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April 5, 2017

Abstract

We o↵er a new methodology for the assessment of public debt sustainability

in a stochastic economy when the possibility of sovereign default and its interplay

with the dynamics of the risk premium are taken into account. The default thresh-

old di↵ers from the solvency ratio defined by the no-Ponzi condition and depends

on the assumed post-default debt recovery rule. We distinguish sustainability con-

ditions from unsustainability conditions, relative to alternative scenarios made

about the future sequence of shocks. We highlight the role of the debt recovery

ratio on the whole dynamics of public debt. When a sovereign default occurs, the

sustainability of the post-default debt is ensured when the haircut is su�ciently

large. Lastly we provide an explanation of serial defaults.
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1 Introduction.

Greece obtained three successive economic adjustment programs in 2010, 2011 and

2015, which were clear evidence that it could not get access to financial markets on

its own since 2010. The first one provided for a write-o↵ of 50% of the Greek bonds

detained by commercial banks.1 Thanks to these programs which de facto amounted

to a partial default, the Greek public debt decreased from 356.3 billions euros in 2011

to 305.1 billions in 2012, ending with a figure of 311.4 billions in 2015.2 Yet the ratio

of Greek public debt to GDP for 2015 reached 176.9 %, a much larger amount than the

corresponding level in 2010 (146.2 %), leading the IMF to call for an extra debt relief

by European countries. Specifically, the IMF worries about “a public debt burden that

remains unsustainable despite large debt relief already received”.3

The ongoing Greek debt crisis4 drammatically shows that defaulting on sovereign

bonds is not su�cient to restore public finances and avoid the ballooning of public

debt. Defaults impact on the dynamics of public debt and thus its sustainability for 2

reasons:

1. Ex post, a default implies a rescheduling of public debt and thus a new starting

point for the path of public debt.

2. Ex ante, it has an expectational e↵ect. When the prospect of a future default

increases, this increases the risk premium charged on public bonds and thus con-

tributes to the burden of public debt.

The standard view on public debt sustainability, based on the Intertemporal Govern-

ment Budget Constraint (IGBC), does not address this issue, as it rules out sovereign

default. According to this view, public debt at a given period t is said to be sustainable

if the present value of expected future primary surpluses is at least equal to the initial

1Euro summit statement, 26 October 2011.
2Source on data: Eurostat.
3IMF, “Greece: Sta↵ Concluding Statement of the 2016 Article IV Mission”, September

23, 2016. http://www.imf.org/en/News/Articles/2016/09/23/MS092316-Greece-Sta↵-Concluding-
Statement-of-the-2016-Article-IV-Mission. See also Financial Times, “IMF calls on eurozone for bolder
Greece debt relief”, September 23, 2016.

4Zettelmeyer, Trebesch and Gulati (2013) provide a thorough analysis of the Greek debt relief
programme of 2012.
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debt. This criterion is satisfied under two conditions: i) the government commits to

repay its debt and strategic defaults are ruled out, ii) it has at its disposal a set of

su�ciently flexible fiscal instruments. In this perspective the sustainability of public

debt is the mirror of fiscal sustainability.

Two criticisms can be addressed to this view. First, governments are likely to be

constrained in their fiscal policies: taxes and expenditures cannot always be manip-

ulated at will. Fiscal policy may be so constrained that defaults cannot be avoided.

Second, it does not relate the sustainability of public debt to its future dynamics. It

is to be noticed that the assessment of public debt sustainability by rating agencies

and international institutions focuses on the dynamics of public debt, depending on

the financial and economic environment, including the policy stance. Rating agencies

upgrade or downgrade public debts according to the prospect of defaults. Public insti-

tutions such as the IMF or the European commission develop toolkits or ready-to-use

frameworks for assessing the macroeconomic conditions of a country and in particular

the perils of unsustainability and default.5 Implicitly the non-explosive behavior of

public debt under alternative scenarios is used by these institutions as a criterion of its

sustainability.

In this paper we provide a rigorous characterization of public debt sustainability

addressing the interplay between (possible) defaults and the dynamics of public debt in

a stochastic environment when fiscal policy is constrained. For this purpose we build a

simple macroeconomic model of a closed economy without capital and money in which

fiscal policy may be constrained. We rule out strategic or preemptive defaults and focus

on defaults as market events. We introduce in the model a debt recovery rule which

specifies the amount of the haircut applied to the defaulted debt. The model is simple

enough to be tractable and allows full analytical resolution. Specifically, the pricing of

public bonds is obtained, generating the (growth-adjusted) servicing of debt. Building

on this step, we characterize the stochastic dynamics of public debt and the (possible)

occurrence of defaults.

We prove that the default threshold is weakly lower than the solvency ratio defined

5See IMF (2013a) and European Commission (2016).
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as the debt-to-GDP ratio strictly meeting the no-Ponzi condition. The former one

depends on the debt recovery rule and is equal to the solvency ratio in the very special

case, and clearly irrealistic, where the post-default debt is reset at the default threshold

itself.

Public debt is to be analyzed in conjunction with macroeconomic shock realizations:

Under which stochastic circumstances is public debt sustainable, that is, able to avoid

meeting the default threshold? The IMF guidelines acknowledge the necessity to reason

on “scenarios” as evidenced in the “Sta↵ guidance note on public debt sustainability”:

In general terms, public debt can be regarded as sustainable when the primary

balance needed to at least stabilize debt under both the baseline and realistic

shock scenarios is economically and politically feasible, such that the level of

debt is consistent with an acceptably low rollover risk and with preserving

potential growth at a satisfactory level.6

In our framework, the reasoning on such scenarios is obtained by means of the use of

truncated sets of admissible sequences of shocks over time. The extent of truncation

reflects the strength of the (un)sustainability criterion imposed on public debt.

Specifically, a public debt is said to be “��sustainable” at date t when its trajectory

does not reach the default threshold at any future date, assuming that there is no

realization of the gross rate of growth lower than �  1. A public debt is said to be

“��unsustainable” at date t when its trajectory reaches the default threshold at some

finite date, assuming that there is no realization of the gross rate of growth higher than

� � 1. When a public debt is neither “��sustainable” nor “��unsustainable”, with

� < 1 < �, it is in a zone of “financial fragility”.

We show in the paper that these definitions derive from the notion of a “��risky

steady state” which is a generalization of a “risky steady state”, recently developed by

Coeurdacier, Rey and Winant (2011). This notion allows us to define sustainability and

unsustainability thresholds. Both thresholds are always below the default threshold.

Turning to the post-default dynamics of public debt, the possibility of renewed de-

fault cannot be ruled out. For a given subset of admissible realizations of shocks, if

6IMF (2013b), p. 4.
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the post-default debt set according to a rescheduling scheme is above the unsustain-

ability threshold, the public debt eventually reaches default. This corresponds to a

configuration characterized by “serial defaults”.7 We show that this happens when the

reduction of debt generated by the debt recovery rule is too small.8 On the other hand,

we prove that, for a given sustainability criterion, the post-default debt is sustainable

if the haircut implied by the debt recovery rule is su�ciently large, given the assumed

truncation of realizations.

The paper is organized as follows. We discuss the related literature in the following

section. Section 3 presents the macroeconomic framework. We first study the dynamics

of expected public debt abstracting from the occurrence of default in section 4, defining

the solvency ratio and emphasizing the importance of fiscal limits. In section 5, we study

the market valuation of public debt in the presence of default risk. The dynamics of

public debt when default is not ruled out is addressed in Section 6. Section 7 concludes.9

2 Related literature.

This paper combines together the economics of public debt sustainability and public

default. We here provide a brief survey of the literature on these topics relevant for our

research.

Aguiar and Amador (2014) and D’Erasmo, Mendoza and Zhang (2015) are recent

surveys on sovereign debt. Regarding public debt sustainability, Bohn (1995) has con-

vincingly argued that the traditional tests of the intertemporal government budget

constraint (IGBC) are insu�ciently rigorous. More precisely Bohn criticizes the ne-

glect of the probability distribution of the various variables included in this constraint

and thus the treatment of interest rates as risk-free. In an other influential paper, Bohn

(2007) has demonstrated that the IGBC holds if either debt or revenue and spending

inclusive of debt service are integrated of finite but arbitrarily high order. As noted by

7A seminal reference on the subject is Reinhard, Rogo↵ and Savastano (2003).
8This matches the observation that often the defaulting process leads to a “too small” haircut. See

IMF (2013b).
9Proofs of propositions are contained in the Appendix section.
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D’Erasmo et al. (2015), this condition is so easily fulfilled that sustainability tests are

futile.

Reinhart and Rogo↵ (2008) constitutes the main empirical study of sovereign de-

faults, both external and domestic, based on a two-century analysis of historical episodes

of defaults. Tomz and Wright (2013) and Reinhard and Trebesch (2014) are recent stud-

ies on the empirics of public debt and default. Das, Papaionnou and Trebesch (2012)

focus on the empirics of debt restructuring. Sturzenegger and Zettelmeyer (2008) doc-

ument the variability of haircuts in recent defaults, ranging from 13 percent (Uruguay

external exchange) to 73 percent (2005 Argentina exchange). Cruces and Trebesch

(2013) find that haircuts have a significant e↵ect on public debt sustainability through

the interest spread channel.

