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Abstract. We study a product development race by introducing competition under private infor-

mation in an otherwise standard real-options environment. Firms observe the stochastic-evolution

of their own potential payoffs from entry into a market, while forming conjectures about the state

of their opponents. They face a trade-off between immediate entry or delay, in which the costs of

waiting are enhanced by the endogenous threat of preemption by a rival. We characterize Markov

Perfect Equilibria through a coupled system of differential equations: forward-looking value func-

tions determine optimal exercise rules, while backward-looking beliefs determine the probability of

an opponent’s exercise. The equilibrium displays an intensity of competition that first builds up,

then subsides slowly towards a steady-state. We additionally compute the equilibrium and illustrate

some of its qualitative properties, such as the long-lived transient dynamics and the consequences

of heterogeneity between competitors.
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Introduction

Real options, such as the option of bringing a newly developed product into a market, lack

the precise contractual terms of their financial counterparts. Most notably, they typically do not

expire on a clear deadline but might lose a significant share of their value as soon as competitors

enter the market. Knowledge about the conditions of these competitors and the likelihood of their

entry is strategically important for firms conducting product development, but is also limited by

industrial secrecy.

We study this situation through a continuous-time real option framework. The model features

both rivalry between the options held by different players and incomplete information. Each player

faces a choice between the current exercise of the option (entry) or its delay. Delay has both a

relative benefit and a cost. The benefit originates from the potential evolution of a state which

determines the payoff upon exercise, as it is common in the investment under uncertainty literature.

For instance, as time passes, the product in question can be further developed to become more

profitable, market conditions can improve, or entry costs can decrease. Each player is privately

informed about her own state. In additional to discounting, the relative cost of a delayed exercise

includes the possibility that an opponent might enter the market first, reducing the original player’s

payoff. Beliefs about the likelihood of an opponent’s entry in the near future are therefore key for

determining optimal exercise strategies.

We analyze Markov-Perfect Equilibria of this game. The relevant states for each player are the

value in case of current exercise and calendar time. In a recursive formulation, three essential

objects are jointly determined. First, a player’s value function. This value function takes into

account the player’s belief about the likelihood of an opponent’s entry as time passes. The hazard

rate of that entry, our second object, is central for the recursive formulation of the value function.

Third, the value function itself induces an optimal exercise boundary which is time dependent.

In equilibrium, the likelihood of the state hitting the exercise boundary and the hazard rate that

shapes the value function need to be mutually consistent.

With symmetric players, the equilibrium is described by a pair of integral equations. A forward-

looking equation obtains for the optimal exercise boundary. A backward-looking equation tracks
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the hazard rate. Although this hazard rate is sufficient for all strategic interactions, it is also

possible to fully characterize the conditional belief distribution over the other players’ states.

The equilibrium displays a fundamental time dependence. The passage of time unravels two

forces. First, it initially becomes more likely that one of the opponents might exercise her option

soon. Both the presence of a positive drift and random increments to payoffs from exercise con-

tribute towards this effect. Second, the fact that her opponents have not exercised their options

provides a player with information about the distribution of their states. Intuitively, if the op-

ponents have not yet exercised after a long time, it becomes less likely that they are in a strong

enough position to do so in the near future.

In the limit as time goes to infinity, both forces balance out, inducing convergence to a steady-

state. Each player behaves as if facing a constant threat of entry, which can be represented by a

modification to their discount rate. We provide an explicit formula for that discount modification.

Both the optimal exercise boundary and the induced hazard rate for the first entry display

meaningful non-monotonicities. Competition intensity1 initially increases, reaching a peak, then

slowly subsides towards a constant level. The mechanism is the following. If a player attributes

a high likelihood to the game ending soon, she becomes more aggressive, exercising the option at

lower values. Therefore, she is more likely to bring the game to an end herself. This, in turn,

makes opponents more aggressive.

Whenever there is common knowledge that options are unlikely to be exercised early on, compe-

tition is initially very weak. In particular, if initial conditions are known, agents are willing to wait

for payoff improvements. As time elapses, the effects of randomness in payoff improvements come

into play and the information about opponents’ conditions becomes less precise. Both a positive

drift and volatility contribute for making the opponent more likely to face a high state, creating an

increasing perception of the threat of exercise. Players become more aggressive, exercising options

at lower values, and the game more likely to end. Over time, however, the absence of previous

exercise begins to be interpreted as a strong signal that the opponents are in a weak competitive

1We can make the notion of competition intensity precise by defining two related measures with similar qualitative
behavior: the arrival rate of a player’s defeat and, alternatively, how aggressively players behave (in terms of how
close they get to zero profits in their optimal exercise boundaries).
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position. In such circumstances, the perceived chances that a rival will exercise in the near future

recede towards a stable level. As a consequence, exercise thresholds also approach a constant.

The model we study is a natural extension of standard real option environments and can serve

as a useful framework for applied work. We provide an exploratory numerical analysis in Section 4.

We choose a calibration that would ensure that half the firms would cross a break-even threshold in

their product development within two years and the remaining half would do it over the following

four years. Those two moments plus the choice of a discount rate are sufficient for all the parameters

of the model and could be matched to empirical moments.

The equilibrium computed exhibits some noticeable dynamic features. At the most aggressive

moment, firms observe a competition-modified discount rate which is 70% larger than the baseline

one. Competition, as measured by the instantaneous arrival rate of a possible entry by an opponent

builds up steeply over the first five years and then starts receding. Although convergence to a steady

state occurs, it is remarkably slow, with half-lives for these arrival rates which are multiple-decades

long.

While this example suggests the importance of the magnitudes involved, these qualitative fea-

tures are robust to other calibrations. Over time, there is a variation of approximately 20% in the

economic surplus required for strategic exercise. As a practical matter, it follows that reduced-

form approaches imposing a single modified discount rate to take into account competition can

be deceiving and lead to significant value losses. From a research point of view, the lesson is that

focusing on stationary situations might be a bad approximation to actual behavior, as transient

dynamics are extremely long lived. The results suggest that, if one wants to adopt a reduced-form

approach to model competitive-entry, it is advisable to allow for enough flexibility in the paramet-

ric specification of the effective discount rate to accommodate the dynamic behavior of relevant

measures of competition.

The numerical framework can also be used for studying asymmetric competition and comparative

dynamics across different industries, as characterized by the expected speed of build up in product

developments and its volatility. We illustrate how each perturbation, such as endowing a firm

with a initial advantage, has both mechanical effects (as it takes that firm closer to the exercise

boundary) and strategic ones (as the opponent sees stronger competition initially and responds
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more aggressively). Strategic effects tend not to be uniform throughout time and usually change

directions. The intuition is that if one’s opponent becomes more aggressive in the initial years,

one should respond more aggressively during that period; however, once those years pass without

leading to any entry, one has a stronger signal that the opponent was never in a particularly strong

position. As such, competition recedes.

Related literature - This paper is related to a growing literature on dynamic contests and

competitive real options. In particular, the game we study belongs to the class of optimal-stopping

games, as initially laid out by Dutta and Rustichini (1993), and is related to the class of preemption

games, notably studied in Fudenberg and Tirole (1985).

Some work has applied optimal stopping games to incorporate strategic components into a

real options framework. An early example is Grenadier (1996), which studies real estate market

dynamics. In that set-up, all players share a common state describing market conditions, which

is publicly observable. Similar environments in that aspect are present in Grenadier (2002) and

Weeds (2002).2

Relative to that standard set-up, we take into account two novel features. First, each firm

is subject to a particular state describing its payoffs if the option is exercised. This introduces

a multidimensional aspect into the problem. Second, each firm is privately informed about the

evolution of its this state, while other firms can only draw some noisy inference about that variable.

To the best of our knowledge, the only paper to include both these features is Hopenhayn and

Squintani (2011).3

A key distinction between that paper and ours lies in the stochastic process driving payoffs.

