
The relationship between ARIMA-GARCH and unobserved

component models with GARCH disturbances∗

Santiago Pellegrini†, Esther Ruiz‡ and Antoni Espasa§

April 2007

Abstract

The objective of this paper is to analyze the consequences of fitting ARIMA-GARCH models

to series generated by conditionally heteroscedastic unobserved component models. Focusing

on the local level model, we show that the heteroscedasticity is weaker in the ARIMA than

in the local level disturbances. In certain cases, the IMA(1,1) model could even be wrongly

seen as homoscedastic. Next, with regard to forecasting performance, we show that the

prediction intervals based on the ARIMA model can be inappropriate as they incorporate

the unit root while the intervals of the local level model can converge to the homoscedastic

intervals when the heteroscedasticity appears only in the transitory noise. All the analytical

results are illustrated with simulated and real time series.

Keywords: State Space Models, Conditional Heteroscedasticity, Prediction Intervals.

1. Introduction

ARIMA and unobserved component models, also called structural models, are alternative speci-

fications to represent the dynamic properties of series with stochastic components, such as trends

and seasonals. It is well known that when the disturbances are i.i.d. and Gaussian, the reduced
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form of an unobserved component model is an ARIMA model with restrictions in the parameters;

see, for example, Harvey (1989). The specification of ARIMA models includes one aggregated

disturbance while unobserved component models incorporate component disturbances. Thus,

provided that the structural formulation is correct, working with the unobserved components

may lead to the discovery of features of the series that are not apparent in the reduced form

model. In this paper, we consider one of these features. In particular, we focus on the presence

of conditional heteroscedasticity in the form of GARCH processes.

From an empirical point of view, the presence of conditional heteroscedasticity in both

ARIMA and unobserved component models, have previously interested many authors. The lit-

erature that considers ARIMA models with GARCH disturbances is very extensive; see Boller-

slev et al. (1992), Bollerslev et al. (1994), Diebold and Lopez (1995), and Diebold (2004) for

detailed surveys. On the other hand, unobserved component models with GARCH disturbances

have been receiving a lot of attention as they allow to distinguish which components are het-

eroscedastic. One of the earliest implementations of these models is Harvey et al. (1992), which

consider latent factor models; see also King et al. (1994), Sentana and Fiorentini (2001), Chang

and Kim (2004) and Sentana (2004) for other applications related with latent factor models, and

Chadha and Sarno (2002) and Moore and Schaller (2002) for applications to price volatility and

term structure of interest rates, respectively. More recently, Stock and Watson (2007) find that

a simple unobserved component model with conditionally heteroscedastic noises well describe

the dynamics of inflation.

Little is known about the properties of the reduced form ARIMA model when the unobserved

disturbances are conditionally heteroscedastic. Our first objective is to analyze them. For

simplicity, we focus on the Local Level (LL) model that assumes that the series of interest, yt,

is composed by an underlying stochastic level, µt, and a transitory component, εt, i.e.

yt = µt + εt, (1)

µt = µt−1 + ηt, (2)
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where εt and ηt are mutually independent and serially uncorrelated processes, with zero means

and variances σ2
ε and σ2

η, respectively. Taking first differences in (1) results in a stationary series

given by

∆yt = ηt + ∆εt. (3)

It is well known that the corresponding reduced form model is an ARIMA(0,1,1) model given

by

∆yt = at + θat−1, (4)

where θ =
[
(q2 + 4q)1/2 − 2− q

]
/2 and q = σ2

η/σ2
ε is the signal-to-noise ratio. The parameter

θ is restricted to be negative, i.e. −1 < θ < 0. We derive general expressions of the kurtosis

and autocorrelations of squares of ∆yt defined as in expression (3) and in the single-disturbance

model (4). The comparison of both expressions, allows us to derive the properties of the reduced

form disturbance, at, in terms of the unobserved disturbances, εt and ηt. We show that if εt

and ηt are assumed to be GARCH processes, the conditional heteroscedasticity of at is weaker

than the one present in the unobserved disturbances. In some cases, at could even be seen as

homoscedastic. Therefore, the heteroscedasticity is more evident in the unobserved component

model and can be overlooked when working with the reduced form model.

Furthermore, one important objective when analyzing time series is to obtain prediction

intervals of future values of the series. When the series are heteroscedastic, the amplitude of the

intervals changes depending on whether the conditional variance at the moment of making the

prediction is larger or smaller than the marginal variance. Our second objective is to analyze

how the presence of conditional heteroscedasticity in the unobserved disturbances affect the

prediction intervals. Denote by excess volatility, the difference between the conditional and

the marginal variances at the moment when the prediction is made. We show that if only the

transitory component is heteroscedastic, then the excess volatility disappears as the prediction

horizon increases. In this case, the prediction intervals obtained with the unobserved component

model converge to the intervals of the corresponding homoscedastic model. On the other hand,
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if the long-run component is heteroscedastic, then the intervals always depend on the excess

volatility. However, due to the presence of the unit root in the model, the prediction intervals

based on the ARIMA model for any prediction horizon always depend on the excess volatility.

This could have important consequences when building prediction intervals in series in which

only the transitory component is heteroscedastic. In this case, depending on whether the excess

volatility is positive or negative, the multi-step prediction intervals based on the ARIMA model

can be too wide or too narrow respectively, when compared with the intervals based on the

corresponding unobserved component model.

The rest of this paper is structured as follows. In Section 2, we derive the statistical properties

of the LL model when the disturbances are uncorrelated processes with symmetric distributions

and finite fourth order moments. We focus on two particular cases of interest, namely, non-

normal distributions and conditionally heteroscedastic disturbances. In Section 3, we derive the

statistical properties of the reduced form ARIMA noise, at. We also analyze the performance of

the ARIMA-GARCH model when fitted to represent the dynamic properties of the LL-GARCH

model. We finish this section by illustrating the results with Monte Carlo experiments. Section 4

analyzes the forecasting performance of both models. Section 5 contains an empirical application

which illustrates the results of previous sections. Finally, Section 6 concludes the paper.

2. Properties of the Local Level model

In this section we derive the statistical properties of ∆yt defined as in (3) when the disturbances

are assumed to be uncorrelated processes with symmetric densities and finite fourth order mo-

ments. As the interest in this paper is to analyze the properties of unobserved component models

with non-Normal and/or conditionally heteroscedastic components, we focus on two moments

often used to characterized these two features. In particular, we derive the kurtosis and the acf

of squared observations. First, note that symmetric distributions of εt and ηt lead to all odd
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moments of ∆yt equal to zero. On the other hand, the variance of ∆yt is given by

V ar[∆yt] = E[(∆yt)2] = σ2
ε(q + 2). (5)

The fourth order unconditional moment can be derived as follows:

E[(∆yt)4] = E[η4
t ] + 2E[ε4

t ] + 12E[η2
t ]E[ε2

t ] + 6E[ε2
t ε

2
t−1]

= σ4
ε

[
q2κη + 12q + 2κε + 6

(
ρε2

1 (κε − 1) + 1
)]

, (6)

where κε and κη are the kurtosis of εt and ηt, respectively, and ρε2

1 is the lag-one autocorrelation

of ε2
t . From (5) and (6) it is possible to obtain the following expression of the kurtosis of ∆yt:

κ∆y =
1

(q + 2)2
[
q2κη + 12q + 2κε + 6

(
ρε2

1 (κε − 1) + 1
)]

. (7)

Note that the signal-to-noise ratio, q, plays an important role in determining the relative influ-

ence of each noise on the kurtosis of the stationary transformation of yt. In the limiting cases,

when q → ∞, ∆yt = ηt (i.e. yt is a pure random walk process) so that κ∆y = κη. On the

other hand, as q → 0, ∆yt = ∆εt (i.e. yt is a white noise process), and consequently ∆yt is a

non-invertible MA(1) process whose kurtosis may be different from κε depending on the value

of ρε2

1 .

The acf of squares has often been used to represent the dynamic dependence of heteroscedas-

tic series. If yt is generated by model (1), then the acf of (∆yt)2 is given by

ρ(∆y)2

τ =
q2ρη2

τ (κη − 1) + (κε − 1)(ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1)

q2(κη − 1) + 8q + 2(κε − 1)(1 + 3ρε2

1 ) + 4
, τ ≥ 1, (8)

where ρx
τ stands for the lag-τ autocorrelation of x. The numerator of (8) is defined as a weighted

sum of two factors that depend on τ . The first one, ρη2

τ , has a weight which is a function of q

and κη, while the second, ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1, has a weight depending only on κε. As long as

the acf of squares of both disturbances converge to zero, each of these factors disappears as τ

increases, and therefore the acf of (∆yt)2 also converges to zero. This issue is studied later with

more detail.
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Next, we derive particular cases of the kurtosis of ∆yt and acf of (∆yt)2 depending on

different specifications of εt and ηt. In particular, we will consider noises which are homoscedastic

although non-Normal and GARCH(1,1) noises1.

2.1 Non-Gaussian disturbances

Consider first that the disturbances are homoscedastic. If they are further assumed to be

Gaussian, then, as expected, the kurtosis in (7) is given by κ∆y = 3. However, if the disturbances

are non-Normal, then2

κ∆y =
1

(q + 2)2
[
q2κη + (12q + 6) + 2κε

]
. (9)

From (9) we can see that if q2 > 2, the contribution of κη to the kurtosis of ∆yt is greater than

the contribution of κε. The opposite happens when q2 < 2. Furthermore, note that the slopes

of κ∆y with respect to kε and kη are different:

∂κ∆y

∂κη
=

q2

(q + 2)2
→ 1 as q tends to +∞,

∂κ∆y

∂κε
=

2
(q + 2)2

→ 0.5 as q tends to zero.

Figure 1 plots κ∆y as a function of κε and κη for different values of the signal-to-noise ratio,

q. It can be observed that, as the derivatives above show, the relation between κ∆y and each

kurtosis is linear, with the slope with respect to κη being steeper when q >
√

2. In any case, it

is interesting to observe that the slope is always smaller than one. Consider, for example, that

1The general expression for the kurtosis and acf of (∆yt)
2 can be utilized in other specifications of the noises.

For instance, Broto and Ruiz (2006) derive these quantities for the particular case of a LL model with GQARCH
disturbances to account for asymmetries in volatility.

2Note that if εt is a white noise process with E[ε4
t ] > 0 and κε 6= 1, the assumption of conditional homoscedas-

ticity implies that ρε2

j = 0, j > 0, regardless of its conditional distribution. To prove it, note that conditional
homoscedasticity means E[ε2

t |It−j ] = E[ε2
t ] = σ2

ε , ∀j > 0 where It−j is the information set available at time
t− j. Taking into account that

ρε2

j =
E[ε2

t ε2
t−j ]

(κε − 1)σ4
ε

− 1

κε − 1
,

and knowing that

E[ε2
t ε2

t−j ] = E{E[ε2
t ε2

t−j |It−j ]} = E{ε2
t−j E[ε2

t |It−j ]} = E[ε2
t−j ] σ2

ε = σ4
ε ,

the result ρε2

j = 0, j > 0 is straightforward.
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Figure 1: Relationship between κ∆y, κε and κη in homoscedastic non-Gaussian LL models

κε = 6 and κη = 5. In this case, if q = 0.25, κ∆y = 4.21, while if q =
√

2, then κ∆y = 3.86.

Finally, if q = 4, then κ∆y = 4.06. Note that in this example the excess kurtosis of the stationary

transformation of yt is smaller than the corresponding for each component. As a general result,

we show in the Appendix that for all values of q, κ∆y is always smaller than or equal to the

maximum of κε and κη. Furthermore, as long as both disturbances have positive excess kurtosis,

we can always find an interval for q within which κ∆y < min(κε, κη).

With respect to the acf of squares, if the disturbances are homoscedastic, expression (8) is

reduced to

ρ(∆y)2

τ =


(κε−1)

(q+2)2(κ∆y−1)
, τ = 1

0, τ ≥ 2
(10)

Note that under normality, ρ
(∆y)2

1 = (q + 2)−2, which turns out to be the squared lag-one

autocorrelation of ∆yt; see Maravall (1983). However, for non-Gaussian processes the acf of

squares is not necessarily the square of the acf . From (10) it can be seen that, if κε is greater
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(smaller) than κ∆y, ρ
(∆y)2

1 is greater (smaller) than in the Gaussian case. For example, if κε = 6,

κη = 5 and q =
√

2, so that κ∆y = 3.86, then ρ
(∆y)2

1 = 0.15 > 0.09 = (q + 2)−2. On the other

hand, when the excess kurtosis comes only from the permanent component (i.e. κε = 3 and

κη > 3), ρ
(∆y)2

1 is always smaller than in the Gaussian case.

2.2 GARCH disturbances

Consider now that each noise is a conditionally Normal GARCH(1,1) process. Therefore, they

are given by εt = ε†th
1/2
t and ηt = η†t q

1/2
t , where ε†t and η†t are mutually and serially independent

Gaussian white noise processes and

ht = α0 + α1ε
2
t−1 + α2ht−1, (11)

qt = γ0 + γ1η
2
t−1 + γ2qt−1, (12)

where the parameters α0, α1, α2, γ0, γ1 and γ2 are assumed to satisfy the usual positivity and

stationarity conditions. Then, substituting κε, κη and ρε2

1 in expression (7) by their expressions

when the disturbances are GARCH3, κ∆y is given by

κ∆y =
3

(q + 2)2

[
q2 1− (γ1 + γ2)2

1− 3γ2
1 − 2γ1γ2 − γ2

2

+ 4q

+ 4
1− (α1 + α2)2 + α1(1− α1 − α1α2 − α2

2)
1− 3α2

1 − 2α1α2 − α2
2

]
. (13)

Figure 2 plots for different values of the signal-to-noise ratio, the relationship between the

kurtosis of ∆yt and the persistence of the volatility of both noises, measured as the sum of the

ARCH (α1, γ1) and GARCH (α2, γ2) coefficients. For ease of exposition we keep the GARCH

coefficients equal to 0.85. Note that the slope with respect to the persistence of ηt is steeper as

q increases, and also that varying q significantly affects κ∆y.

We consider now the autocorrelations of squares. If εt and ηt are GARCH(1,1) processes,

3The properties of GARCH processes can be found in, for example, Tsay (2005).
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Figure 2: Relationship between κ∆y and persistence. The GARCH coefficients, α2 and γ2 are fixed to
0.85.

the acf of (∆yt)2 is given by

ρ(∆y)2

τ =


1

(q+2)2(κ∆y−1)

[
q2ρη2

1 (κη − 1) + (κε − 1)(1 + ρε2

1 (2 + α1 + α2))
]
, τ = 1

(α1 + α2)ρ
(∆y)2

τ−1 + 1
(q+2)2(κ∆y−1)

(γ1 + γ2 − α1 − α2)q2(γ1 + γ2)τ−2ρη2

1 (κη − 1), τ ≥ 2

(14)

where ρη2

1 = γ1(1− γ1γ2 − γ2
2)/(1− 2γ1γ2 − γ2

2), with ρε2

1 defined analogously.

From (14) we can see that when both noises are heteroscedastic, and γ1 + γ2 = α1 + α2, the

acf of squares has an exponential decay, as in the GARCH(p,q) process. We can also observe

an exponential decay when only one noise is heteroscedastic. However, in general, the decay

of the autocorrelations in (14) is not exponential. Consequently, the behavior of ∆yt is not

GARCH. Figure 3 plots the acf of squares for different specifications of the disturbances and the

corresponding rates of decay from the second lag. The first row shows the case in which both

disturbances follow the same GARCH process, and the second shows a case where both noises
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follow GARCH processes with different persistences. The last two rows consider the cases in

which only one noise is heteroscedastic. Note first that the cases in the first and the last two

rows illustrate the situations mentioned above where we obtain an exponential decay in the acf

of (∆yt)2. Moreover, in the case where γ1+γ2 6= α1+α2, although the rate is slightly increasing,

it can be approximated by a constant4. Consequently, exponential structures such as the ones

implied by GARCH processes can be a good approximation for the acf of (∆yt)2.

Autocorrelation function Rate of decay

Figure 3: Autocorrelations of (∆yt)2 for several Local Level models with conditionally Normal
GARCH(1,1) disturbances and q =

√
2. The rate of decay reported in the right column is defined

by the ratio ρ
(∆y)2

τ /ρ
(∆y)2

τ−1 .

4It can be proved that the rate of decay of ρ
(∆y)2

τ given by (14) converges to the max(α1 + α2; γ1 + γ2) as τ
increases. Therefore, in the cases where the persistence of the GARCH processes are close to each other, the rate

of decay of ρ
(∆y)2

τ will be approximately constant for almost all values of τ .
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3. Properties of the residuals of the reduced form ARIMA model

We have seen that εt and ηt being mutually and serially uncorrelated is sufficient to prove that

the reduced form of the LL model is a restricted IMA(1,1), as stated in (4), with at being also

serially uncorrelated. Furthermore, if both εt and ηt are fourth-moment stationary and have

symmetric distributions, then these properties are also shared by at. Taking this into account,

the objective of this section is to derive the moments of at as functions of the moments of the

disturbances of the unobserved component model. We will also show which are the parameters

expected to be obtained if at is assumed to be a GARCH(1,1) model.

3.1 Kurtosis and acf of squares of at in terms of εt and ηt

From the model given by (4), it is possible to derive the following expression of the kurtosis of

∆yt,

κ∆y =
1

(1 + θ2)2
[
κa(1 + θ4) + 6θ2[ρa2

1 (κa − 1) + 1]
]
, (15)

where κa and ρa2

1 are the kurtosis of at and the lag-one autocorrelation of a2
t , respectively. Note

from (15) that κ∆y is a function not only of κa but also of ρa2

1 . This result is consistent with

(7), where κ∆y is affected also by ρε2

1 . Finally, the acf of ∆y2
t is given by

ρ(∆y)2

τ =
κa − 1

(1 + θ2)2(κ∆y − 1)

[
(1 + θ4)ρa2

τ + θ2(ρa2

τ−1 + ρa2

τ+1)
]
, τ ≥ 1. (16)

Note that expressions (15) and (16) are defined for a general IMA(1,1) process, resulting from a

LL model with εt and ηt being mutually independent and serially uncorrelated processes, with

symmetric distributions around zero and finite fourth order moments.

In order to find an expression of κa and ρa2

τ , as functions of the parameters from the unob-

served component model, consider the kurtoses of ∆yt given by (7) and (15). After equalling
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these expressions we obtain5

(κa − 1)
(
1 + θ4 + 6θ2ρa2

1

)
≡ (1 + θ)4(κη − 1)− 8θ(1 + θ)2 + 2θ2(κε − 1)

(
1 + 3ρε2

1

)
.(17)

On the other hand, after equalling the autocorrelation of order τ = 1, 2, . . . in (8) and (16) we

obtain

(κa − 1)
[
(1 + θ4)ρa2

τ + θ2
(
ρa2

τ−1 + ρa2

τ+1

)]
≡ θ2(κε − 1)

(
ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1

)
+ (1 + θ)4(κη − 1)ρη2

τ . (18)

With (17) and the identities that follow from (18) for different values of τ , we are able to fully

characterize the kurtosis and acf of squares of at. In the simplest case, when εt and ηt are

homoscedastic Gaussian processes, the above expressions reduce to

(κa − 1)
(
1 + θ4 + 6θ2ρa2

1

)
≡ 2(1 + θ4), (19)

(κa − 1)
[
(1 + θ4)ρa2

1 + θ2
(
1 + ρa2

2

)]
≡ 2θ2, (20)

(κa − 1)
[
(1 + θ4)ρa2

τ + θ2
(
ρa2

τ−1 + ρa2

τ+1

)]
≡ 0 , ∀ τ > 1 (21)

The system of identities given by (19)-(21) yields ρa2

τ = 0 , ∀τ > 0 and κa = 3, as expected

given that at is a linear combination of independent Gaussian noises.

When assuming that εt and ηt are homoscedastic but not necessarily normal, we have seen

in the previous section that ρ
(∆y)2

1 may differ from (ρ∆y
1 )2. Given that yt follows an IMA(1,1)

process, at must incorporate a nonlinear behavior that explains this difference. In other words,

though still uncorrelated, at is not independent; see Breidt and Davis (1992). To illustrate the

behavior of at in this particular set up, Table 1 shows the theoretical acf of squares for several

values of q, κε and κη, coming from the resolution of the system given by (17) and (18). Observe

5To obtain (17), recall that θ can be defined in terms of q, so that the following expressions result:

1 + θ2 = −θ(q + 2),

1 + θ4 = θ2(q2 + 4q + 2).
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that non-normality in either or both noises may generate structure in the acf of squares (specially

in the lag-one autocorrelation), thus reflecting the serial dependence. It must be pointed out

that, although this structure does not reflect the presence of GARCH effects in the series (by

just looking at the whole acf of squares we realize that it does not follow any specific pattern),

it is possible to obtain values for some usual statistics, e.g. the McLeod-Li (1983) test, that may

wrongly lead to fit conditionally heteroscedastic models to the series. Also note that this pattern

in which only the lag-one autocorrelation of squares seem to be significant, can be confused with

the effect of outliers; see Carnero et al. (2006).

q κε κη θ κ∆y ρ
(∆y)2

1 κa ρa2

1 ρa2

2 ρa2

3 ρa2

4 ρa2

5

0.5 3 6 -0.5 3.120 0.151 3.273 -0.030 0.008 -0.002 0.001 0.000

√
2 3 6 -0.324 3.515 0.068 3.665 -0.026 0.003 0.000 0.000 0.000

0.5 6 6 -0.5 4.080 0.260 3.818 0.194 -0.048 0.012 -0.003 0.001

√
2 6 6 -0.324 4.029 0.142 4.120 0.063 -0.007 0.001 0.000 0.000

0.5 6 3 -0.5 3.960 0.270 3.546 0.241 -0.060 0.015 0.004 0.001

√
2 6 3 -0.324 3.515 0.171 3.456 0.109 -0.011 0.001 0.000 0.000

Table 1: Theoretical moments of at resulting from LL models with either or both non-Gaussian ho-
moscedastic noises.

When either or both noises are heteroscedastic, the kurtosis and acf of squares of at are not

easily derived. However, we can redefine the identities given by (17) and (18) to construct the

following set of equations:

[
(1 + θ4)− 6θ2Q(1)

]
ρa2

1 + θ2ρa2

2 = Q(1)(1 + θ4)− θ2, (22)

[
θ2 − 6θ2Q(2)

]
ρa2

1 + (1 + θ4)ρa2

2 + θ2ρa2

3 = Q(2)(1 + θ4), (23)

−6θ2Q(τ)ρa2

1 + θ2ρa2

τ−1 + (1 + θ4)ρa2

τ + θ2ρa2

τ+1 = Q(τ)(1 + θ4) , τ > 2 (24)
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where Q(τ) depends on the structural noises in the following way:

Q(τ) =
(1 + θ)4ρη2

τ (κη − 1) + θ2(κε − 1)
(
ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1

)
(1 + θ)4(κη − 1)− 8θ(1 + θ)2 + 2θ2(κε − 1)

(
1 + 3ρε2

1

) . (25)

When assuming that εt and ηt are stationary GARCH processes, Q(τ) converges to zero as τ

increases. In other words, there exists a value of τ , say τmax, large enough to make Q(τ) ≈ 0 and

thus also make ρa2

τ ≈ 0 for τ > τmax. Taking this into account we can find the kurtosis and acf of

squares of at for a given set of parameters. Figure 4 plots the acf of squares of at for the same

models considered in Figure 3. In general, the magnitude of the autocorrelations of a2
t is smaller

than the corresponding ones of the disturbances of the LL model. This suggests that working

with the reduced form of an unobserved component model may hide part of the heteroscedasticity

of each component, by producing a reduced form disturbance, at, with less structure in its acf of

squares. It might be the case for instance that if the permanent component, µt, presents a

significant heteroscedastic structure but the transitory component, εt, is homoscedastic; the

stationary transformation, ∆yt, may not provide significant evidence of heteroscedasticity at all.

It is worthy to note that, as found with the acf of (∆yt)2, the autocorrelations of squares of

at may not show an exponential decay. Therefore, at may not follow a GARCH process as well.

3.2 The IMA-GARCH model and the reduced form of ∆yt

In the previous subsection, we have seen that if the disturbances of an unobserved component

model are GARCH, the noise of the corresponding reduced form model does not follow exactly

a GARCH model. However, the decay of the autocorrelations of squares could be approximated

by such a model and this is the usual practice when analyzing real time series. Consequently,

in this subsection, we derive the value of the GARCH parameters that would be obtained if one

fits a GARCH(1,1) model to the disturbance of the IMA(1,1) model for yt. In particular, if at is

assumed to be a conditionally Normal GARCH(1,1) model, then at = a†tσt, where a†t is a white

noise Gaussian process and

σ2
t = δ0 + δ1a

2
t−1 + δ2σ

2
t−1. (26)



Pellegrini, Ruiz & Espasa 15

Figure 4: Autocorrelations of a2
t , resulting from different conditionally Normal GARCH(1,1) disturbances

with q =
√

2. The solid and dash-dotted lines draw the autocorrelations of ε2
t and η2

t , respectively.

We want to obtain expressions of the parameters δ1 and δ2 as functions of κa and ρa2

τ derived

in the previous subsection. First, note that in the GARCH(1,1) model in (26) κa and ρa2

τ are

given by

κa =
3

[
1− (δ1 + δ2)2

]
1− 3δ2

1 − 2δ1δ2 − δ2
2

, (27)

ρa2

τ = (δ1 + δ2)τ−1 δ1(1− δ1δ2 − δ2
2)

1− 2δ1δ2 − δ2
2

, τ ≥ 1. (28)

From (27) and (28) it is possible to derive the following expression of δ1,

δ1 =
3(κa − 1)ρa2

τ − (δ1 + δ2)τ (κa − 3)
2κa(δ1 + δ2)τ−1

, (29)

for any τ ≥ 1. On the other hand, given the parameters of the GARCH models of εt and ηt, the

kurtosis, κa, and autocorrelations of squares, ρa2

τ , can be obtained by solving the system (22) to

(24). Then (δ1 + δ2) is given by the ratio ρa2

τ /ρa2

τ−1. Finally, substituting κa, ρa2

τ and (δ1 + δ2)
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in (29), we obtain the corresponding value of δ1. Table 2 shows some examples. For instance,

consider the model where both noises are heteroscedastic and q =
√

2. In this case, κa = 4.45,

ρa2

2 = 0.19, ρa2

3 = 0.18 and δ1 + δ2 = 0.95, so that δ1 = 0.083 (the upper-left case of Figure

4). This value, which measures the level of heteroscedasticity in a series, is clearly smaller than

the corresponding values for the structural noises (α1 = γ1 = 0.15). If we now consider the

model in which only the trend component is heteroscedastic, the values are given by κa = 3.4,

ρa2

2 = 0.094, ρa2

3 = 0.089 and δ1 + δ2 = 0.95, thus obtaining δ1 = 0.05. In this case, the ARCH

coefficient in the reduced form disturbance is one-third the value of γ1 (0.15). Furthermore, if

in this case, we change the value of q from 0.5 to
√

2 keeping the rest unchanged, we see that

δ1 = 0.014, that is one-tenth of γ1. Notice from these examples that it is possible to reject

heteroscedasticity although at least one of the underlying noises are clearly heteroscedastic.

q α1 α2 γ1 γ2 κε κη θ κa ρa2

1 ρa2

2 ρa2

3 ρa2

4 δ1 δ2

0.5 0.15 0.80 0.15 0.80 5.57 5.57 -0.5 4.910 0.251 0.223 0.216 0.204 0.100 0.850

√
2 0.15 0.80 0.15 0.80 5.57 5.57 -0.324 4.451 0.217 0.193 0.185 0.175 0.083 0.867

0.5 0 0 0.15 0.80 3 5.57 -0.5 3.083 0.023 0.026 0.024 0.023 0.014 0.936

√
2 0 0 0.15 0.80 3 5.57 -0.324 3.396 0.092 0.094 0.089 0.084 0.049 0.901

0.5 0.15 0.80 0 0 5.57 3 -0.5 4.828 0.244 0.214 0.208 0.196 0.093 0.857

√
2 0.15 0.80 0 0 5.57 3 -0.324 4.055 0.174 0.144 0.139 0.132 0.051 0.899

Table 2: Theoretical values of the GARCH parameters, δ1 and δ2, of the reduced form noise corresponding
to different models for εt and ηt.

To illustrate how the heteroscedasticity may be hidden when fitting an IMA(1,1)-GARCH(1,1)

model to series drawn from a LL-GARCH(1,1) model, we generate 1000 series with parameters

α1 = α2 = 0, γ1 = 0.15, γ2 = 0.8 and q = 16. The series are generated with four different sample

sizes (T = 200, 500, 1000, and 5000). For each simulated series, we first fit an homoscedas-

tic IMA(1,1) model and test for conditional heteroscedasticity in the residuals using the test

6Results for other alternative models are available upon request.
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proposed by Rodriguez and Ruiz (2005):

Q1(10) = T

9∑
k=1

[r̃(k) + r̃(k + 1)]2 , (30)

where r̃(k) =
√

(T + 2)/(T − k)r(k) is the standardized sample autocorrelation of order k.

Table 3 reports the mean and standard deviations through all Monte Carlo replicates of the

QML estimates of θ. We see that θ̂ is asymptotically unbiased in the sense that it converges

to the value implied by q. The table also reports the percentage of times when the null of

homoscedasticity is rejected by the Q1(10) test. We can see that for relatively large samples

(T = 5000) all the IMA residuals capture the conditional heteroscedasticity coming from the

underlying unobserved components. However, for small or moderate samples, this statistic show

a large proportion of cases where the homoscedasticity cannot be rejected. For instance, for

T = 200, in more than 75% of the cases the residuals do not present evidence of conditional

heteroscedasticity when in fact the permanent component is heteroscedastic.

Then, for each simulated series, the GARCH(1,1) model is fitted to the residuals. Table 3

reports the mean of the QML estimates, as well as the variance, kurtosis and autocorrelations

of squares of ∆yt implied by these estimates. With respect to the estimates of the ARCH

parameter, δ1, their values are consistent with the analytical results found above. Given the

parameters of the LL model used to simulate the series, the implied value of δ1 is 0.05. Regarding

the mean estimates of the GARCH coefficient, δ2, we see that they increase with the sample

size, so that the estimated sum δ1 + δ2 converges to the sum γ1 + γ2.

Finally, Table 3 reports the percentage of rejection of homoscedasticity when looking at the

5% significance of the ARCH parameter. For large samples we can see that there are no serious

dangers in terms of heteroscedasticity rejection. However, in small or moderate samples, a higher

sampling error may accentuate the problems of estimating the reduced form IMA-GARCH as the

heteroscedasticity can be rejected in a very large proportion of cases. For instance, if T = 200,

we find significant ARCH effects in only 9% of the series.
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LL-GARCH(1,1) Estimated IMA(1,1)-GARCH(1,1)

Parameters Estimates T = 200 T = 500 T = 1000 T = 5000

q = 1 / θ = −0.382 θ̂ -0.425 (0.099) -0.398 (0.067) -0.391 (0.050) -0.384 (0.023)

Q1(10) 23% 47% 76% 100%

γ1 = 0.15 ; γ2 = 0.8 δ̂1 0.055 (0.058) 0.053 (0.039) 0.050 (0.025) 0.048 (0.011)

α1 = 0 ; α2 = 0 δ̂2 0.668 (0.300) 0.748 (0.243) 0.821 (0.175) 0.880 (0.034)

σ2
∆y = 3 σ̂2

∆y 2.923 (0.673) 3.016 (0.946) 2.973 (0.253) 2.967 (0.101)

κ∆y = 3.286 κ̂∆y 3.275 (0.631) 3.243 (0.574) 3.192 (0.165) 3.177 (0.058)

ρ
(∆y)2

1 = 0.164 ρ̂
(∆y)2

1 0.191 (0.108) 0.174 (0.053) 0.166 (0.025) 0.163 (0.010)

ρ
(∆y)2

2 = 0.063 ρ̂
(∆y)2

2 0.061 (0.122) 0.056 (0.063) 0.055 (0.032) 0.057 (0.014)

Homosc. Rejection (t(δ1) > 1.64): 9% 39% 73% 100%

Table 3: Monte Carlo results on the QML estimator of the parameters of the IMA-GARCH when the
series are generated by a LL-GARCH model.

4. Analysis of the forecasting performance

In the present section we analyze the forecasting performance of the IMA-GARCH model when

implemented to construct prediction intervals of series generated by the LL-GARCH model. We

compare the theoretical mean squared forecast errors (MSFEs) and prediction intervals obtained

from both models. The results are illustrated using simulated series.

4.1 The MSFE of both models

Consider yt generated by the LL model in (1). It is well known that if one wants to minimize

the MSFE, then the conditional mean is the optimal point predictor of yT+k. Assuming that

the parameters are known, the Kalman Filter can be implemented to obtain estimates of the

underlying state at time t = 1, 1, . . . , T denoted by mt. Then, the optimal linear point predictor

is given by

ŷT+k = E
T

[yT+k] = mT , k = 1, 2, ... (31)
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where the T under the expectation means that it is conditional on the information available at

time T, i.e. {y1, . . . , yT }. From (31) it is easy to derive the MSFE, as function of both noises:

MSFE(ŷT+k) = PT + E
T

[ε2
T+k] +

k∑
j=1

E
T

[η2
T+j ], k = 1, 2, ... (32)

where PT = E
T

[(µT −mT )2]. When ηt and εt are GARCH processes, given in (11) and (12), it

is easy to see that

E
T

[ε2
T+k] = σ2

ε + (α1 + α2)k−1(hT+1 − σ2
ε), k = 1, 2, ... (33)

E
T

[η2
T+k] = σ2

η + (γ1 + γ2)k−1(qT+1 − σ2
η), k = 1, 2, ... (34)

where hT+1 and qT+1 are the conditional variances of εT+1 and ηT+1, respectively (see Harvey

et al., 1992, for further details). Expressions (hT+1 − σ2
ε) and (qT+1 − σ2

η) may be interpreted

as measures of the excess volatility at the time the prediction is made with respect to the

marginal variance in both noises. Since we are assuming stationarity in second moments, any

disequilibrium (i.e. an excess volatility different from zero) vanishes as k increases and the long

term forecast converges to the marginal variance. Plugging (33) and (34) into (32) we get the

following expression for the MSFE(ŷT+k):

MSFE(ŷT+k) = PT + σ2
ε + k σ2

η +
1− (γ1 + γ2)k

1− (γ1 + γ2)
(qT+1 − σ2

η)

+ (α1 + α2)k−1 (hT+1 − σ2
ε), k = 1, 2, ... (35)

Note that the MSFE of the homoscedastic LL model is given by the first three terms of (35).

Also note that the MSFE of the LL-GARCH becomes a linear function of k in the long run, with

the same slope as its linear counterpart, but with a different intercept due to the contribution

of the fourth term in (35). However, for short and medium horizons, the influence of the excess

volatility in both noises leads to a MSFE smaller or greater than that of the homoscedastic LL

model. It is also important to note that there is a significant distinction in the behavior of the

MSFE depending on whether the conditional heteroscedasticity affects the long or the short-run

components. An excess volatility in the permanent component affects the MSFE for all horizons
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while the effect of an excess volatility in the transitory component vanishes in the long run.

Therefore, when the heteroscedasticity only affects the transitory noise, the MSFE converges

to the one obtained in the homoscedastic model. However, when the long run component is

heteroscedastic, depending on the sign of the excess volatility, the MSFE is over or under the

MSFE obtained in the homoscedastic model for all prediction horizons.

Now, consider that yt is given by the reduced form IMA(1,1) model in (4). In this case the

optimal linear predictor of yT+k given the information available at time T is given by

ŷT+k = yT + θaT , k = 1, 2, ... (36)

with MSFE

MSFE(ŷT+k) =


E
T

[a2
T+1], k = 1

E
T

[a2
T+k] + (1 + θ)2

∑k−1
j=1 E

T
[a2

T+j ], k = 2, 3, ...

(37)

If at is a GARCH(1,1) model given by (26) then

E
T

[a2
T+k] = σ2

a + (δ1 + δ2)k−1(σ2
T+1 − σ2

a), k = 1, 2, ... (38)

where σ2
T+1 is the conditional variance of aT+1, and (σ2

T+1 − σ2
a) is the measure of the excess

volatility, analogous to those of the LL-GARCH disturbances. Again, by plugging (38) into (37)

we find that

MSFE(ŷT+k) =



σ2
a + (σ2

T+1 − σ2
a), k = 1

[
(1 + θ)2(k − 1) + 1

]
σ2

a +

[
(1+θ)2−(δ1+δ2)k−1(θ(2+θ)+δ1+δ2)

1−(δ1+δ2)

]
(σ2

T+1 − σ2
a), k = 2, 3, ...

(39)

As in the LL-GARCH case, the MSFE of the IMA-GARCH model can be separated into a

linear and a nonlinear part, defined by the first and second terms of (39), respectively. It is clear

from this expression that the MSFE(ŷT+k) is also a linear function of the horizon as k increases.

However, as long as the excess volatility is different from zero, the path of the IMA-GARCH

MSFE never converges to that of the linear (homoscedastic) IMA model. Moreover, the sign
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of the excess volatility at time T determines if the IMA-GARCH prediction variance will be

smaller or greater for all k than the prediction variance of the linear IMA. In this sense, the

behavior is similar to that of the LL model with heteroscedastic long-run disturbances.

4.2 Some illustrations using prediction intervals

In this subsection we illustrate with simulated data the differences between the MSFEs of the

LL-GARCH and IMA-GARCH models and their consequences when constructing prediction

intervals for yT+k. We generate series from the unobserved component LL model with either or

both disturbances being GARCH processes and, assuming that the parameters of both models

are known, we find the MSFE of the LL-GARCH and IMA-GARCH models at a given time T .

Then, we construct 95% Gaussian prediction intervals7 and calculate their observed coverage by

generating B = 1000 trajectories of yT+k conditional on the information at time T. The time

points are arbitrarily chosen to illustrate the behavior of the MSFEs in highly volatile and more

quiet periods.

Assume first that the series is generated from a LL-GARCH model where only the permanent

component is heteroscedastic, with γ1 = 0.15, γ2 = 0.8, and q = 1. The selected time point

corresponds to a volatile period since qT+1−σ2
η = 1.58 > 0, and obviously all the excess volatility

comes from the permanent component. Figure 5 shows that the resulting MSFEs of the IMA-

GARCH model produce narrower prediction intervals compared to those of the LL-GARCH. In

order to obtain the observed coverage, we simply count the number of observations lying outside

each prediction interval and then divide it by B. Figure 6 shows the coverage of both models

for each horizon k. We can see that at k = 1 both intervals are pretty close to the nominal but

as k increases, the observed coverage of the IMA-GARCH stays around 92%, when the nominal

is 95%.

7Although we know that if k > 1 the forecasts distribution is not Gaussian, the results of Pascual et al. (2006)
suggest that it may be a good approximation.
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Figure 5: Prediction intervals of a LL-GARCH series where only the permanent component is het-
eroscedastic, with γ1 = 0.15, γ2 = 0.8, and q = 1. The time point is selected in a highly volatile
period.

The homoscedastic prediction intervals generate the worst scenario because the observed

coverage starts at 90% and then stays around 87%. In this case, given that a volatility shock in

the permanent component does not vanish as the horizon increases, the homoscedastic prediction

intervals do not converge to those of the LL-GARCH model.

Now we illustrate the case where only εt is heteroscedastic, with parameters α1 = 0.15,

α2 = 0.8, and q = 1. We take two time points in this series, a highly volatile and a quiet

period. The first case is reported in Figure 7. In this case, where ht+1 − σ2
ε = 4.2, we see that

the IMA-GARCH MSFEs produce too wide prediction intervals. Indeed, Figure 8 shows that

IMA-GARCH prediction intervals cover almost 100% of the observations in the medium term,

whereas the coverage of the LL-GARCH is always around the nominal.

In the second case, a quiet period where ht+1 − σ2
ε = −0.46, the IMA-GARCH MSFEs
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Figure 6: Observed coverage of the prediction intervals shown in Figure 5, computed as the percentage
of trajectories within the prediction intervals.

produce too narrow prediction intervals, covering around 92% of the observations against a

95.8% of the LL-GARCH counterparts. Figure 10 plots the coverage in this last case.

In these two cases where εt is the only heteroscedastic component, it is worth to note that,

as the shocks are purely transitory, the homoscedastic and the LL-GARCH prediction intervals

stick to each other. However, the IMA-GARCH counterparts remain always above or below

depending on the sign of the excess volatility. This leads to significant differences between the

two prediction intervals, specially for medium and long term.

Summarizing, we have seen that the MSFE of the IMA-GARCH model may produce inaccu-

rate prediction intervals when the series is generated by heteroscedastic unobserved component

models. This is due to its incapacity of distinguishing whether the heteroscedasticity affects

the long or the short run components. Therefore, the use of reduced form ARIMA models to

construct prediction intervals may be inappropriate to capture the underlying uncertainty of the
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Figure 7: Prediction intervals of a LL-GARCH series where only the transitory component is heteroscedas-
tic, with α1 = 0.15, α2 = 0.8, and q = 1. The time point is selected in a highly volatile period.

heteroscedastic components.

5. An empirical illustration

In this section we fit the LL-GARCH and IMA(1,1)-GARCH models to daily closing prices of

the Pound/Euro exchange rate observed from January 3, 2000 to March 29, 2006 with T =

16268. The objective is to compare the conclusions about the conditional heteroscedasticity

derived from the estimates of both models. We also compare the prediction intervals obtained

when both models are used to forecast future values of returns. Figure 11 plots the observed

prices, pt, as well as the returns computed, as usual, as yt = 100 ×∆log(pt). From the graphs

we see that the exchange rates follow a non stationary pattern while returns are stationary with

8The series has been downloaded from the EcoWin database.
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Figure 8: Actual coverage measured as the percentage of trajectories within the prediction intervals.

periods of clustered volatility. On the other hand, only the sample first order autocorrelation

is significant (and negative), thus suggesting that the IMA(1,1) and/or the LL model may be

appropriate models to the series. Furthermore, the sample kurtosis, 3.84, and the significant

autocorrelations of squares may indicate the presence of conditional heteroscedasticity. In order

to decide whether the heteroscedasticity may affect the transitory or the long-run component of

the LL model, we first fit the homoscedastic model and then use the correlograms of the squared

auxiliary residuals; see Broto and Ruiz (2006) for further details.9

Table 4 reports the estimates of the two homoscedastic models. We can see that the perma-

nent component has more weight in the series as q̂ > 1. Furthermore, the estimate of θ (-0.247)

is significant and almost identical to the one implied by q̂ (-0.248). This confirms once more that

9An intervention analysis of the series using auxiliary residuals (see Harvey and Koopman, 1992) was carried
out with the program STAMP 6.20 of Koopman et al. (2000). The program found two outliers in the transi-
tory component (εt) and three in the noise of the permanent component (ηt), representing just a 0.3% of the
observations.
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Figure 9: Prediction intervals of a LL-GARCH series where only the transitory component is heteroscedas-
tic, with α1 = 0.15, α2 = 0.8, and q = 1. The time point is selected in a quiet period.

possible nonlinearities in the form of conditional heteroscedasticity do not affect the equivalence

in the conditional mean of both models. Table 4 also reports the sample mean, skewness (SK),

kurtosis (κ), and autocorrelations of the standardized one-step-ahead residuals, υ̂t in the LL

model, and ât in the IMA model. They are clearly uncorrelated suggesting that the two mod-

els seem to be appropriate to fit the conditional mean. However, when we look at the sample

autocorrelations of the squares, it is clear the presence of a certain structure in the variance of

the series that is not captured by the homoscedastic models. This fact, in conjunction with a

significant excess kurtosis, leads to propose a GARCH process to account for this structure in

the variance.

Table 4 also reports the sample moments and autocorrelations of the auxiliary residuals and

their squares in the LL model. These values are useful tools to identify which of the compo-

nents present evidence of conditional heteroscedasticity. Since by construction both auxiliary



Pellegrini, Ruiz & Espasa 27

Figure 10: Actual coverage measured as the percentage of trajectories within the prediction intervals.

residuals are serially correlated, we have to find the sample autocorrelations of squares adjusted

by the square of the sample acf to account for a significant nonlinear structure in the form of

conditional heteroscedasticity. Figure 12 shows both adjusted correlograms. From them we can

conclude that both components seem to have conditional heteroscedasticity, being the transi-

tory component the one with the highest level of heteroscedasticity. Then, in the selection of

the structural model that best captures the conditional heteroscedasticity, we should include a

GARCH specification in both noises.

On the other hand, for the reduced form model selection, the sample autocorrelations given

in Table 4 suggest that the IMA(1,1)-GARCH(1,1) could also be an adequate reduced form

model to fit the series. Therefore, we fit the two models to the log of the daily £/e exchange

rate. Table 5 reports the estimation results.

The estimates of the LL-GARCH model given in Table 5 imply that both noises are condi-
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Figure 11: The daily £/e exchange rate, from 01/2000 to 03/2006.

tionally heteroscedastic. Furthermore, as expected, the transitory component seems to be more

heteroscedastic than the permanent one as α̂1 > γ̂1, although both share almost the same per-

sistence. On the other hand, compared to the homoscedastic specification, the introduction of a

GARCH process in each noise increases the Log-Likelihood from -1439 to -1372. In addition to

this, the residuals standardized by their estimated conditional variances not only are uncorre-

lated but also present almost no evidence of conditional heteroscedasticity (all the Q-statistics

are insignificant at 1% and only one significant at 5%). We have to point out, however, that a

small structure in the conditional variances of both noises still remains after fitting the GARCH

process.

The fact that the structural LL model estimates not only each component but also its

volatility, allows to decompose the total volatility of the series into the sum of the volatility
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Local Level model IMA(1,1) model

σ̂2
ε = 0.084** σ̂2

a = 0.344**

σ̂2
η = 0.196** θ̂ = -0.247**

q̂ = 2.338

υ̂t ε̂t η̂t ât

Mean 0.016 0.000 0.019 Mean 0.016

SK 0.205 -0.002 0.240 SK 0.201

κ 3.981 3.486 4.056 κ 3.962

ρ1 0.012 -0.353** 0.244** ρ1 0.014

ρ2 -0.044 -0.148** 0.022 ρ2 -0.043

ρ3 0.017 0.007 0.024 ρ3 -0.017

ρ4 0.002 -0.017 0.015 ρ4 -0.002

ρ5 0.028 0.023 0.032 ρ5 0.028

ρ10 -0.031 -0.021 -0.036 ρ10 -0.031

Q(10) 15.434 247.2** 116.28** Q(10) 15.489

υ̂2
t ε̂2

t η̂2
t â2

t

ρ1 0.038 0.189** 0.092** ρ1 0.038

ρ2 0.029 0.078** 0.016 ρ2 0.029

ρ3 0.054* -0.094** 0.035 ρ3 -0.054*

ρ4 0.052* -0.080** 0.056* ρ4 -0.052*

ρ5 0.170** 0.151** 0.154** ρ5 0.171**

ρ10 0.065** 0.087** 0.079** ρ10 0.065**

Q1(10) 365.44** 352.30** 600.90** Q1(10) 369.99**

LogL -1439 LogL -1437

Table 4: Estimates and sample moments of the residuals of the homoscedastic LL and IMA(1,1) models
fitted to the £/e exchange rate. *(**) Significant at 5% (1%) level.

of the transitory component (ht) and the permanent component (qt). Figure 13 plots these

two volatilities against time, as well as the volatility of the reduced form disturbance, at. All

these volatilities show a common pattern. First, at the beginning of the Euro as a common

currency, the uncertainty about its behavior leads to a highly volatile period. Then it begins to
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Figure 12: Correlogram of squares of the auxiliary residuals, corrected by the square of the sample
autocorrelations.

decrease until the end of 2003, where there is a new increase of the uncertainty surrounding the

exchange rate. Finally, the last two years show a smooth decreasing pattern. By construction,

the information given by the reduced form disturbance, at, cannot provide any extra information

about the sources of these highly volatile and quiet periods. However, from the volatility of both

structural noises, we observe that the contribution of each component to the total volatility has

been different. Thus, while the first highly volatile period is almost totally driven by the perma-

nent component, the source of volatility in the second period is shared by the two components.

However, we can see that the decreasing behavior of the last two years is accompanied by a

gradual reduction in the contribution of the transitory component.

In reference to the IMA-GARCH model, we can see that the overall fit is almost identical to
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Local Level - GARCH(1,1) IMA(1,1) - GARCH(1,1)

Estimates (t-stat) Estimates (t-stat)

α̂0 = 1.00E-04 (10.2) δ̂0 = 0.001 (9.18)

α̂1 = 0.072 (73.6) δ̂1 = 0.026 (4.27)

α̂2 = 0.920 (934.1) δ̂2 = 0.971 (158.6)

γ̂0 = 3.00E-04 (20.0)

γ̂1 = 0.036 (81.8)

γ̂2 = 0.961 (2023.8)

υ̂†t â†t

Mean 0.018 Mean 0.019

SK 0.144 SK 0.129

κ 3.350 κ 3.333

ρ1 0.003 ρ1 0.009

ρ2 -0.033 ρ2 -0.027

ρ3 0.006 ρ3 0.005

ρ4 -0.012 ρ4 -0.012

ρ5 0.031 ρ5 0.035

ρ10 -0.025 ρ10 -0.025

Q(10) 11.160 Q(10) 10.930

υ̂† 2
t â† 2

t

ρ1 0.001 ρ1 0.006

ρ2 0.011 ρ2 0.006

ρ3 0.009 ρ3 0.013

ρ4 0.004 ρ4 0.002

ρ5 0.073** ρ5 0.069**

ρ10 0.001 ρ10 0.001

Q1(10) 18.78 Q1(10) 18.27

LogL -1372 LogL -1374

Table 5: Estimates of the LL-GARCH and IMA(1,1)-GARCH(1,1) models fitted to the £/e exchange
rate. The sample moments and correlograms reported refer to the residuals after being standardized by
their estimated conditional variances. *(**) Significant at 5% (1%) level.
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Figure 13: Estimated volatility of the daily £/e exchange rate decomposed by its components.

the LL-GARCH model. Furthermore, it is also clear that the nonlinear model improves the fit

in relation with the homoscedastic IMA model. However, as stated before, the estimated ARCH

coefficient, δ̂1 is smaller than both, α̂1 and γ̂1, suggesting that the level of heteroscedasticity of

the reduced form model is inferior compared to both components. Furthermore, the value of

δ̂1 is approximately equal to the implied δ1 (0.029) obtained after plugging the estimates of the

structural parameters into the equations considered in Section 3.

Finally, we construct prediction intervals at two particular time points of the series. From

Figure 13, we choose them in a highly volatile and a quiet period. The former corresponds

to the first part of our sample, while the latter corresponds to the end of the sample when

the exchange rate volatility is lower. In both cases we set the prediction horizon to k = 40

which is approximately two months. In the first case we have re-estimated the parameters of

both models with the information up to the selected time point to construct the prediction
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intervals10. Figures 14 and 15 present the two cases. Note first that the prediction intervals

resulting from the homoscedastic model significantly differ from those of the two nonlinear

models. In the first case, the homoscedastic prediction intervals are too narrow because they

cannot account for a conditional variance much higher than the marginal, as it is expected in

highly volatile periods. The opposite happens in Figure 15, where the homoscedastic model

produces too wide prediction intervals because they cannot capture the effect of a conditional

variance being smaller than the marginal.

Figure 14: Prediction intervals in a highly volatile period (Jun-2000).

With regard to the IMA-GARCH and LL-GARCH prediction intervals, we observe that

they are almost identical for k = 1, but then the LL-GARCH prediction intervals start to move

away from those of the IMA-GARCH as the horizon increases. This is explained by the ability

10Since this case is at the beginning of the sample, we have added previous values of the exchange rate in
order to have the same sample size as in the original sample. We have not observed significant changes in the
estimations reported above.
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Figure 15: Prediction intervals in a quiet period (Feb-2006)

of the LL-GARCH model to distinguish whether the shocks come from the permanent or the

transitory component. Thus, the highly volatile period of the first case is mainly due to shocks

in the permanent component (qt+1− σ2
η = 0.4 and ht+1− σ2

ε = 0.04), so that a great proportion

of the excess volatility does not vanish as k increases. Therefore, the MSFEs of the LL-GARCH

take this into account and the resulting prediction intervals become wider than the corresponding

intervals of the IMA-GARCH. We see a similar pattern in the quiet period. Provided that the

negative excess volatility is mainly determined by the permanent component (qt+1−σ2
η = −0.16

and ht+1 − σ2
ε = −0.06), the resulting LL-GARCH prediction intervals are the narrowest for all

k.
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6. Conclusions

In this paper we analyze the relationship between unobserved component models and their

reduced form when the disturbances are GARCH(1,1) models. We show that although working

with the ARIMA reduced form model is simpler because there is only one disturbance, its

heteroscedasticity is weaker. Therefore, working with the unobserved component model may

lead to the discovery of conditional heteroscedasticity that could not be apparent in the reduced

form noise.

We also show that working with the unobserved component models generates more accurate

prediction intervals when the heteroscedasticity only affects the short-run component. In this

case, the effects of the heteroscedasticity disappear as the prediction horizon increases. There-

fore, the prediction intervals produced by the unobserved component models converge to the

homoscedastic intervals. However, the presence of a unit root in the reduced form model, lead

to generate prediction intervals that never converge to the homoscedastic intervals. In any case,

the coverages obtained with the unobserved component models are closer to the nominal than

those obtained in the ARIMA model.

Finally, the empirical application with the Pound-Euro exchange rate illustrates our main

findings. Namely, a weaker heteroscedasticity of the reduced form noise compared to that of

the unobserved components, and a differential behavior of the IMA-GARCH and LL-GARCH

prediction intervals depending on the source of the volatility shocks. With respect to the latter,

it is likely that in other series, such as inflation rates, the divergences between the IMA-GARCH

and the LL-GARCH prediction intervals may be important enough to be studied in depth.
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Appendix

The relationship between κ∆y, κε and κη in non-Gaussian homoscedastic models

Within the framework of the LL model defined in (1)-(2), we derive the relationship between

the kurtosis of ∆yt and the corresponding ones of the disturbances, εt and ηt. Let first consider

that κε ≥ 3, κη ≥ 3 and ρε2

1 = 0. Define κ ≡ max(κε, κη). Then, we can show that

κ∆y ≤ κ, ∀q ≥ 0. (A.1)

To prove (A.1), note from equation (9) that

κ∆y − κ =
1

(q + 2)2
[
q2κη + 12q + 6 + 2κε

]
− κ

=
1

(q + 2)2
[
q2κη + 12q + 6 + 2κε − q2κ− 4qκ− 4κ

]
=

1
(q + 2)2

[
q2(κη − κ) + 4q(3− κ) + 2(3 + κε − 2κ)

]
. (A.2)

Note that by assumption, (κη − κ) ≤ 0, (3 − κ) ≤ 0 and (3 + κε − 2κ) ≤ 011. Therefore, from

(A.2) we obtain κ∆y−κ ≤ 0, ∀q ≥ 0. Note also in (A.2) that if at least one of the disturbances

has excess kurtosis, i.e. κ > 3, then one of these terms is strictly negative and therefore, κ∆y < κ

for all values of q except for the limiting cases, q = 0 and q = ∞.

On the other hand, if κε > 3, κη > 3 and ρε2

1 = 0, then

κ∆y < κ, for some q ≥ 0, (A.3)

where κ ≡ min(κε, κη). To prove statement (A.3), note that

κ∆y − κ =
1

(q + 2)2
[
q2(κη − κ) + 4q(3− κ) + 2(3 + κε − 2κ)

]
. (A.4)

In this case, (κη − κ) ≥ 0 and (3 − κ) < 0. However, the sign of (3 + κε − 2κ) depends on the

values of κε and κη. Thus, we can distinguish two cases.

Consider first that κ = κη. Then, from (A.4) we find that

f(q) = κ∆y − κη =
1

(q + 2)2
[4q(3− κη) + 2(3 + κε − 2κη)] . (A.5)

11Note that (3 + κε − 2κ) = (3− κε) + 2(κε − κ) ≤ 0
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Note that f(q) is nonlinear and continuous over q ≥ 0, with f(∞) = 0. Additionally, it is easy

to prove that f(q) has a global minimum at a certain value q∗, where 0 < q∗ < ∞. This implies

that f(q∗) < f(q) for all q ≥ 0 and, in particular, f(q∗) < f(∞) = 0. Consequently, there exists

an interval for q within which f(q) < 0 or, in other words, κ∆y < κ.

If we now consider that κ = κε, we obtain from (A.4) that

f(q) = κ∆y − κε =
1

(q + 2)2
[
q2(κη − κε) + 4q(3− κε) + 2(3− κε)

]
, (A.6)

where f(q) is again continuous over q ≥ 0. Moreover, we know that f(0) = 0.5(3 − κε) < 0.

Therefore, by property of continuous functions, there exists an interval for q within which

f(q) < 0 and thus κ∆y < κ for some q ≥ 0.