Aguiar and Amador (2013) and D’Erasmo, Mendoza and Zhang (2015) extensively

address the issue of default, in particular from a theoretical point of view.10 It is

convenient to distinguish between strategic defaults and defaults as pure market events.

A default is strategic when it is the outcome of a decision by the government. Most of

the theoretical studies on default focus on solving the puzzle of the existence of sovereign

debt contracts between fully rational agents when there is no or limited enforcement

capacity, following Eaton and Gersovitz (1981). The issue is the designing of e�cient

contracts taking into account the incentive to default. Important references on the

subject are Calvo (1988), Cole and Kehoe (2000), Aguiar and Gopinath (2006), Arellano

(2008). Mendoza and Yue (2012) set up a DSGE model with strategic default which

provides an explanation for the negative relationship between sovereign spreads and

GDP growth but take as given the threshold levels linked to default.

Defaults as market events are less studied. Such defaults occur when the govern-

ment, being unable to decrease its spending or raise taxes (for example, because of

excessive fiscal distorsions), is facing lenders unwilling to lend it the needed sum at any

rate. As shown by Bi (2013), Bi and Leeper (2012), Daniel and Shiamptanis (2013),

fiscal limits arising from distorsions drastically modify the conditions on the sustain-

ability of debt and contribute to defaults. Arellano, Atkeson and Wright (2015) show

10A previous survey is Eaton and Fernandez (1995).
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how the spreads on public debt and thus public indebtedness depend on the flexibil-

ity of fiscal instruments. Lorenzoni and Werning’s article (2014) is the closest to our

setting as they investigate the gradual worsening of public debt position which is due

to the presence of long-term debt. Yet they concentrate the risk in one period only.

Thus default can only occur once. Collard, Habib and Rochet (2015), reasoning in a

stochastic environment, relate the probability of default to the debt-to-GDP ratio. Yet

they do not address the whole dynamics of public debt. Gosh et al. (2013), relating

fiscal fatigue to public default, compute a “fiscal space”, that is, the distance from the

default threshold. Their focus being mainly empirically, using data on 23 advanced

economies over 1970–2007, they estimate this fiscal space for each country.

An intermediate case of default is preemptive restructuring, which occurs when the

government negotiates and obtains from lenders a restructuring of its existing debt

- prior to a payment default. Asunoma and Trebesch (2016) is a first step in this

direction.

3 The model.

We consider a closed economy with flexible prices and no capital. The government

issues non-contingent bonds but savers have also access to a complete set of Arrow-

Debreu contingent assets. The existence of complete financial markets allows e↵ective

hedging by savers and the pricing of public bonds reflecting the risk of default.

3.1 Private sector.

There is a representative agent whose preferences are described by the following utility

function:

U
0

= E
0

+1X

t=0

�t [u (Ct)� ` (Lt)] , (1)

with: u (Ct) = lnCt and ` (Lt) = ⌘�1L
1+1/�
t / (1 + 1/�) , where Ct is consumption, Lt

represents hours worked, and � the Frisch elasticity of labor.
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In each period the agent receives profits ⇧t and labor income WtLt, where Wt

denotes the real wage rate. Income, including profits but excluding other financial

returns for sake of simplicity, is taxed at a proportional rate ⌧t. The consumer can

save by means of a portfolio of Arrow-Debreu state-contingent assets and one-period

maturity Treasury bonds. The amount of new issued government bonds she chooses

to buy in t is noted Bt and their unit price is qt. The amount of redeemed debt is

denoted by htBt�1

where ht denotes the fraction of debt actually reimbursed. It is less

than 1 in the case of default. Denoting by Qt,t+1

the price of a contingent asset which

generates a real return of 1 in a given state of nature (and 0 in the others) divided by

the probability (or density function) of such state,11 and by Dt+1

the quantity of this

contingent asset,12 the individual budget constraint at t writes:

Ct + qtBt + Et (Qt,t+1

Dt+1

)  (1� ⌧t) (WtLt +⇧t) + htBt�1

+Dt. (2)

The agent must also meet her intertemporal constraint on wealth:

ht+1

Bt +Dt+1

� �Et+1

1X

s=t+1

Qt+1,s (1� ⌧s) (WsLs +⇧s) 8t, (3)

with Qt+1,s ⌘ Qt+1,t+2

Qt+2,t+3

· · ·Qs�1,s and Qt+1,t+1

= 1. This condition must hold for

each possible state that may occur at date t+ 1.

Maximizing (1) under constraints (2) and (3), the following optimality conditions

obtain for any period t:

Qt,t+1

= �
u0 (Ct+1

)

u0 (Ct)
= �

Ct

Ct+1

, (4)

qt = EtQt,t+1

ht+1

, (5)

(1� ⌧t)Wt =
v0 (Lt)

u0 (Ct)
=

L
1/�
t

⌘
Ct (6)

11Which will be equal to the stochastic discount factor.
12For the sake of simplicity, we do not use notation for the states of Nature that may occur at

each date. Remember that there are as many di↵erent values for Dt+1

and Qt,t+1

as possible states
of nature in t + 1. The contingent asset is indexed by t + 1 since its return will depend on the state
of nature realized in t + 1. To the contrary the public bond emitted in t is indexed by t as it is not
state-contingent in t+ 1.
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and the transversality condition is given by:

lim
T!1

EtQt,T [hTBT�1

+DT ] = 0. (7)

(4) is the state contingent Euler equation for consumption. This condition must

hold for each possible state that may occur at date t + 1, given the state that has

occurred at date t. (5) equates the price of the risky government bond to the expected

discounted return of the reimbursed debt next period. The RHS of this equation can

be interpreted as the value of a specific portfolio composed of contingent assets, each

one bought in quantity ht+1

. Hence (5) is the no-arbitrage condition between the risky

government bond and this particular portfolio. Finally, (6) is the intratemporal optimal

condition between labor and consumption.

The good market is perfectly competitive and returns to scale are constant. The

production technology is given by:

Yt  AtNt (8)

where Yt denotes production, Nt is the quantity of labor hired by the firm, and At is

the average (and marginal) productivity of labor. It is stochastic and the sole source

of shock present in this economy. Profit maximization leads to standard results on

returns: Wt = At, ⇧t = 0 and (8) binds.

In order to simplify the analysis of this economy and fully characterize its dynamics

thanks to the study of the debt-to-GDP ratio, we make the following assumption about

the productivity shock:

Assumption 1.

At = atAt�1

,

where at is an i.i.d. random variable. The cumulative distribution function of at is

denoted by G (a) , its density function by g (a) and we assume that:

1. the support of g (a) is bounded on the interval [a
inf

, asup] . In addition, 0 < a
inf

<
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1 < asup and

E (a) = 1 and �E

✓
1

a

◆
< 1,

2. g (a) > 0; lim
a!asup

g (a) = lim
a!a

inf

g (a) = " with " arbitrarily small,

3. the elasticity of the density function g (a) satisfies ag0(a)
g(a) > �1.

Assumption 1.1 makes clear that the productivity follows a random walk and the

growth rate of productivity is bounded. Assumption �E
⇣

1

at

⌘
< 1 will guarantee the

existence of a positive risk-free interest rate for this economy when there is no risk of

default.

Assumptions 1.2 and 1.3 are regularity assumptions which allow us to exclude the

possibility of multiple equilibria as will be made explicit in Section 4.

3.2 Fiscal policy.

Government spends an amount Gt = gYt, and collects taxes on income ⌧tYt. It balances

its budget by issuing one-period maturity Treasury bonds at a price qt. In case of

default at t, it reimburses a fraction ht < 1 of its debt contracted at t � 1, Bt�1

. The

instantaneous government budget constraint writes:

qtBt = htBt�1

+ (g � ⌧t)Yt, (9)

with ht 2 (0, 1) .

Fiscal rule and fiscal constraint.

Following Bi (2012), Daniel and Shiamptanis (2013) and Davig, Leeper and Walker

(2011), we assume that the tax rate increases with the fraction of debt to GDP, up to

a limit denoted by ⌧̂ .13 When the tax rate has reached its maximum value, we refer to

13An obvious candidate for this limit corresponds to the rate generating the highest point of the
La↵er curve. More precisely we shall see below that there exist dynamic La↵er curves in the sense
that the shape of the La↵er curve depends on the state of the economy, as in Bi (2012). Since we
consider a non-stochastic fiscal policy, the maxima of these curves are obtained for a unique tax rate, in
contrast with Bi (2012). This limit can also be the consequence of political economy or constitutional
considerations.
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the situation as fiscally constrained and we will say that the economy is in a constrained

fiscal regime.

We assume that the tax rate depends on !t ⌘ htBt�1

/Yt, the actually redeemed

debt-to-output ratio,14 as long as the upper limit ⌧̂ is not yet reached,

⌧t = min (⌧̄ + ✓ · (!t � !̄) ; ⌧̂) , (10)

and we make the following assumption:

Assumption 2. ✓ > 1� �, !̄ � 0, and ⌧̂ > ⌧̄ ⌘ g + (1� �) !̄.