Hopenhayn and Squintani (2011) study a non-decreasing process, so that exercise can only become

more valuable as time passes. Our paper is a more direct extension of the traditional investment

under uncertainty benchmark: payoffs follow a Brownian motion with drift, so a deterioration of

current conditions that makes exercise less profitable is possible. First, in applications, a decrease

in expected payoffs from exercise can originate from the worsening of market conditions. Second,

2A good review of prior work is available in Grenadier (2000).
3Multidimensionality without private information is present in Thijssen (2010). Lambrecht and Perraudin (2003)
study an environment with a common randomly evolving payoff state and private information regarding a static,
non-evolving, exercise cost. Quah and Strulovici (2013) study an individual optimal stopping problem in the
presence of non-stationary discounting.
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even if product designs can only improve, one might become aware of previous overestimates of

their profitability, making decreases in expected profitability arguably as natural as increases for

R&D applications.

Importantly, the choice of the stochastic process driving the exercise payoffs is critical for the

results. Hopenhayn and Squintani (2011) obtain a degree of competition that increases towards

perfect competition as time passes. In the setting we study, the threat of entry of competitor is

perceived as time varying and non-monotonic. As we show on the next few sections, an opponent’s

exercise is initially perceived as unlikely, given that R&D progress requires some time to build up.

Then, as time passes, the threat of entry becomes more intense. Eventually, however, a long time

without an opponent’s entry is understood as a sign of bad payoff conditions for that opponent

and of unlikely entry in the near future. These last two effects balance out in the long-run, leading

to a well-defined limit level of perceived competition. The nature of the stochastic process, which

allows for bad news about profitability, is essential for this non-monotonicity.

Additionally, our approach relies on a coupled system of differential equations: a forward-looking

value function (or equivalently an exercise boundary) and a backward-looking evolution of beliefs

about opponents. Similar coupled systems, with forward-looking value functions and backward-

looking population dynamics, are studied in the nascent mean-field games literature.4 Some impor-

tant Macroeconomic applications, which rely on General Equilibrium Theory instead of strategic

behavior of large firms, are presented in Achdou et al. (2014).

1. Some Preliminary Intuition

In order to develop some preliminary intuition, let us start with the simplest possible continuous-

time scenario. Two symmetric players compete in a winner-takes-it-all race to develop a product

and be the first entrant into a market.

We look at the problem from the perspective of a given agent, Player 1, who does not observe

the level of development of her opponent, Player 2. Player 1 privately observes the evolution of

the expected profitability of her product X(t) and discounts the future at a rate r. Suppose that

the cost of product introduction into the market is fixed at K > 0, so that X(t) − K is the net

payoff from exercise at time t. We assume that the initial condition x0 = 0 is known and that X(t)

4See for instance Lions and Lasry (2007) and Bensoussan et al. (2013).
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follows a standard (with zero drift and unit variance) Brownian motion. Since we are considering a

symmetric situation, the same holds for the unobserved state of the other player. If the opponent

enters, the game ends and the Player 1 obtains a payoff of zero.

The player needs to form conjectures about the instantaneous arrival rate of a defeat or, equiva-

lently in this case, the hazard rate of the single opponent’s entry. Suppose that Player 1 conjectures

this arrival rate to be constant over time and denote it by λ > 0. It is a trivial extension of well

known results (Dixit and Pindyck, 1994; Mcdonald and Siegel, 1986)5, that in this case the value

function is stationary and satisfies the following Hamilton-Jacobi-Bellman (HJB) equation

rV (x) = max

{
−λV (x) +

1

2
V ′′(x), r (x−K)

}
.

The maximization above is between the continuation value and immediate exercise that leads

to a payoff of x −K when the state of Player 1’s product is X(t) = x. The first term inside the

brackets, that refers to the continuation value, is the combination of the possible occurrence of

the defeat, which happens with intensity λ and leads to immediate jump of the player’s value to

zero (that is, a value loss of the difference0− V (x)), and the effects of volatility in the immediate

evolution of the state.

The solution is characterized by a constant boundary β, so that exercise is optimal if, and only

if, X(t) ≥ β.6 Optimality of the boundary implies that

β = K +
1√

2 (r + λ)
.

Static net-present value (NPV) maximization, which does not take into account the option value

of an entry delay, leads to investment whenever X(t) ≥ K. Therefore, the boundary β displays a

positive wedge relative to this static investment criterion. That wedge is decreasing in both λ and

r. It is also well known7 that the wedge would increase in the variance of the state X(t), which

here we have kept normalized at the value of one. Notice additionally that the arrival rate and
5For a recent and formal treatment of one-dimensional stochastic control and stopping problems in Economics, see
Strulovici and Szydlowski (2015).
6In the region below that boundary, i.e. when X(t) < β, the value function satisfiesV (x) = C0exp (γ · x) , for some
positive constant C0 and γ =

√
2 (r + λ), which is the single positive root associated with the differential equation

1
2V ´´(x) = (r + λ)V . Both the constant C0 and the optimal exercise boundary are pinned down by the smooth
pasting conditionsV (β) = C0exp (γ · β) = β −K and V

′
(β) = γV (β) = ∂(x−K)

∂x |x=β = 1.
7See Dixit and Pindyck (1994).
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the discount rate play analogous roles, so an increase in the arrival rate of the option expiration

induced by the opponent’s exercise is equivalent to increase in time discount.

Additionally, by varying λ, one can span situations with different underlying degrees of com-

petition. For instance, for λ = 0, we recover the optimal decision of a monopolist, who does not

face the possibility of an entry by a rival. On the other hand, in the the limit in which λ tends

to infinity, competition becomes so fierce that the boundary, β, approaches the exercise cost, K,

from above and investment occurs for arbitrarily small NPV opportunities. This is a profit dissi-

pation result that is reminiscent of Bertrand competition. As we show later, equilibrium exercise

boundaries are bounded by those two extreme cases.

We can now see that the best-reply to the belief of a constant arrival rate is a stationary

boundary. The key difficulty in this environment is that a constant boundary does not induce a

constant arrival rate for the end of the game.

To illustrate that, first we use the fact that a standard Brownian Motion eventually hits any

constant and finite boundary β with probability 1. The left-hand side panel in Figure 1 below

plots the density over time for that absorption. The right-hand side panel plots the hazard rate,

which is the relevant variable for the individual problem, as agents are interested in the likelihood

of the game ending any instant given that it has not ended previously. This hazard rate already

displays a few important features. It starts at zero and is continuous, showing that the game is

very unlikely to end right after t = 0. Second, as volatility in X(t) accumulates, the hazard rate

increases. Last, it eventually asymptotes to a constant. As we show later, all of these features are

shared by the equilibrium hazard rate.

Whenever the hazard rate changes over time, the value function of the player inherits that time

dependence. Once this value function becomes non-stationary, the optimal threshold β (t) also

varies with time. For instance, all else held fixed, a belief associated with a larger λ (t) is expected

to induce a more aggressive behavior, as represented by lower exercise threshold β (t). Equilibrium

needs to be characterized by an optimal stopping rule β (t) and a hazard rate λ (t) that are mutually

consistent. We extend this simple set-up and introduce the problem more formally in the next

section.
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(a) Hitting density, γ (t).
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(b) Hazard rate, λ (t).

Figure 1. Hitting-time density and hazard rate induced by a constant boundary β.

2. Model

2.1. Description of the game. Time is continuous and the horizon is infinite. There is a finite

set N of players, indexed by n ∈ {1, 2, ..., N}. The discount rate is r > 0 for every player. Each

player n ∈ N has a position Xn(t), where Xn ≡ {Xn(t)}t≥0 is stochastic process starting at a

condition x0
n which is common knowledge8 and satisfying

dXn(t) = µndt+ σndZn(t),

where Zn is a Wiener process and µn ≥ 0 and σn > 0 are constant player-specific drift and volatility.

The processes {Zn}n∈N are independent.

The positions can be understood to represent the development state of projects, measured as

a gross expected payoff from current exercise. Their evolution is private information, so each

player knows her own progress but does not know the progress of her opponents. While we are

restricting attention to increments in the states that are independent across agents, the drift term

can incorporate common changes in the values of exercise, while innovations represent deviations

from that deterministic path.

Each player decides at every instant whether to exercise the option or wait for more information.

If player n exercises when Xn(t) = x, the game ends and she obtains a payoff of x−Kn, while her

8The set-up can be easily extended to take into account a non-degenerate distribution of initial conditions, incor-
porating incomplete information at t = 0.
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opponents get 0. We assume that the exercise cost is positive, i.e. Kn > 0, and that there is no

running cost for staying in the game, so that waiting at t = 0 is optimal. We call this game the

competitive option game.

