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Abstract
Probably not. First, allowing the probabilities attached to the states of the

economy to di¤er from their sample frequencies, the Consumption-CAPM is still
rejected by the data and requires a very high level of Relative Risk Aversion
(RRA) in order to rationalize the stock market risk premium. Second, we elicit
the likelihood of observing an Equity Premium Puzzle (EPP) if the data were
generated by the rare events probability distribution needed to rationalize the
puzzle with a low level of RRA. We �nd that the historically observed EPP would
be very unlikely to arise. Third, we �nd that the rare events explanation of the
EPP signi�cantly worsens the ability of the Consumption-CAPM to explain the
cross-section of asset returns. This is due to the fact that by assigning higher
probability to bad �economy wide �states in which consumption growth is low
and all the assets in the cross-section tend to yield low returns, it reduces the
cross-sectional dispersion of consumption risk relative to the cross-sectional vari-
ation in average returns.
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1 Introduction

The average excess return on the U.S. stock market relative to the one-month Trea-
sury Bill �the so called equity risk premium �has been about 7% per year over the
last century. Nevertheless, the representative agent model with time separable CRRA
utility, calibrated to match micro evidence on households�attitude toward risk and
the time series properties of consumption and asset returns, generates a risk premium
of less than 1%. This quantitative discrepancy was originally dubbed by Mehra and
Prescott (1985) as the Equity Premium Puzzle (EPP). Given the dramatic long-term
investment implications of this di¤erential rate of return, over the last two decades the
equity premium puzzle has been the focus of a substantial research e¤ort in Economics
and Finance.1

In this paper we study the ability of the rare events hypothesis, pioneered by Rietz
(1988) and recently rediscovered by a growing literature (e.g. Veronesi (2004), Barro
(2006), Gabaix (2007a)), to rationalize the equity premium puzzle. This hypothesis is
conceptually simple. Suppose that in every period there is an ex ante small probability
of an extreme stock market crash and economic downturn (that is, a Great Depression-
like state of the economy). Risk averse equity owners will demand a high equity
premium to compensate for the extreme losses they may incur during these unlikely
�but exceptionally harmful � states of the world. In a �nite sample, if such states
happen to occur with a frequency lower than their true probability, ex post realized
risk premia will be high even though ex ante expected returns are low �that is, in
such a scenario equity owners are compensated for crashes and economic contractions
that happen not to occur. Moreover, to an outside observer investors will appear
irrational in the sample, and economists will tend to overestimate their risk aversion
and underestimate the consumption risk of the stock market.
Our contribution to the analysis of the rare events hypothesis is three-fold. First,

adopting an information-theoretic alternative to the Generalized Method of Moments2

(see Owen (1991, 2001), Kitamura and Stutzer (1997), Kitamura (2006)), we estimate
the consumption Euler equation allowing explicitly the probabilities attached to di¤er-
ent states of the economy to di¤er from their sample frequencies. The methodologies we
use belong to the Generalized Empirical Likelihood family, and i) are by construction

1Attempts to rationalize the puzzle include alternative assumptions on preferences (e.g. Abel
(1990), Constantinides (1990), Epstein and Zin (1991), Campbell and Cochrane (1999), Bansal and
Yaron (2004)), incomplete markets (e.g. Constantinides and Du¢ e (1996), Brav, Constantinides, and
Geczy (2002)), market imperfections (e.g. Heaton and Lucas (1996), Constantinides, Donaldson, and
Mehra (2002)), limited stock market participation (e.g. Mankiw and Zeldes (1991), Attanasio, Bank,
and Tanner (2002), Brav, Constantinides, and Geczy (2002), Vissing-Jorgensen (2002)), problems of
temporal aggregation (e.g. Heaton (1993), Gabaix and Laibson (2001)), and behavioral explanations
(e.g. Barberis, Huang, and Santos (2001)). However, according to Mehra and Prescott (2003), none
of the proposed explanations has been so far fully satisfactory (see also Campbell (1999, 2003)).

2Hansen (1982) and Hansen and Singleton (1982).
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more robust to a rare events problem in the data,3 ii) tend to have better small sample
and asymptotic properties than the standard GMM approach (see e.g. Kunitomo and
Matsushita (2003), Newey and Smith (2004) and Kitamura (2006)), iii) allow us to
perform Bayesian posterior inference (Lazar (2003), Schennach (2005)) that does not
rely on asymptotic properties that are less likely to be met, in �nite sample, in the
presence of rare events.
We �nd that the Consumption Capital Asset Pricing Model (C-CAPM) is still

rejected by the data, and requires a very high level of relative risk aversion in order to
rationalize the stock market risk premium.
Second, we show that our information-theoretic estimation approaches can also be

used to identify, nonparametrically, the rare events distribution needed to rationalize
the equity premium puzzle with a low level of risk aversion. In contrast with the ad hoc
distributional assumptions and calibrations used in the previous literature on the rare
events hypothesis, our methodology identi�es the closest distribution, in the Kullback-
Leibler Information sense, to the true unknown distribution of the data. That is, it
provides the most likely rare events explanation of the equity premium puzzle. We show
that our identi�ed rare events distributions are qualitatively and quantitatively in line
with the ones advocated by Rietz (1988) and Barro (2006) �that is, our data-driven
procedure �nds that only modest increases in the likelihood of observing extremely
bad states such as the Great Depression are needed to rationalize the equity premium
puzzle.
With these estimated rare events distributions at hand, we generate counterfactual

histories of data of the same length as the historical time series. This allows us to
elicit the probability of observing an equity premium puzzle in samples of the same
size as the historical ones. We �nd that if the data were generated by the rare events
distribution needed to rationalize the equity premium puzzle with a low level of risk
aversion, the puzzle itself would be very unlikely to arise. We interpret this �nding
as suggesting that, if one is willing to believe that the rare events hypothesis is the
explanation of the equity premium puzzle, one should also believe that the puzzle itself
is a rare event.
Third, we study whether rare events can rationalize the poor performance of the

Consumption-CAPM in pricing the cross-section of asset returns. We �nd that impos-
ing on the data the rare events explanation of the equity premium puzzle worsens the
ability of the Consumption-CAPM to explain the cross-section of asset returns. This is
due to the fact that, in order to rationalize the equity premium puzzle with a low level
of risk aversion, we need to assign higher probability to bad �economy wide �states
such as deep recessions and market crashes. Since during market crashes and deep
recessions consumption growth tends to be low and all the assets in the cross-section

3This is due both to the Large Deviations properties of our estimation and testing approach (see
e.g. Kitamura (2006)), and to the �weak law of large numbers for rare events�rationale for estimators
based on relative entropy minimization (Brown and Smith (1990)).
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tends to yield low returns, this reduces the cross-sectional dispersion of consumption
risk across assets, making it harder for the model to explain the cross-section of risk
premia.
This �nding also suggests that explanations of the equity premium puzzle based on

agents�expectations of an economy wide disaster (e.g. a �nancial market meltdown)
that has not materialized in the sample4 �a so called peso phenomenon �would also
reduce the ability of the Consumption-CAPM to price the cross-section of asset returns,
since such an expectation would reduce the cross-sectional dispersion of consumption
risk across assets.
The remainder of the paper is organized as follows. Section 2 reviews the related lit-

erature on the rare events hypothesis. Section 3 presents the theoretical underpinnings
of the estimation and testing approaches considered. A data description is provided
in Section 4. Estimation and testing results are presented in Sections 5. Section 6.1
presents the rare events distribution of the data needed to rationalize the equity pre-
mium puzzle with a low level of risk aversion. In Section 6.2, we ask what would be
the likelihood of observing an equity premium puzzle, in a sample of the same size
as the historical ones, if the rare events hypothesis were the true explanation of the
puzzle. In Section 6.3, we analyze the implications of the rare events hypothesis for the
ability of the C-CAPM to price the cross-section of asset returns. Section 7 concludes.
Additional robustness check, and methodological details, are provided in the Appendix

2 Rare Events �Related Literature

�Un coup de dés jamais n�abolira le hasard.�5 Mallarmé (1897).

In this section we sketch the links to the existing literature on the rare events
hypothesis.
Already in the sixties Mandelbrot (1963, 1967) pointed out that extreme �nancial

asset price swings are more likely than what is often assumed in our models, and that
returns on risky assets tend to have much thicker tails than a Gaussian distribution.
The need of dealing with these empirical regularities is at the origin of: the attempts to
apply extreme value theory (a branch of statistics that focuses on extreme deviations
from the median) to quantitative �nancial analysis (see e.g. Beirlant, Schoutens, and
Segers (2004)); the popularity, within the risk management industry, of the value-at-
risk approach for assets valuation (the VaR measures the worst anticipated loss over a
period); the inclusion of jump and Lévy processes into derivatives pricing models, and
the development of tail-related �nancial risk measures.
The �rst to suggest that tail events in the distribution of asset returns and con-

sumption might be the reason behind the equity premium puzzle originally documented
4See e.g. Danthine and Donaldson (1998).
5�A throw of dice will never abolish chance.�
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by Mehra and Prescott (1985), is Rietz (1988). As Mehra and Prescott, Rietz consid-
ers a (Markovian) �nite-state version of the Lucas (1978) exchange economy. In this
setting (as in the Consumption-CAPM of Rubinstein (1976) and Breeden (1979)), the
optimizing behavior of the agent leads to the consumption Euler equation