Under Assumption 2, the term !̄ can then be interpreted as a target value for the

actually redeemed debt-to-output ratio. From (10), we define another debt-to-output

ratio !̂ at which the tax rate reaches its maximum ⌧̂ :

⌧t = ⌧̂ () !t � !̄ +
⌧̂ � ⌧̄

✓
⌘ !̂. (11)

Sovereign default and debt recovery rule.

Let us denote by ⌦max

t the maximum debt level which can be redeemed by the Treasury

without default in t: Default occurs when Bt�1

> ⌦max

t .We refer to ⌦max

t as the “default

threshold” for period t. Note that it is a priori a random variable.

As we do not focus upon the strategic relationships between lenders and the public

borrower, we assume a given debt recovery rule. In case of default, a simple rule,

contingent on the level of contractual debt Bt�1

and on the default threshold ⌦max

t , is

applied. We use the following specification:

ht = H (Bt�1

,⌦max

t ) ⌘
8
<

:
h · ⌦max

t /Bt�1

< 1 if ⌦max

t < Bt�1

,

1 if not,
(12)

with 0  h  1.

According to this rule, any realization of the (stochastic) default threshold ⌦max

t

below the contractual level of debt triggers default and rescheduling. This rescheduling

14The redeemed debt is possibly a↵ected by default when ht < 1.
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is such that the after-default (redeemed) debt-to-GDP ratio is a fraction of ⌦max

t , i.e.:

htBt�1

= h⌦max

t . If we consider the limit case where the overrun is negligible (Bt�1

!
⌦max+

t ), h can be interpreted as the maximum redemption ratio. By extension, 1 � h

is the minimal rate of default, or equivalently and loosely speaking, the lowest possible

“haircut”. This rule displays two important features.

1. This recovery rule has the property of ensuring that the government is immedi-

ately able to re-enter the bond market as its post-default initial debt is below

⌦max

t and thus the economy functions again according to the set of equations

characterizing its dynamics.

2. The possibility of future defaults is not ruled out. Nevertheless the rule allows

the defaulting government to withstand adverse shocks in the future. The lower

is h, the more room there is to accommodate adverse shocks.

Finally it is also consistent with the evidence that the ratio of recovered to emitted

debt ht is not unique and varies according to countries and circumstances.15

3.3 Equilibrium conditions.

At this stage, we establish the equilibrium conditions of this economy taking as given

the possible stochastic sequences of default threshold in each period: {⌦max

t } .16 A

competitive equilibrium contingent to a sequence of default thresholds is defined as

follows: It is a sequence of prices {Wt, qt, {Qt,t+1

}}1t=0

, policy instruments {⌧t, ht}, and
quantities {Nt, Yt, Ct, Bt, {Dt+1

}}1t=0

such that, for all possible sequences of exogenous

realizations {At}1t=0

and default thresholds {⌦max

t }+1
t=0

, households and firms solve their

respective optimization problems, the accumulation equation of public debt holds, the

taxation and default rules hold, and all markets clear. The market clearing conditions

for respectively the good market, the labor market and the contingent asset market are,

15Haircuts in sovereign debt restructuring for emerging market economies over 1998 and 2005 varied
from 5% in Dominican republic to 72% in Argentina (see Sturzenegger and Zettelmeyer, 2008). See
also Tomz and Wright (2012).

16In section 5 this sequence is endogenized.
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for all t:

Ct = (1� g)Yt, (13)

Lt = Nt, (14)

{Dt+1

} = {0}. (15)

Combining (6) where Wt = At, with (8) as an equality, (13) and (14) gives:

Yt =

✓
⌘
1� ⌧t
1� g

◆ �
1+�

At. (16)

Combining (4), (5), and (13) generates the no-arbitrage condition:

qt = �Et

✓
Yt

Yt+1

ht+1

◆
(17)

For given stochastic processes for the exogenous sequence {At}1t=0

and the sequence

{⌦max

t }+1
t=0

, the equilibrium conditions are reduced to equations (16) where ⌧t is given

by (10), (17) where ht+1

is given by the debt recovery rule (12), the GBC condition (9)

as well as and the transversality condition:

0 = lim
T!1

�TEt!T . (18)

Notice that when ⌧t = ⌧t�1

= ⌧̂ , the gross rate of output growth is equal to Yt/Yt�1

=

At/At�1

(⌘ at) and follows an exogenous stochastic process.

One can easily check that this economy displays a La↵er curve: the total amount

of taxes collected by the government, Tt = ⌧tYt, is a non-monotone function of ⌧t. In

each period it is a↵ected by the state of the economy, that is, the realization of the

random variable At; however the tax rate for which it reaches its maximum is given by

⌧max = (1 + �) / (1 + 2�) which is state-independent. ⌧max represents an upper value

for the fiscal limit parameter ⌧̂ .
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4 The solvency ratio.

Substituting in the government budget constraint (9) the value of qt given by (17), and

dividing the result by Yt, we get:17

�Et!t+1

= !t + g � ⌧t. (19)

(19) corresponds the dynamic equation for expected actually redeemed debt-to-output

ratio. Notice that the possibility of default does not appear explicitly in this equation.

This is due to the combination of two elements: first, according to (17) the possibility

of default is included into the pricing of public bond; second, in (19) we reason on the

actually redeemed debt-to-output ratio which encompasses the possibility of default.

For a given value of the tax rate, Et!t+1

is a linear function of !t. This is due to the

logarithmic specification of the utility function in consumption and the assumption that

g is constant, which makes consumption proportional to output. Using the taxation rule

(10) in equation (19) and using the definition of !̂ given by (11), we get the following

dynamic equation for expected actually redeemed debt-to-output ratio:

Et!t+1

=

8
<

:
(1� ✓) ��1!t + (1� (1� ✓) ��1) !̄ for !t  !̂,

��1!t � ��1 (⌧̂ � g) for !t > !̂.
(20)

(20) makes clear the consequence of a maximum tax rate. It creates a kink in the dy-

namics of expected debt. If the actually redeemed debt-to-output ratio !t is su�ciently

low, negative shocks on output and the resulting reduction in tax receipts can partially

be o↵set by an increase in the tax rate. When !t has reached the debt-to-output ratio

!̂ –at which the tax rate reaches its maximum ⌧̂–, then this possibility is foregone and

a negative shock on output and the ensuing deficit can only be accommodated by an

increase in public debt.

When the actually redeemed public debt ratio !t is less than !̂, the expected actually

redeemed debt ratio is obtained from a linear equation the slope of which ((1� ✓) ��1)

17Remark that, using (17), the LHS of (9) divided by Yt gives : qt
Bt
Yt

= �Et

⇣
Yt

Yt+1
ht+1

⌘
Bt
Yt

=

�Et
ht+1Bt

Yt+1
, which is identical to �Et!t+1

.
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is less than one (from Assumption 2). When it is above it, the expected actually

redeemed debt ratio is obtained from a linear equation the slope of which (��1) is more

than one. Hence the kink at !̂ creates two deterministic steady states, one of which is

!̄. The second deterministic steady state is defined by the following

!sup ⌘ ⌧̂ � g

1� �
. (21)

!sup is equal to the sum of expected discounted primary surpluses (relative to GDP),

when they are set at their maximum value; hence it defines the conventional solvency

limit of public debt(-to-output ratio). In the sequel, we will refer to !sup as the solvency

ratio of sovereign debt. Using (11), (21) and ⌧̄ ⌘ g + (1� �) !̄, !̂ can be expressed as:

!̂ =

✓
1� 1� �

✓

◆
!̄ +

1� �

✓
!sup (22)

From Assumption 2, as !̄ < !̂ < !sup the expected dynamics of the actually re-

deemed debt-to-output ratio is represented by Figure 1. The first deterministic steady

state is stable, whereas the second one, !sup, is an unstable steady state in the following

sense: If current debt ratio is less than !sup, it is expected to converge toward !̄, absent

of any future shock; if it were more than !sup, it is expected to grow indefinitely and

violates the transversality condition.18 Indeed, when !t > !̂, given (20) and using (21),

the transversality condition (18) is written as:

lim
T!1

�TEt!T = !t � !sup = 0,

and therefore is violated when !t > !sup.

Note that !t = htBt�1

/Yt is a stochastic variable which may “jump” in each pe-

riod according to the growth rate innovation and the possibility of a sovereign default.

Moreover the previous analysis based on the study of its expected dynamics is insu�-

cient. As Et!t+1

is equal to ��1qtBt/Yt, it reflects the intertwined impacts of the ratio

18It is standard in many macroeconomic analyses to confuse the notions of solvency and sustainability
of public debt. We shall see that this confusion is misleading.
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Figure 1: Deterministic Steady States

of emitted debt to GDP Bt/Yt and the price at which it is sold on the market. We need

to disentangle these two e↵ects so as to obtain a proper understanding of the actual

dynamics of Bt/Yt.

5 Sovereign default and the market value of public

debt.