2.2. Information, strategies, and payoffs. Let Fn ≡ {Fn(t)}t≥0 be the filtration generated by

Xn, for n ∈ N . A strategy profile is a n-tuple {τ̂n}n∈N , where τ̂n is a Fn−stopping time for each

n ∈N . We allow stopping times to be infinite when a player decides to never submit her project

and get payoff of zero.

Let F be the filtration generated by {Xn}n∈N . Notice that F contains more information than

observed by each player individually. The game ends at the F−stopping time

τ̂ ≡ min
n∈N

τ̂n,

i.e., the game ends whenever the first player exercises her option. If any player exercises her option

before player n, we say that player n was defeated.

The expected discounted payoff of player n at time t ≥ 0 obtained by using strategy τ̂n when

her opponents uses the strategy profile τ̂−n is given by

Jn(τ̂n, τ̂−n|t) ≡ E
{
e−r(τ̂n−t)1τ̂n=τ̂

(
Xn
τ̂n −Kn

)∣∣Fn(t)
}
.

Agents can only observe the passage of time and the evolution of their own position {Xn(t)}. A

strategy τ̂n for player n is a Markov strategy if the conditional stopping times

τ̂n(t) ≡ τ̂n|Fn(t)

only depend on her current position Xn(t) and the time elapsed since the start of the game.

Let Sn (resp. Mn) be the set of strategies (resp. Markov strategies) for player n. As usual,

denote by S−n (resp. M−n) the sets of strategy (resp. Markov strategy) profiles for the opponents

of player n. We restrict attention to the set of Markov strategy profiles.9

9Given that the components of (X1, X2) are independent strong Markov processes, it is natural to expect that
Markov strategies should be enough for each player to best respond to her opponents, even if they play in a
non-Markovian way. More formally, we conjecture that

sup
τ̂n∈Mn

Jn(τ̂n, τ̂−n|t) = sup
τ̂n∈Sn

Jn(τ̂n, τ̂−n|t)

for all τ̂−n ∈ S−n. This would mean that we can restrict consideration to strategies inMn.
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Thus, we define the expected discounted payoff of player n at time t ≥ 0 and state xn from

following strategy τ̂n when her opponents use strategies τ̂−n by:

Un(τ̂n, τ̂−n|x, t) ≡ E
{
e−r(τ̂n−t)1τ̂n=τ̂ (Xn(τ̂n)−Kn)

∣∣Xn(t) = x
}
.

For any Markov strategy τ̂n ∈Mn, we have

Un(τ̂n, τ̂−n|Xn(t), t) = Jn(τ̂n, τ̂−n|t)

almost surely for all t ≥ 0. That is, expected discounted payoffs under Markov strategies only

depend on the state (Xn(t), t).

2.3. Equilibrium. An equilibrium for the competitive option game is a strategy profile τ =

(τ1, ..., τN) ∈
∏N

n=1 Sn such that each τn maximizes the expected discounted payoffs of player

n after any history holding strategies τ−n fixed for all other players. Formally,

Jn(τn, τ−n|t) ≥ Jn(τ̂n, τ−n|t)

almost surely for all τ̂n ∈ Sn, t ≥ 0 and n ∈N .

AMarkov perfect equilibrium (MPE) is an equilibrium in Markov strategies. Given the discussion

in the previous section, a MPE can be characterized as a strategy profile (τ1, ..., τN) ∈
∏N

n=1Mn

such that

Un(τn, τ−n|xn, t) ≥ Un(τ̂n, τ−n|xn, t)

for all τn ∈Mn, xn ∈ R, t ≥ 0 and n ∈N .

2.4. A simpler recursive formulation. Fix a MPE τ , which is not required to be symmetric

even if all players share the same parameters. Let Vn(x, t) be the equilibrium payoff of player n

starting at time t ≥ 0 from state x, i.e.,

Vn(x, t) ≡ sup
τ̂n∈Mn

Un(τ̂n, τ−n|x, t).

For notation simplicity, let us leave implicit the dependence on the state (x, t) and write Vn to

represent the value above.
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The associated Hamilton-Jacobi-Bellman (HJB) equation for this value is

(1) rVn = max

{
µn
∂Vn
∂x

+
σ2
n

2

∂2Vn
∂x2

+
∂Vn
∂t
− λn(t)Vn, r(xn −Kn)

}
,

where λn(t) is the equilibrium arrival rate of the defeat of player n. In other words, λn(t) is the

equilibrium arrival rate of end of the game induced by the exercise from any of the opponents of

player n, conditional on the game not having ended previously.

The first term inside the maximization is the value of continuation, while the second one repre-

sents the value from current exercise. On the former, one can notice, in order, the effects from the

drift in the process Xt, the volatility, the time dependence, and the possibility of the game ending

with defeat, which induces a instantaneous jump to zero in the continuation value. Notice that

all the time dependence originates from the arrival rate: as discussed in the introductory section,

were the arrival rate time-invariant, the value function would be stationary.

The HJB equation is solved as a free-boundary problem of the partial differential equation (PDE)

(2) [r + λn(t)]Vn = µn
∂Vn
∂x

+
σ2
n

2

∂2Vn
∂x2

+
∂Vn
∂t

with free-boundary conditions given by

(3) Vn(βn(t), t) = βn(t)−Kn

and

(4)
∂Vn(x, t)

∂x
|x=β(t) = 1,

where βn (t) is a free-boundary, which might depend on t. Equation 3 represents the value-matching

condition at the boundary, while equation 4 is the smooth-pasting condition.

2.5. Equivalent MPE definition. Before moving towards a characterization, we present an al-

ternative equilibrium notion, which relies on a recursive description of mutually consistent contin-

uation payoffs, optimal exercise boundaries, and perceived arrival rates of any opponents’ exercise.

This alternative notion is equivalent to MPE, as we show.
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Definition 1. A competitive exercise equilibrium consists of a collection {Vn, βn, λn}n∈N , such

that, for each n ∈N , Vn : R× R+ → R, βn ∈ `∞ (R+), and λn : R+ → R+ ∪ {+∞} and

(1) Vn solves the HJB equation (1) taking λn as given,

(2) βn is an optimal exercise boundary given Vn and λn,

(3) λn is the arrival rate of the end of the game induced by the exercise decision of any of the

opponents. Formally, λn is the hazard rate associated with the cumulative distribution of

the random variable τ̃ ≡ inf {t ≥ 0|∃w ∈ N\ {n} , Xw
t ≥ βw (t)} .

The following analogy can be drawn. A competitive exercise equilibrium behaves in a similar

way as a recursive competitive equilibrium from General Equilibrium Theory. Value functions and

optimal policies solve each agent’s dynamic problem. They do so by using at each instant in time

the least information necessary about the rest of the economy: here, the arrival rate for the end of

the game works as a price, summarizing all relevant information about the opponents’ behavior.

To show the equivalence, fix a MPE τ . First, notice that

Vn(xn, t) = Un(τn, τ−n|xn, t).

Second, the induced stopping boundary for player n is

βn(t) = sup {xn ∈ R|Vn(xn, t) > xn −Kn} .

Finally, the equilibrium strategy can be recovered as

τn = inf {t > 0|Xn
t ≥ βn(t)} .

In light of this equivalence, in what follows, we use any of the equivalent descriptions of equilibria

interchangeably.

3. Results

3.1. Bounds on exercise boundaries. We start by bounding the optimal exercise threshold.

As it is intuitive, the behavior of a competitive player lies between the behavior of a monopolist,

who does not face the threat of any possible preemption, and the behavior under the most extreme

form of competition, in which any positive NPV-option is instantly exercised.
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Formally, our first result bounds the exercise times in any MPE by eliminating dominated

strategies. In order to state the theorem, define individual specific constant boundaries β
n
≡ Kn

and βn ≡ Kn + 1/ξn, where

ξn ≡
1

σ2
n

(√
µ2
n + 2σ2

nr − µn
)
.

