we take

CE = ρC, ρ ∈ (0,1) ,

where C is the circulant defined in the proof of Theorem 2 and[
Ak
]
�,i = 0, 0 < k < pi ; i = 1, . . . ,n

with b = e1. Then again, �̄p = S�p ST can be shown to be diagonal and nonsingular and
thus det

(
Z̄
) �= 0 holds. Once the system parameters are unique, �ν is obtained in the same

way as in the proof of Theorem 3.

APPENDIX E: Proof of Theorem 6

We first consider the AR process
(
yr

t
)

with parameters not prescribed zero
( Ār

1, . . . , Ār
p) = S1( Ā1, . . . , Āp). Let us define x̄r

t as the state of a quasi-companion form

of yr
t . Obviously, using Theorem 5 we have g-identifiability of ( Ār

1, . . . , Ār
p) since

Z̄r = E
(

x̄r
t

((
yr f

t−1

)T
, . . . ,

(
yr f

t−np+s

)T
))

=
(

K̄ r ,Ār K̄ r ,
(Ār )2 K̄ r , . . . ,

(Ār )np−s−1
K̄ r
)
,

where K̄ r = �̄r
p

( I(nr ) f

0

)
and �̄r

p = E(x̄r
t (x̄r

t )T ), is generically of full column rank. Thus

we are left to show g-identifiability of the remaining rows ( Āz
1, . . . , Āz

p) = S2( Ā1, . . . , Āp),
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which is easily done since yz
t = ( Āz

1, . . . , Āz
p)x̄r

t + bzεt , where bz are the rows of b
corresponding to yz

t , and thus

E

(
yz

t

((
yr f

t−1

)T
, . . . ,

(
yr f

t−np+s

)T
))

=
(

Āz
1, . . . , Āz

p

)
E

(
x̄r

t

((
yr f

t−1

)T
, . . . ,

(
yr f

t−np+s

)T
))

︸ ︷︷ ︸
=Z̄ r

.

Therefore ( Ā1, . . . , Āp) is identifiable if Z̄r has full row rank which is generic. Once the
system parameters are unique, �ν is obtained in the same way as in the proof of Theorem 3.

APPENDIX F: Proof of Theorem 7

First note that the McMillan degree of k
(
z2) is equal to the rank of the Hankel matrix

of covariances Hγ : Let k
(
z2) = ∑∞

j=0 k2 j z2 j be the power series expansion of k
(
z2).

As γ̃ (2 j) = E(ỹ2 j ỹT
0

)=∑∞
i=0 k2 j+2i kT

2i we have

⎛
⎜⎜⎜⎝

γ̃ (2) γ̃ (4) γ̃ (6) · · ·
γ̃ (4) γ̃ (6) γ̃ (8) · · ·
γ̃ (6) γ̃ (8) γ̃ (10)

...
...

. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Hγ

=

⎛
⎜⎜⎜⎝

k2 k4 k6 · · ·
k4 k6 k8 · · ·
k6 k8 k10
...

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Hk

⎛
⎜⎜⎜⎜⎜⎝

kT
0

kT
2 kT

0

kT
4 kT

2 kT
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where the second matrix on the right hand side is of full row rank since k
(
z2) is miniphase.

Thus we have that rkHγ = rkHk holds. Since a spectral miniphase factor of the spectral
density fY

(
z2) of

(
Yt | t ∈ 2Z

)
has McMillan degree np, the McMillan degree of k

(
z2)

must be smaller than or equal to np.
Thus it remains to prove that a finite submatrix ofHγ has rank np:

Hγ
np =

⎛
⎜⎜⎜⎝

γ̃ (2) γ̃ (4) . . . γ̃ (2np)
γ̃ (4) γ̃ (6) . . .

...
...

. . .

γ̃ (2np) γ̃ (4np −2)

⎞
⎟⎟⎟⎠ ∈ R(n+n f )np×(n+n f )np

= E
⎛
⎜⎝

ỹt+2
...

ỹt+2np

⎞
⎟⎠(ỹT

t · · · ỹT
t−2(np−1)

)

= E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yt+2

y f
t+1

yt+4

y f
t+3
...

yt+2np

y f
t+2np−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
yT

t

(
y f

t−1

)T · · · yT
t−2np+2

(
y f

t−2np+1

)T
)
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ (2) [γ (3)]�,1:n f
γ (4) [γ (5)]�,1:n f

· · ·
[γ (1)]1:n f ,. γ f f (2) [γ (3)]1:n f ,. γ f f (4) · · ·

γ (4) [γ (5)]�,1:n f
γ (6) [γ (7)]�,1:n f

· · ·
[γ (3)]1:n f ,. γ f f (4) [γ (5)]1:n f ,. γ f f (6) · · ·

...
...

...
...

γ (2np) [γ (2np +1)]�,1:n f
γ (2np +2) [γ (2np +3)]�,1:n f

· · ·
[γ (2np −1)]1:n f ,. γ f f (2np) [γ (2np +1)]1:n f ,. γ f f (2np +2) · · ·

· · · γ (2np) [γ (2np +1)]�,1:n f

· · · [γ (2np −1)]1:n f ,. γ f f (2np)

· · · γ (2np +2) [γ (2np +3)]�,1:n f

· · · [γ (2np +1)]1:n f ,. γ f f (2np +2)

...
...

· · · γ (4np −2) [γ (4np −1)]�,1:n f

· · · [γ (4np −3)]1:n f ,. γ f f (4np −2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
In 0

)A2�p

(
In

0

) (
In 0

)A3�p

(
In f

0

) (
In 0

)A4�p

(
In

0

) (
In 0

)A5�p

(
In f

0

)
· · ·

(
In f 0

)A�p

(
In

0

) (
In f 0

)A2�p

(
In f

0

) (
In f 0

)A3�p

(
In

0

) (
In f 0

)A4�p

(
In f

0

)
· · ·

(
In 0

)A4�p

(
In

0

) (
In 0

)A5�p

(
In f

0

) (
In 0

)A6�p

(
In

0

) (
In 0

)A7�p

(
In f

0

)
(
In f 0

)A3�p

(
In

0

) (
In f 0

)A4�p

(
In f

0

) (
In f 0

)A5�p

(
In

0

) (
In f 0

)A6�p

(
In f

0

)
.
.
.

.

.

.
.
.
.

.

.

.(
In 0

)A2np�p

(
In

0

) (
In 0

)A2np+1�p

(
In f

0

) (
In 0

)A2np+2�p

(
In

0

) (
In 0

)A2np+3�p

(
In f

0

)
· · ·

(
In f 0

)A2np−1�p

(
In

0

) (
In f 0

)A2np�p

(
In f

0

) (
In f 0

)A2np+1�p

(
In

0

) (
In f 0

)A2np+2�p

(
In f

0

)
· · ·

· · · (
In 0

)A2np�p

(
In

0

) (
In 0

)A2np+1�p

(
In f

0

)

· · · (In f 0
)A2np−1�p

(
In

0

) (
In f 0

)A2np�p

(
In f

0

)
(
In 0

)A2np+2�p

(
In

0

) (
In 0

)A2np+3�p

(
In f

0

)
(
In f 0

)A2np+1�p

(
In

0

) (
In f 0

)A2np+2�p

(
In f

0

)
.
.
.

.

.

.

· · · (In 0
)A4np−2�p

(
In

0

) (
In 0

)A4np−1�p

(
In f

0

)

· · · (In f 0
)A4np−3�p

(
In

0

) (
In f 0

)A4np−2�p

(
In f

0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We look at the following submatrix ofHγ
np

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
In 0

)A2�p

(
In

0

) (
In 0

)A4�p

(
In

0

) (
In 0

)A6�p

(
In

0

)
· · · (

In 0
)A2np�p

(
In

0

)
(
In 0

)A4�p

(
In

0

) (
In 0

)A6�p

(
In

0

) (
In 0

)A8�p

(
In

0

)
· · · (In 0

)A2np+2�p

(
In

0

)
(
In 0

)A6�p

(
In

0

) (
In 0

)A8�p

(
In

0

) (
In 0

)A10�p

(
In

0

)
· · ·

...
...

...(
In 0

)A2np�p

(
In

0

) (
In 0

)A2np+2�p

(
In

0

) (
In 0

)A4np−2�p

(
In

0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(
In 0

)A2(
In 0

)A4(
In 0

)A6

...(
In 0

)A2np

⎞
⎟⎟⎟⎟⎟⎟⎠
(

�p

(
In

0

)
A2�p

(
In

0

)
A4�p

(
In

0

)
· · ·A2np−2�p

(
In

0

))
=OC =H (F.1)

Since we assumed that the eigenvalues are nonzero, λi �= 0, and for eigenvalues λi �= λj

of A λ2
i �= λ2

j holds, it is easy to see that qi is an eigenvector of A2 if and only if qi is an
eigenvector of A.

Observe that O is of full column rank. To show this we are using the PBH Test, see
Kailath (1980), and the fact that for any right eigenvector qi of A the first n components
are not all equal to zero, as shown in Anderson et al. (2012, Lemma 2):((
A2 −λ2

i I
)

(
In 0

)A2

)
qi =

(
0[

λ2
i qi

]
1:n

�= 0

)
.

Also observe that C is of full row rank if �p > 0. Again we are using the PBH Test: We
have to test for all left eigenvectors qT

i of A2 or equivalently A that

qT
i

((
A2 −λ2

i I
)
,�p

(
In
0

))
=
⎛
⎜⎝0,qT

i

⎛
⎜⎝ γ (0)

...
γ (1− p)

⎞
⎟⎠
⎞
⎟⎠ �= 0.

Thus if qi is orthogonal to

⎛
⎜⎝ γ (0)

...
γ (1− p)

⎞
⎟⎠ also

qT
i A j

⎛
⎜⎝ γ (0)

...
γ (1− p)

⎞
⎟⎠= 0, ∀ j ∈ N,

holds which implies qT
i �p = 0 which is in contradiction to �p > 0. Therefore for all

eigenvectors qi of A2⎛
⎜⎝0,qT

i

⎛
⎜⎝ γ (0)

...
γ (1− p)

⎞
⎟⎠
⎞
⎟⎠ �= 0.
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Now, according to Hannan and Deistler (2012, Thm. 2.3.2)H has rank np and therefore
the same holds forHk .

APPENDIX G: Proof of Theorem 8

First we show, using a notation more general than the notation in Theorem 8, how to
determine a minimal state space realization of a stable transfer function k(z) from the
Hankel matrix of this transfer function, see Ho and Kalman (1966), Akaike (1974) or
Hannan and Deistler (2012, Chap. 2). Let (εt ) be the inputs such that yt = k(z)εt . Clearly,
we have⎛
⎜⎝

yt
yt+1

...

⎞
⎟⎠=

⎛
⎜⎜⎜⎝

k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5
...

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Hk

⎛
⎜⎝

εt−1
εt−2

...

⎞
⎟⎠+

⎛
⎜⎜⎜⎝

k0
k1 k0
k2 k1 k0
...

...
. . .

⎞
⎟⎟⎟⎠
⎛
⎜⎝

εt
εt+1

...

⎞
⎟⎠ .

A minimal state space system can be obtained as follows: Let S be a selector matrix select-
ing basis rows of the row space ofHk . Define the state as

xt = S

⎛
⎜⎜⎜⎝

k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5
...

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Hk

α

⎛
⎜⎝

εt−1
εt−2

...

⎞
⎟⎠ .

A state equation of a minimal state space system can be obtained as follows:

xt+1 = S

⎛
⎜⎜⎜⎝

k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5
...

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Hk

α

⎛
⎜⎝

εt
εt−1

...

⎞
⎟⎠

= S

⎛
⎜⎜⎜⎝

k2 k3 k4 · · ·
k3 k4 k5 · · ·
k4 k5 k6
...

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Hk

α+n

⎛
⎜⎝

εt−1
εt−2

...