In this section, we first study the determination of the market value of public debt, de-

pending on the default threshold, and then we endogenize this default threshold. In the

sequel, we restrict the analysis to configurations which fulfill the following assumption:

Assumption 3. The economy in period t is such that:

1. min (!t�1

,!t) > !̂,

2. 9!t > !̂ such that: prob {default in t+ 1 |!t} = prob {!t+1

< !̂ |!t} = 0.

Assumption 3 allows us to restrict the analysis of sovereign default to the fiscal

constrained regime. 3.1 means that the economy in period t is already in the constrained

fiscal regime since at least one period, implying that ⌧t = ⌧t�1

= ⌧̂ . 3.2 considers the

case where, despite being in the constrained fiscal regime, that is !t > !̂, there exist

16



some debt-to-output ratios such that the probability of sovereign default in t+1 is zero

and the probability to stay in the constrained fiscal regime in t+ 1 is one.19

Let us denote by bt = Bt/Yt, the level of contractual government debt emitted today

relative to GDP at t and by !max

t the default threshold for period t as a percentage of

GDP, that is: !max

t ⌘ ⌦max

t /Yt. Given the definition of !t, we get !t = htbt�1

Yt�1

/Yt.

Under Assumption 3, we obtain from (16): Yt/Yt�1

= at. The equilibrium conditions

(16), (17) and (9) can be rewritten:

qt = �Et

✓
ht+1

at+1

◆
, (23)

qtbt = ht
bt�1

at
+ g � ⌧̂ , (24)

ht =

8
<

:
h · at!max

t /bt�1

< 1 if bt�1

/!max

t > at,

1 if not.
(25)

Taking the sequence {!max

t } as given, these three equations are su�cient to analyze

the valuation of public debt and the dynamics of emitted debt-to-output ratio bt in the

constrained fiscal regime.

5.1 Public debt valuation.

In order to solve the model consisting of equations (23) to (25), we conjecture that

!max

t+1

is known in t.20 Using (25) for t+ 1, and the probability distribution of at+1

, the

bond price given by (23) can be written : qt = q̃
�
bt;!max

t+1

,h
�
, where this last (pricing)

equation is defined as

q̃
�
bt;!

max

t+1

,h
� ⌘ �

8
>>>>><

>>>>>:

E
⇣

1

at+1

⌘
8 bt
!max

t+1

 a
inf

,

hG
⇣

bt
!max

t+1

⌘⇣
bt

!max

t+1

⌘�1

+
R

bt/!max

t+1

⇣
1

at+1

⌘
dG (at+1

) 8 bt
!max

t+1

2 (a
inf

, asup) ,

h
⇣

bt
!max

t+1

⌘�1

8 bt
!max

t+1

� asup.

(26)

19We shall give conditions on the parameters set under which Assumption 3.2 holds in section 5.2.
20In the sequel we will restrict the analysis to a class of equilibria for which this conjecture holds.
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Let us denote by vt the market value of public debt relative to output: vt = qtbt. It

can then be expressed as:

vt = q̃
�
bt;!

max

t+1

,h
� · bt ⌘ V

�
bt;!

max

t+1

,h
�

(27)

We refer to this last function as the “public debt valuation function”. It allows to

define three di↵erent regions:

1. When bt is very low (less than a
inf

!max

t+1

), there is no risk of default in t+1 and the

value of emitted public debt is the quantity of bonds discounted at the risk-free

gross interest rate �E (1/a) .

2. When bt is in an intermediate range which happens to be
�
a
inf

!max

t+1

, asup!max

t+1

�
,

the bond price qt is a decreasing function of the emitted quantity of these bonds.

Therefore the public debt value, vt, is potentially non-monotone in bt.

3. When bt is very high (above asup!max

t+1

), default is certain in t + 1. Therefore the

value of sovereign bonds (in terms of GDP) is the discounted value of debt after

rescheduling �Et (Yt/Yt+1

) ·h⌦max

t+1

/Yt = �h!max

t+1

.

The following proposition states the existence of a unique maximum value of public

debt vmax

t for a given value of the future default threshold ratio !max

t+1

:

Proposition 1. Given !max

t+1

, under Assumption 1, the valuation function reaches a

unique maximum, denoted by vmax

t , for a ratio bt = bmax

t . Both vmax

t and bmax

t are

linearly increasing in !max

t+1.: vmax

t = xh!
max

t+1

and bmax

t = �h!
max

t+1

. The coe�cients xh

and �h are increasing functions of h, satisfying 0 < xh  � for 0  h  1, and

1 < �h  asup for 0  h  1.

According to this proposition, the maximum value of public debt and the corre-

sponding amount of emitted debt are simple functions of the expected default thresh-

old.

Except in the region of no default, the price of the sovereign bond qt is a decreasing

function of bt. Above bmax

t , this negative e↵ect overcomes the direct e↵ect of increasing
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debt and makes the public debt value vt = qtbt starting to decrease. The higher the

debt recovery ratio h, the higher the maximal market value: Lenders are ready to lend

more as they receive more in case of default. Even in the extreme case of no debt

recovery (h = 0), lenders are potentially willing to lend to the government, despite

possible default as they are compensated by a positive risk premium. In the extreme

case of the highest recovery rate (h = 1), the maximum public debt value is just equal

to the discounted default threshold.

The valuation function V
�
bt;!max

t+1

,h
�
is represented when h < 1 in Figure 2 by the

non-linear curve displaying three di↵erent shapes over the three intervals defined above

(see 27 and 26). The government’s financing needs, given by the RHS of (24) with

ht = 1, bt�1

/at� (⌧̂ � g) , are also represented in Figure 2 by an horizontal straight line.

Figure 2: Public debt valuation in the no-default case

The first linear section of the curve corresponds to amounts of debt consistent with

Assumption 3.2. Remember that under this assumption the economy remains in the

constrained fiscal regime in t+ 1 with a probability 1:

!t+1

= bt/at+1

> !̂, 8at+1

, bt > asup!̂ (28)

and there exist some debt-to-GDP ratio in the constrained fiscal regime for which the
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economy does not face a risk of default in t+ 1, i.e. bt  a
inf

!max

t+1

.21

An equilibrium debt ratio bt without default in t is such that (24) holds with ht = 1

with qtbt = V
�
bt;!max

t+1

�
. The equilibrium displayed in Figure 2 corresponds to the no-

default case. For financing needs between �h!max

t+1

and vmax

t , there are two values of bt

which meet this request (as shown in Figure 2). We can observe that the equilibrium

situated on the decreasing side of the valuation function is “unstable” in the Walrasian

sense. In the neighborhood of the high debt equilibrium, in the case of an excess demand

a higher bond price increases the gap between demand and supply; the reverse is true

in the case of an excess supply.22 This leads us to select the low debt equilibrium,

satisfying bt  bmax

t . Excluding the case of default (i.e. assuming bt�1

/at  !max

t+1

), the

equilibrium debt-to-output ratio is then given by:

bt = min
�
b
��V

�
bt;!

max

t+1

,h
�
= � (⌧̂ � g) + bt�1

/at
�
. (29)

5.2 The equilibrium default threshold.

Figure 2 helps us to graphically understand default as a market event. There is de-

fault in t when a su�ciently negative shock heightens the horizontal line above the

V
�
bt;!max

t+1

,h
�
curve, that is, above vmax

t .

Formally the condition corresponding to default can be written as:

bt�1

at
� (⌧̂ � g) � vmax

t .

Up to now, the default condition used in (25) was written as bt�1

/at > !max

t . Thus

the default threshold !max

t is necessarily equal to:

!max

t = vmax

t + (⌧̂ � g) . (30)

It is defined as the sum of the maximum value that the government can obtain from

21We shall give in section 6.1 a formal condition such that a
inf

!max

t+1

> asup!̂.
22Lorenzoni and Werning (2014) develop the same argument and give other reasons justifying the

discarding of the “unstable” equilibrium.
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the market and the primary surplus of the period.

Since from Proposition 1 vmax

t = xh.!
max

t+1

and using the definition of (30), we get a

dynamic expression for !max

t :

!max

t = xh.!
max

t+1

+ (⌧̂ � g) . (31)

It is a forward-looking equation: How much can at most be redeemed today depends on

how much can at most be redeemed tomorrow, because this last term directly determines

the opportunities for public funding.

Denoting by !max

h the stationary value of the default threshold in equation (31), we

get the following proposition:

Proposition 2. The equilibrium default threshold as a percentage of GDP, !max

t , is

locally unique and equal to:

!max

t =
1� �

1� xh

!sup ⌘ !max

h , 8t. (32)

!max

h is an increasing function of h. If h = 1, xh = � and !max

h = !sup.

Strikingly, even though we reason in a stochastic environment, the default threshold

ratio is a constant, independent from the dynamics of public debt and thus from the

history of shocks. This constancy will ease the study of this dynamics. However it

depends on the debt recovery rule, that is, on h. The lower the recovery rate, h, the

lower the default threshold !max

h . This comes from the fact that xh is an increasing

function of h, from Proposition 1.

Unless xh is equal to � – its upper limit corresponding to the case h = 1, the default

threshold is lower than !sup, the solvency ratio.