Here, β
n
represents the perfectly competitive zero-NPV boundary and βn the stationary boundary

that prevails for the optimal exercise of a monopolist. The number ξn is the positive root of the

characteristic polynomial associated with the ordinary differential equation rVn + µn(∂Vn/∂x) −

(1/2)σ2
n(∂2Vn/∂x

2) = 0, which describes the evolution of the value of continuation in the absence

of the possibility of the end of the game induced by an opponent’s exercise.

Using these constant boundaries, we define stopping times

τn ≡ inf
{
t > 0

∣∣∣Xn(t) ≥ β
n

}
and

τn ≡ inf
{
t > 0

∣∣Xn(t) ≥ βn
}
,

which represent the random times for the first crossing of the lowest (most aggressive) zero-NPV

boundary and the (least aggressive) monopolistic boundary. The next result shows that the ranking

of the two fixed boundaries is translated to these stopping times and, more importantly, that these

stopping times bound the MPE strategies in our environment.

Proposition 1. Let (τ1, ..., τN) be a MPE with exercise boundaries (β1, ..., βN). Then, τn ≤ τn ≤

τn and β
n
≤ βn ≤ βn for every player n ∈N .

Proof. In the appendix. �

Proposition 1 is important for constraining possible equilibrium exercise boundaries and stopping

times. It especially useful in describing the long-run properties of the game, as the limited amount

of rationality imposed by the bounds above is sufficient to pin down the asymptotic behavior of

the arrival of defeat. Before proceeding towards the characterization of this limit, we study how

conditional probability distributions and beliefs evolve in this setting. These are important objects

for the individual behavior, as they describe the intensity of competition a player expects to face

over time.
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3.2. Equilibrium exercise densities and belief evolution. To characterize Markov Perfect

Equilibria, we first resort to an intermediate result that describes the evolution of a Brownian

motion density when subject to a given stopping boundary βn. This result is directly related to

the distribution of an agent’s stopping time and will also be important for characterizing equi-

librium beliefs about conditions of opponents and the likelihood of their exercise. To simplify its

characterization, we make the following uniform differentiability assumption:

Assumption 1. For each player n ∈N , the equilibrium boundary βn is continuously differentiable

on (0,+∞) with uniformly bounded derivative.

We denote the density of the current state for paths that have not previously hit the stopping

boundary by fn : R×R+ → R+, so that fn (xn, t) is the density at payoff state xn and time t. The

evolution of this density is described by the following Kolmogorov forward equation

(5)
∂fn
∂t

= −µn
∂fn
∂x

+
1

2
σ2
n

∂2fn
∂x2

, for x < β(t).

The interpretation of this equation is the following. On the left-hand side, we have the time

evolution of the density at a state (xn, t). The first term on the right-hand side describes how a

drift imposes a lateral shift in the density: whenever fx > 0 (fx < 0), a given state x loses (gains)

density in proportion to the drift µn. The second term originates from the volatility in the process

Xn, which diffuses mass over neighboring payoff states as time passes.

Importantly, this density does not integrate to one, but only to the probability that the state

has not yet crossed the boundary βn up to time t. Since we assume that the initial condition is

deterministic, it is described by a Dirac function10, i.e. a degenerate unit mass concentration at a

point, as in

(6) fn (xn, 0) = δ
(
xn − x0

n

)
.

10Formally, a generalized function (distribution) on the real number line that is zero everywhere except at zero,
with an integral of one over the entire real line.
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Additionally, given that βn works as an absorbing boundary, the density vanishes at that boundary,

implying the following boundary condition for the PDE in 5

(7) fn (βn (t) , t) = 0.

We can use equations (5)-(7) to characterize the probability distribution of the state xnt , condi-

tional on it not having been previously absorbed, as well as the exercise density of player n (i.e.

the density of the first-arrival time of the process Xn at the boundary βn), which we denote byγn.

This is the content of the next result.

Proposition 2. Under Assumption 1, the density fn admits the following integral representation

(8) fn(xn, t) =
φ
(
xn−x0n−µnt

σn
√
t

)
σn
√
t

−
∫ t

0

φ
(
xn−βn(h)−µn(t−h)

σn
√
t−h

)
σn
√
t− h

γn(h)dh.

In turn, the exercise density γn is characterized by

(9) γn(t) =
φ (An(t))An(t)

t
−
∫ t

0

φ (Bn(t, h))Bn(t, h)

t− h
γn(h)dh,

where

An(t) ≡ βn(t)− x0
n − µnt

σn
√
t

and Bn(t, h) ≡ βn(t)− βn(h)− µn(t− h)

σn
√
t− h

.

Proof. In the appendix. �

The interpretation of equation 8 is the following. The first term on the right-hand side is always

positive and describes the density of a Brownian motion without taking into account absorption.

However, some paths that would have reached Xn(t, ω) = xn have crossed the boundary previously

at some time h < t and need to be subtracted. At instant h < t, a density γn(h) of paths is absorbed

at state Xn(h) = βn (h) . Conditional on being at that state at time h they would have reached xn

at time t with a probability density given by

φ
(
xn−βn(h)−µn(t−h)

σn
√
t−h

)
σn
√
t− h

.

Therefore, the last term in equation 8 integrates over all 0 ≤ h < t, effectively subtracting all

paths that have been previously absorbed.
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Notice, however, that the characterization of the density fn would be incomplete without a

description of the absorption density γn (t). That absorption rate can be obtained as a function

of the mass that is near the boundary β at time t. As this mass is proportional to the slope of

the density in the limit as xn approaches the boundary, the rate γn (t) can be obtained from the

density formula 8. It is also worth noting that equation 9 is quite convenient for computational

purposes11, because it has a recursive backward-looking structure and can easily be approximated

by a finite sum. We also define the distribution associated with density γn (t), which is particularly

important for describing the arrival rate of the end of the game.

Definition 2. For each player n ∈N , the unconditional distribution of her exercise time is defined

as Γn (t) ≡
∫ t

0
γn (h) dh.

Together equations 8 and 9 fully characterize the dynamics of the individual state conditional on

any arbitrary boundary. Whenever we restrict attention to the equilibrium boundary βn, they can

be used to describe the equilibrium beliefs of the opponents of player n. As previously discussed,

that includes more information than what is strictly necessary in order to compute the optimal

policies of those players. For that, it is sufficient to describe the distribution of the game’s end

time as perceived by them, which is asufficient statistic for the individual problem.

3.3. Equilibrium conditional exercise rates. We now consider the decision problem of player

n and obtain the conditional arrival rate of the end of the game as perceived by her, λn(t). In order

to do that, note that the game is over the first time a player exercises an option. This means that

we need to find the distribution of the random variable given by the first stopping of an opponent

of player n, that is,

τ[−n] ≡ min
m6=n

τm.

That random variable is characterized by the cumulative distribution function

G[−n](t) ≡ Pr
{
τ[−n] ≤ t

}
= 1−

∏
m 6=n

(1− Γm(t)) ,

11Equation 9 belongs to the class of Volterra integral equations of the 2nd kind.
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with associated density function given by g[−n](t) ≡
dG[−n](t)

dt
. The conditional arrival rate of an end

of the game induced by the opponents of player n, which is essential for the description of her HJB

equation is then simply

λn(t) ≡
g[−n](t)

1−G[−n](t)
.

Proposition 3. The arrival rate of a defeat for player n is given by the sum of the hazard rates

associated to the unconditional distributions of the exercise times of her opponents, i.e.,

(10) λn(t) =
∑
m6=n

(
γm(t)

1− Γm(t)

)
.

Proof. Notice that

λn(t) = − d

dt
ln
(
1−G[−n](t)

)
= − d

dt
ln

(∏
m 6=n

(1− Γm(t))

)

= − d

dt

∑
m 6=n

ln (1− Γm(t)) =
∑
m6=n

(
γm(t)

1− Γm(t)

)
.

Notice that, as a consequence of the independence between payoff increments across players,

the arrival rate of the defeat of any player is simply given by the sum over all of her opponents’

boundary-crossing rates. Loosely, keeping strategies fixed, if one doubles the number of players,

the arrival rates of defeats of any of those would double. In equilibrium, however, players’ strate-

gies respond to a potential increased competition. Section 3.5 shows that despite that strategic

response, a linearity result for the hazard rate on the total number of players is still true in the

limit. �

3.4. Optimal Policy. We now turn our attention back to the value function and the optimal

policy. We first describe the payoff from an arbitrary policy, conditional on the equilibrium arrival

rate of a defeat.