E

"�
Ct
Ct�1

��
Ret

#
= 0; (1)

where E is the unconditional expectation operator, Ct denotes the time t consumption
�ow,  is the relative risk aversion coe¢ cient, and Ret is the return on the stock market
in excess of the risk free rate.
The only di¤erence between the Mehra-Prescott and the Reitz frameworks is that

in the former the state of the economy is good or bad with equal probabilities, while
the latter adds a low probability depression-like state to capture rare, but severe,
economic downturns and market crashes. Calibrating the depression state to match
the economic contraction registered during the Great Depression, Rietz �nds that a less
than 2% probability for such a state is enough to make the model match the historically
observed equity premium. Moreover, Danthine and Donaldson (1998) show that such
a result also holds in a production economy setting.
More recently, Barro (2006) constructs a model of the equity-premium that extends

Rietz (1988), and calibrates disaster probabilities from the twentieth century global
history �especially the sharp contractions associated with the Great Depression and
the World Wars. He argues that the potential for rare economic disasters explains a
lot of asset pricing puzzles including the high equity premium, the low risk-free rate,
and volatile stock returns. Gabaix (2007a), combining the Reitz�s hypothesis with
an ad hoc assumption about the data generating processes (the �linearity-generating
processes�of Gabaix (2007b)), argues that rare events can potentially rationalize not
only the equity premium, but also nine more puzzles in macro-�nance. Similarly, but
adding agents� learning to the framework, Veronesi (2004) concludes that the peso
problem hypothesis implies most of the stylized facts about stock returns, including
time-varying volatility, asymmetric volatility reaction to good and bad news, and excess
sensitivity of price reaction to dividend changes.6

Beside the equity premium, the concept of rare events has also been applied to
the study of a wide array of subjects such as: the term structure of interest rates,7

exchange rates �uctuations and the forward-premium puzzle,8 households�investment
in annuities,9 the �smirk�patterns documented in the index options market.10

6See also Sandroni (1998) on the interaction between learning and rare events.
7See e.g. Lewis (1990) and Bekaert, Hodrick, and Marshall (2001).
8Gourinchas and Tornell (2004) and Farhi and Gabaix (2007).
9Lopes and Michaelides (2007).
10Liu, Pan, and Wang (2005).
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The common characteristic of all the studies that have focused on the rare events
hypothesis and the equity premium puzzle, is the use of a calibration approach.11 Since
the equity premium is a �rst moment, and �rst moments are extremely sensitive to
outliers, results in the rare events setting tend to be very sensitive to the calibration
choice. For example, Copeland and Zhu (2006) extend the Barro (2006) closed-economy
model to a two country setting, and they show that �using Barro�s own calibration
�the model implies levels of the equity risk premium far lower than those typically
observed in the data e.g. they reverse Barro�s original �nding.
An obvious alternative to calibration is to estimate directly the consumption Euler

equation (1), and this has been done extensively in the literature. The standard ap-
proach is to use consumption and stock market data to estimate the parameter  in
equation (1) as

̂ := argmin g

 
ET

"�
Ct
Ct�1

��
Ret

#
; ET [Ret ] ; E

T

"�
Ct
Ct�1

��#!
(2)

for some function g (:), where ET [xt] = 1
T

PT
t=1 xt i.e. the distributions of the pricing

kernel and returns is proxied with an empirical distribution that assigns probability
1=T to each realized state (observation) in the sample, and then judge whether ̂ (or
some function of ̂, like the implied expected returns or a test statistic) is �reasonable.�
The GMM inference, for example, belongs to this class (see Hansen (1982), Hansen and
Singleton (1982)). In some cases, distributional assumptions are directly made, and the
inference is conditional on this (e.g log-normal returns and consumption growth). The
replacement of the unconditional moments with sample moments is justi�ed by a weak
law of large numbers and central limit arguments. Nevertheless, in a �nite sample,
the presence of extreme rare events, that happen to occur with a lower (or higher)
frequency than their true probability, can have dramatic e¤ects on the sample �rst
moments. Therefore, inference based on equation (2) might be unreliable. Saikkonnen
and Ripatti (2000) illustrate this point with a Monte Carlo exercise, and they document
an extremely poor performance of the GMM estimator of the Euler equation in the
presence of rare events �even in relatively large samples.

Two conclusions can be drawn from the above review of the literature. First,
in calibrating a rare events model, we would ideally remove any degree of freedom
regarding the modeling of the underlying true distribution of the data. That is, it
would be desirable to a) avoid parametric assumptions about the distribution of the

11Some indirect empirical evidence supporting the rare events hypothesis can be found in Brown,
Goetzmann, and Ross (1995) and Goetzmann and Jorion (1999a) (see also Goetzmann and Jorion
(1999b)). The �rst of these papers shows that the time series of equity returns on the U.S. stock
market might be a¤ected by survival bias. The second considers a large international cross-section of
market returns, and �nds that the average high return on the U.S. stock market belongs to the right
tail of the cross-sectional distribution.
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data, and b) use an approach that makes the calibrated distribution as close as possible
to the true, unknown, distribution of the data.
Second, in estimating and testing the consumption Euler equation in the presence

of a potential rare events phenomenon, it would be desirable to use an approach that
allows the probabilities attached to di¤erent states of the economy to di¤er from their
sample frequencies �that is, an approach that explicitly allows to take rare events into
account.
Our paper does both of these things, and additionally derives the implications of

imposing the rare events explanation of the equity premium puzzle on the cross-section
of asset returns �a feature that, to the best of our knowledge, we are the �rst to analyze.

3 Econometric Methodology

In this section we present and discuss the econometric methodology used in our study.
The methods presented belong to the Generalized Empirical Likelihood family, and
readers familiar with this literature can skip this section without loss of continuity.
Consider a model characterized by the following moment condition

E� [f(zt; �0)] =

Z
f(zt; �0)d� = 0, � 2 � � Rs, (3)

where f is a known Rq-valued function, q > s, and 0 denotes a vector of zeros of
size q. The econometrician observes draws of an Rk-valued random variable, fztgTt=1,
where each zt is distributed according to an unknown probability measure �, and �0
denotes the true �unknown �value of �. The approaches used in this paper can be
applied to both i:i:d: or (weakly) dependent data.12 In the case of i:i:d. observations
the nonparametric log likelihood at (p1; p2; :::; pT ) is

`NP (p1; p2; :::; pT ) =

TX
t=1

log(pt); (p1; :::; pT ) 2 �

where � denotes the simplex
n
(p1; :::; pT ) :

PT
t=1 pt = 1, pt � 0, t = 1; :::; T

o
: This

last expression can be interpreted as the log likelihood for a multinomial model, where
the support of the multinomial distribution is given by the empirical observations,
fztgTt=1, even though the distribution � of zt is not assumed to be multinomial �it is
indeed left unspeci�ed. The Empirical Likelihood (EL) estimator of Owen (1988, 1990,
1991) parametrizes the moment condition (3) with (�; p1; p2; :::; pT ) 2 � � �, and is
12See e.g. Kitamura (1997) for a de�nition of weak de�nition of weak dependence.
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given by�b�EL; bpEL1 ; :::; bpELT � = argmax
f�;p1;:::;pT g2���

`NP =
TX
t=1

log(pt) subject to
TX
t=1

f(zt; �)pt = 0:

(4)
Thus, the EL estimation de�nes a function that appears analogous to a parametric
likelihood function and yet enables inference that does not require distributional as-
sumptions. Moreover, the nonparametric maximum likelihood estimator (NPMLE) of
the unknown probability measure � is given by �̂EL =

PT
t=1 bpELt �zt, where �z denotes

a unit mass at z. This is an e¢ cient estimator for �, i.e. for a function a(z; �0) of
z,
PT

t=1 a(zt;
b�EL)bpELt is a more e¢ cient estimator of E [a(z; �0)] than the naive sam-

ple mean 1
T

PT
t=1 a(zt;

b�EL), and can be shown to be semiparametrically e¢ cient (see
Kitamura (2006) and Brown and Newey (1998)).
The EL estimator, for both i:i:d: and weakly dependent data, also has an important

information-theoretic interpretation (see e.g. Kitamura and Stutzer (1997)). To see
this let M be the set of all probability measures on Rk, and for each parameter vector
� 2 �, de�ne the following set of probability measures

P (�) � fp 2M : Ep [f(zt; �)] = 0g

which are also absolutely continuous with respect to the measure � in equation (3).
Therefore, P � [�2�P (�) is the set of all the probability measure that are consis-
tent with the model characterized by the moment condition in equation (3). The EL
estimator can be shown to solve the following optimization problem

inf
�2�

inf
p2P (�)

K(�; p) = inf
�2�

inf
p2P (�)

Z
log (d�=dp) d�, (5)

subject to Ep [f(zt; �)] = 0;

where K(�; p) is the Kullback-Leibler Information Criterion (KLIC) divergence from �
to p (White (1982)). Therefore K(�; p) > 0, and it will hold with equality if and only
if � = p. If the model is correctly speci�ed, i.e. if there exists a �0 satisfying (3), we
have that � 2 P (�0), and � solves (5) delivering a KLIC value of 0. On the other hand,
if the model is misspeci�ed, � is not an element of P and for each � there is a positive
KLIC distance K(�; p) > 0 attained by the solution p(�). Thus, the EL approach
searches for a �̂EL (�) that makes the estimated distribution as close as possible �in
the information sense �to the true unknown one.
Since the KLIC is not symmetric, the closely related Exponential Tilting (ET)

estimator of Kitamura and Stutzer (1997) can be obtained by inverting the roles of �
and p in (5). That is, the ET estimator solves

b�ET = inf
�2�

inf
p2P (�)

K(p; �) = inf
�2�

inf
p2P (�)

Z
log (dp=d�) dp; (6)
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subject to Ep [f(zt; �)] = 0:

To �rst order, the ET and EL estimators are asymptotically equivalent to the
optimal GMM estimator (Kitamura and Stutzer (1997), Qin and Lawless (1994)), i.e.
have an asymptotic normal distribution given by

p
T
�b�j � �0� d! N(0; V ), j 2 fEL;ETg

V = (D0S�1D)�1, D = E� [@f(z;�0)=@�
0] , S = E� [f(z;�0)f(z;�0)

0]

However, Newey and Smith (2004) show that these estimators have smaller second-
order bias than the GMM estimator. They also show that the bias-corrected EL es-
timator is third-order e¢ cient. Moreover, Kunitomo and Matsushita (2003) provide
a detailed numerical study of EL and GMM, and �nd that the distribution of the
EL estimator tends to be more centered and concentrated around the true parameter
value. They also report that the asymptotic normal approximation appears to be more
appropriate for EL than for GMM.
Beside the desirable local asymptotic e¢ ciency mentioned above, the empirical

likelihood approach also has �unlike the GMM estimator �desirable global properties.
The conventional asymptotic e¢ ciency considerations focus on the behavior of the
estimator in a shrinking close neighborhood of the true value of the parameters of
interest. E¢ ciency theory based on the large deviation (LD) principle instead, focuses
on the behavior of the estimator in a �xed neighborhood of the truth. Kitamura (2001)
shows that testing based on the empirical likelihood ratio (ELR, described below) is
asymptotically optimal in the large deviation sense, that is ELR is uniformly most
powerful.13 This is important for our empirical investigation, since large deviation
e¢ ciency is particularly appealing when estimating and testing in a setting in which
the unknown distribution of the data might be characterized by rare events that can
take on extreme values (since, in �nite sample, the estimator is likely not to lie in a
close neighborhood of the truth).
The reason behind the good asymptotic and �nite sample properties of the empirical

likelihood approach is that the KLIC, as pointed out by Robinson (1991), is extremely
sensitive to any deviation of one probability measure from another. Moreover, since
both EL and ET are based on the minimization of the relative entropy between the
estimated and the unknown probability measure (captured by the inner minimizations
in equations (5) and (6)), they endogenously re-weight rare events to have the model
in equation (3) �t the data.14

Since both the EL and ET estimators are the solutions to convex optimization prob-
lems, the Fenchel duality applies (see Borwein and Lewis (1991)b and Kitamura (2006)),

13This property is sometimes referred to as generalized Neyman-Pearson optimality.
14See the weak law of large numbers for rare events of Brown and Smith (1990).
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therefore reducing dramatically the dimensionality of the optimization problem. In par-
ticular, the solution to the inner minimization problem in equation (5) is a multinomial
distribution with support given by the empirical observations zt, t = 1; :::; T (Csiszar
(1975)), and the probability weight assigned the t-th observation is

pELt (�) =
1

T (1 + �(�)0f(zt; �))
, t = 1; :::; T

where �(�) 2 Rq is the solution to the following unconstrained convex problem

�(�) = argmin
�
�

TX
t=1

log(1 + �0f(zt; �)):

Similarly, the solution to the inner minimization problem in equation (6) is also a
multinomial distribution with probability weight on the t-th observation given by

pETt (�) =
e�(�)

0f(zt;�)

TX
t=1

e�(�)0f(zt;�)

, t = 1; :::; T

where �(�) 2 Rq is the solution to

�(�) = argmin
�

1

T

TX
t=1

e�
0f(zt;�)

Likelihood based testing is also possible within the EL and ET frameworks. In the
EL setting, Owen (1991, 2001) shows that a joint test of the overidentifying restrictions
in equation (3), and the parameter restrictions �0 = �, may be performed by forming
the nonparametric analog of the parametric likelihood ratio statistic, and this ELR
test statistic has an asymptotic �2 distribution. Similarly, theorem 4 of Kitamura and
Stutzer (1997) shows that an analogous likelihood ratio test can be constructed using
the ET estimator.
The EL and ET estimated probability weights (

�
p̂jt(�)

	
, j 2 fEL;ETg) can also

be used for Bayesian inference.
First, even though the empirical likelihood de�nes a pro�le likelihood, Lazar (2003)

provides simulation evidence showing that, if the pro�le EL function is used as the
likelihood part of the Bayes theorem, accurate posterior inference can be performed.15

15Based on the Monahan and Boos (1992) Kolmogorov-Smirnov criterion as a way of deciding that a
likelihood alternative is valid for posterior inference, and an examination of the frequentist properties
of the Bayesian intervals, Lazar (2003) concludes that it is reasonable to use EL within the Bayesian
paradigm.
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That is, given a prior � (�), a Bayesian (empirical likelihood, BEL) posterior can be
formed as

p (�j fztg) / � (�)� �Tt=1p̂ELt (�). (7)

Second, Schennach (2005) provides a well-de�ned probabilistic interpretation of the
ET function that justi�es its use in Bayesian inference. She shows that this likelihood
function naturally arises as the nonparametric limit of a Bayesian procedure that places
a type of noninformative prior on the space of distributions,16 and that a posterior
distribution can be obtained, as in equation (7), using the

�
pETt (�)

	T
t=1

probability
weights (this is the Bayesian Exponentially Tilted Empirical Likelihood, BETEL).

The application of the (generalized) empirical likelihood approaches just outlined to
the estimation of consumption Euler equation (1), relies on the fact that the optimizing
behavior of the representative agent, in the time-additive power utility model, leads to
the conditional Euler equation

Et�1

"�
Ct
Ct�1

��
Ret

#
= 0; (8)

where Et�1 [:] denotes the expectation operator conditional on time t � 1 information
set. The above expression entails that

�
(Ct=Ct�1)

� Ret
	1
t=1

is a martingale di¤erence
sequence, i.e. it is not autocorrelated. Therefore, the distribution theory for the EL and
ET estimators outlined above remains valid even if the stochastic processes generating
fCt=Ct�1;Retg

1
t=1 are weakly dependent. Nevertheless, serially correlated measurement

error in consumption (see Wilcox (1992)) could make the martingale property of the
conditional Euler equation (8) fail in the data. In Appendix A.1.1 we show how to
deal with this issue, and results robust to violations of the martingale property are also
provided.

4 Data Description

Ideally, the empirical analysis of the rare events hypothesis should be based on the
longest possible sample. As a consequence, due to the di¤erent starting periods of
available annual and quarterly consumption series, we focus on two samples of data:
an annual data sample starting at the onset of the Great Depression (1929-2006), and
a quarterly data sample starting in the post World War II period (1947:Q1-2003:Q3).
Our proxy for the market return is the Center for Research in Security Prices

(CRSP) value-weighted index of all stocks on the NYSE, AMEX, and NASDAQ. The

16The prior on the space of distributions gives preference to distributions having small support and,
among the ones with the same support, it favors the entropy-maximizing ones. Moreover, it becomes
uniform as T !1.
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proxy for the risk-free rate is the one-month Treasury Bill rate. Quarterly (annual)
returns for the above assets are computed by compounding monthly returns within
each quarter (year), and converted to real using the personal consumption de�ator. For
consumption, we use per capita real personal consumption expenditures on nondurable
goods from the National Income and Product Accounts (NIPA). We make the standard
�end-of-period�timing assumption that consumption during quarter t takes place at
the end of the quarter. We make this choice so that the entire period that Ct covers is
contained in the information set of the agent before the time t+ 1 return is realized.17

For the cross-sectional analysis, we use the quarterly returns on the 25 Fama and
French (1992) portfolios, and construct excess returns as these returns less the return
on the 3-month Treasury Bill rate. We focus in this case on quarterly data only,
since the cross-sectional estimation approach will be asymptotically justi�ed by the
assumption that the time dimension is large relative to the cross-sectional one. We
concentrate on the Fama-French portfolios because they have a large dispersion in
average returns that is relatively stable across subsamples, and because they have been
used extensively to evaluate asset pricing models. The 25 Fama-French portfolios are
the intersections of �ve portfolios formed on size (market equity) and �ve portfolios
formed on the ratio of book equity to market equity. We denote a portfolio by the rank
of its market equity and then the rank of its book-to-market ratio, so that portfolio 51
is the largest quintile of stocks by market equity and the smallest quintile of stocks by
book-to-market. These portfolios are designed to focus on two key features of average
returns: the size e¤ect ��rms with small market value have, on average, higher returns
�and the value premium ��rms with high book values relative to market equity have,
on average, higher returns.
A relevant question for the robustness of our empirical approach is whether in-

frequent, economy wide, negative events are observed in our sample. We have good
reasons to believe this is the case.
First, in our annual (quarterly) sample we observe 11 (7) out of the 15 major stock

market crashes of the twentieth century identi�ed by Mishkin and White (2002) plus
the 2002 market crash.18 Moreover, these include the largest one-day decline in stock
market values in U.S. history �October 19th 1987, aka � Black Monday��and 10 (5
in the quarterly sample) out of the 10 largest contractions of the Dow Jones Industrial
Average index during the twentieth century.19

Second, our annual (quarterly) sample covers 13 (10) out of the 22 NBER recessions
registered since 1900, and about 52.3% (32.4%) of the months of economic contraction

17The alternative timing convention, used by Campbell (1999) for example, is that consumption
occurs at the beginning of the period.
18Mishkin and White (2002) identify a stock market crash as a period in which either the Dow

Jones Industrials, the S&P500 or the NASDAQ index drops by at least 20 percent in a time window
of either one day, �ve days, one month, three months or one year.
19Source: Dow Jones.
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recorded over the same period.20

Third, in our annual (quarterly) sample we observe 4 (3) out of the 10 major U.S.
wars since the 1775-1783 Revolution to the end of the twentieth century. Moreover,
the 4 (3) wars in our annual (quarterly) sample amounts for 91.7% (22.3%) of the
total cost of wars (in real terms) and for about 46.1% (34.3%) of the total months of
wars in U.S. history, and about 88% (45%) of the enrolled forces in con�ict during the
twentieth century.21

Fourth, our annual (quarterly) sample covers about 85% (59%) of the Major Hurri-
canes, responsible for about 39% (18%) of the hurricane-related deaths, and 87% (68%)
of the Deadly Earthquakes, responsible for about 20% (12%) of the earthquake-related
deaths, recorded in the U.S. since 1900.22,23

5 Estimation Results

�Really, the most natural thing to do with the consumption-based model
is to estimate it and test it, as one would do for any economic model.�
Cochrane (2005).