Given this constant threshold we deduce from Proposition 1 that vmax

t = xh!
max

h ⌘
vmax

h , 8t, that is, using (32)

vmax

h =
(1� �) xh

1� xh

!sup, 8t, (33)

and bmax

t = bmax

h , 8t, where bmax

h denotes the amount of the debt-to-output ratio for
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which V (b;!max

h ,h) reaches its maximum.

6 Public debt dynamics and sustainability.

Now that the default threshold is known, the issues addressed in this section are three-

fold: 1) we study the dynamics of the emitted public debt ratio at time t, 2) o↵ering

new concepts of sustainability, we characterize the (un-) sustainability of public debt, 3)

we emphasize the impact of the debt recovery rule on the post-default debt dynamics,

highlighting the possibility of serial defaults.

6.1 Dynamics in t.

We first consider a period t where the random variable realization at and the debt

amount to be redeemed bt�1

are such that no default occurs in t (ht = 1). Defining

� (bt;h) ⌘ V (b;!max

h ,h), the dynamics of public debt implicitly defined by (29) when

bt�1

/at  !max

h can be written as:

� (bt;h) =
bt�1

at
� (⌧̂ � g) (34)

The function � (bt;h) is defined over the interval [asup!̂, bmax

h ] as monotonously in-

creasing, continuous and thus invertible. Remember that the lower bound of the interval

is the lowest debt ratio so that the economy remains in the constrained fiscal regime in

t+1 with a probability 1 (see (28)). The upper bound corresponds to the debt-to-output

ratio maximizing � (bt;h).

Inverting (34) for bt belonging to the interval [asup!̂, bmax

h ], we get:

bt = ��1

✓
bt�1

at
� (⌧̂ � g) ;h

◆
. (35)

This equation is well defined for bt�1

/at belonging to [!1

,!max

h ] where !
1

= � (asup!̂;h)+

(⌧̂ � g) . The condition bt�1

/at > !
1

is equivalent to bt > asup!̂, that is bt/at+1

>

!̂, 8at+1

, which corresponds to the certainty to stay in the constrained fiscal regime in
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t+ 1.

Let us define !
2

= � (a
inf

!max

h ;h) + (⌧̂ � g) as the highest debt ratio bt�1

/at for

which the risk premium is nil in t, i.e. the probability of default in t + 1 equals to 0.

The corresponding condition for bt is then bt/at+1

< !max

h , 8at+1

, i.e. bt < a
inf

!max

h .

From (26) and (27) we can thus write !
1

and !
2

as:

!
1

= �E (1/a) asup!̂ + (⌧̂ � g) , (36)

!
2

= �E (1/a) a
inf

!max

h + (⌧̂ � g) , (37)

and Assumption 3.2 is equivalent to the condition !
1

< !
2

, that is:23

asup!̂ < a
inf

!max

h . (38)

The stochastic dynamics for a given realization of the random variable at is repre-

sented on Figure 3.

Figure 3: Dynamics

23As, from Proposition 2, !max

h  !sup for h  1, the inequality asup < (!sup/!̂) a
inf

is a necessary
condition for !

1

< !
2

when h < 1 and is a necessary and su�cient condition when h = 1. Using the
definition of !̂ given by (22), we check that the ratio !sup/!̂ is superior to 1.
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The first section of the curve is a linear segment over the interval [at!1

, at!2

]. The

second section over the interval [at!2

, at!
max

h ] relates to positive probabilities of default.

Its convexity is consistent with the concavity of the function � (bt;h) on the relevant

interval and reflects the increase of the risk premium with the emitted amount of debt.

The turning point (at!max

h , bmax

h ) corresponds to the default threshold where at!
max

h is

the maximum amount of debt that can be redeemed when the shock is equal to at (thus

satisfying bt�1

/at = !max

h ).

As is clear from Figure 3, the following inequalities

asup!̂

!
1

⌘ a
1

 at  bmax

h

!max

h

⌘ a
2

(h) (39)

guarantee that the curve crosses the 45’ line within [at!1

, at!
max

h ]. Such an intersection

is characterized by bt = bt�1

= b⇤h (at) in (35). We define b⇤h (at) as a “conditional

stationary equilibrium”. It is contingent on at. At b⇤h (at) the exogenous primary

surplus is used to pay the (growth adjusted) servicing of the emitted debt and thus the

debt-to-GDP ratio remains constant from t� 1 to t. From Figure 3, we observe that bt

is higher than bt�1

when the latter is superior to b⇤h (at) and thus the debt ratio heads

toward the default threshold. A higher debt leads to a higher default risk premium and

thus a lower bond price, leading the government to emit a higher debt in the subsequent

period.

When at = a
1

, the “conditional stationary equilibrium” b⇤h (a1) is equal to the lowest

limit of the constrained fiscal limit at which the probability of default is null, asup!̂.

When at = a
2

(h), b⇤h (a2 (h)) is equal to the default threshold bmax

h ; as such, it depends

on the debt recovery ratio h. For at < a
1

, that is, for a su�ciently large and negative

realization of the growth rate, the curve is above the 45’ line and thus the public debt

ratio increases for any level of bt�1

above at!1

, i.e. such that the prospect to remain in

the constrained regime is certain. For at > a
2

(h), that is, for a su�ciently large and

positive realization of the growth rate, the curve is below the 45’ line and thus any level

of redeemable debt ratio bt�1

lower than at!
max

h , i.e. such that there is no default in t,

guarantees a decreasing debt ratio. Notice that the whole curve shifts rightward when
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at increases and b⇤h (at) is increasing in at.

As b⇤h (at) < at!
max

h , the public debt emitted in t�1 can be such that b⇤h (at) < bt�1

<

at!
max

h without provoking default: Lenders are ready to buy a larger amount of public

debt as default is not certain and the increase in the risk premium compensates for the

higher risk of default. The resulting increase of the debt ratio (bt > bt�1

) formalizes the

well-known “snowball” e↵ect.

Notice that the public debt ratio may increase (when bt�1

> b⇤h (at)) even though it

is still true that Et!t+1

is inferior to !t. The former result indicates that the situation

deteriorates as the emitted public debt ratio gets closer to the default threshold whereas

the latter one shows that there is a decreasing behavior of the expected public debt ratio

Et (ht+1

Bt/Yt+1

) (see Figure 1).

6.2 The public debt sustainability issue.

Given this unstable dynamics, the sustainability of public debt is at stake. Here, we

o↵er a new methodology for assessing this issue in a stochastic environment where

defaults as market events are possible.

As shown in the previous subsection, an ever increasing debt ratio eventually reaches

the default threshold. To extent this insight, let us consider the following simple sce-

nario: the realization of the shock at any date is equal to its mean value: at = E(a) =

1, 8t. The “conditional stationary equilibrium” b⇤h (1) is then consistent with the con-

cept of “risky steady state”, introduced by Juillard (2011) and Coeurdacier, Rey and

Winant (2011). A risky steady state is a stationary equilibrium of the dynamic sys-

tem when agents form their anticipations of future shocks knowing their probability

distribution but the realizations of shocks are assumed to be at their mean values.

The dynamics corresponding to this scenario is illustrated by Figure 3 when at =

1, 8t. If bt�1

is larger than b⇤h (1), as the debt ratio grows over time and heads toward

the default threshold, this matches the loose concept of unsustainability given above:

bt�1

is “unsustainable”, if it is larger than b⇤h (1). Conversely, bt�1

would be qualified as

“sustainable”, if it is lower than b⇤h (1).

However these definitions are weak for the following reason. Assuming bt�1

is larger
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than but close to b⇤h (1), thus labelled as “unsustainable” in t, a small good realization

of the shock would make bt lower than b⇤h (1) and thus “sustainable” in t + 1.24 Thus

these simple notions of “(un)sustainability” obtained in the case of the simple scenario

are not operationally relevant for a debt sustainability analysis.

To overcome this weakness, we need to distinguish between the notions of sustain-

ability and unsustainability. To do so, we o↵er the two following definitions:

Definition 1. A public debt is said to be “ ��sustainable” at date t when its trajec-

tory does not reach the default threshold at any future date, assuming that there is no

realization of the (gross) rate of output growth at+s lower than �.

Definition 2. A public debt is said to be “ ��unsustainable” at date t when its tra-

jectory reaches the default threshold at some finite date, assuming that there is no

realization of the (gross) rate of output growth at+s higher than �.

The first definition refers to the following “not-too-pessimistic” scenario: no (present

and) future realizations of the shock can be lower than �. Of course the interesting

case for sustainability is when � < 1, that is, when this value is below the mean value

of the shock (E(a) = 1). The period t public debt is “ ��sustainable” if, under this

scenario, a market-triggered default does not occur in the future. The second one refers

to the following “not-too-optimistic” scenario: no (present and) future realizations of

the shock can be higher than � even though this value is above the mean value of the

shock. The period t public debt is “ ��unsustainable” if, under this scenario, a market-

triggered default will occur in the future. Here the interesting case for unsustainability

is when � > 1.

To be able to use these definitions, we generalize the concept of a risky steady

state, introducing the notion of a “��risky steady state”. This notion will allow us to

distinguish between a “sustainability threshold” and an “unsustainability threshold”.

Definition 3. A ��risky steady state is a stationary equilibrium of the dynamic system

when agents form their anticipations of future shocks knowing the probability distribution

whereas the realization of the shock is equal to a given (admissible) value � at any period.

24Of course, the reverse reasoning applies for bt�1

lower than but close to b⇤h (1).
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Applying this definition to our problem, the ��risky steady state level of debt

denoted by b⇤h (�) is the stationary level of the debt-to-GDP ratio b in equation (34)

with ht = 1, at = �:

� (b;h) = ��1b� (⌧̂ � g) . (40)

In the special case � = 1 (the growth rate realization at equal to � = 1) we are back to

the study of a standard “risky steady state” and b⇤h (1) corresponds to the risky steady

state debt-to-GDP ratio.

We are now able to o↵er the following

Proposition 3. In the constrained fiscal regime (i.e. under Assumption 3),

1. for a given debt recovery ratio h, there exists a pair �
inf

and �suph satisfying a
inf


�
inf

< �suph  asup with �
inf

< 1 if asup < 1��

1��E( 1

a)
!sup

!̂ , and 1 < �suph , such that, for

any � 2 (�
inf

, �suph )

(a) there exists a unique ��risky steady state b⇤h (�) satisfying (40),

(b) b⇤h (�) is increasing in �,

(c) for h  1, we get asup!̂ < b⇤h (�) < �!max

h < bmax

h .

2. for a given value of �, b⇤h (�) is increasing in h.

Proposition 3 states that a ��risky steady state (in the sequel, a ��rss) exists and

is unique in the constrained fiscal regime for admissible values of �.

When � < �suph , according to Proposition 3, we get b⇤h (�) < �!max

h , the latter term

being the maximum amount of debt that can be redeemed when the shock is equal to

� (thus satisfying b/� = !max

h ). Thus the emitted public debt can be above the ��rss

without provoking default: bt may be such that b⇤h (�) < bt < �!max

h .

A higher constant realization of the growth rate � increases the ��rss b⇤h (�). This

comes from the fact that a higher gross rate of output growth � alleviates the burden of

the debt to be redeemed in each period relative to the current output. Thus the steady

state debt can be higher when the constant growth rate � is higher.
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The ��rss b⇤h (�) is also increasing in the debt recovery ratio h. As long as the

default probability is positive, a higher h increases the market value for any bt. Thus

the curve displayed in Figure 3 is moved to the right and the ��rss increases.

Applying the analysis of the dynamics of public debt to the case at = �, 8t, we
deduce that the ��risky steady state is dynamically unstable.25 A higher growth path

increases the upper value of the debt ratio such that this dynamics is decreasing. Given

this instability result and using the definitions 1 and 2, we o↵er the following

Proposition 4. For any � and � such that �
inf

 �  1  �  �suph ,

1. The emitted amount of public debt at t, Bt, is “�� sustainable” if bt ⌘ Bt/Yt <

b⇤h
�
�
�
.

2. The emitted amount of public debt at t, Bt, is “�� unsustainable” if bt ⌘ Bt/Yt >

b⇤h (�).

For a given pair
�
�, �

 
when � < 1 < �, we refer to b⇤h

�
�
�
as the “��sustainability

threshold”, and b⇤h (�) as the “��unsustainability threshold”. Figure 4 represents the

curves corresponding the the dynamics of public debt for two values of �, � and � and

displays the corresponding thresholds.26

Let us comment on the first part of the proposition. An initial amount of public debt

bt is ��sustainable when it is below the ��sustainability threshold level. In this case,

conditional on a sequence of random events excluding the most unfavorable realizations

(that is, excluding at+s < �, 8s � 1), three features are worth mentioning:

1. the debt-to-output ratio decreases over time.

2. The probability of default and therefore the risk premium decrease over time.

3. The economy exits in finite time from the constrained fiscal regime.

25 Referring to the transitory dynamics studied above, the dynamics of debt is decreasing (increasing)
as long as it is lower (higher) than b⇤h (�) .

26When � = 1 = �, the two thresholds are confounded, as we have just seen. But this configuration is
exposed to the weakness we analyzed above. It is thus not enticing and has weak operational relevance.
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Figure 4: The Debt-to-GDP Area

The decrease of debt-to-output ratio can be explained using Figure 4. Consider the

(left) curve corresponding to �. Similar curves could be drawn at its right for any

realization of the shock satisfying at+s > � (including at+s = �). When bt < b⇤h
�
�
�
, we

get bt+1

< bt for any sequence such that at+s � �.

We label the region for bt satisfying bt < b⇤h
�
�
�
as the ��sustainability area. In this

region, as long as at+s � �, the public debt ratio keeps decreasing and the economy

diverges away from b⇤h
�
�
�
. This means that at some date the redeemed public debt

will pass below the critical value !̂. Thus the economy will leave the constrained

fiscal regime. It implies that a �� sustainable public debt ratio is consistent with a

gradual restoration of normal times. Eventually the economy regains fiscal margins to

accommodate shocks.

Turning to the second part of the proposition, an initial amount of public debt bt is

��unsustainable when it is above the ��unsustainability threshold level. In this case,

conditional on a sequence of random events excluding the most favorable realizations

(that is, excluding at+s > �, 8s � 1), we get three symmetric features:
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1. the debt-to-output ratio increases over time.

2. The probability of default and therefore the risk premium increase over time.

3. The economy hits in finite time the default threshold.

Consider a sequence of shocks (at+s  �, 8s � 1). Assume that the initial level of debt

bt is too high: bt > b⇤h
�
�
�
. The same factors underlying the dynamics described for

t in subsection 6.1 occur here repeatedly and nothing counters the evolution toward

default. We label the region for bt satisfying bt > b⇤h (�) as the ��unsustainability area.

According to Proposition 3, when � < 1 < �, we get : b⇤h
�
�
�
< b⇤h (�) and thus the

two areas previously defined are not contiguous (see Figure 4). Therefore there exists

an intermediate region between these thresholds for which public debt can increase or

decrease even under a not-too-pessimistic or a not-too-optimistic scenario. We label

the region for bt satisfying b⇤h
�
�
�  bt  b⇤h (�) the “

�
�, �

 
- fragility area”.

This partitioning may be made more complex for practical purpose. An international

organization such as the IMF or a rating agency may define more than 2 thresholds,

using the same methodology, and thus define a more elaborate set of thresholds for a set

of values for �. This suggests that our analytical reasoning could be developed so as to

meet the needs of rating agencies which empirically develop complex rating formulas.

6.3 The debt recovery rule and public defaults.

The previous analysis shows that market triggered default cannot be ruled out in this

economy. The issue is about understanding the impact of the debt recovery rule on the

sustainability of the post-default public debt.

Let us assume that default has just occurred and public debt is rescheduled according

to the debt recovery ratio, that is, !t = htbt�1

/at = h!max

h . Reasoning on the extreme

case of h = 1, where lenders are minimally a↵ected by the occurrence of default, the

post-default debt ratio is equal to !max

1

= !sup (from Proposition 2). Even when a very

weak criterion of ��sustainability is used with � = 1,27 this ratio is above b⇤
1

(1) and is

27That is, no post-default realization of the growth shock is below the mean value.
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not sustainable: default is looming again. In other words, the default which led to the

rescheduling of public debt has not been able to solve the public finance problem. Hence

the economy is threatened to be engulfed in a sequence of defaults, what is referred to

in the literature as “serial defaults”. Reinhard and Rogo↵ (2008) provide evidence on

the frequency of serial defaulting episodes. This example illustrates the point that a

too low haircut does not solve the sustainability issue for good.

Facing this prospect, we look for the conditions on the debt reduction rule such that

the post-default economy is ��sustainable and thus both serial defaults and the fragility

zone are avoided. Within our model, this issue can be more precisely formulated as

follows: given a value of �, for which values of h is the post-default debt ratio h!max

h in

the ��sustainability area, that is, below b⇤h (�)? Notice that both ratios decrease when

h decreases (from Propositions 2 and 3). The e↵ect on h!max

h is the debt reduction

e↵ect, the e↵ect on b⇤h (�) is the “risk premium e↵ect” as the prospect of possible losses

due to default increases this premium and thus the ��rss debt level. So, once default

occurs, the influence of the debt recovery ratio on the post-default situation is a priori

ambiguous. The following proposition answers this question:

Proposition 5.

For a given � such that �
inf

 �  1/�E
�
1

a

�
, there exists a critical value H�

satisfying 0 < H� < �, implicitly defined by:

H�!
max

H�
= b⇤H�

(�)

which is an increasing function of �.

In case of default,

1. for � satisfying �
inf

 � < 1, the post-default debt-to-GDP ratio h!max

h is ��sustainable

(i.e. satisfies: h!max

h < b⇤h (�)) if and only if h < H� ;

2. for � satisfying 1  � < 1/�E
�
1

a

�
, the post-default debt-to-GDP ratio h!max

h is

��unsustainable (i.e. satisfies: h!max

h > b⇤h (�)) if and only if h > H�.