Definition 3. Take any bounded boundary β̂ for player n and a current state (x, t) such that

x < β̂ (t). We define a conditional exercise density recursively as

(11) gβ̂n (s|x, t) ≡ φ (As,t)As,t
s− t

−
∫ s

t

φ (Bs,h)Bs,h

s− h
gβ̂n (h|x, t) dh,
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where

As,t ≡
β̂(s)− x− µn (s− t)

σn
√
s− t

, Bs,h ≡
β̂(s)− β̂(h)− µn (s− h)

σn
√
s− h

.

Given that the boundary β̂ is bounded, the process Xn reaches it in finite time with probability

1 for non-negative drift. As a consequence, gβ̂n (s|x, t) forms a probability density over (t,+∞).12

Notice that this density is defined over time and not the position of player n. In particular, this

density is used for describing how likely player n is to reach this exercise boundary for the first

time at any future interval of time given her current state. Importantly, it does not take into

account the possibility that the game might end before that interval is reached.

Therefore, to fully describe the expected payoff from following this arbitrary boundary, one also

needs to incorporate the equilibrium arrival rate of the defeat of player n. From inspection of the

HJB equation in the interior of the region where player n does not exercise, as in equation 2, one

can notice that this arrival rate plays a role that is analogous to an increase in the discount rate.

Motivated by this observation, we define the effective discount factor below.

Definition 4. The effective instantaneous discount rate for player n is defined as r + λn (t) and

her effective discount factor between times t and s > t is given by e−ρn(s,t), in which

(12) ρn (h, t) ≡
∫ h

t

[r + λn (s)] ds.

Once the effective discount and the exercise probability distributions have been defined, we can

write the continuation payoff from following β̂.

Definition 5. The continuation payoff from following a bounded exercise boundary β̂ given a

current state (x, t) is given by

W β̂
n (x, t) ≡

∫ ∞
t

e−ρn(h,t)
(
β̂ (h)−Kn

)
gβ̂n (h|x, t) dh.

12For negative drift, Xn fails to cross β̂ with positive probability. As a result, gβ̂n (s|x, t) integrates to less than 1
over (t,+∞). To define a proper density over the extended reals, one needs to assign a positive probability mass at
+∞.
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Conditional on a commitment to this arbitrary boundary for s > t, instantaneously optimal

exercise at time t requires

(13) β̂ (t)−Kn ≡ W β̂
n

(
β̂ (t) , t

)
=

∫ ∞
t

e−ρn(h,t)
(
β̂ (h)−Kn

)
gβ̂n

(
h|β̂ (t) , t

)
dh.

Equation 13 is a necessary requirement for optimality. Given any continuation payoff induced

by a policy, the instantaneously optimal policy is given by a trigger. Immediate exercise should

occur whenever the surplus from it, i.e. Xn(t)−Kn, exceeds this critical value. The trigger itself

is given by the continuation value described in the right-hand side of that equation.

This reasoning provides us with an interpretation of the optimal instantaneous exercise trigger

β̂ (t). This trigger is such that the surplus from current exercise exactly matches the expected

discounted surplus from future exercise. Discounting here is given by the effective discount factor,

which takes into account the probability of defeat. Expectations are taken with respect to the

density defined over the future exercise times of player n.

Notice, however, that equation 13 is not sufficient for optimality. For example, the perfectly

competitive extreme β̂ (t) = Kn, ∀t, always satisfies it despite being inconsistent with an equi-

librium. Indeed, as typically the case in the optimal stopping literature, optimality also requires

smooth-pasting, so that

(14) 1 =
∂W β̂

n (x, t)

∂x

∣∣∣∣∣
x=β̂(t)

,∀t.

The main technical difficulty in dealing directly with equations 13 and 14 lies in the differen-

tiation of the conditional exercise density with respect to the current state. We circumvent that

problem by using truncated Laplace transforms in the derivation of the proposition below.

Proposition 4. Under Assumption 1, the equilibrium exercise boundary of each player n ∈ N

satisfies the following integro-differential equation

(15) βn(t)−Kn =

∫ ∞
t

e−ρn(h,t)
φ
(
βn(h)−βn(t)−µn(h−t)

σn
√
h−t

)
σn
√
h− t{

σ2
n +

[(
βn(h)− βn(t)

h− t

)
− 2

dβn(h)

dh
+ µn

]
(βn(h)−Kn)

}
dh,
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while the value function in the interior of the no-exercise region is described by

(16) Vn (x, t) =
1

2

∫ ∞
t

e−ρn(h,t)
φ
(
βn(h)−x−µn(h−t)

σn
√
h−t

)
σn
√
h− t{

σ2
n +

[(
βn(h)− x
h− t

)
− 2

dβn(h)

dh
+ µn

]
(βn(h)−Kn)

}
dh.

Proposition 4 characterizes the equilibrium exercise boundary as a fixed point of an operator

on the right-hand side. Notice that equation (15) does not require the separate computation of

the evolution of the density over future exercise times: it is embedded in the operator. This is a

feature which is common to some analytic representations of the value of American call-options,

as derived by McKean (1965), Kim (1990), and Jamshidian (1992).13 Moreover, the value function

is fully determined by the behavior of the boundary.

3.5. Steady-state. In this section, we characterize the long-run equilibrium dynamics of the

equilibrium. We show that optimal exercise thresholds and arrival rates converge towards a steady

state. Moreover, we can provide an explicit description of the limit in terms of the exogenous

parameters of the model:

Proposition 5. Let (τ1, ..., τN) be a MPE with exercise boundaries (β1, ..., βN). Then, for every

player n ∈N , we have

lim
t→+∞

βn(t) = β∗n,

where β∗n is the optimal exercise boundary of a monopolist with (modified) discount rate

(17) r∗n ≡ r +
1

2

∑
m6=n

max{µm, 0}2

σ2
m

.

Proof. In the appendix. �

Proposition 5 reveals the long-run determinants of equilibrium strategies. To provide some

intuition, let’s start with the simplest case of two players, N = 2, and no drift, µn = 0, ∀n ∈ N .

Consider an opponent that is supposed, at time t, to be at either at either a low xl state or a

high xh state, with xl < xh ≤ β (t). As time passes from t to t + ∆, random increments affect
13See Chiarella et al. (2004) for a survey of the integral representations for American financial options.
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this agent’s payoffs and any density at x ∈ {xl, xh} is diffused across other states. Neighboring

states exchange more mass and distant ones, less so. Naturally, an agent at an xt that is close to

the boundary is more likely to cross it over the next time interval. As the information that the

opponent did not cross the boundary between t and t + ∆ arrives, belief updates indicate that

she was relatively more likely to have been at the low xt = xl than at the high xt = xh value,

which contributes relatively more to the mass absorbed by the boundary. Therefore information

that no crossing occurred is interpreted as news of a higher likelihood of lower states both in the

recent past (t) as in the present (t + ∆). Under the assumption of no drift, this means that the

conditional belief distribution over the opponent’s states loses mass close to the boundary and

becomes flatter. As a consequence, it becomes increasingly less likely that an opponent that has

never previously exercised her option will do it over a future time interval. As both players engage

in this reasoning, exercise thresholds converge towards the policies chosen by monopolists.

Once a positive drift is present, the passage of time pushes probability masses towards higher

states, that is, in the direction of the exercise boundary. So, while a signal that an opponent

was at a lower state in the past moves the belief density away from the boundary, a positive drift

works as a countervailing force. The resultant of these two opposing forces is a well defined limit

with an arrival rate which is strictly above zero and is also increasing in the opponent’s innovation

drift. Additionally, it is also decreasing in the volatility of the opponent’s innovations, as a higher

volatility forces the belief update in a direction that favors lower states.

Equation 17 has also consequences for industry-wide limit dynamics. Suppose an industry

defined by fast innovation processes, represented by high µn for some of the players. This industry

becomes more competitive in the limit, effective discount rates increase, and products are brought

to market under lower profit expectations than they would be absent concerns about competition.

As the value functions are forward looking, that increased competition is also propagated towards

the transition phase. A similar conclusion follows from an increase in the number of opponents.