⎞
⎟⎠+ S

⎛
⎜⎜⎜⎝

k1
k2
k3
...

⎞
⎟⎟⎟⎠εt

= A S

⎛
⎜⎜⎜⎝

k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5
...

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Hk

α

⎛
⎜⎝

εt−1
εt−2

...

⎞
⎟⎠

︸ ︷︷ ︸
xt

+S

⎛
⎜⎜⎜⎝

k1
k2
k3
...

⎞
⎟⎟⎟⎠εt .
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Thus the state transition matrix A can be uniquely obtained as a solution of the linear
equation system

Hk
α+n = AHk

α. (G.1)

The observation equation can be obtained as follows:

yt = (
k1 k2 k3 · · ·)

⎛
⎜⎝

εt−1
εt−2

...

⎞
⎟⎠+ k0εt

= CHk
α

⎛
⎜⎝

εt−1
εt−2

...

⎞
⎟⎠

︸ ︷︷ ︸
xt

+k0εt .

Therefore C can be determined as the unique solution of the linear equation system

(
k1 k2 k3 · · ·)= CHk

α. (G.2)

In the next step we discuss the connection of the row spaces of the Hankel matrices of the
transfer functions k(z) and k̃(z) =∑∞

j=0 k̃j z j , respectively, where now k(z) is miniphase

and k̃(z) corresponds to the same spectrum, has the same McMillan degree as k(z), but is
not necessarily miniphase and has not necessarily the same number of columns as k(z).
We use the relation of the Hankel matrices of the transfer functions k(z) and k̃(z) and the
Hankel matrixHγ of the covariances of (yt | t ∈ Z):

Hγ =Hk

⎛
⎜⎜⎜⎜⎜⎝

kT
0

kT
1 kT

0

kT
2 kT

1 kT
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

and

Hγ =Hk̃

⎛
⎜⎜⎜⎜⎜⎝

k̃T
0

k̃T
1 k̃T

0

k̃T
2 k̃T

1 k̃T
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Note that the left kernels ofHk andHk̃ are subsets of the left kernel ofHγ . Thus we have
the following: Let S be a selector matrix selecting a basis of the row space of Hγ . Then

S also selects bases of the row spaces of Hk andHk̃ since the McMillan degrees of k and

k̃ are the same and equal to the rank of Hk , Hk̃ , and Hγ , respectively, see (Hannan and
Deistler, 2012).
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Let Hk
α = SHk and Hk

α+n be defined as above. Define Hk̃
α = SHk̃ and Hk̃

α+n
accordingly. Then

Hk
α

⎛
⎜⎜⎜⎜⎜⎝

kT
0

kT
1 kT

0

kT
2 kT

1 kT
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠=Hk̃

α

⎛
⎜⎜⎜⎜⎜⎝

k̃T
0

k̃T
1 k̃T

0

k̃T
2 k̃T

1 k̃T
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

and

Hk
α+n

⎛
⎜⎜⎜⎜⎜⎝

kT
0

kT
1 kT

0

kT
2 kT

1 kT
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠=Hk̃

α+n

⎛
⎜⎜⎜⎜⎜⎝

k̃T
0

k̃T
1 k̃T

0

k̃T
2 k̃T

1 k̃T
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

hold. Let Ã be the state transition matrix of a minimal state space realization of k̃(z) such
that

Hk̃
α+n = ÃHk̃

α.

This implies

Hk
α+n

⎛
⎜⎜⎜⎜⎜⎝

kT
0

kT
1 kT

0

kT
2 kT

1 kT
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Hγ

α+n

= ÃHk
α

⎛
⎜⎜⎜⎜⎜⎝

kT
0

kT
1 kT

0

kT
2 kT

1 kT
0

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Hγ

α

.

Since k0 has full column rank, the last equation above implies

Hk
α+n = ÃHk

α.

Thus Ã is also the state transition matrix of a minimal state space realization of k(z).
Analogously, we treat the observation equation and obtain a unique C̃ .
As is well known, for every minimal realization of k̃(z) the matrices A∗ and C∗ are

related to Ã and C̃ via a basis change. This proves the theorem.