In this section we present estimation and testing results for the consumption Euler
equation (1) using the Empirical Likelihood (EL), Exponential Tilting (ET), Bayesian
EL (BEL) and Bayesian Exponentially Tilted Empirical Likelihood (BETEL) meth-
ods described in Section 3. We focus on these methods since they endogenously allow
the probabilities attached to di¤erent states of the economy to depart from their sam-
ple frequencies � as the rare events hypothesis implies. Moreover, their asymptotic
and small sample properties should deliver more robust and sharper inference in the
presence of a rare events problem in the data.
Table 1 shows the estimation results for quarterly (Panel A) and annual (Panel

B) data. The �rst row of both panels reports the point estimates of the relative risk
aversion coe¢ cient . The EL and ET frequentist estimates are, respectively, 102
and 146 in the quarterly sample, and 32 (for both estimators) in the annual sample.

20Source: National Bureau of Economic Reseacrh.
21Source: The United States Civil War Center. The wars considered in the calculations reported

are: the Revolution (1775-1783), the War of 1812 (1812-1815), the Mexican War (1846-1848), the Civil
War (1861-1865), the Spanish American War (1898), World War I (1917-1918), World War II (1941-
1945), the Korean War (1950-1953), the Vietnam War (1964-1972), and the Gulf War (1990-1991).
The Iraq War is excluded from the sample since complete statistics are currently unavailable.
22Source: U.S. Geological Survey Earthquake Hazards Program.
23Natural disasters have a long history of bearing relevant consequences for both stock markets and

real economic activity. For example, the credit crisis known as the Panic of 1907 was originated by
the losses stemming from the San Francisco earthquake the year before, that had hammered British
insurers and generated rumors of insolvency for the biggest north American banks, and ultimately
lead to the creation of the Federal Reserve.
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Moreover, even though the standard errors of estimates (reported in brackets below
the estimated coe¢ cients) are large, all the point estimates are statistically larger than
10 (the upper bound of the �reasonable�range for the relative risk aversion coe¢ cient)
at standard con�dence levels. The BEL and BETEL posterior distributions of this
parameter (computed under a uniform prior on  2 R+) also peak at very high values:
102 and 90, for BEL and BETEL respectively, in the quarterly sample, and at 32 in the
annual sample. Moreover, the posterior 95% con�dence intervals (in square brackets)
never include values of  smaller that 13:4.

Table 1: Euler Equation Estimation
EL ET BEL BETEL

Panel A: Quarterly Data
̂ 102

(48:0)
146
(32:3)

102
[24:8; 263:1]

90
[19:5; 164:9]

�2(1) 9:87
(:002)

10:65
(:001)

Pr ( � 10jdata) :64% :92%
Panel B: Annual Data

̂ 32
(10:5)

32
(10:5)

32
[13:4; 64:1]

32
[13:8; 57:1]

�2(1) 5:26
(:022)

5:93
(:015)

Pr ( � 10jdata) 1:00% :84%

The second row of both panels reports tests for the joint hypothesis of a  as small
as 10 and for the identifying restriction given by the consumption Euler equation (1).
These tests are the Empirical Likelihood Ratio (ELR) test of Owen (1991, 2001), (in
the �rst column) and the likelihood ratio test proposed in theorem 4 of Kitamura
and Stutzer (1997). Under the null hypothesis, both statistics follow asymptotically
a �2 distribution with one degree of freedom. As revealed by the p-values reported
below the test statistics, both tests reject the hypothesis of the Euler equation being
satis�ed by a  as small as 10. Finally, the third row of each panel reports the posterior
probabilities of  being smaller than, or equal to, 10 given the observed data. This
probability is small, and never larger than 1%, for both samples and both BEL and
BETEL posteriors.

Overall, the results in Table 1 indicate that even adopting an estimation procedure
that allows the probabilities attached to di¤erent states of the economy to di¤er from
their sample frequencies, and is therefore robust to rare events problems in the data,
the Consumption-CAPM is still rejected and requires a very high level of relative risk
aversion to rationalize the stock market risk premium. Moreover, as a robustness
check, Table A1 in the Appendix reports estimation and testing results that are robust
to violations of the martingale di¤erence property of the conditional Euler equation
(that might, for example, be generated by serially correlated measurement error in
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consumption as discussed in Wilcox (1992)). This robustness check con�rms the results
in Table 1.

6 Counterfactual Analysis

In this section, instead of jointly estimating the coe¢ cient of relative risk aversion and
the probabilities associated with di¤erent states of the economy, we �x the  parameter
to a �reasonable�value, and ask the ET and EL estimation procedures to identify the
distribution of the data that would solve the Equity Premium Puzzle in the historical
samples. This procedure can be interpreted as calibrating a rare events model (that
solves the EPP) in a formal �data driven �fashion that minimizes the distance (in the
information sense) between the model distribution and the true unknown distribution
of the data.
With this estimated distribution at hand, we can ask the following relevant coun-

terfactual questions.
First, suppose that the data were generated by the rare events distribution needed

to explain the equity premium puzzle with a low level of risk aversion. Under this
distribution, what would be the probability of observing an equity premium puzzle in
samples of the same size as the historical ones? That is, if rare events that did not
happen frequently enough in the historical sample were the true reason behind the
equity premium puzzle, what would be the likelihood of observing such a puzzle?
Second, suppose rare events were the cause of the equity premium puzzle. Would

taking these events into account also explain why the C-CAPM performs poorly in
pricing the cross-section of asset returns? Or would it worsen the cross-sectional failure
of the model?

In Section 6.1 we present the constructed rare events distribution of the data, while
its implications for the likelihood of observing an equity premium puzzle and for the
cross-section of asset returns are discussed, respectively, in Section 6.2 and Section 6.3.

6.1 A World without the Equity Premium Puzzle

To see how the EL and ET estimation procedure can be used to estimate a distribution
of the data that rationalizes the equity premium puzzle, note that the consumption
Euler equation (1) implies the following identity

EF
��

Ct
Ct�1

��
Ret

�
EF
��

Ct
Ct�1

��� � EF [Ret ] +
CovF

��
Ct
Ct�1

��
;Ret

�
EF
��

Ct
Ct�1

���
| {z }

=:eppF ()

;
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where F is the true, unknown, probability distribution of the data, and the right hand
side is a measure of the equity premium puzzle under F , since it is given by the di¤er-
ence between the expected risk premium on the market and the risk premium implied
by the Consumption CAPM. If the C-CAPM were the true model of the economy, we
would have eppF () = 0 at the true . Note also that the EL and ET procedures esti-
mate nonparametrically, for any value of , the unknown true probability distribution
F with the probability weights

�
p̂jt ()

	T
t=1

(where j 2 fEL;ETg) such that

TX
t=1

�
Ct
Ct�1

��
Ret p̂

j
t () = 0 8.

Therefore, indicating with P̂ j () the probability measures de�ned by
�
p̂jt ()

	T
t=1
, j 2

fEL;ETg, we have that

EP̂
j()

"�
Ct
Ct�1

��
Ret

#
= 0! eppj () = 0,

as long as
�

Ct
Ct�1

��
and Ret have �nite �rst and second moments under P̂

j ().
That is, �xing the relative risk aversion coe¢ cient , we can use the EL and ET

procedures to construct the probability distribution needed to solve the equity premium
puzzle. As discussed in Section 3, these procedures will be consistent. Moreover,
this approach will minimizes the Kullback-Leibler divergence between the estimated
distribution and the unknown data generating process. That is, in the same fashion
as a Maximum Likelihood estimator, this approach will minimize the distance (in the
information sense) between the model and the true data generating process. Therefore,
this procedure can be interpreted as calibrating a rare events model, that solves the
equity premium puzzle, in a rigorous data-driven fashion, since the estimated P̂ j () will
be the closest distribution, among all the distributions that could rationalize the puzzle,
to the true unknown data generating process. This implies that, if rare events are the
true explanation of the equity premium puzzle, the estimated P̂ j (), j 2 fEL;ETg,
should identify their distribution.
In what follows we discuss the properties and implications of the estimated P̂ j ()

assuming  = 10, that is a level of relative risk aversion at the upper bound of what is
commonly considered the �reasonable�range for this parameter (e.g. Gollier (2002)).
In the Appendix we also report results for  = 5.
With the P̂ j () estimates at hand, the �rst question to ask is whether the implied

state probabilities make economic sense. A priori, we would expect that the rare events
distribution needed to rationalize the equity premium puzzle assigns a relatively higher
weight to a few particularly bad states of the economy. Figure 1 suggests that this is
exactly what the estimated P̂ j () do.
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Figure 1 reports EL and ET probability estimates, NBER recession periods (shaded
areas), and the major stock market crashes identi�ed by Mishkin andWhite (2002) plus
the 2002 market crash (vertical dashed lines). Panel A reports estimated probability
weights for quarterly data over the sample 1947:Q2-2003:Q3, while Panel B focuses on
annual data over the sample 1930-2006. In the annual sample, we classify a given year
as a recession if a NBER recession was registered in at least one of the quarters.

Figure 1: EL and ET estimated probabilities for  = 10. Shaded areas are NBER
recession periods. Vertical dashed lines are the stock market crashes identi�ed by
Mishkin and White (2002).

Several things are evident in Figure 1. First, the EL and ET estimated weights
are extremely similar �the correlation between the two estimates is about :97 for both
quarterly and annual data �suggesting robustness of these approaches. Second, both
estimates tend to assign a relatively higher probability weight to recession periods: the
frequency of recession in the quarterly (annual) sample is 19:9% (35:1%) while the EL
and ET estimated probability of being in a recession period are, respectively, 21:3%
and 20:9% (39:5% and 38:6%). Third, the increases in the probability of observing a
recession are largely driven by assigning a higher probability to few recession periods
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that are concomitant with market crash episodes. Fourth, the EL and ET estimated
distributions assign higher probability to most of the identi�ed periods of stock market
crash. The sampling frequency of stock market crashes in the quarterly (annual)24 data
is 6:6% (20:8%) while the EL and ET estimated probabilities of a stock market crash
are, respectively, 10:2% and 9:6% (28:2% and 27:9%). Fifth, the estimated probabilities
tend to put the highest weights on few periods characterized by both a stock market
crash and a recession � that is, states in which the consumption risk of the stock
market is particularly high, like during the Great Depression period and the 1973-1975
recession. Nevertheless, even the probabilities attached to these states are still fairly
small compared to the sampling frequency of the observations: for quarterly (annual)
data the sampling frequency is :4% (1:3%), while the highest EL and ET probability
weights are, respectively, 1:1% and :9% (4:7% and 3:4%).

Figure 2: Sample, EL and ET market returns distributions. EL and ET distributions
are computed setting  = 10.

24We classify a given year as a stock market crash year if at least one of the Mishkin and White
(2002) crash episodes was recorded.
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The implications of the estimated probability weights for the distribution of stock
market real returns are summarized in Figure 2. The upper two panels report the
histograms of quarterly (Panel A) and annual (Panel B) stock market real returns,
(Epanechnikov) kernel estimate of the sample distribution, and weighted (Epanech-
nikov) kernel estimates where the weights are given by the estimated P̂ j () probabili-
ties. Panel C (for quarterly data) and Panel D (for annual data) report the empirical
cumulative distribution function in the sample, and using the EL and ET probability
weights.
The �rst thing to notice is that the rare event distribution needed to rationalize the

equity premium puzzle implies thicker negative tails, and a more left skewed distribu-
tion than what has been historically observed. Moreover, the EL and ET probability
weights generate a leftward shift in the distribution of returns when compared with
the historical data. This leftward shift implies a reduction of both median and mean
stock market return: the implied annual median (mean) risky rate is about 4:9%-6:4%
(2:1%-5:0%). These numbers are in line with the rare events calibrated model of Barro
(2006) that �nds an expected risky rate in the 3:7%-8:4% range. One last point worth
stressing is that, as shown in Panels C and D of Figure 2, the implied empirical dis-
tributions of market returns under P̂EL () and P̂ET () are extremely similar, once
again suggesting robustness of the approach proposed.
Rare events models stress that the equity premium puzzle can be rationalized by

assigning a higher probability to particularly bad states of the economy in which both
market returns and consumption growth are low, since these are the states in which
the consumption risk of the stock market is the highest. Figure 3 shows that this is
indeed an implication of the EL and ET estimated probability weights.
Each panel of Figure 3 reports the scatter plot of stock market excess returns

(horizontal axis) and consumption growth (vertical axis), also singling out observations
that correspond to NBER recessions and to the stock market crash periods identi�ed by
Mishkin and White (2002). Each Panel also reports the level curves of Epanechnikov
kernel estimates of the joint distribution of excess returns and consumption growth.
The upper three panels focus on the quarterly sample, while the lower three panels
report results for the annual sample. Panels A and D focus on the sample distributions,
while Panels B and E and Panels C and F report, respectively, the EL and ET implied
joint distributions (obtained by performing weighted kernel estimates with the weights
given by the EL and ET estimated probabilities). The lower left portion of each panel
represents states of the world in which the consumption risk of the stock market is
highest i.e. observations that are characterized by both low excess returns and low
consumption growth. Not surprisingly, this is also the area were recessions and stock
market crashes tend to appear more often. Comparing the level curves in Panels A
and D with the ones in Panel B, C, E and F, it appears clearly that the ET and
ET probability weights skew the joint distribution of consumption growth and market
returns toward the lower left portion of the graphs, therefore increasing the likelihood of
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Figure 3: Level curves of the joint distribution of consumption growth and stock market
excess returns.

high stock market consumption risk states.25 Moreover, most of the shift in probability
mass happens on the lowest level curve i.e. on the tail on the joint distribution, as the
rare events explanation of the equity premium puzzle would imply.

Overall, the results of this section suggest that using the EL and ET approaches
to construct distributions of the data that rationalize the equity premium puzzle with
a low level of risk aversion, and at the same time are as close as possible to the
true unknown distribution of the data, deliver results that are: a) robust, since both
approaches have extremely similar implications, and b) in line with what the rare events

25In the quarterly (annual) data, the probability of jointly observing excess returns and consumption
growth that are below their historical medians becomes about 30:2% (29:3%) for the EL estimates
and 30:3% (29:2%) for the ET ones, therefore increasing the likelihood of such events by about 5%.
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hypothesis predicts should be the mechanisms needed to rationalize the equity premium
puzzle.
In the next two sections we ask whether a rare event model characterized by the

P̂ j () probability weights discussed above a) would be likely to deliver an equity
premium puzzle in a sample of the same size as the historical one, and b) can help
explain the inability of the standard Consumption CAPM to price the cross-section of
asset returns.

6.2 How likely is the Equity Premium Puzzle?

The P̂ j (), j 2 fEL;ETg, measures just discussed provide the most probable (in the
likelihood sense) rare events explanation of the equity premium puzzle. But under
these measures, what is the likelihood of observing an equity premium puzzle in a
sample of the same size as the historical one?
To answer this question we perform the following counterfactual exercise. First,

we use the estimated P̂ j (), j 2 fEL;ETg, distributions to generate counterfactual
samples of data of the same size as the historically ones.
That is, we use the

�
p̂jt ()

	T
t=1
, j 2 fEL;ETg, probabilities to draw with replace-

ment from the observed data
n

Ct
Ct�1

;Ret

oT
t=1
, and use these draws to form samples of

size T . We generate a total of 100; 000 counterfactual samples in this fashion (for both
quarterly and annual data).
Second, in each sample i we compute the realized equity premium puzzle, eppTi (),

as

eppTi () = E
T
�
Rei;t
�
+

CovT
��

Ci;t
Ci;t�1

��
;Rei;t

�
ET
��

Ci;t
Ci;t�1

��� (9)

where ET [:] and CovT [:] denote the sample moments operators, and  is �xed to
the same low level used to construct P̂ j (). Moreover, in each generated sample we
perform a GMM estimation of the coe¢ cient of relative risk aversion. The results
of this counterfactual exercise are summarized in Table 2. The �rst column reports
the equity premium puzzle, as a function of , in the historical samples. The second
column reports the median and, in squared brackets, the 95% con�dence interval of
the equity premium puzzle in the counterfactual samples. The third column reports
the probability of observing, in the counterfactual samples, a realized equity premium
puzzle as large as � or larger than � the historical one. The last column reports
the median and, in squared brackets, the 95% con�dence interval of the estimated 
coe¢ cient in the counterfactual samples. Panel A focuses on quarterly data while Panel
B hinges upon annual observations. Quarterly rates in Panel A are annualized for the
sake of comparison with the annual ones in Panel B.
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Table 2: Counterfactual Equity Premium Puzzle
eppT () eppTi () Pr

�
eppTi () � eppT ()

�
̂i;GMM

Panel A: Quarterly Data
P̂EL ( = 5) 7:4% 0:0%

[�4:6%, 4:7%]
0:10% 5

[�41, 67]

P̂EL ( = 10) 7:3% 0:0%
[�4:7%, 4:7%]

0:12% 10
[�36, 69]

P̂ET ( = 5) 7:4% 0:0%
[�4:6%, 4:5%]

0:10% 5
[�43, 66]

P̂ET ( = 10) 7:3% 0:0%
[�4:6%, 4:5%]

0:13% 10
[�40, 70]

Panel B: Annual Data
P̂EL ( = 5) 7:2% 0:0%

[�5:4%, 5:3%]
0:37% 5

[�21, 29]

P̂EL ( = 10) 6:5% 0:0%
[�5:7%, 5:7%]

1:22% 10
[�12, 32]

P̂ET ( = 5) 7:2% 0:0%
[�5:1%, 5:1%]

0:33% 5
[�24, 29]

P̂ET ( = 10) 6:5% 0:0%
[�5:4%, 5:5%]

0:98% 10
[�13, 33]

The �rst row, �rst column, of Panel A shows that the assumption of a relative risk
aversion coe¢ cient of 5 implies, in the 1947:Q2-2003:Q3 sample, an equity premium
puzzle of about 7:4% per year. The second column shows instead that the median
equity premium puzzle in the counterfactual sample generated by the EL probabilities
with  = 5 is about 0%, and that the upper bound of its 95% con�dence band is
only 4:7% �that is, the con�dence interval does not include the historically observed
equity premium puzzle.26 Moreover, in the counterfactual samples, a negative equity
premium puzzle seems almost as likely as a positive one. This is due to the fact that
increasing the probability attached to extremely bad states of the economy, we make it
more likely to observe too many of these events in a �nite sample, therefore increasing
the likelihood of observing a negative equity premium puzzle in the counterfactual
samples.
The third column shows that, for a risk aversion of 5, the likelihood of observing an

equity premium puzzle as large as the historical one would be extremely low �about
0:10%. The last column reports the median estimate and the 95% con�dence bands,
in square brackets, of the estimated relative risk aversion coe¢ cient.27 The estimates
are centered around the true value used to generate the samples, but the 95% interval
is very large, ranging from �41 to 67. This �nding is in line with the evidence of a
poor performance of the GMM estimator in the presence of rare events (Saikkonnen
and Ripatti (2000)).

26Median and con�dence bands are computed from the percentiles of
�
eppTi ()

	100;000
i=1

:
27Median and con�dence bands are computed from the percentiles of

�
̂i;GMM

	100;000
i=1

.
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The second row, �rst column, of Panel A shows that assuming a relative risk aver-
sion of 10 reduces only marginally the equity premium puzzle in the 1947:Q2-2003:Q3
sample, to about 7:3% per year. The median eppTi in the counterfactual samples is
still zero and once again the 95% con�dence interval does not contain the historical
value. Moreover, the likelihood of observing an equity premium puzzle as large as the
historical one increases only slightly to about 0:12%. The last column shows that the
estimates of  are centered around the truth, but that in the presence of rare events
this parameter can be dramatically misestimated.
The last two rows of Panel A of Table 2 use the ET probabilities instead of the EL

ones. The results are largely in line with the ones in the �rst two rows: the median
equity premium puzzle in the counterfactual sample is zero and its 95% con�dence
bands are too tight to include the historical values. Moreover, the equity premium
puzzle is very unlikely to arise: its probability is less than 0:13%.
Panel B of Table 2 reports the same exercise as in Panel A, but it uses annual

observations over the sample 1930-2006. The median eppTi is about zero for both
EL and ET probabilities and, independently of the value of  considered, the 95%
con�dence bands do not include the historical values of the puzzle. Most importantly,
even in this sample the probability of observing an equity premium puzzle of the same
magnitude as the historical one is extremely small, ranging from 0:33% to 1:22%. Once
again, the GMM estimates of  are centered around the truth but the con�dence bands
tend to be very large, suggesting that in the presence of rare events the risk aversion
coe¢ cient is likely to be misestimated.
As a robustness check, in the Appendix we present a similar counterfactual ex-

ercise that is robust to potential violations of the martingale di¤erence property of
the conditional consumption Euler equation. This approach, combined with a simple
modi�cation of the procedure for drawing counterfactual samples (presented in Section
A.1.4), also allows us to preserve the autocorrelation properties of consumption growth
and returns. As shown by Table A2 in the Appendix, this robustness check con�rms
the results in Table 2.

Over all, the results presented in this section imply that if the data were generated
by the rare events distribution needed to rationalize the equity premium puzzle, the
puzzle itself would be very unlikely to arise in samples of the same size as the historical
ones. This suggests that if one is willing to believe that the rare events hypothesis is
the explanation of the equity premium puzzle, one should also believe that the puzzle
itself is a rare event.

6.3 Rare events and the cross-section of asset returns

Having identi�ed the EL and ET probability weights needed to rationalize the equity
premium puzzle with a low level of risk aversion, we can explore whether rare events
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are a viable explanation of the poor performance of the C-CAPM in pricing the cross-
section of asset returns.
The consumption Euler equation implies that the expected excess return on any

asset should be fully explained by the asset�s consumption risk, where the latter is
measured by the covariance of the excess return with the ratio of marginal utilities
between two consecutive periods. That is, for any asset i with associated excess return
Rei;t, and denoting with F the true distribution of the data, we have that the following
relation

EF
�
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�
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��
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��
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should hold exactly (at the true ) with � = 0 and � = 1. Similarly, linearizing the
pricing kernel to get rid of  (see e.g. Parker and Julliard (2003)), we have that the
following relation
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should hold with � = 0 and � > 0. The �i terms in equations (10) and (11) can be
interpreted as a measure of the consumption risk that an agent undertakes investing
in asset i.
It is a well documented empirical regularity that the above implications of the C-

CAPM are rejected by the data when the moments in equations (10) and (11) are
replaced with their sample analogs (see e.g. Mankiw and Shapiro (1986), Breeden,
Gibbons, and Litzenberger (1989), Campbell (1996), Cochrane (1996), Lettau and
Ludvigson (2001), Parker and Julliard (2005)). Nevertheless, if the empirical failures
of the C-CAPM were the outcome of rare events that happened to occur with too low
frequency in the historical sample, we would expect equations (10) and (11) to hold if
the moments were constructed taking explicitly these rare events into account. That is,
using the probability weights P̂ j (), j 2 fEL;ETg, needed to rationalize the equity
premium puzzle under the rare events hypothesis (and presented in Section 6.1), we
would expect
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to hold with � = 0 and � > 0.
To test this hypothesis we use the quarterly cross-section of Fama-French 25 port-

folios and construct excess returns as these returns less the return on the 3-month
Treasury Bill rate. To obtain empirical estimates of � and �, we use the two-step
Fama and MacBeth (1973) cross-sectional regression procedure, adapted to take into
account that the moments in equations (12) and (13) should be constructed under the
P̂ j () probability measures rather than as sample analogs. The EL and ET probabil-
ity weights (P̂ j ()) are the ones described in Section 6.1 under the assumption that
 = 10, and we therefore estimate equation (12) setting  = 10 in the pricing kernel.
The point estimate of � measures the extent by which the model fails to price the
average equity premium in the cross-section of the Fama and French (1992) 25 portfo-
lios. The estimation procedure is described in detail in Appendix A.2. Cross-sectional
estimation results are reported in Table 3.
The �rst column of the table reports the cross-sectional R2 for all the models con-

sidered.28 The second and third columns report, respectively, the point estimates of
� and � and their standard errors (in brackets). In order to disentangle the channels
through which the rare events distributions P̂ j () a¤ect the cross-sectional perfor-
mance of the C-CAPM, Table 3 also reports two additional statistics. The fourth
column reports the percentage change in the ratio of the cross-sectional variance of
consumption risk measures to the cross-sectional variance of average excess returns
(that is V ar (�i) =V ar

�
E
�
Rei;t+1

��
) caused by using the P̂ j () probability weights,

instead of sample averages, in computing the moments in equations (12) and (13).
The �fth column reports the change in the cross-sectional variance of the correlations
between the pricing kernel and excess returns in equations (12) and (13), that is the
change in V ar (�i), where �i is de�ned as

�i := corr

 �
Ct
Ct�1

��
;Rei;t

!

for the non-linear representation in equation (10), and as

�i := corr

�
ln

Ct
Ct�1

;Rei;t

�
for the linearized case in equation (11). Panel A of Table 3 focuses on the estimation
of equations (10) and (12), while Panel B reports the estimation results of equations
(11) and (13).

28Details on how to construct this statistic under the P̂ j () probability measures are reported in
Appendix A.2.
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Table 3: Counterfactual Cross-Sectional Regressions
Moments: R2 �̂ �̂ � V ar(�i)

V ar(E[Rei;t+1])
�V ar (�i)

Panel A: C-CAPM,  = 10
Sample 0:11 0:017

(0:005)
6:28
(5:04)

P̂EL () 0:00 0:007
(0:006)

�1:15
(5:09)

�35:4% �18:4%

P̂ET () 0:00 0:006
(006)

�0:78
(5:09)

�38:2% �12:9%

Panel B: linearized C-CAPM
Sample 0:12 0:017

(0:005)
63:35
(49:89)

P̂EL () 0:00 0:007
(0:006)

�12:18
(50:31)

�34:9% �19:4%

P̂ET () 0:00 0:006
(0:006)

�8:49
(50:37)

�37:8% �13:7%

Note: Fama and MacBeth (1973) standard errors in parenthesis under the estimated coe¢ cients.

The �rst row of Panel A reports the results of estimating equation (10) using the
sample moments of excess returns and pricing kernel. The large and statistically signif-
icant estimated �̂ is the cross-sectional equivalent of the equity premium puzzle, since
it implies an average underpricing of the cross-section of returns of about 7% on an
annual basis. Moreover, the point estimates of �̂ is more than six times larger than
what is implied by the C-CAPM, and this is due to the fact that the consumption risk
measures of the asset returns (the �i�s) computed from the sample averages are far too
low to be consistent with the sample averages of risk premia. Nevertheless, the point
estimate of �̂ is not statistically di¤erent from its theoretical value, but this is due to
the large standard error that makes it not statistically di¤erent from zero. Overall, the
performance of the C-CAPM is poor since the model is able to explain only 11% of the
cross-sectional variance of risk premia of the Fama and French (1992) 25 portfolios.
The second row of Panel A of Table 3 focuses on the estimation of equation (12)

using the EL probability weights, P̂EL (), needed to rationalize the equity premium
puzzle with a level of relative risk aversion of 10. The use of moments constructed
under the probability measure P̂EL () substantially reduces the estimated � coe¢ -
cient, implying a much smaller average mispricing (about 2:8% on a yearly basis), and
the coe¢ cient is not statistically signi�cant � as implied by the consumption Euler
equation. The �̂ coe¢ cient instead, even though not statistically di¤erent from 1, has
the opposite sign of what theory would predict. Moreover, the cross-sectional measure
of �t is about 0.
Comparing the results in the �rst and second rows of Panel A, it is clear that,

with the exception of the reduction in the average mispricing �̂, the C-CAPM per-
forms even worse under the P̂EL () probability measure. What drives this result? In
order to increase the ability of the C-CAPM to price the cross-section of returns, the
P̂EL () empirical measure should in principle increase the cross-sectional variance of
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consumption risk, V ar (�i), relative to the cross-sectional variance of average risk pre-
mia, V ar

�
E
�
Rei;t
��
. But the entry on column four, second row, of Panel A shows that

the exact opposite happens: moving from sample moments to the P̂EL () weighted
moments, V ar (�i) =V ar

�
E
�
Rei;t
��
is reduced by about 35:4%. And, as shown by the

�fth column of the same row, this is due to the fact that the cross-sectional variation
of the correlation between the pricing kernel and excess returns, V ar (�i), is reduced
by about 18:4% using the P̂EL () weights. This last �nding is a direct consequence
of the rare events explanation of the equity premium puzzle. In order to rationalize
the equity premium puzzle with a low level of risk aversion, we need to assign higher
probability to bad �economy wide �states such as deep recessions and market crashes.
But in a market crash or a deep recession all the assets in the cross-section tends to
yield low returns and consumption growth tend to be lower. Therefore, increasing the
probability of these type of states has two e¤ects. On one hand, it can rationalize the
average risk premium on the market since, at the same time, it increase the consump-
tion risk of investing in �nancial assets and reduces the expected returns. On the other
hand, it makes it harder to explain the cross-section of risk premia, since it reduces the
cross-sectional variability of consumption risk across assets.
The third row of Panel A of Table 3 use the P̂ET () probability weights for the

estimation of equation (12). The results are very similar to the ones obtained using
the P̂EL () weights: the model �ts better the average risk premium but its ability
to explain the cross-section of returns is reduced due to the substantial reduction in
both V ar (�i) =V ar

�
E
�
Rei;t+1

��
and in the cross-sectional variation of the correlation

between the pricing kernel and excess returns, V ar(�i).
Panel B of Table 3 focuses on the cross-sectional estimation of the C-CAPM in

its linearized form reported in equations (11) and (13). The advantage of using the
linearized approach is that the results do not depend on the choice of a pre-speci�ed
level for the relative risk aversion parameter . The �rst row of Panel B uses the sam-
ple moments of returns and consumption growth and reproduces the standard poor
performance of the C-CAPM in explaining the cross-section of asset returns (see e.g.
Parker and Julliard (2003)): the model is able to explain only 12% of the cross-sectional
variation of average excess returns; the large �̂ estimate is statistically signi�cant and
implies an average underpricing close to 7% on an annual basis; �̂ has the right sign
but is not statistically di¤erent from zero. The second and third rows focus, respec-
tively, on the implications of using the P̂EL () and P̂ET () weights in estimating the
moments in equation (13). The results are substantially in line with the ones reported
in Panel A. Using the P̂ j () probability weights helps the C-CAPM �t better the av-
erage risk premium on the market but it worsens the ability of the model to explain
the cross-sectional di¤erences in average returns. This is due to the reduction in the
cross-sectional variation of the consumption risk measures caused by attaching higher
probability to infrequent, economy wide, bad states during which consumption growth
is low and all the assets tend to perform poorly.
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Overall, the estimates in Table 3 suggest that the rare events explanation of the
equity premium puzzle worsens the poor performance of the C-CAPM in pricing the
cross-section of asset returns. Moreover, the above results hold qualitatively for any
 2]0; 10].
In order to show that the above �ndings are not driven by a few outlier portfolios,

Figure 4 reports average returns and consumption risk estimates using both sample
moments and P̂ j () weighted moments. In Figure 4, the upper three panels report the
scatter plots of average excess returns and model implied risk premia from equations
(10) and (12), and the �tted lines correspond to the cross-sectional estimates in Panel A
of Table 3. The lower three panels report the scatter plots of average excess returns and
the consumption risk of the Fama-French 25 portfolios implied by the linearized pricing
relations in equations (10) and (12). The �tted lines in the lower panels correspond to
the cross-sectional estimates in Panel B of Table 3. We denote a portfolio by the rank
of its market equity and then the rank of its book-to-market ratio so that portfolio 51
is the largest quintile of stocks by market equity and the smallest quintile of stocks by
book-to-market.
Panel A of Figure 4 reports average and implied excess returns using the sample

moments. If the C-CAPM were to price correctly the cross-section, all the Fama-
French 25 portfolios would lie on the 45 degree line (the black line in the �gure).
All the Portfolio in Panel A lie far above and to the left of the 45 degree line, since
sample averages of returns are all much higher than the model implied ones. Panel
B reports average and implied risk premia constructed using the P̂EL () weights. By
thickening the left tail of the returns distributions, the average returns are lowered,
and by increasing the probability of states characterized by both low returns and low
consumption growth, the model implied risk premia on the Fama-French 25 portfolios
increases. As a consequence, the scatter plot in Panel B is shifted down and to the right
compared with the one in Panel A. This shift makes the portfolios lie both above and
below the 45 degree line, therefore delivering a better �t of the average risk premium on
the portfolios, as shown by the lower �̂ in Table 3. Nevertheless, the P̂EL () weights
fail to line up the portfolios on the 45 degree line due to the decrease in the cross-
sectional dispersion of implied risk premia relative to the cross-sectional dispersion of
average returns, therefore failing to improve the pricing of the cross-section of average
returns. Panel C uses the P̂ET () weights in constructing average and implied risk
premia, and delivers the same qualitative results as the ones obtained in Panel B using
the P̂EL () weights.
The lower three Panels of Figure 4 reports average excess returns and the covari-

ances between consumption growth and excess returns using sample moments (Panel
D), P̂EL () weighted moments (Panel E), and P̂ET () weighted moments (Panel F).
Comparing Panels E and F with Panel D, we observed a shift of the scatter plots toward
the lower right corner, that increases the ability of the C-CAPM to �t the average risk
premium on the 25 portfolios under the P̂ j () probability measures. Nevertheless, we
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do not observe the increase in the cross-sectional variation of consumption risk that
would be necessary to make the model �t the cross-sectional di¤erences in average risk
premia.

Figure 4: Rare events and the cross-section of asset returns.

Overall, the results of this section suggest that forcing on the data the rare events
rationalization of the equity premium puzzle would worsen the already poor perfor-
mance of the C-CAPM in pricing the cross-section of asset returns. This �nding is
driven by the fact that, in order to rationalize the equity premium puzzle with a low
level of risk aversion, we need to assign higher probability to bad �economy wide �
states such as recessions and market crashes. Since during market crashes and deep
recessions all the assets in the cross-section tend to yield low returns and consump-
tion growth tends to be low, this reduces the cross-sectional variability of consumption
risk across assets, making it harder for the model to explain the cross-section of risk
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premia. This �nding also suggests that explanations of the equity premium puzzle
based on agents�expectations of an economy wide disaster (e.g. a �nancial market
meltdown) that has not materialized in the sample �a so called peso phenomenon �
would also reduce the ability of the Consumption-CAPM to price the cross-section of
asset returns, since such an expectation would reduce the cross-sectional dispersion of
consumption risk across assets.

7 Conclusion

In this paper we study the ability of the rare events hypothesis to rationalize the
equity premium puzzle. Performing econometric inference with an approach that en-
dogenously allows the probabilities attached to the states of the economy to di¤er
from their sample frequencies, we �nd that the consumption Euler equation with time-
additive CRRA preferences is still rejected by the data, and that a very high level of
relative risk aversion is needed in order to rationalize the stock market risk premium.
We identify the most likely rare events distribution of the data needed to rationalize

the puzzle, and show that the constructed distribution is in line with the predicaments
of the rare events hypothesis. Nevertheless, we �nd that, if the data where generated by
such a distribution, an equity premium puzzle of the same magnitude as the historical
one would be very unlikely to arise. We interpret this �nding as suggesting that, if one
is willing to believe in the rare events explanation of the equity premium puzzle, one
should also believe that the puzzle itself is a rare event.
We also show that imposing on the data the rare events explanation of equity

premium puzzle, substantially worsens the ability of the Consumption-CAPM to price
the cross-section of asset returns. This is due to the fact that, in order to rationalize the
EPP through a rare events (or peso) explanation, we need to assign higher probability
to extremely bad, economy wide, states. Since in such states consumption growth is
low and all the assets in the cross-section tend to perform poorly, the cross-sectional
dispersion of consumption risk is reduced relative to the cross-sectional dispersion of
asset returns, therefore reducing the ability of the Consumption-CAPM to explain the
cross-section of returns.
The analytical approach undertaken in this paper can be extend to the study of

other empirical regularities that, researchers have suggested, could be explained by
the rare events hypothesis, e.g. exchange rates �uctuations and the forward-premium
puzzle, the term structure of interest rates, and the �smirk�patterns documented in
the index options market. Moreover, the information theoretic approach we suggest
can be applied to the calibration of the nuisance distributions of any economic model
that delivers well de�ned Euler equations. Furthermore, with minor methodological
modi�cations, this approach can also be used to study the dynamic properties of the
calibrated models.
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A Appendix

A.1 Robustness

A.1.1 Blockwise Empirical Likelihood and Exponential Tilting

The empirical application of the econometric methodology presented in Section 3 relies
on the fact that the optimizing behavior of the representative agent, in the time-additive
power utility model, leads to the Euler equation

Et�1

"�
Ct
Ct�1

��
Ret

#
= 0

where Et�1 [:] denotes the expectation operator conditional on time t � 1 information

set. The above expression implies that
��

Ct
Ct�1

��
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�1
t=1

is a martingale di¤erence se-

quence, i.e. it is not autocorrelated. This implies that the standard errors and test sta-

tistics in Table 1 remain valid even if the stochastic processes generating
n

Ct
Ct�1

; Ret

o1
t=1

are (weakly) dependent.
Nevertheless, serially correlated measurement error in consumption (see Wilcox

(1992)) could make the martingale property of the conditional Euler equation fail in
the data, therefore jeopardizing the asymptotic justi�cation of the tests presented in
Table 1.
To address the above issue, we focus on the blockwise empirical likelihood (Kitamura

(1997)) and exponential tilting (Kitamura and Stutzer (1997)) estimators. The idea is
to use blocks of consecutive observations to retrieve �nonparametrically �information
about dependence in the data (this is closely related to the blockwise bootstrap, see

e.g Hall (1985)). More precisely, the observation f(zt;�) =
�

Ct
Ct�1

��
Ret is replaced by

bf(t;�) = 1

2M + 1

MX
s=�M

f(zt+s;�)

where M2=T ! 0, and M ! 1 as T ! 1. Then, EL and ET methods, as outlined
in Section 3, are applied with f(xt;�), t = 1; 2; :::; T , replaced with bf(t;�), t = M +
1;M + 2; :::; T �M . Kitamura (1997) shows that the asymptotic distribution of these
estimators is p

T
�b�j � �0� d! N(0; V ), j 2 fEL;ETg ;

where

V = (D0
�1D)�1, D = E� [@f(xt;�0)=@�
0] , 
 =

1X
j=�1

E� [f(xt;�0)f(xt+j;�0)
0] :
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A.1.2 Blockwise Estimation Results

In this section we use the blockwise estimation methodology outlined in Section A.1.1
to estimate and test the consumption Euler equation (1). Results obtained using this
approach, and a window of four years in the annual sample, and of 12 quarters in the
quarterly sample, are reported in Table A1.

Table A1 : Euler Equation Estimation
EL ET BEL BETEL
Panel A: Quarterly Data

̂ 100
(16:6)

124
(12:2)

100
[72:3; 133:0]

86
[65:0; 107:2]

�2(1) 8:67
(:003)

12:2
(:001)

Pr ( � 10jdata) 0:00% 0:00%
Panel B: Annual Data

̂ 37
(5:35)

37
(5:35)

37
[22:1; 54:8]

37
[22:6; 53:9]

�2(1) 4:42
(:035)

7:19
(:007)

Pr ( � 10jdata) 0:02% 0:01%

Point estimates and testing results in Table A1 are in line with the ones in Table 1.
First, frequentist estimates of the relative risk aversion coe¢ cient are very large and
statistically larger than 10 at any standard con�dence level. Second, joint tests of the
consumption Euler equation and the restriction of a  as small as 10, reject the null
hypothesis. Third, Bayesian posteriors peak at high levels of  and the 95% con�dence
regions do not include values smaller that 22. Fourth, given the data, the posterior
probability of a relative risk aversion of 10 (or smaller) is extremely small.

A.1.3 Probability Weights with Alternative Values of 

Figure 5 plots the time series of the EL and ET probability weights constructed setting
 = 5: Comparing Figure 5 with 1, it appears clearly that, changing the value of , the
sets of events that need to receive an higher probability weight in order to rationalize
the EPP with a low level of RRA, stays unchanged. The only di¤erence is that, in order
to rationalize the puzzle with a lower level of risk aversion, the probability assigned to a
few economy wide extremely bad states such, as market crashes concomitant with deep
recessions, have to be marginally increased. This suggests robustness of the approach
with respect to the choice of the relative risk aversion parameter.
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Figure 5: EL and ET estimated probabilities for  = 5. Shaded areas are NBER
recession periods. Vertical dashed lines are the stock market crashed identi�ed by
Mishkin and White (2002).

A.1.4 The Likelihood of the Equity Premium Puzzle with Blockwise Sam-
pling

In this section we repeat the counterfactual exercise presented in Section 6.2, but
instead of drawing individual couples of consumption growth and excess returns, we
draw consecutive blocks of data in order to preserve, as in a blockwise bootstrap, the
autocorrelation properties of the data. The EL and ET probabilities for the blocks are
constructed using the blockwise approach described in Section A.1.1, and a window of
four years in the annual sample, and of 12 quarters in the quarterly sample. Results
obtained using this approach are reported in Table A2. The �ndings in Table A2 are
largely in line with the ones in Table 2: the median realized equity premium puzzle
in the counterfactual samples is very close to zero and its 95% con�dence region does
not include the historically observed value; the estimated coe¢ cient of risk aversion in
the counterfactual samples does not have any systematic bias but its 95% con�dence
interval is very large, suggesting that in the presence of rare events this parameter
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might be dramatically misestimated. Moreover, the probability of observing an equity
premium puzzle in the counterfactual samples is very small, and never larger than
1:02%. That is, as Table 2, Table A2 suggests that if one believes that the rare events
hypothesis is the explanation of the EPP, one should also believe that the historically
observed EPP is itself a rare event.

Table A2: Counterfactual EPP with Blockwise Sampling
eppT () eppTi () Pr

�
eppTi () � eppT ()

�
̂i;GMM

Panel A: Quarterly Data
P̂EL ( = 5) 7:4% 0:1%

[�5:7%, 5:5%]
0:34% 5

[�56, 76]

P̂EL ( = 10) 7:3% 0:1%
[�5:7%, 5:5%]

0:42% 10
[�56, 80]

P̂ET ( = 5) 7:4% 0:1%
[�4:9%, 4:6%]

0:08% 5
[�49, 75]

P̂ET ( = 10) 7:3% �0:2%
[�5:2%, 4:3%]

0:08% 10
[�47, 80]

Panel B: Annual Data
P̂EL ( = 5) 7:2% �0:1%

[�4:6%, 4:7%]
0:08% 5

[�14, 20]

P̂EL ( = 10) 6:5% �0:1%
[�4:9%, 5:4%]

1:02% 10
[�5, 27]

P̂ET ( = 5) 7:2% �0:2%
[�3:7%, 3:7%]

0:00% 4
[�22, 28]

P̂ET ( = 10) 6:5% �0:1%
[�4:3%, 4:6%]

0:26% 10
[�9, 35]

A.2 Probability Weighted Fama-MacBeth Regressions

In order to estimate the parameters � and � in equations (12) and (13) we follow
a Fama and MacBeth (1973) two step procedure, adapted to take into account that
the moments should be constructed under P̂ j () probability measures instead that as
sample analogs.
In a �rst step, we construct the consumption risk measure in equation (12) by

computing

�̂
j

i : = �
CovP̂

j()

��
Ct
Ct�1

��
;Rei;t

�
EP̂ j()

��
Ct
Ct�1

���

= �

PT
t=1

�
Ct
Ct�1

��
Rei;tp̂

j
t �

�PT
t=1

�
Ct
Ct�1

��
p̂jt

� hPT
t=1R

e
i;tp̂

j
t

i
�PT

t=1

�
Ct
Ct�1

��
p̂jt

� ,
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where j 2 fEL;ETg, and  is �xed to the same value used to construct the weights�
p̂jt
	T
t=1
. Similarly, for equation (12) we construct

�̂
j

i : = CovP̂
j()

�
ln

Ct
Ct�1

;Rei;t

�
=

TX
t=1

ln

�
Ct
Ct�1

�
Rei;tp̂

j
t �

"
TX
t=1

ln

�
Ct
Ct�1

�
p̂jt

#"
TX
t=1

Rei;tp̂
j
t

#
:

In a second step, for each t we run the cross�sectional regression

Rei;t = �t + �̂
j

i�t + "i;t, (14)

where "i;t is a mean zero cross-sectional error term, obtaining the sequence of estimatesn
�̂t; �̂t

oT
t=1
. The point estimates for � and � are then constructed as

�̂ :=
TX
t=1

�̂tp̂
j
t and �̂ :=

TX
t=1

�̂tp̂
j
t :

Finally, we use the weighted sampling variation of
n
�̂t; �̂t

oT
t=1

to construct the

standard deviations of the above estimators:

�2 (�̂) :=
1

T

TX
t=1

(�̂t � �̂)2 p̂jt , �2
�
�̂
�
:=

1

T

TX
t=1

�
�̂t � �̂

�2
p̂jt .

Note that the estimated �̂ and �̂ are numerically equivalent to the coe¢ cients we would
obtain by running the cross-sectional regression"

TX
t=1

Rei;tp̂
j
t

#
= �+ �̂

j

i�+ �i

where �i is a mean zero error term.
The cross-sectionalR2 corresponding to these Fama andMacBeth (1973) regressions

is constructed as

R2 := 1�
V ar

�
EP̂

j()
�
Rei;t
�
� R̂ei;t

�
V ar

�
EP̂ j()

�
Rei;t
��

where

EP̂
j()
�
Rei;t
�
:=

TX
t=1

Rei;tp̂
j
t
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and
R̂ei;t := �̂+ �̂

j

i �̂. (15)

Note that the standard Fama and MacBeth (1973) cross-sectional regression ap-
proach (that does not use probability weights) can be recovered by setting p̂jt = 1=T
8t.
The estimation algorithm just outlined is the one used to produce the results in

Table 3 of Section 6.3.
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