4. Simulations

In this section, we present results from simulations and comparative dynamics. First, we compute

the equilibrium for a simple symmetric 2-player set-up. We normalize the payoff units to set the
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exercise cost to unity, i.e., K = 1, and the initial condition to x0 = 0. To provide a clear

meaning to time, we set the reference time unit to a year and the interest rate r = 10%. We then

calibrate the drift and volatility parameters of the stochastic payoff process to match two moment

conditions. The first condition is that in half of the possible histories, the firm should cross the

zero NPV threshold (xt = K) within the first two years. The second condition is that the out of

the remaining histories, half should cross it within the next four years. We obtain µ = 0.04 and

σ = 0.96.
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Figure 2. Baseline Equilibrium Characterization.
Symmetric parameters set to K = 1, x0 = 0, µ = 0.04, and σ = 0.96. The arrows
and dotted lines mark asymptotic limits.

Figure 2 plots the symmetric equilibrium exercise boundaries and the hazard rates. The dotted

lines mark the asymptotic limit of the variable on display, while the arrow on the right-hand axis

marks the distance to that limit at a long eighty-year horizon. A few features are noticeable.
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First, both objects display economically meaningful dynamics. At its peak, competition induces

a hazard rate of almost 7 percentage points, which means that the effective discount rate can

be increased by up to 70% relative to the original discount rate of r = 10%. Notice that this

magnitude would get significantly larger in the presence of more opponents.

Second, as the value function is forward-looking, the exercise boundary anticipates changes in

the hazard rate, hitting its most aggressive point of approximately β (t) = 2.8 before the hazard

rate reaches its peak. It then recedes towards the steady state value of limt→+∞ β (t) = 3.35. For

these baseline parameter values, the zero net-present value boundary is given by β = 1, while the

monopoly boundary is β = 3.36. We can see then that the variation in the equilibrium exercise

boundaries over time covers more than a fifth of that range. Therefore, while it is well-known that

uncertainty can create a large distance between 0-NPV rules and optimal exercise, this simulation

exercise shows that gap can be greatly reduced in the presence of short-term competition, while

still converging very close to its maximum in the long-run.

Last, another striking feature of the simulation is that convergence towards the steady state

is very slow. In the later phase, hazard rates display half-lives that are more than decades-long.

Nonetheless, most of the quantitatively meaningful effects are restricted to the first twenty years.

We next investigate and discuss comparative statics on the simulated model, with particular

emphasis on heterogeneity and distinctions between partial effects, when opponents strategies are

kept fixed, and the full equilibrium characterization.

4.1. An initial lead. We now study the case in which Player i has a technological lead. She

starts at xi0 = 0.5, half the original distance from zero net-present value. The opponent, Player

j, still starts at xj0 = 0. The initial lead of player i is common knowledge to both players and all

other parameters are kept the same as in the previous section. Results are plotted in Figure 3.

A lead for Player i would, all else held constant, increase the hazard rate of the defeat imposed

on Player j. If Player j did not change her exercise boundary, Player i would still be subject to the

same arrival rates of defeat and would not have any incentives to change her exercise boundary,

which does not depend on the initial condition. Nevertheless, as a consequence of the improved

initial condition, she would still be more likely to hit that same boundary earlier. In the presence

of a more likely early defeat, Player j has incentives to become more aggressive, increasing the
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Figure 3. Equilibrium comparison with an initial lead for Player i.
The arrows and dotted lines indicate asymptotic limits.

likelihood of an early exercise. To this, Player i has incentives to reply with a more aggressive

(lower) exercise boundary.

The final equilibrium consequences can be seen in Figure 3. In the equilibrium with a initial lead

for Player i, both agents behave more aggressively. Hazard rates increase uniformly, making early

entry by any player more likely. Interestingly, most of the quantitative response of the equilibrium

boundaries is concentrated on Player j, since the arrival rates of her defeat (which are induced

by Player i) respond much more strongly. Asymptotically, however, the effects of the initial lead

vanish.
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4.2. A technological lead and faster product development. We now suppose that one

player, Player i, has faster payoff improvements than Player j. In particular, µi = 0.08 is twice

the benchmark rate to which Player j is still subjected, µj = 0.04.
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Figure 4. Equilibrium comparison when Player i is subject to larger expected
payoff increments.
The arrows and dotted lines indicate asymptotic limits.

Given that Player i is subjected to faster payoff improvements, she has always weakly higher

incentives to wait instead of exercising earlier. As a consequence, we can see in the top left

panel of Figure 4 that her optimal exercise threshold becomes uniformly less aggressive (higher).

Nonetheless, given the original increase in the payoff drift, she still arrives faster at that boundary

and imposes a higher defeat rate on Player j, as seen in the top-right panel.
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Given this, Player j has incentives to behave more aggressively, and the change of her boundary,

through an equilibrium feedback effect that turns out to be quantitatively weak, helps partially

offset the dovish incentives that a higher drift creates for Player i.

In this case, unlike in the case of a simple initial lead, there are asymptotic effects. The higher

drift means that Player i is more intensely pushed against her own boundary asymptotically.

Although Player j replies with a boundary that converges asymptotically to a higher value as a

response, that has no consequences on the arrival rate of defeat that she imposes on Player i in the

limit, which only depends on Player j’s own drift and volatility, not on the level of the asymptotic

threshold, as indicated by Equation 17.

A similar logic follows if we analyze a situation in which both players have higher drifts. This

comparative exercise can be used to contrast industries with different innovation dynamics. It

is illustrated in Figure 5. The line labeled as partial equilibrium on the left panel studies the

consequences on a firm’s behavior from taking into account its own higher drift, while not inter-

nalizing the change in competition. That is, for player i, it keeps λi (the defeat rate as imposed by

player j) fixed. Notice that an increased drift would make this firm less aggressive, as illustrated

by the upward displacement of the boundary relative to the baseline (lower drift) situation. In

equilibrium, however, as in the previous exercise, despite this less aggressive boundary, the higher

rate of innovation increases the perceived intensity of competition. This effect, therefore, dampens

the tendency for less aggressive behavior. The line labeled final equilibrium illustrates then that

industries with higher rates of innovation face higher entry cut-offs, but not high enough as to

revert a direct effect that a higher drift has of increasing hazard rates (which can be seen on the

panel on the right).

4.3. Increased randomness in payoff evolution. As a final exercise we study comparisons

between a symmetric industry with a lower exposure to randomness in the payoff process (labeled

initial equilibrium in Figure 6) and one with a higher level (labeled final equilibrium). This

enhanced effect of uncertainty can originate either from more volatile market conditions or from

more uncertainty in the product development stage.

We can notice that the increased volatility raises the option value from delayed entry, leading

to less aggressive exercise strategies. The traditional intuition from non-competitive environments
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Figure 5. Consequences of symmetric doubling of drift in the payoff process, from
µ = 0.04 (Initial Equilibrium) to µ = 0.08 (Final Equilibrium).
Partial Equilibrium refers to a situation in which beliefs about opponents exercise
rates are kept fixed, but own drift is believed to be at the new level. The arrows and
dotted lines indicate asymptotic limits.
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Figure 6. A cross industry comparison between a high volatility industry (final
equilibrium) and a lower volatility one (initial equilibrium).
Partial Equilibrium refers to a situation in which beliefs about the opponent’s exer-
cise rates are kept fixed at the initial equilibrium, but own volatility is believed to
be at the high level. The arrows and dotted lines indicate asymptotic limits.

is exhibited in the line marked as partial equilibrium, in the left panel, as it ignores the change

in competition but takes into account the consequences of an increased volatility in a firm’s own

product development process.
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As the right-hand side panel indicates, in the short-run, the direct effect of a higher volatility

pushing agents more strongly against any exercise boundary dominates, increasing short-run ex-

ercise hazard rates despite the less aggressive exercise strategies. In the long-run, however, more

volatility means that an opponent that has not previously exercised is very unlikely to be close

to exercising in the near future. As a consequence, long-run competition becomes less intense

in more volatile industries. We can, therefore, conclude that the equilibrium effects from more

volatile product development conditions are not symmetric over time, as higher uncertainty tends

to intensify entry and competition in the short-run, while having the opposite effect in case entry

is not observed in the initial years.