According to the first point of this proposition, once default occurs, the debt recovery
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ratio h must be su�ciently low (i.e. the haircut high enough) so as to set the post-

default debt below the ��sustainability ratio and thus ensures that the post-default

debt is ��sustainable. The proof shows that the di↵erence h!max

h � b⇤h (�) is monoton-

ically increasing in h, despite the ambiguity noted above. Thus for a su�ciently small

value of h (corresponding to a large haircut), the post-default debt is ��sustainable.

This proposition also states that a more demanding criterion of ��sustainability (a

lower value of �) implies a lower debt recovery ratio. The requirement that the mini-

mum haircut be larger (a lower H�) implies a su�ciently low post-default debt in order

to protect the dynamics of public debt from more adverse realizations of the growth

rate and thus maintain its ��sustainability.

On the other hand, if the debt recovery ratio is too high (h > H�) , the possibility

of a future default cannot be ruled out even when a “not-too-pessimistic scenario” is

considered, that is a value of � larger than 1. This proposition highlights a condition

potentially leading to serial defaults.

A simple case will help us to understand what is at stake, when the sustainability

criterion is simply � = 1.28 From proposition 5, the critical value for H
1

is less than

one. Suppose h = 1 (> H1) : the default rule is such that the post-default debt is at

the highest level consistent with the reentering of the government on financial markets

by emitting new public bonds. Consider then the scenario of the Risky Steady State,

that is at = 1, 8t = 0, 1, .... It implies that there will be default in every period as

the post-default debt is precisely at the default threshold and the dynamics of debt is

diverging. This is the extreme case of serial defaults.

Proposition 5 is the analytical counterpart of the historical experience of serial

defaults and the fact that post-default debt reductions often happen be “too little”.29

28Remember that this case is such that there is no distinction between the sustainability threshold
and the unsustainability threshold.

29see IMF (2013b).
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7 Conclusion.

In this paper we o↵er a methodology for the assessment of public debt sustainability

which is consistent with default episodes and the likelihood of future defaults. We

tackle it within a macro dynamic stochastic (general equilibrium) model which allows

for infrequent defaults and encompasses a debt recovery rule which defines the post-

default reset public debt. Defaults are conceived as market events: there is default

when no equilibrium price can be found for the redeemable public debt. The model

is such that we are able to analytically solve it. Default occurs when the redeemable

public debt trespasses a default threshold which we fully characterize. Based on this

understanding of defaults we show it is needed to distinguish public debt sustainability

and unsustainability conditions consistent with the stochastic nature of the economy.

Our analysis is embedded in a very simple macro-model which allows us to reach

an analytical solution. However, the various concepts and tools provided here can be

used in more complex macro-settings possibly solved by means of numerical methods.

The default threshold is di↵erent from the “solvency ratio”. The solvency (debt-to-

GDP) ratio is commonly defined as the extreme ratio satisfying the no-Ponzi condition.

The standard view on public debt sustainability, ruling out a priori the possibility

of default, has used this ratio as the criterion of public debt sustainability. When

uncertainty is introduced and the assumption that a government will always be able to

service its debt is relaxed, the pricing of public debt incorporates a default risk premium.

As this premium feeds into the growth of public debt and may lead to a snowball e↵ect,

the default threshold is lower than the solvency ratio. Thus the debt recovery rule

which defines the post-default public debt level a↵ects the default threshold since it

impacts on the risk premium and the public debt pricing. Consequently a rigorous and

empirically relevant analysis of public debt sustainability cannot be based solely on the

solvency ratio.

We provide an analysis of the sustainability of public debt consistent with a stochas-

tic environment able to generate a risk premium linked to default by o↵ering the notion

of ��risky steady state. It generalizes the notion of risky steady state. A ��risky

33



steady state of an economy is a steady state obtained when the realization of the shock

(assuming for simplicity the existence of a unique shock) is always �, even when agents

base their behavior on the full distribution of the shock.

This allows us to make the distinction between public debt sustainability and

unsustainability. We define two thresholds, the ��sustainability threshold and the

��unsustainability threshold. At a given time, if public debt is below the ��sustainability

threshold, the public issuer will not su↵er default in the future provided future shocks

on the growth rate are never lower than �. Inversely, if public debt is above the

��unsustainability threshold, the public issuer will encounter default at some future

date provided future shocks on the growth rate are never larger than �. When these

thresholds are defined for two values of �, the interval between these two values corre-

sponds to a “financial fragility” zone for which it is impossible to ascertain the future

course of public debt toward or away from default. These thresholds depend on the

debt recovery rule as this rule impacts on the service of public debt. We prove that

the post-default public debt is ��sustainable when the rescheduling scheme entails a

su�cient reduction of public debt for a given �. On the contrary a too low haircut

ratio leads to serial defaults, as the post-default debt is ��unsustainable.

Despite the theoretical nature of this paper, the various concepts we have o↵ered

have a realistic flavor as the paper explicitly puts to the fore the relationship between

the pricing of public bonds, the amount of emitted debt and the likelihood of default.

We think that operational counterparts of this relationship could be developed within

empirically relevant models of countries and give some foundations to the process of

rating sovereign debt, as done by private or public institutions such as the IMF or the

European Commission.

This paper can be extended in di↵erent directions. Two issues seem particularly

relevant. First, the maturity structure of public debt would be worth a thorough

investigation. Second, the debt recovery rule is subject to strategic reasoning. In

particular it raises an interesting time inconsistency issue. Prior to default it is tempting

to announce a low haircut so as to reduce the risk premium and thus the prospect of

unsustainability, But once default has occurred, a large haircut has the advantage to
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increase the capacity of the restructured public debt to be sustainable. This is left to

further research.
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A Appendix

A.1 Proof of Proposition 1

By denoting �t = bt/!
max

t+1

, from (26) and (27) we can rewrite vt as:

vt = xt!
max

t+1

, (A.1)

with

xt = �

8
>>><

>>>:

E (1/a) �t 8�t  a
inf

,

� (�t,h) 8�t 2 (a
inf

, asup) ,

h 8�t � asup,

(A.2)

where � (�,h) is a non-monotonic function defined by:

� (�t,h) ⌘ E (1/a) �t �
Z �t

(�t/a� h) · dG (a) . (A.3)

Let us define � (�,h) = @� (�,h) /@�, the derivative of � (�,h) with respect to �, that

is:

� (�,h) ⌘ E (1/a)�
Z � 1

a
dG (a)� (1� h) g (�) . (A.4)

Assume that there exists a value �h 2 (a
inf

, asup) such that:

� (�h,h) = 0, (A.5)

then, using (A.4) and (A.5) in (A.3), � (�h,h) can be written:

� (�h,h) = hG (�h) + (1� h) �hg (�h) , (A.6)

and gives:

xt =�� (�h,h) ⌘ xh. (A.7)

We obtain the following results: vmax

t = xh!
max

t+1

, and bmax

t = �h!
max

t+1

.
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By denoting �z (�,h) ⌘ @� (�,h) /@z, the partial derivatives of � (�,h) for z = �,h,

we get, 8 � 2 (a
inf

, asup) :

�h (�,h) = g (�) > 0, (A.8)

�� (�,h) = �1

�
[g (�) + (1� h) �g0 (�)] < 0, (A.9)

where the last inequality is satisfied if and only if:

�g0 (�)

g (�)
> � 1

1� h
,

this condition being implied by Assumption 1.3 for any h 2 [0, 1) .30 From the definition

of �h, implicitly given by (A.5) and satisfying �h 2 (a
inf

, asup), we then have:

@�h
@h

= ��h (�h,h)

�� (�h,h)
> 0. (A.10)

Looking for the values h and h such that �h = a
inf

and �h = asup, we find from (A.4)

and (A.5):

h = 1� E (1/a)

g (a
inf

)
, h = 1.

As it is assumed that E (a) = 1 (Assumption 1), by the Jensen Inequality E (1/a) > 1

and h < 0. As h � 0, this value is irrelevant.

When h =1, we get from (A.6) and (A.7):

x1 = �G (�1)

with �1 given by (A.4) and (A.5) with h = 1, or equivalently:

E

✓
1

a

◆
=

Z �1 1

a
dG (a)

implying �1 = asup and therefore x1 = �G (asup) = �.

30The elasticity of the density function is higher than �1.
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When h = 0, we get from (A.6) and (A.7):

x0 = ��0g (�0) (A.11)

with �0 given by (A.4) and (A.5) with h = 0, and is such that:

g (�0) =

Z asup

�0

1

a
dG (a) . (A.12)

This value is positive using Assumption 1.2 and unique using Assumption 1.3. From

(A.11), it implies that x0 is strictly positive.

Let us assume there exists ȟ is such that �
ˇh = 1. From (A.4), it satisfies

Z

1

1

a
dG (a)� �

1� ȟ
�
g (1) = 0,

hence:

ȟ = 1�

R
1

1

adG (a)

g (1)
(A.13)

From Assumption 1.3, we know that: 1

ag (a) > �g0 (a) , 8a, which implies:

Z

1

1

a
g (a) da > �

Z

1

g0 (a) da = g (1)� g (asup)

From Assumption 1.2,
⇣

lim
a!asup

g (a) = "
⌘
, therefore

Z

1

1

a
g (a) da > g (1)� "

It follows from (A.13) that ȟ < "/g (1). As we know from (A.10) that �h is an increasing

function of h, �h > 1, 8h �"/g (1). Since " is arbitrarily close to 0, this is true for h

arbitrarily close to 0.

Finally, we prove that � (�h,h) is increasing in h. From (A.3) and (A.5), for �h 2
(a

inf

, asup) , we get:
d� (�h,h)

dh
=
@� (�h,h)

@h
= �G (�h) > 0. (A.14)
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A.2 Proof of Proposition 2.

Using the definition of !sup given by (21), equation (31) can be rewritten as:

!max

t = xh.!
max

t+1

+ (1� �)!sup (A.15)

whose stationary value is given by:

!max

t =
1� �

1� xh

!sup ⌘ !max

h , 8t. (A.16)

From Proposition 1, xh  �, 8 h  1 (with x1 = �) implying that the forward-looking

equation (A.15) has an unstable dynamics around the unique stationary equilibrium,

!max

h , which is determinate and locally unique. From Proposition 1, xh is an increasing

function of h, thus !max

h is an increasing function of h too, satisfying !max

h < !sup, 8
h < 1, and !max

1 = !sup.

A.3 Proof of Proposition 3.

In order to establish this proposition, we first represent the ��rss on Figure 5 for

di↵erent values of �. When it exists, the ��rss corresponds to the intersection of the

two curves associated with the LHS and RHS of (40) restated here:

� (b;h) =
�
��1b� (⌧̂ � g)

�
. (A.17)

We know from Section 5.1 that the bounding values of the public debt ratio cor-

responding to the constrained fiscal regime are asup!̂ and bmax

h . The dashed line

��1

l b � (⌧̂ � g) corresponds to the lowest possible value of �, �l, for which the ��rss

is consistent with the constrained fiscal regime. The dashed line (�suph )�1 b � (⌧̂ � g)

correspond to the largest possible value of �, �suph .

Let us characterize these two extreme values.
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Figure 5: ��Risky steady state

• �l is such that b⇤h (�l) = asup!̂ and is implicitly given by:

� (asup!̂;h) = ��1

l asup!̂ � (⌧̂ � g) .

Hence, as � (asup!̂;h) = �E
�
1

a

�
asup!̂ from (27), we get:

�l =
!̂

�E
�
1

a

�
asup!̂ + (⌧̂ � g)

asup =
!̂

!
1

asup. (A.18)

Using the first equality and the definition of !sup given by (21) �l < 1 is equivalent

to:

asup <
1� �

1� �E
�
1

a

� !
sup

!̂
. (A.19)

If �l is lower than a
inf

which is the lowest value of the distribution support, then

�
inf

= a
inf

. Formally:

�
inf

= max (a
inf

, �l) = max

✓
a
inf

,
!̂

!
1

asup
◆

< 1, (A.20)

where the last inequality is satisfied under condition (A.19).
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• �suph is such that b⇤h (�
sup

h ) = bmax

h and is implicitly given by � (bmax

h ;h) = vmax

h =

(�suph )�1 bmax

h � (1� �)!sup. Using the definition of vmax

h given by (33), we get:

�suph =
bmax

h

!max

h

= �h.

Given Proposition 1, we get that 1 < �suph = �h  asup for 0  h  1.

We are now in capacity to prove Proposition 3:

1.

(a) Let us consider these two extreme values of �, �
inf

and �suph . Based on

these values, we obtain a cone defined by two straight lines depending on b,

corresponding to equations b/�
inf

� (⌧̂ � g) and b/�suph � (⌧̂ � g) respectively.

For any � such that �
inf

 �  �suph , the line of equation b/� � (⌧̂ � g)

belongs to this cone and there exists a unique level b⇤h (�) satisfying (A.17),

given the continuity and concavity properties of � (b;h). Figure 5 illustrates

that there exists a unique ��rss for any � 2 (�
inf

, �suph ).31

(b) As the RHS of (A.17) is decreasing in � and � (b;h) is continuously increasing

on [asup!̂, bmax

h ], b⇤h (�) is an increasing function of � (see Figure 5).

(c) For any � 2 [�
inf

, �suph ], the slope of � (b;h) is always lower than ��1 in the

neighborhood of b⇤h (�). Using (30) and (32), we get:

!max

h = vmax

h + (⌧̂ � g) .

This allows us to get the value of b corresponding to ��1b� (⌧̂ � g) = vmax

h ,

that is b = �!max

h . As can be seen on Figure 5, for � = �suph , we have b⇤h (�) =

�!max

h = bmax

h and for � < �suph , we get: asup!̂ < b⇤h (�) < �!max

h < bmax

h .

2. From (A.1), (A.2), (A.16), and Proposition 2, vt is increasing in h, 8bt > a
inf

!max

t+1

.

Thus, for a given value of � the value of b for which � (b;h) intersects with

��1b� (⌧̂ � g), that is b⇤h (�), is shifted rightward when h increases.
31This figure is obtained in the case where a

inf

< �l = �
inf

.
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A.4 Proof of Proposition 4.

1. Assuming that the future realizations of the output growth rate satisfy at+s �
�, 8s, and bt < b⇤h

�
�
�
, the public debt-to-GDP dynamics is decreasing (see Figure

3). Therefore it cannot reach the default threshold at any future date. Thus it is

��sustainable according to Definition 1.

2. Similarly, assuming that the future realizations of the output growth rate satisfy

at+s  �, 8s, and bt > b⇤h (�), the public debt-to-GDP dynamics is increasing (see

Figure 3). Therefore it reaches the default threshold at some finite future date. Thus

it is ��unsustainable according to Definition 2.

A.5 Proof of Proposition 5

We assume �
inf

 �  1/�E
�
1

a

�
. In order to prove the first part of this proposition,

we have to show that  (h,�) ⌘ h!max

h � b⇤h (�) is monotonously increasing in h, with

 (H�, �) = 0 for a value H� such that 0 < H� < � . We define the function  (h,�)

such that:

 (h,�) ⌘  (h,�)

!max

h

= h� �⇤h (�) (A.21)

where �⇤h (�) ⌘ b⇤h (�) /!
max

h . Since !max

h > 0, a su�cient condition to get a value

H� such that  (H�, �) = 0 is that the function  (h,�) be a function continuously

increasing in h, 8h 2 [0, �] and such that  (0,�) < 0 <  (�, �) .

By di↵erentiating  (h,�) with respect to h, we find:

@ (h,�)

@h
= 1� @�⇤h (�)

@h
. (A.22)

By dividing the RLS and the RHS of (A.17), written for b = b⇤h, by !
max

h which is given

by (A.16), and using the definition of !sup given by (21), we obtain:

� (b⇤h;h)

!max

h

= ��1�⇤h (�)� (1� xh)
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From (A.1) and (A.2), for �t 2 (a
inf

, asup), we then find:

�⇤h (�) = � [1� �� (�h,h) + �� (�⇤h (�) ,h)] (A.23)

which allows us to get, using the fact that @�(�h,h)
@�h

= 0:

@�⇤h (�)

@h
= �� ·

0

B@
@�(�⇤h(�),h)

@h � @�(�h,h)
@h

1� ��
@�(�⇤h(�),h)

@�⇤h(�)

1

CA .

Using (A.3), (A.4) and � (�,h) = @� (�,h) /@�, we get:

@�⇤h (�)

@h
= ��

✓
G (�⇤h (�))�G (�h)

1� ��� (�⇤h (�) ,h)

◆

From (A.4), � (�⇤h (�) ,h) < E(1/a) and from Assumption 1.1, �E(1/a) < 1. As we

assume �  1/�E
�
1

a

�
, we therefore have ��� (�⇤h (�) ,h) < 1, and the denominator in

the RHS is positive. From Proposition 3, we know that b⇤h (�)  bmax

h , which implies:

�⇤h (�) ⌘
b⇤h (�)

!max

h

< �h ⌘ bmax

h

!max

h

and the numerator is negative as G (·) is increasing. Hence @�⇤h (�) /@h is negative for

any value of h and  (h,�) is monotonously increasing in h.

By computing  (0,�) and  (�,�) , we get:

 (0,�) = ��⇤
0

(�) < 0 and  (�,�) = � � �⇤� (�) > 0

as �⇤� (�) ⌘ b⇤� (�) /!
max

� < � from Proposition 3. Therefore there exists a value H� such

that 0 < H� < � and  (H�, �) = 0, or equivalently  (H�, �) = 0.

From the previous equality, H� is a function of � which we denote by H (�). Thus:

@H (�)

@�
= � � (H (�) , �)

 h (H (�) , �)
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The denominator is positive as shown above. We observe that:

 � (H (�) , �) = �@�
⇤
h (�)

@�
(A.24)

From (A.23) we get:

@�⇤h (�)

@�
=

1� � (�h,h) + � (�⇤h (�) ,h)

1� �
@�(�⇤h(�),h)

@�⇤h(�)

=
1

�
.

�h
1� ��� (�⇤h (�) ,h)

> 0.

Thus @H (�) /@� is positive.

Points 1 and 2 of Proposition 5 are direct applications of Proposition 4.
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