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Abstract

In this paper we propose a multivariate GARCH model with a time-varying conditional
correlation structure. The new Double Smooth Transition Conditional Correlation GARCH
model extends the Smooth Transition Conditional Correlation GARCH model of Silven-
noinen and Teräsvirta (2005) by including another variable according to which the correla-
tions change smoothly between states of constant correlations. A Lagrange multiplier test
is derived to test the constancy of correlations against the DSTCC–GARCH model, and
another one to test for another transition in the STCC–GARCH framework. In addition,
other specification tests, with the aim of aiding the model building procedure, are consid-
ered. Analytical expressions for the test statistics and the required derivatives are provided.
The model is applied to a selection of world stock indices, and it is found that time is an
important factor affecting correlations between them.
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2006, and in seminars at Université catholique de Louvain, Louvain-la-Neuve, Cracow University of Economics,
and WISE, Xiamen University. Comments of participants in these occasions are gratefully acknowledged. The
responsibility for any errors and shortcomings in this paper remains ours.

1



1 Introduction

Multivariate financial time series have been subject to many modelling proposals incorporating
conditional heteroskedasticity, originally introduced by Engle (1982) in a univariate context. For
a review, the reader is referred to recent surveys on multivariate GARCH models by Bauwens,
Laurent, and Rombouts (2006) and Silvennoinen and Teräsvirta (2007). One may model the
time-varying covariances directly. Examples of this are VEC and BEKK models, as well fac-
tor GARCH ones, all discussed in Bauwens, Laurent, and Rombouts (2006). Alternatively,
one may model the conditional correlations. The simplest approach is to assume that the cor-
relations are time-invariant. Although the Constant Conditional Correlation (CCC) GARCH
model of Bollerslev (1990) is attractive to the practitioner due to its interpretable parameters
and easy estimation, its fundamental assumption that correlations remain constant over time
has often been found unrealistic. In order to remedy this problem, Tse and Tsui (2002) and
Engle (2002) introduced models with dynamic conditional correlations called the VC–GARCH
and the DCC–GARCH model, respectively, that impose GARCH-type structure on the corre-
lations. By construction, these models have the property that the variation in correlations is
mainly due to the size and the sign of the shock of the previous time period.

An interesting model combining aspects from both the CCC–GARCH and the DCC–GARCH
has been suggested by Pelletier (2006). The author introduces a regime switching correlation
structure driven by an unobserved state variable following a first-order Markov chain. The
regime switching model asserts that the correlations remain constant in each regime and the
change between the states is abrupt and governed by transition probabilities. Thus the factors
affecting the correlations remain latent and are not observed.

In a recent paper, Silvennoinen and Teräsvirta (2005) introduced the Smooth Transition
Conditional Correlation (STCC) GARCH model.1 In this model the correlations vary smoothly
between two extreme states of constant correlations and the dynamics are driven by an observable
transition variable. The transition variable can be chosen by the modeller, and the model
combined with tests of constant correlations constitutes a useful tool for modellers interested
in characterizing the dynamic structure of the correlations. This paper extends the STCC–
GARCH model into one that allows variation in conditional correlations to be controlled by
two observable transition variables instead of only one. This makes it possible, for example, to
nest the Berben and Jansen (2005a) model with time as the transition variable in this general
double-transition model.

It has become a widely accepted feature of financial data that volatile periods in financial
markets are related to an increase in correlations among assets. However, as pointed out by
Boyer, Gibson, and Loretan (1999) and Longin and Solnik (2001), in many studies this hypothesis
is not investigated properly and the reported results may be misleading. In fact, the latter
authors report evidence that in international markets correlations are not related to market
volatility as measured in large absolute returns, but only to large negative returns, or to the
market trend. Our modelling framework allows the researcher to easily explore such possibilities
by first testing the relevance of a model with a transition variable corresponding to the hypothesis
to be tested and, in case of rejection, estimating the model to find out the direction of change in
correlations controlled by that variable; see Silvennoinen and Teräsvirta (2005) for an example.

The paper is organized as follows. In Section 2 the new DSTCC–GARCH model is introduced
and its estimation discussed. Section 3 gives the testing procedures and Section 4 reports
simulation experiments on the tests. In Section 5 we compare the estimated correlations from

1A bivariate special case of the STCC–GARCH model was coincidentally introduced in Berben and Jansen
(2005a).
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our new model, the DCC–GARCH, and the semiparametric MGARCH one, using S&P 500 index
and long term bond futures data. In Section 6 we apply our model to a set of four international
stock market indices, namely French CAC 40, German DAX, FTSE 100 from UK, and Hong
Kong Hang Seng, from December 1990 until present. Finally, Section 7 concludes. The detailed
derivations of the tests can be found in the Appendix.

2 The Double Smooth Transition Conditional Correlation

GARCH model

2.1 The general multivariate GARCH model

Consider the following stochastic N -dimensional vector process with the standard representation

yt = E [yt | Ft−1] + εt t = 1, 2, . . . , T (1)

where Ft−1 is the sigma-field generated by all the information until time t − 1. Each of the
univariate error processes has the specification

εit = h
1/2
it zit

where the errors zit form a sequence of independent random variables with mean zero and
variance one, for each i = 1, . . . , N . The conditional variance hit follows a univariate GARCH
process, for example that of Bollerslev (1986)

hit = αi0 +

q
∑

j=1

αijε
2
i,t−j +

p
∑

j=1

βijhi,t−j (2)

with the non-negativity and stationarity restrictions imposed. The results in this paper are
derived using (2) with p = q = 1 to account for the conditional heteroskedasticity. It is straight-
forward to modify them to allow for a higher-order or some other type of GARCH process. The
conditional covariances of the vector zt are given by

E
[

ztz
′
t | Ft−1

]

= Pt. (3)

Furthermore, the standardized errors ηt = P
−1/2
t zt ∼ iid(0, IN ). Since zit has unit variance for

all i, Pt = [ρij,t] is the conditional correlation matrix for the εt whose elements ρij,t are allowed
to be time-varying for i 6= j. It will, however, be assumed that Pt ∈ Ft−1.

The conditional covariance matrix Ht = StPtSt, where Pt is the conditional correlation

matrix as in equation (3), and St = diag(h
1/2
1t , .., h

1/2
Nt ) with elements defined in (2), is positive

definite whenever the correlation matrix Pt is positive definite.

2.2 Smooth transitions in conditional correlations

The idea of introducing smooth transition in the conditional correlations is discussed in detail in
Silvennoinen and Teräsvirta (2005) where a simple structure with one type of transition between
two states of constant correlations is introduced. Specifically, the STCC–GARCH model defines
the time-varying correlation structure as

Pt = (1 − Gt)P(1) + GtP(2) (4)
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where the transition function Gt = G(st; γ, c) is the logistic function

Gt =
(

1 + e−γ(st−c)
)−1

, γ > 0 (5)

that is bounded between zero and one. Furthermore, P(1) and P(2) represent the two extreme
states of correlations between which the conditional correlations can vary over time according
to the transition variable st. The two parameters in (5), γ and c, define the speed and location
of the transition. When the transition variable has values less than c, the correlations are closer
to the state defined by P(1) than the one defined by P(2). For st > c, the situation is the
opposite. The parameter γ controls the smoothness of the transition between the two states.
The closer γ is to zero the slower the transition. As γ → ∞, the transition function eventually
becomes a step function. The positive definiteness of Pt in each point in time is ensured by the
requirement that the two correlation matrices P(1) and P(2) are positive definite. As a special
case, by defining the transition variable to be the calendar time, st = t/T , one arrives at the
Time-Varying Smooth Transition Conditional Correlation (TVCC) GARCH model. A bivariate
version of this model was introduced by Berben and Jansen (2005a).

We extend the original STCC–GARCH model by allowing the conditional correlations to
vary according to two transition variables. The time-varying correlation structure in the Double
Smooth Transition Conditional Correlation (DSTCC) GARCH model is imposed through the
following equations:

Pt = (1 − G1t)P(1)t + G1tP(2)t

P(i)t = (1 − G2t)P(i1) + G2tP(i2), i = 1, 2 (6)

where the transition functions are the logistic functions

Git =
(

1 + e−γi(sit−ci)
)−1

, γi > 0, i = 1, 2 (7)

and sit, i = 1, 2, are transition variables that can be either stochastic or deterministic. The
correlation matrix Pt is thus a convex combination of four positive definite matrices, P(11),
P(12), P(21), and P(22), each of which defines an extreme state of constant correlations. The
positive definiteness of Pt at each point in time follows again from the positive definiteness of
these four matrices. In (7) the parameters γi and ci determine the speed and the location of
the transition i, i = 1, 2. The transition variables are chosen by the modeller. As in the STCC–
GARCH model, the values of these variables are assumed to be known at time t. Possible choices
are for instance functions of lagged elements of yt, or exogenous variables. When applying the
model to stock return series one could consider functions of market indices or business cycle
indicators, or simply time. If one of the transition variables is time, say s2t = t/T , the model
with correlation dynamics (6) is the Time-Varying Smooth Transition Conditional Correlation
(TVSTCC) GARCH model. In this case it may be illustrative to write (6) as

Pt = (1 − G2t)
(

(1 − G1t)P(11) + G1tP(21)

)

+ G2t

(

(1 − G1t)P(12) + G1tP(22)

)

. (8)

The role of the correlation matrices describing the constant states is easily seen from (8). At
the beginning of the sample the correlations vary smoothly between the states defined by P(11)

and P(21): when s1t < c1, the correlations are closer to the state in P(11) than P(21) whereas
when s1t > c1, the situation is the opposite. As time evolves the correlations in P(11) and P(21)

transform smoothly to the ones in P(12) and P(22), respectively. Therefore, at the end of the
sample, s1t shifts the correlations between these two matrices.
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The specification (6) describes the correlation structure of the DSTCC–GARCH model in
its fully general form. Imposing certain restrictions on the correlations give rise to numerous
special cases; those will be discussed in Section 3. One restricted version, however, is worth
discussing in detail. The effects of the two transition variables can be independent in a sense
that the time-variation of the correlations due to one of the transition variables does not depend
on the value of the other transition variable. This condition can be expressed as

P(11) − P(12) = P(21) − P(22) (9a)

or, equivalently,
P(11) − P(21) = P(12) − P(22). (9b)

In terms of equation (8) these conditions imply that on the right-hand side of this equation the
matrices with coefficients ±G1tG2t are eliminated. Furthermore, from (9a) and (9b) it follows
that the difference between the extreme states described by one of the transition variables
remains constant across all values of the other transition variable. In this case the dynamic
conditional correlations of the DSTCC–GARCH model become

Pt = (1 − G1t − G2t)P(11) + G1tP(21) + G2tP(12). (10)

This parsimonious specification may prove useful when dealing with large systems because one
only has to estimate three correlation matrices instead of four in an unrestricted DSTCC–
GARCH model.

2.3 Estimation of the DSTCC–GARCH model

For maximum likelihood estimation of parameters we assume joint conditional normality of the
errors:

zt | Ft−1 ∼ N (0,Pt) .

Denoting by θ the vector of all the parameters in the model, the log-likelihood for observation
t is

lt (θ) = −N

2
log (2π) − 1

2

N
∑

i=1

log hit −
1

2
log |Pt| −

1

2
z′

tP
−1
t zt, t = 1, . . . , T (11)

and maximizing
∑T

t=1 lt(θ) with respect to θ yields the maximum likelihood estimator θ̂T .
For inference we assume that the asymptotic distribution of the ML-estimator is normal,

that is, √
T
(

θ̂T − θ0

)

d→ N
(

0,I−1(θ0)
)

where θ0 is the true parameter and I(θ0) the population information matrix evaluated at θ = θ0.
Asymptotic properties of the ML-estimator are not known. The model is strongly nonlinear,
and asymptotic normality has not been proven even for univariate nonlinear GARCH models
yet. For the latest results, see Meitz and Saikkonen (2004, 2006) who derive conditions for the
stability and ergodicity of these models. Nevertheless, the simulation results in this paper do
not counteract the normality assumption just made, and as we consider our model useful we
have to proceed without formal proofs.

To increase numerical efficiency of the estimation, maximization of the log-likelihood is car-
ried out iteratively by concentrating the likelihood, in each round by splitting the parameters
into three sets: GARCH, correlation, and transition function parameters. The log-likelihood
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is maximized with respect to one set at the time keeping the other parameters fixed at their
previously estimated values. The convergence is reached once the estimated values cannot be
improved upon when compared with the ones obtained from previous iteration. As mentioned
in Section 2.2, the transition between the extreme states becomes more rapid and the transition
function eventually becomes a step function as γ → ∞. When γ has reached a value large
enough, no increment will change the shape of the transition function. The likelihood function
becomes flat with respect to that parameter and numerical optimizers have difficulties in con-
verging. Therefore, one may want to fix an upper limit for γ, whose value naturally depends on
the transition variable in question. Plotting a graph of the transition function can be useful in
deciding such a limit. It should be noted that, if the upper limit is reached, the resulting esti-
mates for the rest of the parameters are conditional on this value of γ. Furthermore, it should be
pointed out, that estimation requires care. The log-likelihood may have several local maxima,
so estimation should be initiated from a set of different starting-values, and the maxima thus
obtained compared before settling for final estimates. All computations in this paper have been
performed using Ox, version 3.30, see Doornik (2002), and our own source code.

Before estimating an STCC–GARCH or a DSTCC–GARCH model, however, it is necessary
to test the hypothesis that the conditional correlations are constant. The reason for this is that
some of the parameters of the alternative model are not identified if the true model has constant
conditional correlations. Estimating an STCC–GARCH or a DSTCC–GARCH model without
first testing the constancy hypothesis could thus lead to inconsistent parameter estimates. The
same is true if one wishes to increase the number of transitions in an already estimated STCC–
GARCH model. Testing procedures will be discussed in the next section.

3 Hypothesis testing

3.1 Testing for smooth transitions in conditional correlations

Parametric modelling of the dynamic behaviour of conditional correlation must begin with test-
ing constancy of the correlations. Neglected variation in parameters leads to a misspecified
likelihood and thus to invalid asymptotic inference. Tse (2000), Bera and Kim (2002), Engle
and Sheppard (2001), and Silvennoinen and Teräsvirta (2005) have proposed tests for this pur-
pose. Tse (2000) derives a Lagrange multiplier (LM) test where the alternative model imposes
ARCH-type dynamics on the conditional correlations. Bera and Kim (2002) discuss testing the
hypothesis of no parameter variation using the information matrix test of White (1982). The
test of Engle and Sheppard (2001) is based on the fact that the standardized residuals ηt should
be iid both in time and across the series if the model is correctly specified. This test, however,
is not only a test of constant correlations but a general misspecification test as it cannot dis-
tinguish between misspecified conditional correlations and conditional heteroskedasticity in the
univariate residual series.

The approach of Silvennoinen and Teräsvirta (2005) differs from the others in that the test
is conditioned on a particular transition variable and in effect tests whether that particular
factor affects conditional correlations between the variables. A failure to reject the constancy
of correlations is thus interpreted as evidence that this transition variable is not informative
about possible time-variation of the correlations. A non-rejection thus does not indicate that the
correlations are constant, but the test may of course be carried out for a set of different transition
variables. But then, a rejection of the null hypothesis does provide evidence of nonconstancy of
the conditional correlations and may be taken to imply that the transition variable in question
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carries information about the time-varying structure of the correlations.
After fitting an STCC–GARCH model to the data one may wish to see whether or not the

transition variable of the model is the only factor that affects the conditional correlations over
time. In the present framework this means that there may be another factor whose effect on cor-
relations cannot be ignored. For instance, the unconditional correlations may vary as a function
of time, in which case a second transition depending directly on time together with the previous
one would provide a better description of the correlation dynamics than the STCC–GARCH
model does. A linear function of time would indicate a monotonic relationship between calen-
dar time and correlations, whereas introducing higher-order polynomials or nonlinear functions
would allow that structure to capture more complicated patterns in time-varying correlations.

An indication of the importance of a second transition variable can be obtained by testing
the constancy of correlations against an STCC–GARCH model in which the correlations are
functions of to this particular transition variable. The next step is to estimate the STCC–
GARCH model with the transition variable against which the strongest rejection of constancy
is obtained, and proceed by testing this model against the DSTCC–GARCH one.

The null hypothesis in testing for another transition is γ2 = 0 in (6) and (7). The problem
of unidentified parameters under the null hypothesis is circumvented by linearizing the form of
dynamic correlations under the alternative model. This is done by a Taylor approximation of
the second transition function, G2t, around γ2 = 0; see Luukkonen, Saikkonen, and Teräsvirta
(1988) for this idea. Replacing the transition function in (6) by the approximation, the dynamic
conditional correlations become

P ∗
t = (1 − G1t)P

∗
(1) + G1tP

∗
(2) + s2tP

∗
(3) + R (12)

where the remainder R is the error due to the linearization. Note that under the null hypothesis
R = 0N×N , so the remainder does not affect the asymptotic null distribution of the LM–test
statistic. Note also that when G1t ≡ 0 so that the correlations are constant under the null
hypothesis, the test collapses into the correlation constancy test in Silvennoinen and Teräsvirta
(2005). For details of the linearization and the transformed dynamic correlations in (12), see the
Appendix. The auxiliary null hypothesis can now be stated as veclP ∗

(3) = 0N(N−1)/2×1, where

vecl(·) is an operator that stacks the columns of the strict lower triangular part of its argument
square matrix. Under the null hypothesis,

P ∗
t = (1 − G1t)P

∗
(1) + G1tP

∗
(2). (13)

Constructing the Lagrange multiplier test yields the statistic and its asymptotic null distribution
in the usual way. The test statistic is

T−1

(

T
∑

t=1

∂lt(θ̂)

∂ρ∗′
(3)

)

[

ÎT (θ̂)
]−1

(ρ∗
(3)

,ρ∗
(3)

)

(

T
∑

t=1

∂lt(θ̂)

∂ρ∗
(3)

)

a∼ χ2
N(N−1)/2. (14)

The detailed form of (14) can be found in the Appendix.
It should be pointed out that even if constancy is rejected against an STCC–GARCH model

for both s1t and s2t, the test for another transition after estimating this model for one of the two
may not be able to reject the null hypothesis. This may be the case when both variables contain
similar information about the correlations, whereby adding a second transition will not improve
the model. Because estimation of an STCC–GARCH model can sometimes be a computationally
demanding task, some idea of suitable transition variables may be obtained by testing constancy
of correlations directly against the DSTCC–GARCH model. The null hypothesis is γ1 = γ2 = 0
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in (6) and (7). To circumvent the problem with unidentified parameters under the null, both
transition functions, G1t and G2t, in (6) are linearized around γ1 = 0 and γ2 = 0, respectively,
as discussed above. The linearized dynamic correlations then become

P ∗
t = P ∗

(1) + s1tP
∗
(2) + s2tP

∗
(3) + s1ts2tP

∗
(4) + R (15)

where R again holds the approximation error. The auxiliary null hypothesis based on the
transformed dynamic correlations is now veclP ∗

(2) = veclP ∗
(3) = veclP ∗

(4) = 0N(N−1)/2×1 under
which the conditional correlations are constant, P ∗

t = P ∗
(1). The Lagrange multiplier test statistic

and its asymptotic null distribution are constructed as usual:

T−1

(

T
∑

t=1

∂lt(θ̂)

∂(ρ∗′
(2),ρ

∗′
(3),ρ

∗′
(4))

)

[

ÎT (θ̂)
]−1

(ρ∗
(2−4)

,ρ∗
(2−4)

)

(

T
∑

t=1

∂lt(θ̂)

∂(ρ∗′
(2),ρ

∗′
(3),ρ

∗′
(4))

′

)

a∼ χ2
3N(N−1)/2. (16)

The detailed form of (16) can be found in the Appendix.
As discussed in Section 2.2, the full DSTCC–GARCH model is simplified when the effects of

the two transition variables are independent. This restricted version can be used as a more par-
simonious alternative than the DSTCC–GARCH model when testing constancy. For instance,
if one of the transition variables, say s2t, is time, one can test constancy against an alternative
where the variation controlled by s1t does not depend on time, that is, the differences between
the two extremes states are equal during the whole sample period. The constancy of correlations
is tested by testing γ1 = γ2 = 0 in (10) and now the linearized equation is simply a special case
of (15) such that P ∗

(4) = 0. The auxiliary null hypothesis is veclP ∗
(2) = veclP ∗

(3) = 0N(N−1)/2×1

under which the conditional correlations are constant: P ∗
t = P ∗

(1). The Lagrange multiplier test
statistic and its asymptotic null distribution are the following:

T−1

(

T
∑

t=1

∂lt(θ̂)

∂(ρ∗′
(2),ρ

∗′
(3))

)

[

ÎT (θ̂)
]−1

(ρ∗
(2−3)

,ρ∗
(2−3)

)

(

T
∑

t=1

∂lt(θ̂)

∂(ρ∗′
(2),ρ

∗′
(3))

′

)

a∼ χ2
N(N−1). (17)

Statistic (17) is a special case of (16) and its detailed form can be found in the Appendix.
If the tests fail to reject the null hypothesis or if the rejection is not particularly strong,

the reason for this can be that some correlations are constant. If sufficiently many but not
all correlations are constant according to one of the transition variables or both, the tests
may not be sufficiently powerful to reject the null hypothesis. In these cases the power of the
tests can be increased by modifying the alternative model. For instance, one may want to
test constancy of correlations against a DSTCC–GARCH model in which some correlations are
constant with respect to one of the transition variables, or both. Similarly, an STCC–GARCH
model containing constant correlations can be tested against a DSTCC–GARCH model with
constancy restrictions. These tests are straightforward extensions of the tests already discussed,
see the Appendix for details. A test of constant correlations against an STCC–GARCH model
containing constant correlations is discussed in Silvennoinen and Teräsvirta (2005).

When it comes to ‘fine-tuning’ of the model, i.e., when the model under the null hypothesis
has the same number of transitions as under the alternative and the modeller is focused on
potential constancy of some of the correlations controlled by one of the transition variables or
both, tests of partial constancy can also be built on the Wald principle. This is quite practical
because after estimating the alternative model, several restrictions can be tested at the same time
without re-estimation. In our experience, when it comes to restricting correlations to be constant,
the specification search beginning with a general model and restricting correlations generally
yields the same final model as would a bottoms-up approach beginning with a restricted model
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ρ1 = 0, ρ2 = 1/3 ρ1 = 0, ρ2 = 1/2 ρ1 = 0, ρ2 = 2/3

nominal size γ = 5 γ = 20 γ = 5 γ = 20 γ = 5 γ = 20

1% 0.0104 0.0082 0.0082 0.0098 0.0072 0.0100
T = 1000 5% 0.0482 0.0418 0.0472 0.0500 0.0432 0.0502

10% 0.0944 0.0884 0.0970 0.0996 0.0912 0.1016

1% 0.0098 0.0106 0.0106 0.0120 0.0074 0.0108
T = 2500 5% 0.0518 0.0512 0.0498 0.0472 0.0456 0.0462

10% 0.0958 0.1020 0.1018 0.1010 0.0964 0.1012

Table 1: Empirical size of the test of the STCC–GARCH model against an STCC–GARCH
model with an additional transition for sample sizes 1000 and 2500 and for three choices of
correlations for the extreme states; 5000 replications.

and testing for additional time-varying correlations. This conclusion has been reached using both
simulated series and observed returns. The only difference between these two approaches seems
to be that the final model is obtained faster with the former than with the latter. Restricting
some of the correlations to be constant decreases the number of parameters to be estimated,
which is convenient especially in large models.

4 Size simulations

Empirical size of the LM–type test of STCC–GARCH models against DSTCC–GARCH ones are
investigated by simulation. The observations are generated from a bivariate first-order STCC–

GARCH model. The transition variable is generated from an exogenous process: st = h
1/2
et zet,

where het has a GARCH(1,1) structure and zet ∼ nid(0, 1). The STCC–GARCH model is
tested against a DSTCC–GARCH model where the correlations vary also as function of time,
i.e. the alternative model is the TVSTCC–GARCH model. The parameter values in each of the
individual GARCH equations are chosen such that they resemble results often found in fitting
GARCH(1,1) models to financial return series. Thus,

h1t = 0.01 + 0.04ε2
1,t−1 + 0.94h1,t−1

h2t = 0.03 + 0.05ε2
2,t−1 + 0.92h2,t−1

het = 0.005 + 0.03s2
t−1 + 0.96het,t−1.

We conduct three experiments where ρ(1) = 0, and ρ(2) = 1/3, 1/2, 2/3. The location parameter
c = 0. We consider two choices for the value of the slope parameter γ. The first one represents a
rather slow transition, γ = 5, in which case about 75% of the correlations lie genuinely between
ρ(1) and ρ(2), and the remaining 25% take one of the extreme values. The other choice is γ = 20,
and the ratios are now interchanged: only 25% of the correlations are different from ρ(1) or
ρ(2). The sample sizes are T = 1000 and T = 2500. Considering longer time series was found
unnecessary because the results suggested that the empirical size is close to the nominal one at
these sample sizes already. The results in Table 1 are based on 5000 replications.

We carry out another size simulation experiment in which we test the CCC–GARCH model
directly against the TVSTCC–GARCH model. In the latter model, one transition is controlled
by an exogenous GARCH(1,1) process and the other one by time. Specifically, the model under
the null is a bivariate CCC–GARCH(1,1) model where the GARCH processes are h1t and h2t
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nominal size ρ = 0 ρ = 1/3 ρ = 1/2 ρ = 2/3

1% 0.0116 0.0122 0.0138 0.0144
T = 1000 5% 0.0522 0.0538 0.0542 0.0616

10% 0.1016 0.1054 0.1050 0.1156

1% 0.0102 0.0136 0.0146 0.0146
T = 2500 5% 0.0466 0.0550 0.0588 0.0538

10% 0.0950 0.1068 0.1132 0.1072

Table 2: Empirical size of the test of the CCC–GARCH model against an STCC–GARCH model
with two transitions for sample sizes 1000 and 2500 and for three choices of correlations for the
extreme states; 5000 replications.

from the previous study. For the constant correlation between the series we use four values:
0, 1/3, 1/2, and 2/3. These four experiments are performed using samples of sizes T = 1000
and T = 2500, with 5000 replications. The results in Table 2 indicate that the test does not
suffer from size distortions and can thus be applied without further adjustments. This was also
the case for the test of constant correlations against the STCC–GARCH model, reported in
Silvennoinen and Teräsvirta (2005).

5 Estimated correlations from different MGARCH models

In this section we compare the estimated correlations from a selection of multivariate GARCH
models by fitting them to the same data set. In order to keep the comparison transparent, we
only consider bivariate models. Our observations are the daily returns of S&P 500 index futures
and 10-year bond futures from January 1990 to August 2003. This data set has been analyzed
by Engle and Colacito (2006).2 There is no consensus in the literature about how stock and
long term bond returns are related. Historically, the long-run correlations have been assumed
constant, an assumption that has led to contradicting conclusions because evidence for both
positive and negative correlation has been found over the years (short-run correlations have
been found to be affected, among other things, by news announcements). From a theoretical
point of view, the long-run correlation between the two should be state-dependent, driven by
macroeconomic factors such as growth, inflation, and interest rates. The way the correlations
respond to these factors may, however, change over time.

For this reason it is interesting to see what the correlations between the two asset returns
obtained from different models are and how they fluctuate over time. For the comparison we
use three MGARCH models that model the univariate volatilities as GARCH(1,1) and differ
mainly by their way of defining the correlations. One of them is naturally the DSTCC–GARCH
one. Another is the DCC–GARCH model of Engle (2002) which has gained popularity partly
due to the small number of parameters related to the time-varying conditional correlations. In
this model, the correlation dynamics are inherited from the past covariances among the returns.
The third model is the semiparametric SPCC–GARCH model of Hafner, van Dijk, and Franses
(2005). In their model the conditional correlations are estimated nonparametrically through a
kernel smoother. The focus of reporting results will be on conditional correlations implied by the

2The data set in Engle and Colacito (2006) begins in August 1988, but our sample starts from January 1990
because we also use the time series for a volatility index that is available only from that date onwards.
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estimated models. For conciseness, we do not present the parameter estimates for the models.
All computations have been performed using Ox, version 4.02, see Doornik (2002), and our own
source code.

Relying on the tests in Section 3 and in Silvennoinen and Teräsvirta (2005) we selected
relevant transition variables for the DSTCC–GARCH model. Out of a multitude of variables,
including both exogenous ones and variables constructed from the past observations, prices
or returns, the Chicago Board Options Exchange volatility index (VIX) that represents the
market expectations of 30-day volatility turned out to have the best performance. The VIX
is constructed using the implied volatilities of a wide range of S&P 500 index options. It is a
commonly used measure of market risk and is for this reason often referred to as the ‘investor
fear gauge’. The values of the index exceeding 30 are generally associated with a large amount
of volatility, due to investor fear or uncertainty, whereas the index falling below 20 indicates less
stressful, even complacent, times in the markets. The graph of VIX is presented in top right
corner of Figure 3. Calendar time seemed to be another well-performing transition variable. As
a result, the first-order TVSTCC–GARCH model was fitted to the bivariate data.

The semiparametric SPCC–GARCH model of also requires a choice of an indicator variable.
Because the previous test results indicated that VIX is informative about the dynamics of the
correlations, we chose VIX as the indicator variable also in this model. The SPCC–GARCH
model was estimated using a standard kernel smoother with an optimal fixed bandwidth, see
Pagan and Ullah (1999, Sections 2.4.2 and 2.7) for discussion on the choice of constant band-
width.

The correlations implied by each of the models are presented in Figure 1. A rough inspection
of them shows that the general shape of the graphs appears similar for every model. The
conditional correlations fluctuate around 0.3 at the beginning of the sample and, towards the
end of the 90’s, the fluctuations increase and the correlations tend to decrease, reaching also
negative values. However, there are some drastic differences between the models. One of them
can be seen in the correlation behaviour in the second half of 1990 and early 1991, a period that,
according to VIX, reflects market distress. In the TVSTCC– and SPCC–GARCH models the
correlations decrease, more severely in the latter than in the former, whereas the ones implied
by the DCC–GARCH model rise sharply. During 1997, right from the beginning of the year,
the correlations from the TVSTCC– and SPCC–GARCH models start to fluctuate towards a
lower level, but for the DCC–GARCH model the correlations remain at fairly constant level
until much later in that year they suddenly drop dramatically. The general downward tendency
starting from 1999 clearly present in the correlations from the DCC– and TVSTCC–GARCH
models is not evident in the ones from the SPCC–GARCH model. The SPCC–GARCH model
implies correlations that are fluctuating quite rapidly all the time, and the range of variation is
wider than in the other two models.

The log-likelihood values for the estimated TVSTCC–, SPCC–, and DCC–GARCH models
are -6006, -6054, and -6166, respectively. Because the models are bivariate, none of them are
penalized for an excessive number of parameters. The order of preference thus remains the same,
independent of whether Akaike’s or the Bayesian information criterion or just the pure likelihood
value is used for ranking the models. (note that the semiparametric model is in principle favoured
in rankings based on AIC or BIC due to the nonparametric correlation estimates).

Conditional correlations are not observable and their behaviour is often conjectured and rea-
soned by economic assumptions. For instance, it is often stated that the correlations among asset
returns increase during times of distress. In this study, however, we are able to establish the link
between correlations and market uncertainty. The test results indicate that the volatility index
carries information about the correlation movements, and the estimated TVSTCC– and SPCC–
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Figure 1: Conditional correlations implied by the estimated models: DCC–GARCH, TVSTCC–GARCH,
and SPCC–GARCH.
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GARCH models reveal the direction of the movement: high uncertainty pushes correlations
towards lower values than they would be during calm periods.

6 Correlations between world market indices

Correlations are especially relevant to risk management and finding efficient hedging positions
for portfolios. Inaccurate estimates of correlations put the performance of hedging operations
at risk. In the preceding section, the focus was on the correlations between the returns of
two different types of assets, stock and bond futures. We now turn to the situation in which an
investor is investing in stocks, and his hedging strategy is to diversify the portfolio internationally.
A potential problem is that, due to globalization, the financial markets around the world are
increasingly integrated, which can weaken the protection of the portfolio against local or national
crises.

Consequently, the focus will be on the correlation dynamics among world stock indices.
The interest lies in revealing potential risks to internationally diversified portfolios, posed by
increasing integration of the world markets. The four major indices considered are the French
CAC 40, German DAX, FTSE 100 from the UK, and the Hong Kong Hang Seng index (HSI).
We use weekly observations recorded as the closing price of the current week from the beginning
of December 1990 to the end of April 2006, 804 observations in all. Weekly observations are
preferred to daily ones because the aggregation over time is likely to weaken the effect of different
opening hours of the markets around the world. Martens and Poon (2001) discussed the problem
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min max mean st.dev skewness kurtosis

CAC -12.13 11.03 0.1459 2.7320 -0.1272 4.1330
DAX -14.08 12.89 0.1776 2.9699 -0.2894 5.1952
FTSE -8.86 10.07 0.1282 2.0667 -0.0944 4.8674
HSI -19.92 13.92 0.2147 3.4701 -0.4302 5.9599

Table 3: Descriptive statistics of the return series.

of distinguishing contemporaneous correlation from a spillover effect and provided evidence of
downward bias in estimated correlations in the presence of nonsynchronous markets. The returns
are calculated as differenced log prices. Descriptive statistics of the return series are reported
in Table 3.

It is often found, see for instance Lin, Engle, and Ito (1994), de Santis and Gerard (1997),
Longin and Solnik (2001), Chesnay and Jondeau (2001), and Cappiello, Engle, and Sheppard
(2006), that the correlations behave differently in times of distress from what they do during
periods of tranquillity. It is therefore of interest to study how the general level of uncertainty
or market turbulence affects the correlation dynamics between the stock indices. In order to do
this, we choose our first transition variable to be the one-week lag of the VIX already employed
in the previous section. But then, the general level of conditional correlations can change over
time. In order to allow for this effect we use time, rescaled between zero and one, as our second
transition variable in our DSTCC–GARCH model.

Tests of constant correlations against smooth transition over time as well as against corre-
lations that vary according to the lagged VIX result in rejecting the null hypothesis in the full
four-variate model. When testing constancy against the DSTCC–GARCH model, the rejection
of the null model is very strong (the p–value equals 2× 10−27). It appears that both time itself
and the volatility index convey information about the process causing the conditional correla-
tions to fluctuate over time. As Silvennoinen and Teräsvirta (2005) showed, valuable information
of the behaviour of the correlations can be extracted from studying submodels. For this reason
we study bivariate models of stock returns before considering the full four-variate model.

Table 4 contains p–values of the tests of constant correlations against the TVCC–GARCH
model, the STCC–GARCH model where the transition variable is the lagged VIX, and the
TVSTCC–GARCH model. Time clearly appears to be an indicator of change in correlations:
the null hypothesis is rejected for every bivariate combination of the indices. The volatility index
seems to be a substantially weaker indicator than time. When VIX is the transition variable, the
test rejects at the 1% significance level only in three of the six cases, although five of the six p–
values do remain below 0.05. When constancy is tested directly against TVSTCC–GARCH the
rejections are very strong, see the fourth column of Table 4. Because all tests reject constancy
of correlations in favour of variation in time, we first estimate the TVCC–GARCH model for
each pair of series and then test for another transition. Note that in one model the parameter
estimate of γ reaches its upper bound (500) and thus defines the transition as being nearly a
break.

The resulting p–values are given in the fifth column of Table 4. For all models except the
CAC–DAX one the null hypothesis is not rejected when the alternative model is the complete
DSTCC–GARCH model. This indicates that some of the correlations in the complete TVSTCC–
GARCH model may be constant in the VIX dimension either at the beginning or the end of
the sample, or both. These scenarios can be tested by testing for another transition when the
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Estimated model CCC CCC CCC TVCC ρ(1) ρ(2) c γ

Transition variable
in the test

t/T VIXt−1 VIXt−1 and t/T VIXt−1

CAC–DAX 1 × 10−24 0.0005 3 × 10−23 0.0020 0.5457
(0.0844)

0.9553
(0.0288)

0.48
(0.08)

6.11
(2.37)

CAC–FTSE 1 × 10−17 0.0020 2 × 10−16 0.4136 0.6047
(0.0317)

0.8935
(0.0137)

0.60
(0.03)

15.07
(2.35)

CAC–HSI 0.0009 0.0220 0.0022 0.2756 0.2948
(0.0448)

0.5285
(0.0464)

0.54
(0.05)

43.50
(14.10)

DAX–FTSE 3 × 10−11 0.0156 9 × 10−10 0.6879 0.5032
(0.0817)

0.8270
(0.0337)

0.52
(0.10)

8.18
(3.72)

DAX–HSI 0.0047 0.1770 0.0087 0.4827 0.3229
(0.0425)

0.5377
(0.0352)

0.51
(0.00)

500
(—)

FTSE–HSI 0.0030 0.0043 0.0030 0.1234 0.2554
(0.1258)

0.5358
(0.0452)

0.32
(0.12)

8.66
(2.22)

Table 4: Results (p–values) from bivariate tests of constant correlations against an STCC–
GARCH model with single or double transition, and bivariate tests of another transition in
TVCC–GARCH model. The last four columns report the estimation results for each of the
bivariate TVCC–GARCH model. The standard errors are given in parentheses.

null model is the complete TVCC–GARCH model and a partially constant TVSTCC–GARCH
model forms the alternative.

Because the model restricts the location of the smooth transition over time to be the same
for all indices in the full four-variate model, we have to check whether imposing that type of
restriction is plausible. This is done by comparing the estimated bivariate TVCC–GARCH
models in Table 4. Their time-varying bivariate conditional correlations are plotted in Figure 2.
The correlations are positive and increase during the observation period. The transitions between
HSI on the one hand and the two Euroland indices, CAC and DAX on the other, are more
rapid than the others and occur around the introduction of the euro. On the contrary, the
correlation between HSI and the other ’Commonwealth’ index FTSE-100 increases quite slowly.
The introduction of euro does not seem to have any special impact on the correlation between
CAC and DAX that increases slowly but steadily and exceeds 0.9 at the end of the period.
Although the velocity of change in correlations is not the same for the pairs of indices, the
mid-point of the change in most cases seems to lie around the turn of the century. We shall thus
consider complete four-variate models.

Within this framework the rejection of constancy of correlations when using time as the
transition variable is much stronger (the p–value equals 2× 10−32) than when the lagged VIX is
used (the p–value equals 0.0111). Consequently, we proceed to first estimate a TVCC–GARCH
model and then test for another transition. This test rejects the null model (the p–value equals
0.0045), and we estimate the full four-variate DSTCC–GARCH model. As the bivariate tests
already suggest, some of the estimates of the correlations do not differ significantly at the
beginning of the sample between the states in P(11) and P(21), or at the end of the sample
between the states in P(12) and P(22).

We test the TVCC–GARCH model against DSTCC–GARCH models that are partially con-
stant in the VIX dimension. As alternative models we consider different combinations of pairs
of correlations that are restricted constant according to VIX (for conciseness we do not report
the partial tests). There is a clear indication that the correlations between Hang Seng and the
other indices do not vary according to VIX at any point in time during our observation period.
Our conclusion is that those correlations are only controlled by time. We continue testing for
time-variation according to VIX in the remaining correlations and are able to reject the TVCC–
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GARCH-parameters:

CAC DAX FTSE HSI
α0 0.1252

(0.0364)
0.1134
(0.0402)

0.0880
(0.0358)

0.1641
(0.0716)

α1 0.0410
(0.0078)

0.0425
(0.0092)

0.0413
(0.0104)

0.0727
(0.0147)

β1 0.9398
(0.0104)

0.9430
(0.0119)

0.9361
(0.0164)

0.9138
(0.0157)

s1t Correlation parameters:
P(21) P(22)

CAC DAX FTSE CAC DAX FTSE
DAX 0.6371

(0.0308)

r1 DAX 0.8650
(0.0237)

FTSE 0.5898
(0.0325)

r1 0.5368
(0.0370)

r1 FTSE 0.8214
(0.0328)

0.7690
(0.0362)

HSI 0.2828
(0.0463)

r1 0.3296
(0.0467)

r1 0.3610
(0.0437)

r1 HSI 0.5508
(0.0403)

r1 0.5518
(0.0395)

r1 0.5527
(0.0400)

r1

P(11) P(12)

CAC DAX FTSE CAC DAX FTSE
DAX 0.6371

(0.0308)

r1 DAX 0.9457
(0.0078)

FTSE 0.5898
(0.0325)

r1 0.5368
(0.0370)

r1 FTSE 0.9100
(0.0117)

0.8451
(0.0189)

HSI 0.2828
(0.0463)

r1 0.3296
(0.0467)

r1 0.3610
(0.0437)

r1 HSI 0.5508
(0.0403)

r1 0.5518
(0.0395)

r1 0.5527
(0.0400)

r1

s2t

Transition parameters:

G1t G2t

c1 23.31
(0.01)

c2 0.54
(0.02)

γ1 500
(—)

γ2 12.62
(2.16)

Table 5: Estimation results for the TVSTCC–GARCH model. The transition variable s1t is one
week lag of the volatility index (VIX) and s2t is time in percentage. The correlation matrices
P(11) and P(21) refer to the extreme states according to the VIX at the beginning of the sample,
and similarly matrices P(12) and P(22) refer to those at the end of the sample. The parameters
indicated by a superscript r1 are restricted constant with respect to the transition variable s1t.
The transition functions G1t and G2t are functions of s1t and s2t, respectively. The standard
errors are given in parentheses.
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GARCH model only against the DSTCC–GARCH model in which VIX acts as an indicator of
time-varying correlations between the European indices.

The final model and the estimated parameters can be found in Table 5. To give a visual
idea of how the correlations vary over time, the estimated correlations are plotted in Figure 3.
The correlations seem to have increased at the turn of the century. The estimated midpoint of
the transition, 0.54, points at the spring of 1999 and agrees well with the results from bivariate
models. This is in agreement with Cappiello, Engle, and Sheppard (2006). These authors
document a structural break that implies an increase in the correlations from their previous
unconditional level around January 1999. This coincides with the introduction of Euro, which
affected markets both within and outside the Euro-area.

Before the 1990’s the correlations have been reported to shift to higher levels during periods
of distress than they have had during calm periods, a phenomenon that has become global
with the increase of financial market integration, see for instance Lin, Engle, and Ito (1994)
and de Santis and Gerard (1997). Our observation period starts in December 1990, and the
estimation results suggest that the behaviour of the correlations may have changed when it
comes to calm and turbulent periods. The correlations that actually respond to VIX behave in
an opposite way to the one documented before 1990. The estimated transition due to VIX is
rather abrupt, and one may thus speak about high and low volatility regimes. During the former,
i.e., when the volatility index exceeds the estimated location, ĉ1 = 23.31, which constitutes 21%
of the sample, the correlations are lower than during calm periods. That is, the uncertainty of
the investors shows as a decrease in correlations. Similar behaviour was found in Silvennoinen
and Teräsvirta (2005) for daily returns of a pair of stocks in the S&P 500 stock index, although
for a majority of them financial distress increased the correlations between returns.

7 Conclusions

In this paper we extend the Smooth Transition Conditional Correlation (STCC) GARCH model
of Silvennoinen and Teräsvirta (2005). The new model, the Double Smooth Transition Condi-
tional Correlation (DSTCC) GARCH model allows time-variation in the conditional correlations
to be controlled by two transition variables instead of only one. A useful choice for one of the
transition variables is simply time, in which case the model also accounts for a change in un-
conditional correlations over time. This is a very appealing property because in applications
of GARCH models the number of observations is often quite large. The time series may be,
for example, daily returns and consist of several years of data. It is not reasonable to simply
assume that the correlations remain constant over years and in fact, as shown in the empirical
application, and also in that of Berben and Jansen (2005a, b), this is generally not the case.

We also complement the battery of specification and misspecification tests in Silvennoinen
and Teräsvirta (2005). We derive LM–tests for testing constancy of correlations against the
DSTCC–GARCH model and testing whether another transition is required, i.e. testing STCC–
GARCH model against DSTCC–GARCH model. We also discuss the implementation of partial
constancy restrictions into the tests above. This becomes especially relevant when the number
of variables in the model is large, because the tests offer an opportunity to reduce the otherwise
large number of parameters to be estimated.

We estimate three different MGARCH models to a data set consisting of the S&P 500
index and long term bond futures. While the overall tendency in the conditional correlations
is relatively similar in all of the models, there are some differences that could yield different
conclusions, depending on the application at hand. Therefore, it might be advisable not to rely
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Figure 2: Estimated time-varying correlations in the bivariate TVCC–GARCH models.
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Figure 3: Estimated time-varying correlations in the four-variate TVSTCC–GARCH model. In the top
right corner is the volatility index VIX and the estimated location ĉ1 of the transition.
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on estimation results from a single model only. Comparing ones from several models can reveal
properties of the correlation dynamics and help choosing a model. Some models may yield
estimated correlations that are fairly smooth while others can fluctuate largely. Depending on
what the model is used for, one model may be seen more suitable than the others; for instance,
smoothly behaving correlations do not require as frequent updating in an application as would
the erratic ones.

We apply the DSTCC–GARCH model to a set of world stock indices from Europe and
Asia. As discussed in Longin and Solnik (2001), the market trend affects correlations more
than volatility. We use the CBOE volatility index as one transition variable to account for both
uncertainty and volatility on the markets. The other transition variable has been time which
allows the level of unconditional correlations to change over time. We find a clear upward shift in
the level of unconditional correlations around the turn of the century. This change is significant
both within and across the two geographical areas, Europe and Asia. The volatility index seems
to carry some information about the time-varying correlations in Europe, especially towards
the end of the observation period, and estimation results suggest that the correlations tend to
decrease whenever the markets grow uncertain. The extension of the original STCC–GARCH
model clearly proves useful because of its ability to describe the effects of two different transition
variables, in our applications market uncertainty and time, on conditional correlations.
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Appendix

Construction of the auxiliary null hypothesis 1: Test for another transition

The null hypothesis for the test for another transition is γ2 = 0 in (6). When the null hypothesis is
true, some of the parameters in the model cannot be identified. This problem is circumvented following
Luukkonen, Saikkonen, and Teräsvirta (1988). Linearizing the transition function G2t by a first-order
Taylor approximation around γ2 = 0 yields

G2t =̃ 1/2 + 1/4γ2(s2t − c2) + R (18)

where R is the remainder that equals zero when the null hypothesis is valid. Thus, ignoring R and
inserting (18) into (6) the dynamic correlations become

P
∗
t = (1 − G1t)(1/2 − 1/4γ2(s2t − c2))P(11) + (1 − G1t)(1/2 + 1/4γ2(s2t − c2))P(12)

+G1t(1/2 − 1/4γ2(s2t − c2))P(21) + G1t(1/2 + 1/4γ2(s2t − c2))P(21).

Rearranging the terms yields

P
∗
t = (1 − G1t)P

∗
(1) + G1tP

∗
(2) + s2tP

∗
(3) (19)

where

P
∗
(1) = 1/2(P(11) + P(12)) + 1/4c2γ2(P(11) − P(12))

P
∗
(2) = 1/2(P(21) + P(22)) + 1/4c2γ2(P(21) − P(22))

P
∗
(3) = −1/4(1 − G1t)γ2(P(11) − P(12)) − 1/4G1tγ2(P(21) − P(22)).

Under H0, γ2 = 0 and hence

P
∗
(1) = 1/2(P(11) + P(12))

P
∗
(2) = 1/2(P(21) + P(22))

P
∗
(3) = 0N×N

and the model collapses to the STCC–GARCH model with correlations varying according to s1t. The
auxiliary null hypothesis is therefore

Haux
0 : veclP ∗

(3) = 0N(N−1)/2×1

in (19).3 The LM–test of this auxiliary null hypothesis is carried out in the usual way and the test statistic
is χ2 distributed with N(N − 1)/2 degrees of freedom. The construction of the LM–test is discussed in
a later subsection.

Construction of the auxiliary null hypothesis 2: Test of constant correlations against
an STCC–GARCH model with two transitions

The constancy of correlations hypothesis is equivalent to γ1 = γ2 = 0 in (6). The problem with uniden-
tified parameters under the null is avoided by linearizing both transition functions, G1t and G2t, by
first-order Taylor expansions around γ1 = 0 and γ2 = 0, respectively. This yields

Git =̃ 1/2 + 1/4γi(sit − ci) + Ri, i = 1, 2. (20)

Git does not carry any approximation error under the null. Replacing the transition functions in (6) with
the equations (20) gives

P
∗
t = (1/2 − 1/4γ1(s1t − c1))(1/2 − 1/4γ2(s2t − c2))P(11)

+(1/2 − 1/4γ1(s1t − c1))(1/2 + 1/4γ2(s2t − c2))P(12)

+(1/2 + 1/4γ1(s1t − c1))(1/2 − 1/4γ2(s2t − c2))P(21)

+(1/2 + 1/4γ1(s1t − c1))(1/2 + 1/4γ2(s2t − c2))P(22).

3The notation veclP is used to denote the vec-operator applied to the strictly lower triangular part of the
square matrix P .
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Rearranging the terms gives

P
∗
t = P

∗
(1) + s1tP

∗
(2) + s2tP

∗
(3) + s1ts2tP

∗
(4) (21)

where

P
∗
(1) = 1/4(P(11) + P(12) + P(21) + P(22)) + 1/8c1γ1(P(11) + P(12) − P(21) − P(22))

+1/8c2γ2(P(11) − P(12) + P(21) − P(22)) + 1/16c1c2γ1γ2(P(11) − P(12) − P(21) + P(22))

P
∗
(2) = −1/8γ1(P(11) + P(12) − P(21) − P(22)) − 1/16c2γ1γ2(P(11) − P(12) − P(21) + P(22))

P
∗
(3) = −1/8γ2(P(11) − P(12) + P(21) − P(22)) − 1/16c1γ1γ2(P(11) − P(12) − P(21) + P(22))

P
∗
(4) = 1/16γ1γ2(P(11) − P(12) − P(21) + P(22)).

Under H0, γ1 = γ2 = 0 and hence

P
∗
(1) = 1/4(P(11) + P(12) + P(21) + P(22))

P
∗
(2) = 0N×N

P
∗
(3) = 0N×N

P
∗
(4) = 0N×N .

Therefore, the auxiliary null hypothesis is stated as

Haux
0 : veclP ∗

(2) = veclP ∗
(3) = veclP ∗

(4) = 0N(N−1)/2×1

in (21). The test statistic for the LM–test for this auxiliary null hypothesis is χ2 distributed with
3N(N − 1)/2 degrees of freedom. The details of the construction of the LM–test are discussed in a later
subsection.

Construction of the auxiliary null hypothesis 3: Test of constant correlations against
an STCC–GARCH model with two transitions, transition variables are independent

The constancy of correlations hypothesis is imposed by setting γ1 = γ2 = 0 in (10). The problem with
unidentified parameters under the null is avoided by linearizing both transition functions, G1t and G2t, by
first-order Taylor expansions around γ1 = 0 and γ2 = 0, respectively. Replacing the transition functions
in (10) by the linearized ones (20) gives

P
∗
t = (−1/4γ1(s1t − c1) − 1/4γ2(s2t − c2))P(11)

+(1/2 + 1/4γ1(s1t − c1))P(21)

+(1/2 + 1/4γ2(s2t − c2))P(12).

Rearranging the terms gives

P
∗
t = P

∗
(1) + s1tP

∗
(2) + s2tP

∗
(3) (22)

where

P
∗
(1) = 1/2(P(12) + P(21)) + 1/4c1γ1(P(11) − P(21)) + 1/4c2γ2(P(11) − P(12))

P
∗
(2) = 1/4γ1(P(21) − P(11))

P
∗
(3) = 1/4γ2(P(12) − P(11)).

Under H0, γ1 = γ2 = 0 and hence

P
∗
(1) = 1/2(P(12) + P(21))

P
∗
(2) = 0N×N

P
∗
(3) = 0N×N .

Therefore, the auxiliary null hypothesis is stated as

Haux
0 : veclP ∗

(2) = veclP ∗
(3) = 0N(N−1)/2×1

in (22). The test statistic for the LM–test for this auxiliary null hypothesis is χ2 distributed with N(N−1)
degrees of freedom. The details of the construction of the LM–test are discussed in a later subsection.
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Construction of LM(/Wald)–statistic

Let θ0 be the vector of true parameters. Under suitable assumptions and regularity conditions,

√
T

−1 ∂l (θ0)

∂θ

d→ N (0, I (θ0)) . (23)

To derive LM–statistics of the null hypothesis consider the following quadratic form:

T−1 ∂l (θ0)

∂θ′
I (θ0)

−1 ∂l (θ0)

∂θ
= T−1

(

T
∑

t=1

∂lt (θ0)

∂θ′

)

I (θ0)
−1

(

T
∑

t=1

∂lt (θ0)

∂θ

)

and evaluate it at the maximum likelihood estimators under the restriction of the null hypothesis. The
limiting information matrix I(θ0) is replaced by the consistent estimator

ÎT (θ0) = T−1
T
∑

t=1

E

[

∂lt (θ0)

∂θ

∂lt (θ0)

∂θ′
| Ft−1

]

. (24)

The following derivations are straightforward implications of the definitions and elementary rules of
matrix algebra. Results in Anderson (2003) and Lütkepohl (1996) are heavily relied upon.

Test of constant conditional correlations against a DSTCC–GARCH model

The model under the null is the CCC–GARCH model. The alternative model is an STCC–GARCH
model with two transitions where the correlations are controlled by the transition variables s1t and
s2t. Under the null, the linearized time-varying correlation matrix is P ∗

t = P ∗

(1) + s1tP
∗

(2) + s2tP
∗

(3) +

s1ts2tP
∗

(4) as defined in (21). To construct the test statistic we introduce some simplifying notation.

Let ωi = (αi0, αi, βi)
′, i = 1, . . . , N , denote the parameter vectors of the GARCH equations, and ρ∗ =

(ρ∗′

(1), . . . , ρ
∗′

(4))
′, where ρ∗

(j) = veclP ∗

(j), j = 1, . . . , 4, are the vectors holding all unique off-diagonal

elements in the four matrices P ∗

(1), . . . , P
∗

(4), respectively. Let θ = (ω′

1, . . . , ω
′

N , ρ∗′)′ be the full parameter
vector and θ0 the corresponding vector of true parameters under the null. Furthermore, let vit =
(1, ε2

it, hit)
′, i = 1, . . . , N , and vρ∗t = (1, s1t, s2t, s1ts2t)

′. Symbols ⊗ and ⊙ represent the Kronecker and
Hadamard products of two matrices, respectively. Let ei be an N × 1 vector of zeros with ith element
equal to one and 1n be an n × n matrix of ones. The identity matrix I is of size N unless otherwise
indicated by a subscript.

Consider the log-likelihood function for observation t as defined in (11) with linearized time-varying
correlation matrix:

lt (θ) = −N

2
log (2π) − 1

2

N
∑

i=1

log (hit) − 1

2
log |P ∗

t | −
1

2
z
′
tP

∗−1
t zt.

The first order derivatives of the log-likelihood function with respect to the GARCH and correlation
parameters are

∂lt (θ)

∂ωi
= − 1

2hit

∂hit

∂ωi

{

1 − zite
′
iP

∗−1
t zt

}

, i = 1, . . . , N

∂lt (θ)

∂ρ∗
= −1

2

∂ (vecP ∗
t )′

∂ρ∗

{

vecP ∗−1
t −

(

P
∗−1
t ⊗ P

∗−1
t

)

(zt ⊗ zt)
}

where

∂hit

∂ωi
= vi,t−1 + βi

∂hi,t−1

∂ωi
, i = 1, . . . , N

∂ (vecP ∗
t )′

∂ρ∗
= vρ∗t ⊗ U

′.

The matrix U is an N2 × N(N−1)
2 matrix of zeros and ones, whose columns are defined as

[

vec
(

eie
′
j + eje

′
i

)]

i=1,...N−1,j=i+1,...,N
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and the columns appear in the same order from left to right as the indices in veclPt. Under the null
hypothesis ρ∗

(2) = ρ∗

(3) = ρ∗

(4) = 0, and thus the derivatives at the true parameter values under the null

can be written as

∂lt (θ0)

∂ωi
= − 1

2hit

∂hit (θ0)

∂ωi

{

1 − zite
′
iP

∗−1
(1) zt

}

, i = 1, . . . , N (25)

∂lt (θ0)

∂ρ∗
= −1

2

∂ (vecP ∗
t (θ0))

′

∂ρ∗

{

vecP ∗−1
(1) −

(

P
∗−1
(1) ⊗ P

∗−1
(1)

)

(zt ⊗ zt)
}

. (26)

Taking conditional expectations of the cross products of (25) and (26) yields, for i, j = 1, . . . , N ,

Et−1

[

∂lt (θ0)

∂ωi

∂lt (θ0)

∂ω′
i

]

=
1

4h2
it

∂hit (θ0)

∂ωi

∂hit (θ0)

∂ω′
i

(

1 + e
′
iP

∗−1
(1) ei

)

Et−1

[

∂lt (θ0)

∂ωi

∂lt (θ0)

∂ω′
j

]

=
1

4hithjt

∂hit (θ0)

∂ωi

∂hjt (θ0)

∂ω′
j

(

ρ∗
1,ije

′
iP

∗−1
(1) ej

)

, i 6= j

Et−1

[

∂lt (θ0)

∂ρ∗

∂lt (θ0)

∂ρ∗′

]

=
1

4

∂ (vecP ∗
t (θ0))

′

∂ρ∗

(

P
∗−1
(1) ⊗ P

∗−1
(1) +

(

P
∗−1
(1) ⊗ I

)

K
(

P
∗−1
(1) ⊗ I

)) ∂vecP ∗
t (θ0)

∂ρ∗′

Et−1

[

∂lt (θ0)

∂ωi

∂lt (θ0)

∂ρ∗′

]

=
1

4hit

∂hit (θ0)

∂ωi

(

e
′
iP

∗−1
(1) ⊗ e

′
i + e

′
i ⊗ e

′
iP

∗−1
(1)

) ∂vecP ∗
t (θ0)

∂ρ∗′
(27)

where

K =







e1e
′
1 · · · eNe′

1

...
. . .

...
e1e

′
N · · · eNe′

N






. (28)

For the derivation of the expressions (27), see Silvennoinen and Teräsvirta (2005).
The estimator of the information matrix is obtained by making use of the submatrices in (27). For

a more compact expression, let xt = (x′

1t, . . . , x
′

Nt)
′ where xit = − 1

2hit

∂hit

∂ωi

, and let xρ∗t = − 1
2

∂(vecP ∗

t
)′

∂ρ∗
,

and let x0
it, i = 1, . . . , N, ρ∗, denote the corresponding expressions evaluated at the true values under the

null hypothesis. Setting

M1 = T−1
T
∑

t=1

x
0
t x

0′
t ⊙

((

I + P
∗
(1) ⊙ P

∗−1
(1)

)

⊗ 13

)

M2 = T−1
T
∑

t=1







x0
1t 0

. . .

0 x0
Nt















e′
1P

∗−1
(1) ⊗ e′

1 + e′
1 ⊗ e′

1P
∗−1
(1)

...
e′

NP ∗−1
(1) ⊗ e′

N + e′
N ⊗ e′

NP ∗−1
(1)









x
0′
ρ∗t

M3 = T−1
T
∑

t=1

x
0
ρ∗t

(

P
∗−1
(1) ⊗ P

∗−1
(1) +

(

P
∗−1
(1) ⊗ I

)

K
(

P
∗−1
(1) ⊗ I

))

x
0′
ρ∗t

the information matrix I(θ0) is approximated by

ÎT (θ0) = T−1
T
∑

t=1

E

[

∂lt (θ0)

∂θ

∂lt (θ0)

∂θ′
| Ft−1

]

=

[

M1 M2

M ′
2 M3

]

.

The block corresponding to the correlation parameters of the inverse of ÎT (θ0) can be calculated as

(

M3 − M
′
2M

−1
1 M2

)−1

from where the south-east 3N(N−1)
2 × 3N(N−1)

2 block corresponding to ρ∗

(2), ρ∗

(3), and ρ∗

(4) can be extracted.

Replacing the true unknown values with maximum likelihood estimators, the test statistic simplifies to

T−1

(

T
∑

t=1

∂lt(θ̂)

∂(ρ∗′
(2), ρ

∗′
(3), ρ

∗′
(4))

)

[

ÎT (θ̂)
]−1

(ρ∗

(2−4)
,ρ∗

(2−4)
)

(

T
∑

t=1

∂lt(θ̂)

∂(ρ∗′
(2), ρ

∗′
(3), ρ

∗′
(4))

′

)

(29)
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where [ÎT (θ̂)]−1
(ρ∗

(2−4)
,ρ∗

(2−4)
) is the block of the inverse of ÎT corresponding to those correlation parameters

that are set to zero under the null. It follows from (23) and consistency and asymptotic normality of
ML estimators that the statistic (29) has an asymptotic χ2

3N(N−1)
2

distribution when the null hypothesis

is valid.

Test of constant conditional correlations against a partially constant DSTCC–GARCH
model

The test of constant correlations of previous subsection is not affected unless one or more of the pa-
rameters are restricted to be constant according to one of the transition variables in both extreme states
described by the other transition variable. In those cases certain parameters in the linearized time-varying
correlation matrix P ∗

t in (21) are set to zero. Let there be k pairs of correlation parameters that, under
the alternative hypothesis, are restricted to be constant with respect to the transition variable st1 in both
extreme states described by st2. That is, there are k pairs of restrictions as follows:

ρ(11)ij = ρ(21)ij and ρ(12)ij = ρ(22)ij , i > j

where ρ(mn)ij is the ij-element of the correlation matrix P(mn) in (6). In the linearized correlation matrix
P ∗

t , the k elements in each of the matrices P ∗

(2) and P ∗

(4) corresponding to these restrictions are set to
zero. Similarly, let there be l pairs of correlation parameters that, under the alternative hypothesis,
are restricted to be constant with respect to st2 in both extreme states described by st1. The pairs of
restrictions are then

ρ(11)ij = ρ(12)ij and ρ(21)ij = ρ(22)ij , i > j.

In the linearized correlation matrix P ∗

t the l elements in each of the matrices P ∗

(3) and P ∗

(4) corresponding
to these restrictions are set to zero. The vector of correlation parameters ρ∗ is formed as before but
the elements corresponding to the restrictions, i.e., the elements that were set to zero, are excluded.
Furthermore,

∂(vecP ∗

t )′

∂ρ∗

is defined as before, but with m (m equals 2k + 2l less the number of possibly overlapping restrictions)
rows deleted so that the remaining rows correspond to the elements in ρ∗. The same rows are also deleted
from xρ∗t. With these modifications the test statistic is as in (29) above, and its asymptotic distribution
under the null hypothesis is χ2

3N(N−1)
2 −m

.

Test of constant conditional correlations against a DSTCC–GARCH model whose
transition variables are independent

The model under the null is the CCC–GARCH model. The alternative model is an STCC–GARCH
model with two transitions where the correlations are varying according to the transition variables s1t

and s2t and the restriction P(11) − P(12) = P(21) − P(22) holds. Under the null, the linearized time-
varying correlation matrix is P ∗

t = P ∗

(1) +s1tP
∗

(2) +s2tP
∗

(3) as defined in (22). The statistic is constructed

as in the case of testing constancy of correlations against DSTCC–GARCH model but with following
modifications: Let ρ∗ = (ρ∗′

(1), ρ
∗′

(2), ρ
∗′

(3))
′, where ρ∗

(j) = veclP ∗

(j), j = 1, 2, 3, are the vectors holding all

the unique off-diagonal elements in the four matrices P ∗

(1), P
∗

(2), P
∗

(3), respectively. Furthermore, define

vρ∗t = (1, s1t, s2t)
′. With these changes the test statistic is as constructed as before, and the block

corresponding to the correlation parameters of the inverse of ÎT (θ0) can be calculated as

(

M3 − M
′
2M

−1
1 M2

)−1
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from where the south-east N(N − 1)×N(N − 1) block corresponding to ρ∗

(2) and ρ∗

(3) can be extracted.

Replacing the true unknown values with maximum likelihood estimators, the test statistic simplifies to

T−1

(

T
∑

t=1

∂lt(θ̂)

∂(ρ∗′
(2)

, ρ∗′
(3)

)

)

[

ÎT (θ̂)
]−1

(ρ∗

(2−3)
,ρ∗

(2−3)
)

(

T
∑

t=1

∂lt(θ̂)

∂(ρ∗′
(2)

, ρ∗′
(3)

)′

)

(30)

where [ÎT (θ̂)]−1
(ρ∗

(2−3)
,ρ∗

(2−3)
) is the block of the inverse of ÎT corresponding to those correlation parameters

that are set to zero under the null. It follows from (23) and consistency and asymptotic normality of
ML estimators that the statistic (30) has an asymptotic χ2

N(N−1) distribution when the null hypothesis
is valid.

Testing for the additional transition in the STCC–GARCH model

The model under the null is an STCC–GARCH model where the correlations are varying according to
the transition variable s1t. The transition that we wish to test for is a function of s2t. Under the null, the
linearized time-varying correlation matrix is P ∗

t = (1−G1t)P
∗

(1)+G1tP
∗

(2)+s2tP
∗

(3) as defined in (19). The

notation is as in the previous subsection with the following modifications: Let ρ∗ = (ρ∗′

(1), ρ
∗′

(2), ρ
∗′

(3))
′ where

ρ∗

(j) = veclP ∗

(j), i = 1, . . . , 3, and ϕ = (c1, γ1)
′. Let θ = (ω′

1, . . . , ω
′

N , ρ∗′, ϕ′)′ be the full parameter vector,

and θ0 the corresponding vector of the true parameters under the null. Let vρ∗t = (1 − G1t, G1t, s2t)
′,

and let vϕt = (γ1, c1 − s1t)
′.

The first order derivatives of the log-likelihood function with respect to the GARCH, correlation, and
transition parameters are

∂lt (θ)

∂ωi
= − 1

2hit

∂hit

∂ωi

{

1 − zite
′
iP

∗−1
t zt

}

, i = 1, . . . , N

∂lt (θ)

∂ρ∗
= −1

2

∂ (vecP ∗
t )′

∂ρ∗

{

vecP ∗−1
t −

(

P
∗−1
t ⊗ P

∗−1
t

)

(zt ⊗ zt)
}

∂lt (θ)

∂ϕ
= −1

2

∂ (vecP ∗
t )′

∂ϕ

{

vecP ∗−1
t −

(

P
∗−1
t ⊗ P

∗−1
t

)

(zt ⊗ zt)
}

where

∂hit

∂ωi
= vi,t−1 + βi

∂hi,t−1

∂ωi
, i = 1, . . . , N

∂ (vecP ∗
t )′

∂ρ∗
= vρ∗t ⊗ U

′

∂ (vecP ∗
t )′

∂ϕ
= vϕt(1 − G1t)G1tvec(P ∗

(1) − P
∗
(2))

′.

Evaluating the score at the true parameters under the null and taking conditional expectations of the
cross products of the first-order derivatives gives

Et−1

[

∂lt (θ0)

∂ωi

∂lt (θ0)

∂ω′
i

]

=
1

4h2
it

∂hit (θ0)

∂ωi

∂hit (θ0)

∂ω′
i

(

1 + e
′
iP

∗0−1
t ei

)

Et−1

[

∂lt (θ0)

∂ωi

∂lt (θ0)

∂ω′
j

]

=
1

4hithjt

∂hit (θ0)

∂ωi

∂hjt (θ0)

∂ω′
j

(

ρ∗0
t,ije

′
iP

∗0−1
t ej

)

, i 6= j

Et−1

[

∂lt (θ0)

∂ωi

∂lt (θ0)

∂ρ∗′

]

=
1

4hit
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∂ωi

(

e
′
iP

∗0−1
t ⊗ e

′
i + e

′
i ⊗ e

′
iP

∗0−1
t

) ∂vecP ∗
t (θ0)

∂ρ∗′

Et−1

[

∂lt (θ0)

∂ωi

∂lt (θ0)

∂ϕ′

]

=
1

4hit

∂hit (θ0)

∂ωi

(

e
′
iP

∗0−1
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′
i + e

′
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t
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∂ϕ′

Et−1

[
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∂ρ∗
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∂ρ∗′

]

=
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′
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(
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P
∗0−1
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K
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Et−1
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∂ϕ′
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∂ϕ′
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t +
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∂ϕ′
(31)
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where K is defined as before.
The estimator of the information matrix is obtained by using the submatrices in (31). To make

the expression more compact, let xt = (x′

1t, . . . , x
′

Nt)
′ where xit = − 1

2hit

∂hit

∂ωi
. Furthermore, let xρ∗t =

− 1
2

∂(vecP ∗

t
)′

∂ρ∗
, and xϕt = − 1

2
∂(vecP ∗

t
)′

∂ϕ
. Finally, let x0

it, i = 1, . . . , N, ρ, ϕ, denote the corresponding

expressions evaluated at the true parameters under the null. Setting
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0
ϕt

(

P
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t ⊗ P
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(

P
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the information matrix I(θ0) is approximated by

ÎT (θ0) = T−1
T
∑

t=1

E

[

∂lt (θ0)

∂θ

∂lt (θ0)

∂θ′
| Ft−1

]

=





M1 M2 M4

M ′
2 M3 M5

M ′
4 M ′

5 M6



 .

The block of the inverse of ÎT (θ0) corresponding to the correlation and transition parameters is given by

([

M3 M5

M ′
5 M6

]

−
[

M ′
2

M ′
4

]

M
−1
1

[

M2 M4

]

)−1

from where the N(N−1)
2 × N(N−1)

2 block corresponding to ρ∗

(3) can be extracted. Replacing the true

unknown parameter values with their maximum likelihood estimators, the test statistic simplifies to

T−1

(

T
∑

t=1

∂lt(θ̂)

∂ρ∗′
(3)

)

[

ÎT (θ̂)
]−1

(ρ∗

(3)
,ρ∗

(3)
)

(

T
∑

t=1

∂lt(θ̂)

∂ρ∗
(3)

)

(32)

where [ÎT (θ0)]
−1
(ρ∗

(3)
,ρ∗

(3)
) is the block of the inverse of ÎT corresponding to those correlation parameters

that are set to zero under the null. (32) has an asymptotic χ2
N(N−1)

2

distribution when the null is true.

Test of the partially constant STCC–GARCH model against a partially constant
DSTCC–GARCH model

When testing the hypothesis that some of the correlation parameters are constant according to the
transition variable s2t in both extreme states described by variable s1t, the following modifications need
to be done to the testing procedure of the previous subsection: Let there be k pairs of correlation
restrictions in the alternative hypothesis of the form

ρ(11)ij = ρ(12)ij and ρ(21)ij = ρ(22)ij , i > j.
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In the linearized correlation matrix P ∗

t the k elements in matrix P ∗

(3) corresponding to these restrictions
are set to zero, and the vector ρ∗ is defined as before but excluding the elements that have been set to
zero. Furthermore,

∂(vecP ∗

t )′

∂ρ∗

is defined as before, but with the corresponding k rows deleted. The same rows are also deleted from
xρ∗t.

When restricting some of the correlation parameters constant according to the transition variable s1t

in both extreme states described by variable s2t the test is as defined in the previous subsection with the
following modifications: Let there be l pairs of correlations of the form

ρ(11)ij = ρ(21)ij and ρ(12)ij = ρ(22)ij , i > j

in both null and alternative hypothesis. In the linearized correlation matrix P ∗

t the l elements in matrix
P ∗

(2) corresponding to these restrictions are set to zero, and the vector ρ∗ is defined as before but excluding
the elements that have been set to zero. Furthermore, when forming

∂(vecP ∗

t )′

∂ρ∗

the first N(N−1)
2 rows are multiplied by 1 instead of 1 − G1t, and from the next N(N−1)

2 rows, l rows
corresponding to the restricted correlations are deleted. The same rows are also deleted from xρ∗t.

These two specifications for partial constancy can be combined, and the test statistic is as defined in
the previous subsection with the modifications described above. The asymptotic distribution needs to be
adjusted for degrees of freedom to equal the number of restrictions that are tested.
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