5. Conclusion

We study a competitive framework in which agents are privately informed about the evolution

of the profitability of an investment option. Our model naturally extends the canonical investment

under uncertainty model by incorporating the possibility that this opportunity might expire due

to strategic preemption by an opponent.

In an equilibrium, each player’s optimal exercise boundary depends on the belief this player has

about the arrival rate of a possible defeat. This belief changes over time, as the passage of time

without any option exercise is itself informative about the conditions of opponents. We develop

methods for characterizing the dynamics of player beliefs and equilibrium exercise strategies. These

methods are likely to be useful for understanding dynamic strategic behavior in other classes of

games.

We show that competition has economically important dynamics, first picking up and then

receding towards a stationary long-run situation. In future work, the framework we study can be

used to address questions related to optimal technological development policies and the value of

information in technological competition. We illustrate some of this potential with equilibrium

computation and comparative dynamics exercises, deriving some initial lessons for applied work.

First, competition can have large consequences on the effective rate of time discount. Also, the

intensity of competition changes dramatically over time and the transition dynamics towards a
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steady-state are very long-lived. As a consequence, any rule-of-thumb analysis that focuses on ei-

ther constant effective discount rates in an attempt to incorporate the consequences of competition

or even restricts attention to analytical stationary limits can lead to large errors.
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Appendix A

Proofs omitted from the main text.

Proof of Proposition 1. It is easy to show that a value matching and payoff monotonicity conditions hold, so that Vn and βn satisfy

Vn(βn, t) = βn − kn and

βn(t) = inf {x ∈ R|Vn(x, t) ≤ x− kn} .

It follows that βn(t) ≤ βn. Suppose, seeking a contradiction, that βn(t0) < β
n
for some t0 ∈ R+. Then Vn(βn(t0), t0) = βn(t0) − kn

by value matching. Since kn = β
n
> βn, we have V (βn(t0), t0) < 0. This cannot happen in equilibrium as never exercising (i.e.,

τn = +∞) is a feasible strategy which guarantees a zero payoff. Once we have β
n
≤ βn ≤ βn, the inequalities for the stopping times

are immediate. �

Proof of Proposition 2. Fn(xn, t) counts all the Brownian paths which lie in (−∞, xn] at time t and are strictly below βn for all times

in [0, t). Note that Γn is the first-passage distribution associated to boundary βn and Φ
(
xn−βn(h)−µn(t−h)

σn
√
t−h

)
counts all the Brownian

paths which start at βn(h) at time h and lie in (−∞, xn] at time t. Therefore, we obtain

Fn(xn, t) = Φ

(
xn − x0n − µnt

σn
√
t

)
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−
∫ t

0
Φ

(
xn − βn(h)− µn(t− h)

σn
√
t− h

)
dΓn(h).

Under Assumption 1, Γn is continuously differentiable with respect to time and we can therefore compute the space derivative

fn(xn, t) =
1

σn
√
t
φ

(
xn − x0n − µnt

σn
√
t

)

−
∫ t

0

1

σn
√
t− h

φ

(
xn − βn(h)− µn(t− h)

σn
√
t− h

)
γh (h) dh.

Another differentiation w.r.t. xn yields:

∂fn(xn, t)

∂xn
=

1

σ2
nt
φ′
(
xn − x0n − µnt

σn
√
t

)

−
∫ t

0

1

σ2
n(t− h)

φ′
(
xn − βn(h)− µn(t− h)

σn
√
t− h

)
γh (h) dh.

It is easy to verify that φ′(z) = −zφ(z) for all z ∈ R. Moreover, it is well-known from the theory of Kolmogorov Forward Equations

that

γn(t) = −σ2
n

∂fn(xn, t)

∂xn

∣∣∣∣
xn=βn(t)

.

Combining these two facts, the results follow immediately. �

Proof of Proposition 4. The value function satisfies

(r + λn(t))Vn = µn
∂Vn

∂x
+
σ2
n

2

∂2Vn

∂x2
+
∂Vn

∂t

for all (x, t) in the interior of the no-exercise region. Define an auxiliary function Ṽn by setting Ṽn(x, t) := Vn(x, t)1{x < βn(t)} for each

(x, t) ∈ R × R+. Since βn(t) ∈
[
k, βn

]
by Proposition 1, the auxiliary function Ṽn(·, t), unlike the value function itself, is absolutely

integrable for every t ≥ 0: ∫ +∞

−∞

∣∣∣Ṽn(x, t)
∣∣∣ dx ≤ ∫ βn(t)

−∞
Vn(x, t)dx ≤

∫ βn

−∞
V n(x)dx = ξ−2

n < +∞,

where V n is the value that player n would obtain as a monopolist and ξn is the only positive root of equation (1/2)σ2
nξ

2
n+µnξn−r = 0.

Let Ln denote the Fourier transform of Ṽn:

Ln ≡ Ln(ω, t) :=

∫ +∞

−∞
e−iωxṼn(x, t)dx =

∫ βn(t)

−∞
e−iωxVn(x, t)dx.

Using the HJB equation, value-matching and smooth pasting, it is easy to verify that Ln satisfies the ODE

∂Ln

∂t
= δnLn − ψn,

where

δn ≡ δn(ω, t) := r + λn(t) +
1

2
σ2
nω

2 − µniω.

and

ψn ≡ ψn(ω, t) := e−iωβn(t)
[(
µn +

1

2
σ2
niω − β′n(t)

)
(βn(t)−Kn) +

1

2
σ2
n

]
.

Note that Proposition 5 implies the Vn converges. Thus, the ODE above has a unique forward solution:

Ln(ω, t) =

∫ ∞
t

e−
∫ h
t δn(ω,s)dsψ(ω, h)dh.
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We now proceed to invert this transform using standard inversion formulas. Exchanging the order of integrals, we can write:

1

2π

∫ +∞

−∞
eiωxLn(ω, t)dω

=

∫ ∞
t

(
1

2π

∫ +∞

−∞
eiωx

[
e−

∫ h
t δn(ω,s)dsψ(ω, h)

]
dω

)
dh,

=

∫ ∞
t

e−ρn(h,t)
(

1

2π

∫ +∞

−∞
eiωx

[
eµn(h−t)iω−

1
2
σ2
n(h−t)ω

2
ψ(ω, h)

]
dω

)
dh.

Thus, we only need to compute the Fourier inverse

1

2π

∫ +∞

−∞
eiωx

[
eµn(h−t)iω−

1
2
σ2
n(h−t)ω

2
ψ(ω, h)

]
dω =

∫ +∞

−∞
e−Aω

2+Bω (Cω +D) dω,

where

A :=
1

2
σ2
n(h− t),

B := [x− βn(h) + µn(h− t)] i,

C :=
1

4π
σ2
n (βn(h)−Kn) i,

D :=
1

2π

[(
µn − β′n(h)

)
(βn(h)−Kn) +

1

2
σ2
n

]
.

It is easy to show that ∫ +∞

−∞
e−Aω

2+Bω (Cω +D) dω = e
B2

4A

√
π

A

(
BC

2A
+D

)
.

Note that

e
B2

4A = e
− 1

2

(
βn(h)−x−µn(h−t)

σn
√
h−t

)2
=
√

2πφ

(
βn(h)− x− µn(h− t)

σn
√
h− t

)
,

and
BC

2A
+D =

1

4π

{
σ2
n +

[(
βn(t)− x
h− t

)
− 2β′n(t) + µn

]
(βn(t)−Kn)

}
.

Thus,

e
B2

4A

√
π

A

(
BC

2A
+D

)
=

φ
(
βn(h)−x−µn(h−t)

σn
√
h−t

)
2σn
√
h− t

{
σ2
n +

[(
βn(h)− x
h− t

)
− 2β′n(h) + µn

]
(βn(h)−Kn)

}
.

From the theory of Fourier transforms, we know that

Ṽn(x−, t) + Ṽn(x+, t)

2
=

∫ ∞
t

e−ρn(h,t)e
B2

4A

√
π

A

(
BC

2A
+D

)
dh

for all x ∈ R. On the one hand, in the no-exercise region, we have Ṽn(·, t) = Vn(·, t). Thus, Equation 16 follows immediately from

continuity of the value function. On the other hand, when x = βn(t), we have

Ṽn(x−, t) + Ṽn(x+, t)

2
=
Vn(βn(t)−, t) + 0

2
=

1

2
Vn(βn(t), t)

by definition of Ṽn and value-matching. As a result,

Vn(βn(t), t) = 2 e
B2

4A

√
π

A

(
BC

2A
+D

)∣∣∣∣
x=βn(t)

.
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Evaluating the formula for the RHS above, we obtain Equation 15. �

In order to prove Proposition 5, we need the following two lemmas.

Lemma 1. Let βF and βG are the optimal exercise boundaries of a player facing exogenous stopping distributions F and G. Fix

t ∈ R+ and suppose that
1− F (t+ h)

1− F (t)
≥

1−G(t+ h)

1−G(t)

for all h ∈ R+. Then, βF (t) ≥ βG(t).

Proof. There is no loss in restricting attention to stopping times τ such that Xx(τ) ≥ k a.s. For every such stopping time, we have

E
{
e−rτ

(
1− F (t+ τ)

1− F (t)
−

1−G(t+ τ)

1−G(t)

)
(Xx

n(τ)− k)

}
≥ 0.

This implies that the recursive values satisfy VF (x, t) ≥ VG(x, t) for all x ∈ R. Hence, VG(x, t) > x− k implies VF (x, t) > x− k. Hence,

optimality of continuation under G implies that continuation is also optimal under F . It follows that βF (t) ≥ βG(t). �

Lemma 2. We define, for each t, h ∈ R+ and player n ∈N ,

Λn(t, h) := − ln

(
1− Γn(t+ h)

1− Γn(t)

)
.

Then, for every player n ∈N and h ∈ R+, we have

lim
t→+∞

(
Λn(t, h)

h

)
=

1

2

(
max{µn, 0}

σn

)2

.

Proof. Optimal exercise boundaries satisfy kn ≤ βn ≤ βMn for every n ∈N . Let ΓKn and ΓMn be the absorption probabilities associated

with constant exercise boundaries kn and βM . Clearly, ΓMn (t) ≤ Γn(t) ≤ ΓKn (t) for all t ∈ R+.

We will start showing that there exists a constant A ∈ [0,+∞) such that, for all h ∈ [0,+∞), we have

(18) lim sup
t→+∞

Λn(t, h) ≤ Ah.

Clearly, ΓMn (t) < Γkn(t) for all t > 0. Hence, for every t > 0 and h ∈ R+, we have

1− Γn(t+ h)

1− Γn(t)
>

1− Γkn(t+ h)

1− ΓMn (t)

Thus,

Λn(t, h) < − ln

(
1− Γkn(t+ h)

1− ΓMn (t)

)
.

Using L’Hôpital’s rule, we can explicitly compute:

lim
t→+∞

(
1− Γkn(t+ h)

1− ΓMn (t)

)
=


exp

(
µn
σ2
n

(
βMn − kn + 1

2
µnh

))( kn−x0n
βMn −x0n

)
µn ≥ 0

1−exp

(
2µn(kn−x0n)

σ2n

)
1−exp

(
2µn(βMn −x

0
n)

σ2n

) µn < 0.

It follows that

lim sup
t→+∞

Λn(t, h) ≤ lim
t→+∞

[
− ln

(
1− Γkn(t+ h)

1− ΓMn (t)

)]
,
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= − ln

[
lim

t→+∞

(
1− Γkn(t+ h)

1− ΓMn (t)

)]
,

= Ah+B,

where we define

A :=


1
2

(
µn
σn

)2
µn > 0

0 µn ≤ 0

and

B :=



µn
σ2
n

(
βMn − kn

)
+ ln

(
βMn −x

0
n

kn−x0n

)
µn > 0

0 µn = 0

ln

 1−exp

(
2µn(kn−x0n)

σ2n

)
1−exp

(
2µn(βMn −x

0
n)

σ2n

)
 µn < 0.

Running a symmetric argument, we can obtain the following lower bound for the limit inferior:

lim inf
t→+∞

Λn(t, h) ≥ Ah−B,

where A and B are defined as before.

Next, we will show that, for all h ∈ R+, we have

lim
t→+∞

Λn(t, h) = Ah.

Suppose first that the limit on the left-hand side above exists for some h ∈ R+. Then, for every m ∈ N, we have

Λn(t,mh) = − ln

(
1− Γn(t+mh)

1− Γn(t)

)
,

= − ln

[
m∏
i=1

(
1− Γn(t+ ih)

1− Γn(t+ (i− 1)h)

)]
,

=
m∑
i=1

[
− ln

(
1− Γn(t+ ih)

1− Γn(t+ (i− 1)h)

)]
,

=
m∑
i=1

Λn(t+ ih, h).

This formally implies that

lim
t→+∞

Λn(t,mh) = lim
t→+∞

m∑
i=1

Λn(t+ ih, h),

=

m∑
i=1

lim
t→+∞

Λn(t+ ih, h),

= m lim
t→+∞

Λn(t, h).

Reversing the derivation proves that the limit in the LHS must also exist. It follows that

lim
t→+∞

Λn(t,mh) = lim inf
t→+∞

Λn(t,mh) = lim sup
t→+∞

Λn(t,mh).
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Then, using the inequalities for the limit inferior and superior, we get

Amh−B ≤ lim
t→+∞

Λn(t,mh) ≤ Amh+B.

Combined with the linearity derived above, this implies that

Ah−
B

m
≤ lim
t→+∞

Λn(t, h) ≤ Ah+
B

m
.

Since this inequality holds for every m ∈ N, we must have

Ah ≤ lim
t→+∞

Λn(t, h) ≤ Ah.

This establishes that, if the limit exists, it must be in fact equal to Ah.

Finally, we consider the existence of the limit. It is enough to show that limi→+∞ Λn(ti, h) = Ah holds for every increasing

unbounded sequence of times {ti}. Note that a real sequence converges to the number Ah ∈ R if and only if every sub-sequence has a

convergent sub-sub-sequence converging to Ah. So fix any increasing sequence of times {ti} such that limi→+∞ ti = +∞ and define

{αi} as

αi := Λn(ti, h).

Since αi eventually belongs to the compact interval [0, Ah+B + 1], there is no loss in assuming that this holds for all i ∈ N. Now pick

an arbitrary sub-sequence {αij }. Since {αij } is contained in a compact interval, {αij } has a convergent sub-sub-sequence {αijl }. Since

liml→+∞ αijl
exists by construction, we can run the argument above to show that liml→+∞ αijl

→ Ah. Since the sub-sequence {αij }

was arbitrary, we conclude that limi→+∞ αi = Ah, completing the proof. �

Proof of Proposition 5. Consider player n ∈ {1, ..., N}. Proposition 1 implies that β̂n must satisfy kn ≤ β̂n(t) ≤ βMn for all t ∈ R+. By

Lemma 2, for every h ∈ R+, we have

lim
t→+∞

(
Λn(t, h)

h

)
=

1

2

(
max{µn, 0}

σn

)2

.

Now, for every t ∈ R+, define

λn(t) := sup
s≥t
h≥0

(
Λn(s, h)

h

)

and

λn(t) := inf
s≥t
h≥0

(
Λn(s, h)

h

)
.

Notice that, for all t, h ∈ R+, we have

λn(t) ≤
Λn(t, h)

h
≤ λn(t).

Moreover,

lim
t→+∞

λn(t) = lim
t→+∞

λn(t) =
1

2

(
max{µn, 0}

σn

)2

.

Define βn(t) and β
n

(t) as the constant boundaries of a monopolist facing constant hazard rates
∑
m 6=n λm(t) and

∑
m 6=n λm(t),

respectively, for all s ≥ t. Clearly,

lim
t→+∞

β
n

(t) = lim
t→+∞

βn(t) = β∗n.
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Moreover, since λn(t)h ≤ Λn(t, h) ≤ λn(t)h for all t, h ∈ R+, Lemma 1 implies that, for all t ∈ R+, we have

β
n

(t) ≤ β̂n(t) ≤ βn(t).

Therefore, we conclude that

lim
t→+∞

β̂n(t) = β∗n,

as claimed. �


