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Abstract

This paper deals with the issues of identification and estimation in the canonical model of con-
tagion advanced in Pesaran and Pick (2007). The model is a two-equation nonlinear simultaneous
equations system with endogenous dummy variables; it also represents an extension of univariate
threshold autoregressive (TAR) models to a simultaneous equations framework. For a range of
economic fundamentals, the model produces multiple (i.e. two) equilibria, and the choice of the
equilibrium is modelled as being driven by a Bernoulli process; further, the presence of multiple
equilibria leads to an incoherent econometric specification. The coherency issue is then reflected
in the analytical expression for the likelihood function derived in the paper. It is proved that
neither identification nor Full Information Maximum Likelihood (FIML) estimation of the model
require knowledge of the Bernoulli process driving the solution choice in the multiple equilibria
region. Monte Carlo experiments show that the FIML estimator performs better than the GIVE
estimators proposed in Pesaran and Pick (2007). Finally, an empirical illustration based on stock
market returns is provided.

JEL classification: C10, C13, C15, C32, G10, G15
Keywords: Contagion, Identification, Estimation, Coherent Models, Threshold Models

∗I would like to thank Hashem Pesaran for his continuous advice and comments. This paper also benefits from
conversations with Mardi Dungey, Andreas Pick, Alessio Sancetta and Takashi Yamagata. Constructive comments from
seminar participants at the Faculty of Economics and CIMF, University of Cambridge, have been most helpful. Financial
support from the following institutions is gratefully acknowledged: Corpus Christi College Cambridge; the Economic
and Social Research Council; European Trust and Faculty of Economics, University of Cambridge; Tudor Investment
Corporation. Errors and omissions are my own responsibility.

1



1 Introduction
Market crashes have not been unusual in the financial world. Three of the biggest historical crashes
that have been witnessed are: the Tulipmania, which invested the Republic of the Netherlands during
the 17th century; the South Sea Bubble, which derives its name from the South Sea Company, whose
stock’s value plunged at the end of May 1720; the 1929 US stock market crash, which started on
Black Tuesday, October 29. More recent crisis episodes that deserve to be mentioned are: the 1987
US stock market crash, which affected other major world markets, such as Honk Kong, London,
Tokyo and Singapore; the 1992 collapse of the Exchange Rate Mechanism of the European Monetary
system, which started with the speculative attacks to the Italian Lira and the British Pound, and
then spread to other countries as well; the December 1994 Mexican crisis, which also affected countries
like Argentina, Brazil and the Philippines and generated the well known Tequila effect; the 1997 Asian
crises, which began with the depreciation of the Thai baht, and then propagated to Malaysia, Indonesia,
the Philippines, Singapore, Taiwan and South Korea; the 2001 Argentine crisis, which determined a
cluster of turmoils in countries like Paraguay, Uruguay and Brazil. Finally, since the end of February
2007, the international financial system has been characterised by a situation of uncertainty, which has
been mainly generated by the crisis in the US subprime mortgage market: this led to a condition of
turmoil in Asian, European, and American markets.
From the previous discussion, it emerges that in more recent times financial shocks do not remain

confined to the market where they generate; rather, they tend to spread to other markets, giving rise
to a cluster of crises. The theoretical economic literature has identified a number of possible causes for
the simultaneous occurrence of financial crises across markets; following Masson (1999) they can be
classified as monsoonal effects, spillovers and pure contagion. Monsoonal effects are determined by the
dependence of macroeconomic fundamentals upon a common source: for example, developing countries
strongly depend on industrial countries, and a negative economic shock in the latter is likely to affect
the former and possibly result in a cluster of financial crises. Spillovers are driven by the correlation
between external economic linkages: for example, if two countries have strong trade linkages and one
of them is hit by a crisis and has to devalue, the other one will be forced to devalue as well in order to
maintain its degree of competitiveness. Finally, pure contagion occurs when a crisis spreads from one
country to another one without any change in macroeconomic fundamentals; as such, pure contagion is
modelled as a situation characterised by the presence of multiple equilibria, where the economic system
jumps from one equilibrium to another one. Following Pesaran and Pick (2007), in what follows we
will simply refer to pure contagion as contagion, while monsoonal effects and spillovers will be jointly
referred to as interdependence effects.
The definition of contagion we adopt can be interpreted in two complementary ways. Following a

probabilistic approach, contagion takes place if the occurrence of a crisis in one market increases the
likelihood of a crisis in another market above the level implied by economic fundamentals. Alternatively,
contagion is said to occur if the degree of correlation between two markets during crisis periods increases
relatively to tranquil periods. These two ways of defining contagion are consistent with the restrictive
and very restrictive definitions provided by the World Bank, respectively1.
The distinction between interdependence and contagion is of interest to policy makers (either in

international financial institutions, such as the IMF, or at central banks) and to profit maximisers
investors. In the former case, if a random jump from a "good" to a "bad" equilibrium (i.e. contagion)
occurs, then a policy intervention could be effective; conversely, in the case of interdependence a similar
action is unlikely to have any significant effect. In the case of investors, the exposition to market risk
can be generally reduced by portfolio diversification; however, if contagion occurs then the degree of
dependence between markets increases, and portfolio diversification may not be an effective strategy
to follow. Therefore, because of the different effects they have on economic agents’ decision process,
the identification of interdependence and contagion effects has to be achieved.
There now exists an extensive empirical literature that aims at identifying contagion from inter-

dependence effects, as surveyed in Rigobon (2001), Billio and Pelizzon (2003), Pericoli and Sbracia
(2003), Dungey et al. (2005a), Dungey et al. (2005b) and Massacci (2007). In particular, two sets of
papers can be identified, each related to one of the definitions of contagion previously discussed.
Following the probabilistic approach, Eichengreen et al. (1996), Kruger et al. (1998), and Stone

1http://www1.worldbank.org/economicpolicy/managing%20volatility/contagion/definitions.html
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and Weeks (2001) make use of binary choice models. In each equation, the discrete dependent variable
takes a unit value if the underlying continuous variable crosses a given threshold, meaning that the
associated market is in crisis. Contagion effects are then captured by the inclusion of a dummy variable
as a covariate, which takes value equal to one if any other market in the sample is in crisis. Under the
assumption of independent and normally distributed errors, a pooled probit model is then estimated.
Esquivel and Larraín (1998) and Kumar et al. (2002) follow a similar approach; however, they estimate
a random effect probit model and a logit model, respectively. However, this class of models suffers
from two main shortcomings: first, by construction the contagion dummy is endogenous rather than
exogenous; second, the assumption of independently distributed errors is unlikely to hold in practice,
since their cross sectional correlation captures interdependence effects. As a consequence, the resulting
Maximum Likelihood estimator delivers inconsistent estimates of the parameters2.
Following the seminal paper by King and Wadhwani (1990), Boyer et al. (1999), Loretan and

English (2000), Ronn et al. (2001) and Forbes and Rigobon (2002) assess the presence of contagion
by testing whether there is a significant increase in the level of correlation between markets in crisis
periods relatively to tranquil ones. This correlation-based approach is then extended in Rigobon (2000),
Rigobon (2003a), Rigobon (2003b) and Dungey et al. (2005a) by developing testing procedures for
contagion based on the change in the reduced form covariance matrix of the underlying structural
model between tranquil and crisis periods. The problem with this methodology is that it requires a
priori specification of crisis periods; therefore, if crisis windows are misspecified then the estimators of
the parameters are likely to be inconsistent. Further, the models can only be employed to perform in-
sample analysis: they become of little use when performing out-of-sample forecasting analysis, which
plays a crucial role in the development of an early warning system for policy makers.
A further set of papers can be identified, made of contributions that can be related to the two

groups of studies previously discussed. Favero and Giavazzi (2002) make use of a linear simultaneous
equations system. In each structural equation, contagion effects are captured by the inclusion of a
dummy variable as a covariate, which takes value equal to unity if the error of the corresponding
reduced form equation crosses a threshold. Under the assumptions of normally distributed structural
errors and of exogenous contagion dummies, the model is estimated by Full Information Maximum
Likelihood. Because of the use of contagion dummies, the Favero and Giavazzi (2002) methodology can
be linked to the probabilistic approach previously discussed; however, it also suffers from an analogous
problem: by construction the contagion dummies are actually endogenous, and the employed estimator
delivers inconsistent estimates of the parameters of the model.
A further approach is followed inter alia by Jeanne and Masson (2000), Fratzsher (2003) and Billio

et al. (2005). They endogenously identify crisis periods by introducing a hidden state variable that
follows a Markov Chain, so that the resulting model is a Markov switching model. In this way, crisis
periods no longer need to be a priori specified, as it is the case in the studies where correlation or
covariance-based tests of contagion are employed. However, in a multivariate framework, the hidden
state variables are assumed to be orthogonal to each other, implying that contemporaneous crisis
episodes are treated as independent events.
This paper aims at analysing a contagion model that overcomes the shortcomings of the models

we have previously discussed. Our work focuses upon the canonical model of contagion advanced in
Pesaran and Pick (2007). The model is a two-equation nonlinear simultaneous equations system with
endogenous dummy variables; it is also an extension of univariate threshold autoregressive (TAR) mod-
els to a simultaneous equations framework. As it will be shown, for a range of economic fundamentals
the model produces multiple (i.e. two) equilibria, and the resulting equilibrium is chosen by a selection
indicator that can be modelled as a Bernoulli process. Further, the presence of multiple equilibria
leads to an incoherent econometric specification.
Our analysis focuses on identification and estimation of the Pesaran and Pick’s (2007) model. In

particular, it is shown that the coherency issue does not affect identification of the model, which is
achieved by exploiting the nonlinear nature of the system. As far as estimation is concerned, the
expression for the likelihood function is derived: the analytical expression for the pdf is affected by the

2The use of binary choice models to identify contagion effects is justified by an interest upon extreme events taking
place at the tails of the marginal distribution of asset returns. Bae et al. (2003) focus their attention on events at the
tails of the joint distribution of returns; as such, they estimate a multinomial logit model. However, their approach
suffers from the same shortcomings as that based on binary choice models.
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coherency issue; however, it does not require knowledge of the Bernoulli process driving the solution
choice in the multiple equilibria region. The empirical validity of the theoretical results are confirmed by
the Monte Carlo analysis we conduce, which also shows that the Full Information Maximum Likelihood
estimator we propose performs better than the GIVE estimators advanced in Pesaran and Pick (2007).
Finally, an empirical illustration seems to provide evidence in favour of the presence of contagion effects
in equity markets.
The rest of the paper is organised as follows. The contagion model is introduced in Section 2, and

its solution is presented in Section 3. The coherency issue is discussed is Section 4. Identification
and estimation of the model are dealt with in Section 5 and Section 6, respectively. A Monte Carlo
analysis is conduced in Section 7. An empirical illustration is provided in Section 8. Finally, concluding
remarks are given in Section 9. Concerning notation, a.s.→ and |·| denote almost sure convergence and
the Euclidean norm, respectively.

2 Contagion Model
Consider the following two-equation model specification introduced in Pesaran and Pick (2007)

y1t = δ01zt +α01x1t + β1I (y2t − c2) + u1t,
y2t = δ02zt +α02x2t + β2I (y1t − c1) + u2t,

(1)

where the dependent variable yit is a performance indicator for market i = 1, 2, t = 1, . . . T . The
regressors xit are ki × 1 vectors of market specific regressors (which may include lagged values of yit)
such that x1t ∩ x2t = ∅, while zt is an s× 1 vector of observable common factors; the elements of xit
and zt constitute the information set zt defined as

zt ≡
³
z
0

t,x
0

1t,x
0

2t

´0
. (2)

The indicator function I (·) is defined as

I (A) =

½
1 if A > 0
0 otherwise

. (3)

The vector of residuals ut ≡ (u1t, u2t)0 is a vector of real-valued martingale difference sequence with
respect to a non-decreasing sigma-field Ft to which ut and zt+1 are adapted, and it is such that

E (utu
0
t) = Σu ≡

µ
σ2u1 σu1u2
σu1u2 σ2u2

¶
. (4)

The system in (1) is a two-equation nonlinear simultaneous equations model with endogenous
dummy variables. The system is piecewise linear; following the threshold principle first advanced
by Pearson (1900), a shift in the intercept in the equation for yit occurs whenever the underlying
endogenous variable yjt crosses the corresponding threshold cj , for i, j = 1, 2 and i 6= j. Therefore, the
system belongs to the general class of models with structural shifts, as considered in Heckman (1978).
Blundell and Smith (1994) nests the specifications in Heckman (1978) with those in Gourieroux et
al. (1980), who consider models with endogenous switching regimes. A detailed survey of this class
of models is provided in Chapter 5 of Maddala (1983). Notice that in models with structural shifts
as considered in the microeconometric literature, the threshold parameters are assumed to be known
(and generally equal to zero); conversely, in the system in (1), the thresholds c1 and c2 are allowed to
be unknown: in this respect, the model we are considering is also related to the time series literature
on threshold models, which became popular after the work by Tong (1990), as it extends univariate
self-exciting threshold autoregressive (SETAR) models to a simultaneous equations system.
At each point in time, the variable yit can be in one of two possible regimes, i.e. yit ≤ ci or yit > ci,

i = 1, 2; therefore, the system as a whole can be in one of the following four regimes:

regime 1: y1t ≤ c1, y2t ≤ c2; regime 2: y1t ≤ c1, y2t > c2;

regime 3: y1t > c1, y2t ≤ c2; regime 4: y1t > c1, y2t > c2.
(5)

Given the model specification in (1), the following two assumptions are imposed:
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Assumption 1 The elements of the vector zt are stationary ergodic predetermined variables.

Assumption 2 The vector ut is distributed as ut ∼ IID (0,Σu); its joint pdf is absolutely continuous,
positive everywhere on R2, and independent of zt.

These assumptions are standard from the literature on threshold models; for example, see Petruc-
celli and Woolford (1984), Chan and Tong (1985), and Chan (1993). In particular, they rule out
the possibility of conditionally heteroskedastic residuals; as a consequence, (u1t, u2t)

0 have constant
conditional correlation coefficient ρu1u2 ≡ (σu1u2 /σu1σu2 ).
From an economic perspective, the model in (1) allows for both interdependence and contagion

effects. At each point in time, interdependence is the result of normal markets interactions, and it is
captured by the non-zero value of the correlation coefficient ρu1u2 . Conversely, contagion only takes
place during crisis periods. Formally, we assume that a crisis in market i is associated with an extreme
positive value of the dependent variable yit, and that it takes place whenever yit becomes strictly greater
than the corresponding threshold parameter ci: therefore, from (3), crisis periods are associated to a
unit value of the indicator function I (·). As a consequence, contagion from market j to market i is
said to occur if

Pr (yit > ci |yjt > cj , zt,xit ) > Pr (yit > ci |yjt < cj , zt,xit ) , i, j = 1, 2, i 6= j : (6)

from (6), a necessary condition for contagion to occur is that βi > 0; therefore, contagion from market
j to market i determines an endogenous shift in the value of the intercept from δi to δi + βi. Finally,
because of the way crisis periods and contagion are defined, without loss of generality we assume that
the condition ci > 0 and βi ≥ 0, i = 1, 2 holds3.
The dependent variable yit in (1) is an index of market performance. Several examples for yit arise

from the contagion literature, depending upon the nature of the underlying markets, i.e. currency,
stock or bond markets. In the context of currency crises, Eichengreen et al. (1996) and Esquivel and
Larraín (1998) use the index of exchange market pressure introduced by Girton and Roper (1977).
The index is a weighted average of exchange rate devaluation, increase in short term interest rate and
decrease in international reserves, where the weights are chosen so to equalise the volatility of the
three components4. In the framework of stock market crises, King and Wadhwani (1990), Boyer et
al. (1999), Loretan and English (2000), Forbes and Rigobon (2002) and Corsetti et al. (2005) make
use of stock market returns. Finally, Favero and Giavazzi (2002) study the propagation of devaluation
expectations amongst member countries of the European Monetary System by deploying the spreads
between the 3-months interest rate for member countries, related to the 3-months German rate.
Finally, it worth linking the model in (1) with those previously employed in the contagion litera-

ture. From (6), contagion is defined in a probabilistic way; however, the underlying model allows for
endogenous contagion dummies and contemporaneously correlated errors: therefore, the shortcomings
arising from the application of binary choice models and the Favero and Giavazzi (2002) approach are
overcome. Further, in (1) neither are crisis periods a priori specified, nor are contemporaneous periods
of turmoil treated as independent events: therefore, the problems of correlation-based tests (or their
generalisations) and Markov switching models are respectively solved.

3 Solution
In order to solve the model in (1) two cases have to be considered. First, if β1 or β2 (or both) are
equal to zero the system has a unique equilibrium. For example, if β2 = 0 the system simplifies to

y1t = δ01zt +α01x1t + β1I (y2t − c2) + u1t,
y2t = δ02zt +α02x2t + u2t,

(7)

3The assumptions c1, c2 > 0 and β1, β2 ≥ 0 are imposed because of the economic interpretation of the system in
(1). In principle c1 and c2, and β1 and β2 could be interior points of the compact sets C and β, respectively, such that
C ⊂ R2 and β ⊂ R2. In particular, an analysis of the model for the remaining combinations of values of β1 and β2 is
provided in Appendix A.

4The theoretical motivation of the index introduced in Girton and Roper (1977) can be found in the literature on
first and second generation models of currency crises. See Blackburn and Sola (1993) and Rangvid (2001) for a survey
of first and second generation models, respectively. Further, Kruger et al. (1998) and Stone and Weeks (2001) follow an
analogous approach; however, in constructing the index of exchange market pressure they exclude interest rates, on the
ground that they are not market-determined in developing countries.
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and the solution is given by½
y1t = δ01zt +α01x1t + u1t,
y2t = δ02zt +α02x2t + u2t,

if y2t ≤ c2;

½
y1t = δ01zt +α01x1t + β1 + u1t,
y2t = δ02zt +α02x2t + u2t,

if y2t > c2.

In order to solve the system when both β1 and β2 are positive, define the variable wit as

wit ≡ δ0izt +α0ixit + uit, i = 1, 2, (8)

so that (1) can be equivalently written as

y1t = w1t + β1I (y2t − c2) ,
y2t = w2t + β2I (y1t − c1) .

(9)

Because of the condition β1, β2 > 0, the following normalised variables can be defined

Yit ≡
yit − ci
βi

, Wit ≡
wit − ci

βi
, i = 1, 2; (10)

the system in (9) can then be written as

Y1t =W1t + I (Y2t) ,
Y2t =W2t + I (Y1t) .

(11)

From (10), the four possible regimes in (5) are defined as

regime 1: Y1t ≤ 0, Y2t ≤ 0; regime 2: Y1t ≤ 0, Y2t > 0;

regime 3: Y1t > 0, Y2t ≤ 0; regime 4: Y1t > 0, Y2t > 0.
(12)

In (12), the case Yit > 0 corresponds to a crisis in market i at time t, whereas Yit ≤ 0 denotes a tranquil
period. From (11), each of the regimes in (12) corresponds to a region in the (W1t,W2t) space:

regime 1: W1t ≤ 0,W2t ≤ 0; regime 2: W1t ≤ −1,W2t > 0.

regime 3: W1t > 0,W2t ≤ −1; regime 4: W1t > −1,W2t > −1.
(13)

The four combinations of values of W1t and W2t described in (13) give rise to the following mutually
exclusive stochastic solution regions in the (W1t,W2t) space:

region At:
½

W1t > −1
W2t > 0

∪
½

W1t > 0
−1 < W2t ≤ 0

;

region Bt:
½

W1t > 0
W2t ≤ −1

;

region Ct:
½

W1t ≤ −1
−1 < W2t ≤ 0

∪
½

W1t ≤ 0
W2t ≤ −1

;

region Dt:
½

W1t ≤ −1,
W2t > 0,

;

region Et:
½
−1 < W1t ≤ 0
−1 < W2t ≤ 0

.

(14)
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A graphical representation of the solution regions defined in (14) is given in Figure 1 below:

Figure 1: Solution regions.

In each of the regions defined in (14), a corresponding random event occurs. Therefore, in terms of
the normalised variables Yit andWit defined in (10), the complete solution to the model can be written
as: ½

Y1t =W1t + 1 > 0
Y2t =W2t + 1 > 0

; (event At)

½
Y1t =W1t > 0
Y2t =W2t + 1 ≤ 0

; (event Bt)

½
Y1t =W1t ≤ 0
Y2t =W2t ≤ 0

; (event Ct)

½
Y1t =W1t + 1 ≤ 0
Y2t =W2t > 0

; (event Dt)

½
Y1t =W1t ≤ 0
Y2t =W2t ≤ 0

∪
½

Y1t =W1t + 1 > 0
Y2t =W2t + 1 > 0

. (event Et)

(15)

From (15), the model has a unique solution in regions At, Bt, Ct, and Dt, but multiple equilibria arise
in region Et. From (12) and (13), this happens because the regions in the (W1t,W2t) plane where
the regimes Yit ≤ 0 and Yit > 0 occurs are not mutually exclusive, and their intersection generates
region Et. Notice that the presence of multiple equilibria in region Et is consistent with the notion of
contagion put forward in Masson (1999) and previously discussed.
Pesaran and Pick (2007) model the solutions in region Et as the outcome of a randomisation process

dEt defined as
dEt ∼ Bernoulli

¡
πEd
¢
, (16)

where πEd is the unknown probability of observing dEt = 1. If πEd is defined as the probability of
observing the favourable non-crisis equilibrium Yit =Wit, that is

πEd ≡ Pr (Yit =Wit |Et; zt) , (17)
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then from (15) the solution in region Et can be written as

Yit = dEt Wit +
¡
1− dEt

¢
(1 +Wit)

= 1 +Wit − dEt .
(18)

From (17) the probability πEd is independent of the information set zt; in principle πEd could be allowed
to depend upon the observable explanatory variables: however, this extension goes beyond the purpose
of the analysis we are now undertaking. Taking into account (8), (10), (15), (16) and (18), the reduced
form for the original system in (1) is given by½

y1t = w1t + β1 > c1
y2t = w2t + β2 > c2

; (event At)

½
y1t = w1t > c1
y2t = w2t + β2 ≤ c2

; (event Bt)

½
y1t = w1t ≤ c1
y2t = w2t ≤ c2

; (event Ct)

½
y1t = w1t + β1 ≤ c1
y2t = w2t > c2

; (event Dt)

½
y1t = w1t +

¡
1− dEt

¢
β1

y2t = w2t +
¡
1− dEt

¢
β2

. (event Et)

(19)

4 Coherency
From (5), the model in (1) describes four possible regimes. The probabilities of the occurrence of each
of these regimes are equal to

Pr (y1t ≤ c1, y2t ≤ c2 |zt ) = Pr (Ct ∪Et |zt ) ,
Pr (y1t ≤ c1, y2t > c2 |zt ) = Pr (Dt |zt ) ,
Pr (y1t > c1, y2t ≤ c2 |zt ) = Pr (Bt |zt ) ,
Pr (y1t > c1, y2t > c2 |zt ) = Pr (At ∪Et |zt ) ,

(20)

where the information set zt is defined in (2). Denote by pt the probability of the occurrence of any
of the regimes in (5); from (20) pt satisfies

pt = Pr (y1t ≤ c1, y2t ≤ c2 |zt ) + Pr (y1t ≤ c1, y2t > c2 |zt )
+Pr (y1t > c1, y2t ≤ c2 |zt ) + Pr (y1t > c1, y2t > c2 |zt )

= 1 + Pr (Et |zt )
> 1,

(21)

where the analytical expression for Pr (Et |zt ) is given by

Pr (Et |zt ) = G

µ
c1 − δ01zt −α01x1t

σu1
,
c2 − δ02zt −α02x2t

σu2

¶
−G

µ
c1 − δ01zt −α01x1t

σu1
,
c2 − δ02zt −α02x2t − β2

σu2

¶
−G

µ
c1 − δ01zt −α01x1t − β1

σu1
,
c2 − δ02zt −α02x2t

σu2

¶
+G

µ
c1 − δ01zt −α01x1t − β1

σu1
,
c2 − δ02zt −α02x2t − β2

σu2

¶
,

(22)

and G (·) is the joint pdf of the standardised error terms (u1t \σu1 , u2t \σu2 )
0. From (21), we can

see that the sum of the probabilities of the four events in (5) is greater than unity. This feature is
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a direct consequence of the presence of multiple equilibria in region Et: for a given set of economic
fundamentals more than one equilibrium exists; therefore, conditional upon those fundamentals, the
probability of the occurrence of any of the equilibria is greater than one.
The system in (1) is an example of an incoherent econometric model. Gourieroux et al. (1980)

define a coherent model as one with a "well defined reduced form". This is equivalent to saying there
exists a one-to-one correspondence between a shock uit and the related dependent variable yit for given
values of the explanatory variables. This is not the case for the model in (1) due to the randomisation
process dEt defined in (16), which chooses the outcome in the multiple equilibria region Et. This is
also the technical explanation behind the result obtained in (21). Incoherent models have been widely
studied in the microeconometric literature, as discussed in Chapter 5 of Maddala (1983).
For identification and estimation purposes, the well known coherency condition has often been

imposed, as discussed in Heckman (1978), Gourieroux et al. (1980), Blundell and Smith (1994), and
Lewbel (2007). The coherency condition is necessary and sufficient to guarantee that the probabilities
of the four events in (5) add up to one and to avoid the presence of multiple equilibria; in this way, the
existence of a well-defined likelihood function for the dependent variables (y1t, y2t)

0 is ensured. In the
context of the model in (1), this means imposing the condition β1β2 = 0: for example, if β2 = 0 the
system reduces to that in (7). However, the imposition of the coherency condition a priori eliminates
simultaneity, the key feature the model tries to capture. Therefore, identification and estimation of
the system have to be achieved without imposing the coherency condition.
Some work in this direction has already been done in the literature. For example, Kooreman (1994)

considers the model in (1) where both the dependent variables are discrete rather than continuous, and
the threshold parameters are assumed to me known; the model of interest then becomes a simultaneous
probit, and it is estimated by Maximum Likelihood by taking the probability πEd in the randomisation
process dEt defined in (16) as known: however, this simplifying assumption may lead to inconsistent
estimates of the parameters in case the assumed value of πEd turns out to be different from the true one.
Bresnahan and Reiss (1990) consider a simultaneous probit model as in Kooreman (1994); however,
they avoid considering the probability πEd as known by treating the multiple outcomes as one event: in
this way the model effectively predicts three outcomes rather than four, a loss of information will be
suffered, and the resulting estimator will be inefficient. Tamer (2003) solves the efficiency problem of
the estimator proposed in Bresnahan and Reiss (1990) by treating the multiple equilibria outcomes as
two separate events; this is achieved by estimating the model by semiparametric Maximum Likelihood,
where the probability of one of the incoherent outcomes is replaced by its sample counterpart.
In this paper we extend the work by Tamer (2003) by achieving identification and estimation of the

system in (1), where both the dependent variables are continuous rather than discrete, the threshold
parameters are treated as unknown, and no coherency condition is imposed. As we are going to prove,
identification is achieved by exploiting the set of moment restrictions arising from the multiplicity of
regimes described in (5). Further, estimation is performed by parametric (rather than semiparametric)
Maximum Likelihood, provided that the joint pdf of (y1t, y2t)

0 contains a normalisation factor which
ensures that the function itself integrates to unity, so to account for the incoherent nature of the
system.

5 Identification
The model in (1) is a simultaneous equations system, so it is crucial to determine under what conditions
contagion effects (captured by the slope coefficients β1 and β2) can be identified from interdependence
(captured by the correlation coefficient ρu1u2). The identification problem can be solved by exploiting
the presence of the multiple regimes described in (5); this can be done so long as the variable yit has
at least one observation in each of the two regimes yit ≤ ci and yit > ci, for i = 1, 2. If only the
regime yit ≤ ci is observed then no observation is available to identify βi; conversely, if only the regime
yit > ci occurs then the right-hand side variables become perfectly collinear.
Formally, denote by π̂iT (ci) the proportion of crisis in market i associated to a general value of the

threshold parameter ci; we then require π̂iT (ci) be neither zero nor one, that is

0 < π̂iT (ci) < 1, π̂iT (ci) =
1

T

TX
t=1

I (yit − ci) , i = 1, 2, (23)

9



uniformly for all sample sizes T . As T →∞, condition (23) requires the probability of crisis in market i
associated to ci, denoted by πi (ci), be neither zero nor one, for i = 1, 2. Formally, under the conditions
imposed in Assumption 1 and Assumption 2, this means that

0 < πi (ci) < 1, π̂iT (ci)
a.s.→ πi (ci) ≡ E [I (yit − ci)] , i = 1, 2, (24)

where π̂iT (ci) is defined in (23). As proved in Pesaran and Pick (2007), if the error terms (u1t, u2t)
0

in (1) have joint pdf positive everywhere on R2 (as imposed in Assumption 2), then condition (24) is
satisfied.
Condition (24) is sufficient to ensure that at least two of the regimes in (5) actually occur; without

loss of generality, we consider the case where these regimes are the following:

regime 1: y1t ≤ c1, y2t ≤ c2; regime 4: y1t > c1, y2t > c2.

This means that the following two conditions hold:

0 < Pr (y1t ≤ c1, y2t ≤ c2) < 1, 0 < Pr (y1t > c1, y2t > c2) < 1,

where
1

T

TX
t=1

[1− I (y1t − c1)] [1− I (y2t − c2)]
a.s.→ Pr (y1t ≤ c1, y2t ≤ c2)

and
1

T

TX
t=1

I (y1t − c1) I (y2t − c2)
a.s.→ Pr (y1t > c1, y2t > c2) .

The identification conditions for the system in (1) are then stated in the following theorem:

Theorem 1 Consider the model in (1), where the vectors of predetermined variables x1t and x2t are
such that x1t∩x2t = ∅, and where the condition stated in Assumption 1 and Assumption 2 hold. Then
if β1, β2 > 0 the model is identified even if α1 = 0 and α2 = 0.

Proof. Consider the system in (1), where no exclusion restrictions are imposed (α1 = 0 and α2 = 0),
and without loss of generality suppose that δ1 = δ2= 0. The model then simplifies to

y1t = β1I (y2t − c2) + u1t,
y2t = β2I (y1t − c1) + u2t.

(25)

Condition (24) is sufficient to identify the threshold parameters c1 and c2. This is because given
Pr (y1t ≤ c1, y2t ≤ c2) and two vectors of values for (c1, c2)

0, namely (c∗1, c
∗
2)
0 and (c∗∗1 , c∗∗2 )

0 such that
(c∗1, c

∗
2)
0 6= (c∗∗1 , c∗∗2 )

0, then

Pr (y1t ≤ c∗1, y2t ≤ c∗2) 6= Pr (y1t ≤ c∗∗1 , y2t ≤ c∗∗2 ) , a.s.

An analogous argument holds for Pr (y1t > c1, y2t > c2), and c1 and c2 are identified. The system in
(25) is therefore observationally equivalent to½

y1t = u1t,
y2t = u2t,

if y1t ≤ c1, y2t ≤ c2,

½
y1t = β1 + u1t,
y2t = β2 + u2t,

if y1t > c1, y2t > c2,

(26)

and five parameters have to be identified, i.e. β1, σ
2
u1 , β2, σ

2
u2 and σu1u2 . From (26), the following

moment restrictions are then available:

E
¡
y21t
¢
= σ2u1 , E

¡
y22t
¢
= σ2u2 , E (y1ty2t) = σu1u2 ,

if y1t ≤ c1, y2t ≤ c2;
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and

E
h
(y1t − β1)

2
i
= σ2u1 , E

h
(y2t − β2)

2
i
= σ2u2 , E [(y1t − β1) (y2t − β2)] = σu1u2 ,

if y1t > c1, y2t > c2.

Therefore, six distinct moment restrictions are available to identify five parameters, and the system in
(25) is overidentified.

Remark 2 Theorem 1 assumes that β1, β2 > 0. Clearly, the result stated in the theorem holds also
when β1β2 = 0, i.e. when at least one of the contagion coefficients is equal to zero.

Theorem 1 shows that the system in (1) is identified even if equation specific explanatory variables
are not included: the multiplicity of regimes provides the additional number of moment restrictions
which is sufficient to identify the system. Notice that while the condition stated in (24) (and therefore
the conditions imposed in Assumption 1 and Assumption 2) is sufficient to guarantee that two of the
regimes in (5) occur, other regimes may actually take place; this means that an additional number of
moment restrictions may be available. Further, it is important to stress that although the reduced form
in (19) depends upon the randomisation process dEt defined in (16), identification of the probability of
success πEd in (17) is not required to identify the parameters of the system in (1). Finally, notice that
the conditions for identification required in Theorem 1 are weaker than those imposed in Pesaran and
Pick (2007): under the assumption of c1 and c2 being known, they identify the system by including
equation specific explanatory variables, i.e. by imposing the condition α1 6= 0 and α2 6= 0.
It is also interesting to compare the conditions required to identify the system in (1) with those

needed in the simultaneous probit model as obtained in Tamer (2003). In particular, in the latter model
the slope coefficients are identified up to a scale factor, provided that equation specific explanatory
variables are included. Conversely, Theorem 1 shows that identification of the system in (1) does not
require imposition of any exclusion restrictions, and that the slope coefficients are uniquely identified:
this is because the continuous dependent variables (y1t, y2t)

0 are observable rather than latent. Finally,
notice that a further consequence of (y1t, y2t)

0 being observable is that the threshold parameters c1
and c2 are identified; conversely, in the (simultaneous) probit model, the threshold parameters are not
identified: for this reason, they are assumed to be known and equal to zero.

6 Estimation
Single equation OLS estimation of the system in (1) would deliver inconsistent estimates of the para-
meters due to the endogeneity of the contagion dummies. Pesaran and Pick (2007) propose to estimate
the model by employing a single equation GIVE estimator. Under the assumption of the conditional
distribution of the shocks (u1t, u2t)

0 being known, the system can be estimated by Full Information
Maximum Likelihood (FIML): the first estimation method is discussed in Section 6.1, the second is
introduced in Section 6.2.

6.1 Single equation GIVE estimation

Estimation of threshold models by instrumental variables is addressed in Caner and Hansen (2004).
They consider a single equation model where the explanatory variables are endogenous while the
threshold variable is exogenous; they then propose a two-stage least square estimator of the thresh-
old parameter and a generalised method of moments estimator of the slope coefficients. However,
this estimation procedure cannot be applied to the system in (1), as the explanatory variables are
predetermined and the threshold variables are endogenous.
Pesaran and Pick (2007) assume that the threshold parameters c1 and c2 are known and employ a

single equation GIVE estimator to estimate the remaining set of parameters. For i, j = 1, 2 with i 6= j,
define the vectors

φi ≡
¡
δ0i,α

0
i, βi

¢0
, yi ≡ (yi1, . . . , yiT )0 , hit ≡ [z0t,x0it, I (yjt − cj)]

0
, ui ≡ (ui1, . . . , uiT )0 , (27)

11



and the matrices

Hi ≡

⎛⎜⎝ h0i1
...
h0iT

⎞⎟⎠ , Wi ≡

⎛⎜⎝ w0i1
...
w0iT

⎞⎟⎠ , PWi ≡Wi (W
0
iWi)

−1W0
i,

wit being the vector of instruments: the system in (1) can then be cast in matrix form as

yi =Hiφi + ui, i, j = 1, 2.

The GIVE estimator is then obtained as

φ̂i,GIV E = (H
0
iPWi

Hi)
−1
(H0

iPWi
yi) , (28)

with estimated covariance matrix

V̂i,GIV E = σ̂2i (H
0
iPWiHi)

−1
,

where
ûi = yi −Hiφ̂i,GIV E , σ̂2i = (û

0
iûi) /T.

Since the model is nonlinear, an important issue is the choice of the optimal vector of instruments,
denoted by w∗it. For given values of c1 and c2, the equations of the system in (1) are linear in the
parameters, but contain regressors that are nonlinear functions of the endogenous variables; following
Kelejian (1971) and Bowden and Turkington (1981), in this framework the optimal instrument for the
endogenous contagion dummy I (yit − ci) would be5

w∗it ≡ E [I (yit − ci) |zt ] = Pr (yit − ci > 0 |zt ) , (29)

which is the conditional probability of crisis in market i, whose analytical expression is obtained in
Appendix B6.
However, the optimal instrument w∗it in (29) is not feasible: although the analytical expression is

available in closed form once the joint pdf of (u1t, u2t)
0 in (1) is known, it is a function of the vectors

of unknown parameters φ1 and φ2. However, following the parametric approach proposed in Kelejian
(1971), the endogenous dummy variable I (yit − ci) can be approximated by a polynomial of order m
in the corresponding equation specific predetermined variables xit7. The vector of instruments for the
system in (1) is then given by

wit =
h
z0t,x

0
it,x

0
jt,
¡
x2jt
¢0
, . . . ,

¡
xmjt
¢0i0

, i, j = 1, 2, i 6= j, t = 1, . . . , T, (30)

where xnjt denotes the column vector made of the n− th powers of each of the elements of the vector
xjt. Pesaran and Pick (2007) approximate the endogenous crisis indicators by a polynomial in the
predetermined variables of order up to m = 6.
Estimation of the model in (1) by instrumental variables has the advantage of not being affected

by the coherency issue discussed in Section 4. However, the GIVE estimator in (28) faces the following
three problems:

1. it is a single equation estimator; therefore, efficiency issues arise.

2. it is likely to suffer from a weak instruments problem, as there might be a weak degree of
correlation between the endogenous dummy variables and their instruments; see Stock et al.
(2002) and Andrews and Stock (2005) for survey of the weak instruments problem. In this
case, the GIVE estimator does not have an asymptotically normal distribution, and standard
statistical inference provides misleading results.

5Notice that the optimal vector of instruments obtained in Kelejian (1971) and Bowden and Turkington (1981) is
more generally valid for a system where the structural equations are linear in the parameters and contain regressors
which are nonlinear functions of both the endogenous and the predetermined variables.

6As shown in Amemiya (1977), in a general framework the optimal vector of instruments w∗it is given by the conditional
expectation of the gradient calculated with respect to the vector of parameters and evaluated at the true parameters
values.

7For nonparametric estimates of optimal instruments see Newey (1990).
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3. the instruments wit defined in (30) require inclusion of equation specific explanatory variables.
However, this condition is not needed for identification purposes, as shown in Theorem 1.

The GIVE estimator in (28) assumes that the threshold parameters c1 and c2 are known; if this is
not the case, then the threshold parameters can be estimated by grid search, and the remaining set of
parameters by instrumental variables. Define the vector hit (cj) and the matrix Hi (cj) as

hit (cj) ≡ [z0t,x0it, I (yjt − cj)]
0
, Hi (cj) ≡

⎡⎢⎣ h0i1 (cj)
...

h0iT (cj)

⎤⎥⎦ , i, j = 1, 2, i 6= j. (31)

Further, suppose that cj is an interior point of the compact set Cj (the set of admissible values of cj)
which satisfies Cj ⊂ R: the threshold cj in the i− th equation can be estimated by grid search as

ĉj,GIV E = arg min
cj∈Cj

[ûi (cj)]
0
PWi [ûi (cj)] , i, j = 1, 2, i 6= j,

where
ûi (cj) = yi −Hi (cj) φ̂i,GIV E (cj) ,

and
φ̂i,GIV E (cj) =

£
Hi (cj)

0
PWiHi (cj)

¤−1 £
Hi (cj)

0
PWiyi

¤
.

The GIVE estimator φ̂i,GIV E (cj) is then obtained as

φ̂i (ĉj,GIV E) =
£
Hi (ĉj,GIV E)

0
PWiHi (ĉj,GIV E)

¤−1 £
Hi (ĉj,GIV E)

0
PWiyi

¤
, i, j = 1, 2, i 6= j.

Denote by c0j and φ
0
i the true values of the parameters cj and φi, respectively. The strong consis-

tency of ĉj,GIV E and φ̂i (ĉj,GIV E) is then stated in the following theorem:

Theorem 3 Consider the model in (1) under the set of conditions imposed in Assumption 1 and
Assumption 2. Further, assume that E |wit| <∞, E |uit| <∞ and E (witw

0
it) is positive definite, for

i = 1, 2. Then ĉj,GIV E
a.s.→ c0j and φ̂i (ĉj,GIV E)

a.s.→ φ0i , for i, j = 1, 2, i 6= j.

Proof. See Appendix C.1.

6.2 Maximum Likelihood estimation

In a full information framework, the threshold parameters c1 and c2 in (1) can be estimated by
grid search, while the remaining set of parameters can be estimated by Full Information Maximum
Likelihood (FIML). As it will be shown, the joint pdf of (y1t, y2t)

0 is piecewise due to the presence of
multiple regimes in the system. In addition, it has to take into account the coherency issue discussed
in Section 4: as such, it includes a normalisation factor pt to ensure that it integrates to unity over R2.
Formally, the conditional joint pdf of (y1t, y2t)

0 for the model in (1) is given by

f (y1t, y2t |zt ) =
1

pt
f (y1t, y2t |y1t ≤ c1, y2t ≤ c2;zt ) Pr (y1t ≤ c1, y2t ≤ c2 |zt )

+
1

pt
f (y1t, y2t |y1t ≤ c1, y2t > c2;zt ) Pr (y1t ≤ c1, y2t > c2 |zt )

+
1

pt
f (y1t, y2t |y1t > c1, y2t ≤ c2;zt ) Pr (y1t > c1, y2t ≤ c2 |zt )

+
1

pt
f (y1t, y2t |y1t > c1, y2t > c2;zt ) Pr (y1t > c1, y2t > c2 |zt ) ,

where the information set zt is defined in (2). Define the following four vectors of parameters

θ1 ≡
¡
δ01,α

0
1, δ

0
2,α

0
2

¢0
, θ2 ≡

¡
δ01,α

0
1, β1, δ

0
2,α

0
2

¢0
,

θ3 ≡
¡
δ01,α

0
1, δ

0
2,α

0
2, β2

¢0
, θ4 ≡

¡
δ01,α

0
1, β1, δ

0
2,α

0
2, β2

¢0
,

(32)
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where θk denotes the vector of slope coefficients characterising the joint pdf of (y1t, y2t)
0 in regime

k, for k = 1, . . . , 4, where each regime is defined as in (5). From the properties of the truncated
distributions we have

f (y1t, y2t |y1t ≤ c1, y2t ≤ c2;zt ) =
[1− I (y1t − c1)] [1− I (y2t − c2)] f (y1t, y2t;θ1 |zt )

Pr (y1t ≤ c1, y2t ≤ c2 |zt )
,

where f (y1t, y2t;θ1 |zt ) denotes the joint pdf of (y1t, y2t)
0 under the regime characterised by θ1; the

other components of f (y1t, y2t |zt ) can be obtained in an analogous way. Therefore, the joint pdf
(y1t, y2t)

0 for the model in (1) simplifies to

f (y1t, y2t |zt ) =
[1− I (y1t − c1)] [1− I (y2t − c2)]

pt
f (y1t, y2t;θ1 |zt )

+
[1− I (y1t − c1)] I (y2t − c2)

pt
f (y1t, y2t;θ2 |zt )

+
I (y1t − c1) [1− I (y2t − c2)]

pt
f (y1t, y2t;θ3 |zt )

+
I (y1t − c1) I (y2t − c2)

pt
f (y1t, y2t;θ4 |zt ) .

(33)

The normalisation factor pt ensures that the conditionR∞
−∞
R∞
−∞f (y1t, y2t |zt ) dy1tdy2t = 1

is fulfilled. The term pt is given by

pt =
R c1
−∞
R c2
−∞f (y1t, y2t;θ1 |zt ) dy2tdy1t +

R c1
−∞
R∞
c2
f (y1t, y2t;θ2 |zt ) dy2tdy1t

+
R∞
c1

R c2
−∞f (y1t, y2t;θ3 |zt ) dy2tdy1t +

R∞
c1

R∞
c2
f (y1t, y2t;θ4 |zt ) dy2tdy1t

= Pr (y1t ≤ c1, y2t ≤ c2 |zt ) + Pr (y1t ≤ c1, y2t > c2 |zt )
+Pr (y1t > c1, y2t ≤ c2 |zt ) + Pr (y1t > c1, y2t > c2 |zt )

= 1 + Pr (Et |zt ) ,

(34)

expression (34) being the same as (21). The log-likelihood function is then given by

LT =
TX
t=1

log f (y1t, y2t |zt ) .

Define the vectors of parameters c and ∆ as

c ≡ (c1, c2)0 , ∆ ≡
¡
δ01,α

0
1, β1, σ

2
1, δ

0
2,α

0
2, β2, σ

2
2, σ12

¢0
, (35)

and denote by c0 and ∆0 the true values of c and ∆, respectively. Further, denote by ĉFIML and
∆̂FIML the estimators of c0 and ∆0 as obtained by grid search and FIML, respectively. The strong
consistency of ĉ and ∆̂ is then stated in the following theorem:

Theorem 4 Consider the model in (1) under the set of conditions imposed in Assumption 1 and
Assumption 2. Further, assume that standard regularity conditions hold with respect to ∆. Then
ĉFIML

a.s.→ c0 and ∆̂FIML
a.s.→ ∆0.

Proof. See Appendix C.2.
The following three considerations about the FIML estimator for the model in (1) developed in this

section are worth making:

1. The FIML estimator cannot be replaced by a SURE-type estimator: this is because the pdf
f (y1t, y2t;θk |zt ) selected by the indicator functions I (y1t − c1) and I (y2t − c2) has to be weighted
by the normalising term pt, which depends upon the whole set of parameters of the model, and
not just on the set θk characterising the selected regime.

2. The reduced form in (19) depends upon the randomisation process dEt defined in (16); however,
dEt does not enter the analytical expression of the joint pdf in (33). This means that knowledge
of the randomisation process dEt is not required to estimate the system in (1).

3. Contrary to the class of GIVE estimators discussed in Section 6.1, the FIML estimator does not
require any equation specific explanatory variables.
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7 Monte Carlo analysis
The aim of the Monte Carlo analysis is twofold: to evaluate the absolute and relative performance of
the class of single equation GIVE estimators and of the FIML estimator of the model in (1); to assess
the validity of the theoretical conditions for identification stated in Theorem 1.

7.1 Experimental design

The Data Generating Process (DGP) is based on the following model

yrit = δi + αix
r
it + βiI

¡
yrjt − cj

¢
+ urit, i, j = 1, 2 i 6= j, (36)

where t = 1, . . . T , r = 1, . . . R, r refers to the replication and R is the total number of replications;
xrit is a simulated scalar explanatory variable; δi, αi, βi and ci are scalar parameters, which are kept
fixed throughout the replications. The estimated model is also given by (36). For the purpose of the
analysis, we assume that the threshold parameters ci are known. In the case of the FIML estimator,
the resulting (normalised) log-likelihood function consistent with the general specification in (36) is
maximised by using the BFGS algorithm, with starting values obtained from single equation OLS
estimation. The whole experiment is run in Ox 3.30.
We focus upon the estimators for the contagion coefficient β1. The performance of the estimators

is assessed by computing the bias and RMSE, defined as

bias =
1

R

XR

r=1

³
β̂
r

1 − β1

´
, RMSE =

r
1

R

XR

r=1

³
β̂
r

1 − β1

´2
,

respectively, where β̂
r

1 is the estimate of β1 obtained from the r − th replication. We also compute
the two-sided rejection frequency, defined as the ratio between the number of times the computed test
statistic lies outside the 95% confidence interval and the total number of replications R: if the test
statistic is computed under the null hypothesis the rejection frequency is the size of the test; if the
test statistic is computed under the alternative the rejection frequency is the power. In computing the
test statistic for the FIML estimator, the Wald principle is employed, where the estimated covariance
matrix is obtained as the inverse of the empirical Hessian.
In assessing the size performance of the tests, each replication can be seen as a Bernoulli trial;

therefore, for a high value of R the normal approximation can be employed. As a consequence, we will
not reject the null hypothesis of the size being equal to the significance level of 5% if the former lies
within the interval "

0.05± 1.96
r
0.05 · 0.95

R

#
.

The value R = 2000 is chosen so that the 95% confidence interval is approximately equal to [0.04, 0.06].
Throughout the experiments the value of the contagion coefficient β2 was kept fixed at β2 = 0.2.

Three classes of experiments were then considered: β1 = 0 (so that no multiple equilibria arise) and
xr1t 6= xr2t; β1 = 0.5 (so that multiple equilibria do arise) and xr1t 6= xr2t; β1 = 0.5 and xr1t = xr2t =
xrt . The first two sets of experiments were used to assess the performance of the FIML and GIVE
estimators; the third set of experiments aimed at checking the validity of the identification conditions,
and, consistently with the theory developed in Section 6, only the FIML estimator was used8.
Results of the Monte Carlo experiments for the FIML estimator and the class of GIVE estimators

with m = 1 and m = 6 are reported in Table 1 (for the case β1 = 0, x
r
1t 6= xr2t), in Table 2 (for the case

β1 = 0.5, x
r
1t 6= xr2t) and in Table 3 (for the case β1 = 0.5, x

r
1t = xr2t = xrt )

9 . In generating the data,
the sample size was set equal to T = 50, 100, 200, 500, 1000; the values for the threshold parameters
were arbitrarily chosen to be equal to c1 = c2 = 1.64; the seed of the random generator was set equal
to −1.

8For the case xr1t 6= xr2t an experiment with β2 = 0.2 was also attempted; the results are very similar to those obtained
in the case β2 = 0.5 and therefore not shown.

9For the case xr1t 6= xr2t the OLS estimator (which delivers inconsistent estimates of the contagion coefficient β1) and
the GIVE estimator for m = 2, 3, 4, 5 were also analysed.
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Experiment 1: β1 = 0, xr1t 6= xr2t. The DGP in (36) simplifies to

yr1t = δ1 + α1x
r
1t + ur1t,

yr2t = δ2 + α2x
r
2t + β2I (y

r
1t − c1) + ur2t.

The error terms are generated by adopting the following common factor structure

urit =
γif

r
t + εritp
γ2i + 1

,

where εrit ∼ NID (0, 1), frt ∼ NID (0, 1), while the coefficient γi ∼ U (0.8, 1) is fixed in repeated
samples. In this way

Σu ≡
µ

1 ρu1u2
ρu1u2 1

¶
where

ρu1u2 ≡ E (ur1tu
r
2t) =

γ1γ2p
γ21 + 1

p
γ22 + 1

,

the average value of the correlation coefficient ρu1u2 being equal to

ρ̄u1u2 ≡ E
¡
ρu1u2

¢
= E

"Ã
γip
γ2i + 1

!#2
= 0.1616

The equation specific explanatory variables xrit, i = 1, 2 are generated asµ
xr1t
xr2t

¶
∼ NID (0;Σx) .

The covariance matrix Σx is implicitly defined by generating xrit by means of the following one-factor
model

xrit =
φih

r
t + qritq
φ2i + 1

,

where qrit ∼ NID (0, 1), hrt ∼ NID (0, 1) while the coefficient φi ∼ U (0.8, 1) is fixed in repeated
samples. In this way we have

Σx ≡
µ

1 ρx1x2
ρx1x2 1

¶
,

where

ρx1x2 =
φ1φ2q

φ21 + 1
q
φ22 + 1

.

In order to ensure that the regressors are independent of the errors, hrt and f
r
t are drawn independently

of each other.
The role of the slope coefficients α1 and α2 is to control for the goodness of fit of the model. In

the case of the equation for yr1t, since no right-hand-side variable is endogenous, the coefficient of
determination can be easily obtained as

R21 = 1−
V ar (ur1t)

V ar (yr1t)
,

where
V ar (yr1t) = α21V ar (x

r
1t) + V ar (ur1t) = α21 + 1

so that

R21 = 1−
1

α21 + 1
=

α21
α21 + 1

.
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In the case of the equation for yr2t, because the term I (yr1t − c1) is endogenous the coefficient of
determination cannot be computed from the residuals ur2t. Following the approach introduced in
Pesaran and Smith (1994), the prediction errors are deployed; they are defined as

vr2t = yr2t −E (yr2t |zr
t ) = yr2t − δ2 − α2x

r
2t −E [I (yr1t − c1) |zr

t ]

where zr
t ≡ (xr1t, xr2t)

0 and

E [I (yr1t − c1) |zr
t ] = Pr (y

r
1t − c1 > 0 |zr

t ) = 1−Φ (c1 − δ1 −α1xr1t) .

Therefore, the coefficient of determination can be computed by simulation as

R22 =

PR
r=1

R

"
1−

PT
t=1 (v

r
2t)

2PT
t=1 (y

r
2t − ȳr2)

2

#
,

where ȳr2 =
³PT

t=1 y
r
2t

´.
T . We set α1 = α2 = α and we consider two cases, α = 0.5 and α = 1: in

the former R21 = 0.2 and R22 ' 0.2; in the latter R21 = 0.5 and R22 ' 0.5.10
Finally, the role of the parameters δ1 and δ2 is to control for the unconditional probability of crisis,

so to assess the performance of the estimators as the unconditional probabilities of crisis change. In
the case of yr1t the unconditional probability of crisis π1 is obtained in closed form as

Pr (y1t − c1 > 0) = Pr (δ1 + α1x
r
1t + ur1t − c1 > 0) = Pr

Ã
α1x

r
1t + ur1tp
α21 + 1

>
c1 − δ1p
α21 + 1

!

= 1−Φ
Ã

c1 − δ1p
α21 + 1

!
≡ π1,

so that δ1 is given by

δ1 = c1 −
q
α21 + 1

£
Φ−1 (1− π1)

¤
.

In the case of yr2t the probability of crisis is computed by simulation as

π2 ≡ Pr [(yr2t − c2 > 0)] =

PR
r=1

R

"PT
t=1 I (y

r
2t − c2)

T

#
,

and we calibrate δ2 so to control for π2. We set

π1 = π = 0.005, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 ' π2.

This is an important part in the experimental design: if I
¡
yrjt − cj

¢
= 0 ∀t, then no observations

are available to estimate βi; conversely, if I
¡
yrjt − cj

¢
= 1 ∀t, then βi cannot be identified from the

intercept δi. Therefore, each replication is repeated until I
¡
yrjt − cj

¢
is different from being a vector

of all zeros or ones.

Experiment 2: β1 = 0.5, xr1t 6= xr2t. The DGP is given by the reduced form obtained in (19),
where the value πEd = 0.5 is chosen; further, the error terms u

r
it and the explanatory variables x

r
it are

generated as in Experiment 1.
The goodness of fit is controlled for by means of the slope coefficients α1 and α2. Due to the

endogeneity induced by the indicator functions I (yrit − ci), we follow the approach proposed in Pesaran
and Smith (1994), and employ the prediction errors vrit to compute the coefficients of determination.
The prediction errors vrit are defined as

vrit = yrit −E (yrit |zr
t ) = yrit − δi − αix

r
it − βi Pr

¡
yrjt − cj > 0 |zr

t

¢
, i, j = 1, 2, i 6= j,

10Notice that R21 and R22 have very similar values because the endogenous dummy I yr1t − c1 determines a shift in
the intercept in the equation for yr1t. Therefore, the effect induced on explanatory power of the model is likely to be
negligible.
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the general expression for Pr (yit − ci > 0 |zr
t ) being derived in Appendix B. Therefore, R

2
i , i = 1, 2,

may be computed by simulation as

R2i =

PR
r=1

R

"
1−

PT
t=1 (v

r
it)
2PT

t=1 (y
r
it − ȳri )

2

#
,

where ȳri =
³PT

t=1 y
r
it

´.
T . We set α1 = α2 = α and consider two cases, α = 0.5 and α = 1, which

correspond to R2i ' 0.5 and R2i ' 1, i = 1, 2, respectively.
Finally, unconditional crises probabilities are controlled for by means of the parameters δ1 and δ2.

These probabilities are computed by simulation as

πi ≡ Pr (yrit − ci > 0) =

PR
r=1

R

"PT
t=1 I (y

r
it − ci)

T

#
,

and δi is chosen so to control for πi. We set

π1 ' π2 ' π = 0.005, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50.

Experiment 3: β1 = 0.5, xr1t = xr2t = xrt . The experimental set-up is the same as in Experiment
2, with the exception of the restriction xr1t = xr2t = xrt being imposed both upon the DGP and
the estimated model given in (36). Further, for the sake of simplicity we only consider the case
α1 = α2 = α = 1.

7.2 Performance of GIVE and FIML estimators

In order to assess the absolute and relative performance of the GIVE and FIML estimators, we analyse
the results reported in Table 1 and Table 2.

7.2.1 Bias and RMSE

The bias of the FIML estimator decreases with the sample size T and with the probability of crisis
π (up to π = 0.5), while it does not generally show any clear correlation with α (and therefore with
the goodness of fit of the model); also, the bias does not seem to depend upon the magnitude of β1.
Considering the GIVE estimators, the bias decreases with the sample size T and with the probability
of crisis π (although in a more erratic way in the case m = 1); it also decreases with α, as the
instruments become stronger. The bias of the GIVE estimators follows an unclear pattern in relation
to the magnitude of β1: for α = 0.5 it looks like an increase in β1 generally leads to an increase in
the bias, probably because the instruments become slightly weaker; however such an effect does not
seem to be present when α = 1 and the instruments are therefore stronger. Dealing with the relative
performance of the GIVE estimators for m = 1 and m = 6, the latter results in a lower value of the
bias for low values of π (such as π = 0.005 and π = 0.01), while the former tends to perform better
for higher values of π (such as π ≥ 0.05). Finally, the bias of the FIML estimator is lower than that of
the GIVE estimators for virtually any combination of T and π.
The RMSE of the FIML estimator decreases with the sample size T and with the probability of

crisis π, a pattern similar to that of the bias; it also diminishes with α (this being a difference compared
to the bias), while it does not show any clear pattern related to the magnitude of β1. As far as the
GIVE estimators are concerned, their bias decreases with T and π (although in a more erratic way in
the case m = 1) as well as with α (this last feature confirming one more time the presence of the weak
instruments problem), while no clear pattern seems to be related to the magnitude of β1; also, the
GIVE estimator with m = 6 has lower RMSE compared to that with m = 1, although the difference
tends to disappear as both T and π increase. Finally, the FIML estimator is always more efficient
than the GIVE estimators, although the efficiency loss diminishes with T and π as well as with α: for
example, in the case of Experiment 2 with α = 0.5, if T = 50 and π = 0.005 the efficiency loss of using
the GIVE estimator with m = 6 rather the FIML is 230%, while it reduces to 122% when T = 1000
and π = 0.5; further, for α = 1, T = 1000 and π = 0.5 the efficiency loss falls to 69%. The efficiency
loss is due to the limited information nature of the GIVE estimators as discussed in Section 6.1.
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7.2.2 Size and power

Starting from the FIML estimator, for T = 50 the actual size never approaches the nominal size,
regardless the value of π. As the sample size T increases the actual size tends to approach the nominal
size, this feature generally being true for any value of the probability of crisis π. The only exception
arises when β1 = 0.5 and α = 0.5, where the actual size never reaches the nominal size as T increases
when π = 0.005, 0.01. A possible explanation is that as the magnitude of β1 increases a higher absolute
number of observations in the crisis regime is required to provide a consistent estimator; in addition,
a low value of α combined with a high value of β1 may raise identification issues. Considering the
GIVE estimators, for m = 1 the test is generally undersized when α = 0.5, the nominal size being
systematically reached only when T ≥ 500 and π ≥ 0.10 (apart from the case T = 1000 and π = 0.50);
in the case α = 1 the size performance improves and the nominal size is reached for a wider combination
of T and π. In the case of the GIVE estimator with m = 6, the nominal value of the size is achieved
for a larger combinations of T and π compared to the case m = 1 both for α = 0.5 and α = 1; further,
analogously to the case m = 1 the size performance is better when α = 1 than when α = 0.5. Finally,
a comparison between the FIML and the GIVE estimators shows that the former definitely achieves a
better size performance.
The power of the tests is computed by testing the null β1 = 0.5 in Experiment 1 (where the data

are generated under the alternative β1 = 0) and β1 = 1 in Experiments 2 and 3 (where the data
are generated under the alternative β1 = 0.5); from testing theory, power comparisons are only made
for combinations of T and π such that the difference between significance level and actual size is
statistically insignificant. In the case of the FIML estimator, the power increases with the sample size
T as well as with the probability of crisis π, as also shown in Figure 2 and Figure 3 below; the power
also increases with α. Tests based upon the GIVE estimators show a similar behaviour, as the power
increases with T , π and α. Further, for α = 0.5 the GIVE estimator with m = 1 seems to provide a
test with slightly higher power than the GIVE estimator with m = 6; however, for α = 1 the GIVE
estimator with m = 6 seems to outperform that with m = 1. Finally, the FIML estimator generates a
test which is clearly more powerful than those obtained from the GIVE estimators.

Figure 2: Power Function for FIML Estimator, Experiment 2, T = 500, α = 0.5.
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Figure 3: Power Function for FIML Estimator, Experiment 3, π = 0.2, α = 0.5.

7.3 Identification

In order to assess the validity of Theorem 1, we consider the results reported in Table 3 and compare
them with those presented in Table 2 for the case of the FIML with α = 1.
Starting from the bias, it decreases both with T and π, with the only noticeable exception given by

the case T = 50 and π = 0.50. Further, for low values of T and π, the bias is higher than in the case
with equation specific regressors, the difference vanishing as T and π increase; also in this case the
only exception arises when T = 50 and π = 0.50. The RMSE shows a pattern similar to the bias, in
the sense that it decreases both with T and π; compared to the case with equation specific regressors,
the RMSE is lower when π = 0.005 and it is generally higher in the remaining cases.
The size of the test shows a pattern similar to that for the case with equation specific regressors, the

test being consistently oversized only when T = 50. Further, where power comparisons are applicable
(that is for combinations of T and π where for each model the difference between significance level
and actual size is statistically insignificant) the imposition of exclusion restrictions improves the power
performance of the test.
In conclusion, although from Theorem 1 no exclusion restriction is required to identify the model

in (1), the presence of equation specific explanatory variables does contribute towards a more precise
estimation of the parameters.

8 Empirical illustration
In this section we provide an application to real data of the theoretical framework we have developed
so far: in particular, we aim at analysing the interactions between equity markets. The data and the
model specification are described in Section 8.1 and Section 8.2, respectively, while the results are
discussed in Section 8.3.

8.1 Data

In our analysis, we follow the methodology advanced in Kaminsky and Reinhart (2002), and divide
world equity markets into two broad categories, namely centre and periphery markets: the first groups
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consists of the biggest financial centres, i.e. New York, London and Tokyo; the latter includes all
other markets. We then focus on the interactions between the New York Stock Exchange and three
periphery markets, namely Frankfurt, Zurich and Paris.
We make use of daily stock market spot prices for the S&P 500 (New York), DAX 30 (Frankfurt),

SMI (Zurich) and CAC 40 (Paris) recorded at 16:00 London time (pseudo-closing prices), where all
the stock market indices are in US dollars; the data were obtained from Datastream for the period 3
August 1990 to 30 June 2005. All the mentioned indices describe the behaviour of the biggest firms.
The S&P 500 is a capitalisation-weighted index of 500 stocks of US public companies; it approximately
represents 75% of total market capitalisation. The DAX 30 includes the 30 largest German securities
according to market capitalisation and turnover. The SMI is made of a maximum of 30 of the largest
and most liquid stocks in the Swiss market. The CAC 40 is a weighted-average index of 40 stocks, the
weights being based upon the closing price of the last traded day.
Pseudo-closing prices were chosen over actual closing prices because international stock markets

have different trading hours. Indeed, New York trades from 9:30 to 16:00 Eastern standard time (which
corresponds to 14:30 to 21:00 London time); Frankfurt, Paris and Zurich trade from 9:00 to 17:30 local
time (which corresponds to 8:00 to 16:30 London time). Therefore, the use of daily closing prices in our
analysis would have led to an underestimation of the correlation between stock markets themselves11 .
For each market i, the spot prices at time t (Pit) were converted into continuously compounded

returns (rit) as
rit = (logPit − logPi,t−1) ∗ 100, i = 1, 2. (37)

After removing holidays in each country, we were left with 3741 observations of common trading days
for the four series12. Descriptive statistics for the resulting stock market returns and the correlations
between them are provided in Table 4. Average daily returns are all positive, with New York providing
the highest rate followed by Zurich, Frankfurt and Paris. The S&P 500 is also the least volatile index,
as evidenced by the value of its sample standard deviation, followed the SMI, the CAC 40 and the DAX
30. The measure of skewness shows that the S&P 500, the DAX 30 and the SMI are negatively skewed
compared to the normal distribution, while the CAC 40 is positively skewed; in addition, all returns’
distributions are highly leptokurtic compared to the normal distribution. The Jarque-Bera test for
normality rejects the null hypothesis at 1% level for all returns. Finally, the correlation between the
S&P 500 and any other market is lower than the correlation between any other two markets: this is
due to the significant time difference in local time between the trading hours in New York and the
other markets, therefore providing evidence in favour of using pseudo rather than actual closing prices.

8.2 Model specification

In carrying out the empirical analysis, we first note that a crisis in a stock market is associated with
an extreme negative value of rit; therefore, a crisis takes place whenever rit < −ci, or equivalently
−rit − ci > 0: the crisis indicator is then defined as

I (−rit − ci) , i = 1, 2.

Further, in order to define the dependent variable yit, recall that stock market returns exhibit a high
degree of conditional heteroskedasticity, as extensively discussed in the literature following the work by
Engle (1982) and Bollerslev (1986): therefore, consistently with the theory we developed, the returns
rit have to be devolatised. The variable yit is then defined as

yit ≡ −
rit

σi|t−1
, σ2i|t−1 ≡ Var (rit |Ωi,t−1 ) , i = 1, 2, (38)

where Ωi,t−1 is the information set up to time t − 1. The conditional standard deviation σi|t−1 is
estimated by fitting the returns rit with the GARCH(1, 1)− t model introduced by Bollerslev (1987):

11The use of pseudo-closing prices to avoid the problem of non-synchronous data was first suggested in Martens and
Poon (2001); see Chapter 5 of Tsay (2005) for a discussion of the characteristics of high-frequency data. Also, notice
that a similar exercise could be performed with the London Stock Exchange acting as centre market. Conversely, the
same kind of analysis cannot be performed with the Japanese stock market, since it does not have any common trading
time with the stock markets we chose as periphery markets.
12 In each market a day is considered a holiday if the return on that day is exactly equal to zero.
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compared to the standard GARCH model with conditionally Gaussian disturbances, this represents a
more flexible approach to account for the leptokurtosis in stock market returns as evidenced in Table
4. The GARCH(1, 1)− t model, specified in terms of the returns rit, is given by

rit = μi +
5P

k=1

γikri,t−k + εit,

εit = zitσi|t−1 ,
zit |Ωi,t−1 ∼ iidtv (0, 1) ,
σ2i|t−1 = ω + αε2i,t−1 + βσ2i|t−2 ,

(39)

where v denotes the number of degrees of freedom of the t distribution13. The market returns rit in
(39) are modelled as an autoregressive process of order five so to control for serial correlation as well
as weekly effects. Taking into account (38), the model specification becomes

ŷ1t = δ1 +α1
0x1t + β1I (−r2t − c2) + u1t,

ŷ2t = δ2 +α2
0x2t + β2I (−r1t − c1) + u2t,

(40)

where
ŷit ≡ −

rit
σ̂i|t−1

, xit ≡ (ŷi,t−1, . . . , ŷi,t−5)0 , i = 1, 2, (41)

σ̂i|t−1 being the estimate of σi|t−1 arising from (39), and the subscript i = 2 always referring to the
S&P 500 index. In this way we are left with 3736 observations.
The threshold parameters c1 and c2 are estimated by grid search, while the remaining set of para-

meters is estimated by FIML, under the assumption of jointly normally distributed errors (u1t, u2t)
0:

this choice over single equation GIVE estimation is motivated by the superior performance of the FIML
estimator, as it arises from the Monte Carlo analysis carried out in Section 7. Notice that the normality
assumption imposed on the errors is a plausible one, since the original returns rit have been devola-
tised, and the crisis indicators account for the presence of extreme values in the empirical distribution
of ŷit. For each stock market return, the width of the grid for the corresponding threshold is chosen
so to include observations between the bottom 0.5% and 20% quantiles of the empirical distribution
of rit. The resulting intervals for the threshold values for the S&P 500, SMI, DAX 30 and CAC 40
are CS&P500 ≡ [0.65, 3.40], CSMI ≡ [0.80, 3.60], CDAX30 ≡ [0.90, 4.70] and CCAC40 ≡ [0.90, 4.10],
respectively, with a step equal to 0.01.

8.3 Results

Results from estimation of the model in (40) by FIML are reported in Table 5. Starting from the effect
of the NYSE upon periphery markets, we can see that the latter seem to define a negative extreme
event (i.e. a crisis) in the former almost in the same way: both the SMI and the CAC 40 react when the
(standardised) daily returns in the S&P 500 goes below −2.69% (which corresponds to a proportion
of crisis periods equal to 1.15%), whereas the analogous threshold related to the DAX 30 is equal to
−2.44% (and a related proportion of crisis episodes equal to 1.85%). Consistently with this result, the
effect of a crisis in the NYSE on any of the other markets is of similar magnitude: it causes a drop of
0.57% in the SMI, 0.58% in the DAX 30, and 0.64% in the CAC 40, each variation being expressed
in terms of the corresponding devolatised stock market return14: therefore, the periphery markets we
consider seem to have the same degree of vulnerability with respect to extreme negative events taking
place in the NYSE.
Turning the attention to the effect of the periphery markets on the S&P 500, it can be seen that

the CAC 40 seems to be the index that most often affects the S&P 500, being perceived to be in
crisis 4.39% of the times, with an associated threshold of −2.20%; it is then followed by the DAX 30
and the SMI (2.38% and 0.70% of crisis periods, and threshold values equal to −3.06% and −3.15%,
respectively). It is also interesting to note that the higher the number of times an index affects the
S&P 500, the lower the magnitude of the effect (i.e. the magnitude of the corresponding contagion

13The GARCH(1, 1)−t model in (39) is estimated by means of the procedure developed by Laurent and Peters (2005).
14This is because of the definition of the dependent variable yit given in (41), so that each return has same conditional

variance equal to one.
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coefficient): a crisis in the CAC 40 causes a drop of 0.34% in the S&P 500, whereas an episodes of
turmoil affecting the DAX 30 and the SMI determines a fall in the S&P 500 equal to 0.50% and 0.74%,
respectively.

9 Concluding remarks
This paper has dealt with the theoretical issues of identification and estimation in the incoherent model
of contagion advanced in Pesaran and Pick (2007). In particular, two main results were proved. First,
identification of the relevant parameters of the model (i.e. identification of the parameters capturing
contagion effects from those related to interdependence) does not require identification of the process
dt, which drives the choice of the solution in the region where multiple equilibria arise. Second, FIML
estimation of the model does not require estimation of the process dt. Therefore, more generally it
was proved that in-sample analysis of the model does not require information about the process dt.
The work undertaken in this paper is subject to several possible extensions. In particular, we

believe that three of them are worth discussing. First, the issue of statistical inference, i.e. testing
for contagion, has not been addressed. The problem is that under the null hypothesis of no contagion
in market i, i.e. under H0 : βi = 0, the threshold parameter cj is not identified, for i, j = 1, 2 and
i 6= j. The problem of performing hypothesis testing when a nuisance parameter is identified only
under the alternative is known in the statistical literature as the Davies problem, after the work by
Davies (1977, 1987). Given the model in (1), a possible solution would be to follow the procedure
advanced in Massacci (2007).
Second, the FIML estimator we propose is likely to be sensitive to misspecifications in the underlying

distribution of the error terms (u1t, u2t)
0: therefore, alternative estimation methods, such as GMM,

are worth considering.
Finally, the analysis we have carried out focuses on in-sample inference, without dealing with out-

of-sample forecasting. For example, this aspect could be relevant when forecasting the direction of the
market. Therefore, a test of market timing of the kind proposed in Pesaran and Timmermann (1992)
could represent a useful starting point.
These possible developments go beyond the purpose of this paper, and will be the subject of separate

studies.
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Appendix

A Further analysis of the model
In this appendix we provide a brief analysis of the model in (1) when β1, β2 < 0, and when β1 < 0
and β2 > 0.

15 Consider first the case β1, β2 < 0. Taking into account (8) and (10), the system in (1)
can be written as

Y1t = W1t + I (−Y2t) ,
Y2t = W2t + I (−Y1t) .

The five mutually exclusive solution regions are then given by

region At:
½

W1t ≥ 0
W2t ≥ 0

;

region Bt:
½

W1t ≥ 0
−1 ≤W2t < 0

∪
½

W1t ≥ −1
W2t < −1

;

region Ct:
½

W1t < −1
W2t < −1

;

region Dt:
½

W1t < −1
−1 ≤W2t < 0

∪
½

W1t < 0
W2t ≥ 0

;

region Et:
½
−1 ≤W1t < 0
−1 ≤W2t < 0

.

The reduced form is then given by½
y1t = w1t ≤ c1
y2t = w2t ≤ c2

, (event At)

½
y1t = w1t + β1 ≤ c1
y2t = w2t > c2

, (event Bt)

½
y1t = w1t + β1 > c1
y2t = w2t + β2 > c2

, (event Ct)

½
y1t = w1t > c1
y2t = w2t + β2 ≤ c2,

, (event Dt)

½
y1t = w1t + dEt β1
y2t = w2t +

¡
1− dEt

¢
β2

, (event Et)

the process dEt being defined in (16). The normalising term pt is then equal to

pt = 1 + Pr (Et |zt ) ,

the analytical expression for Pr (Et |zt ) being the same as that obtained in (22). Therefore, the
expression for the joint pdf given in (33) remains valid for the case β1, β2 < 0.
Consider now the case β1 < 0 and β2 > 0. The model can be written as

Y1t = W1t + I (Y2t) ,

Y2t = W2t + I (−Y1t) .
15The case where β1 > 0 and β2 < 0 is analogous to that where β1 < 0 and β2 > 0, and it is therefore omitted.
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In this case only four mutually exclusive solution regions arise

region At:
½

W1t ≥ −1
W2t > 0

,

region Bt:
½

W1t ≥ 0
W2t ≤ 0

,

region Ct:
½

W1t < 0
W2t ≤ −1

,

region Dt:
½

W1t < −1
W2t > −1

,

while in region Et defined as

region Et:
½
−1 ≤W1t < 0
−1 < W2t ≤ 0

no solution arises. The reduced form is then given by½
y1t = w1t + β1 ≤ c1
y2t = w2t > c2

, (event At)

½
y1t = w1t ≤ c1
y2t = w2t ≤ c2

, (event Bt)

½
y1t = w1t > c1
y2t = w2t + β2 ≤ c2

, (event Ct)

½
y1t = w1t + β1 > c1
y2t = w2t + β2 > c2

, (event Dt)

and no multiple equilibria arise. In this case the normalising term pt is given by

pt = 1− Pr (Et |zt ) ,

where the analytical expression for Pr (Et |zt ) is of the same magnitude but opposite sign compared
to the expression provided in (22). Therefore, the expression for the joint pdf given in (33) remains
valid for the case β1 < 0 and β2 > 0.

B Conditional probability of crisis
In this appendix we provide the analytical derivation of the general expression for Pr (yit − ci > 0 |zt ),
i = 1, 2. From the reduced form equation (19) it follows that

Pr (y1t − c1 > 0 |zt ) = Pr (At |zt ) Pr (y1t − c1 > 0 |At;zt )
+Pr (Bt |zt ) Pr (y1t − c1 > 0 |Bt;zt )
+Pr (Ct |zt ) Pr (y1t − c1 > 0 |Ct;zt )
+Pr (Dt |zt ) Pr (y1t − c1 > 0 |Dt;zt )
+Pr (Et |zt )Pr (y1t − c1 > 0 |Et;zt )

where
Pr (y1t − c1 > 0 |At;zt ) = Pr (y1t − c1 > 0 |Bt;zt ) = 1,
Pr (y1t − c1 > 0 |Ct;zt ) = Pr (y1t − c1 > 0 |Dt;zt ) = 0,
Pr (y1t − c1 > 0 |Et;zt ) =

¡
1− πEd

¢
,

so that
Pr (y1t − c1 > 0 |zt ) = Pr (At |zt ) + Pr (Bt |zt ) +

¡
1− πEd

¢
Pr (Et |zt ) ;
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therefore, taking into account (14), we have

Pr (y1t − c1 > 0 |zt ) = Pr (W1t > 0 |zt ) + Pr (−1 < W1t ≤ 0,W2t > 0 |zt )
+
¡
1− πEd

¢
Pr (−1 < W1t ≤ 0,−1 < W2t ≤ 0 |zt ) .

In the same way, we obtain

Pr (y2t − c2 > 0 |zt ) = Pr (W2t > 0 |zt ) + Pr (W1t > 0,−1 < W2t ≤ 0 |zt )
+
¡
1− πEd

¢
Pr (−1 < W1t ≤ 0,−1 < W2t ≤ 0 |zt )

and in general we have

Pr (yit − ci > 0 |zt ) = Pr (Wit > 0 |zt ) + Pr (−1 < Wit ≤ 0,Wjt > 0 |zt )
+
¡
1− πEd

¢
Pr (−1 < Wit ≤ 0,−1 < Wjt ≤ 0 |zt )

,

for i, j = 1, 2, i 6= j.

C Proofs
In this appendix we provide the proofs of Theorem 3 and Theorem 4. In what follows, A

¡
A0, a

¢
denotes a generic open ball of radius a centred around A0.

C.1 Strong consistency of the single equation GIVE estimator

Given the definition of φi in (27), define the vector of parameters θij as

θij ≡ (φi, cj) ,

with true value θ0ij defined as
θ0ij ≡

¡
φ0i , c

0
j

¢
.

Denote
uit (θij) ≡ uit = yit − h0it (cj)φi,

where hit (cj) is defined in (31). Consider the function

Qi (θij) = E [w0
ituit (θij)]E (witw

0
it)E [wituit (θij)]

= E {[1− I (yjt − cj)]w
0
itu1it (θij)}E (witw

0
it)E {[1− I (yjt − cj)]witu1it (θij)}

+E [I (yjt − cj)w
0
itu2it (θij)]E (witw

0
it)E [I (yjt − cj)witu2it (θij)] ,

where
u1it (θij) = yit − h01it (cj)φ1i, h1it (cj) ≡ (z0t,x0it)

0 , φ1i ≡
¡
δ0i,α

0
i

¢0
,

u2it (θij) = yit − h02it (cj)φ2i, h2it (cj) ≡ (z0t,x0it, 1)
0
, φ2i = φi.

The function Qi (θij) can be equivalently written as

Qi (θij) = E
£
g1it (θij)

0¤E (witw
0
it)E [g1it (θij)] +E

£
g2it (θij)

0¤E (witw
0
it)E [g2it (θij)] ,

where

g1it (θij) ≡ [1− I (yjt − cj)]witu1it (θij) , g2it (θij) ≡ I (yjt − cj)witu2it (θij) .

In order to prove Theorem 3 it is sufficient to prove the following lemma:

Lemma 5 Consider the model in (1) under the conditions imposed in Theorem 3; then

limbij→0E
h
supθij∈B(θ0ij ,bij)

¯̄
gkit (θij)− gkit

¡
θ0ij
¢¯̄i

= 0, k = 1, 2.
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Proof. Consider the case k = 1; we then have¯̄
g1it (θij)− g1it

¡
θ0ij
¢¯̄

=
¯̄
[1− I (yjt − cj)]witu1it (θij)−

£
1− I

¡
yjt − c0j

¢¤
witu1it

¡
θ0ij
¢¯̄

≤
¯̄
[1− I (yjt − cj)]wit

£
u1it (θij)− u1it

¡
θ0ij
¢¤¯̄

+
¯̄©
[1− I (yjt − cj)]−

£
1− I

¡
yjt − c0j

¢¤ª
witu1it

¡
θ0ij
¢¯̄

≤ [1− I (yjt − cj)] |wit|
¯̄
u1it (θij)− u1it

¡
θ0ij
¢¯̄

+I
¡¯̄
c1 − c01

¯̄
−
¯̄
yjt − c0j

¯̄¢
|wit|

¯̄
u1it

¡
θ0ij
¢¯̄
.

The case k = 2 can be proved in a similar way, which completes the proof of Lemma 5.

Remark 6 The sufficiency of the above lemma to prove Theorem 3 follows from Chan (1993), whose
Lemma 1 is analogous to Lemma 5 here.

C.2 Strong consistency of the FIML estimator

Consider the vectors of parameters c and ∆ defined in (35), define the vector θ as

θ ≡ (c0,∆0)
0
,

and denote by a0 the true value of the generic parameters vector a. Further, denote the normalising
term pt defined in (34) by

pt ≡ pt (c,∆) ≡ pt (θ) .

Finally, denote by gkt the contribution to the pdf defined in (33) under regime k , k = 1, 2, 3, 4.
Therefore, g1t (θ) is defined as

g1t (θ) ≡ [1− I (y1t − c1)] [1− I (y2t − c2)] log [f (y1t, y2t;θ1 |zt ) /pt (θ) ] ,

θ1 being given in (32); in the same way gkt (θ) can be defined for k = 2, 3, 4. Theorem 4 is proved by
proving the following lemma:

Lemma 7 Consider the model in (1) under the conditions imposed in Theorem 4; then

E [gkt (θ)] < E
£
gkt
¡
θ0
¢¤
, ∀θ 6= θ0, k = 1, 2, 3, 4, (C.1)

and
limb→0E

h
supθ∈B(θ0,b)

¯̄
gkt (θ)− gkt

¡
θ0
¢¯̄i

= 0, k = 1, 2, 3, 4. (C.2)

Proof. The result in (C.1) can be proved in two steps, namely

E [gkt (c,∆)] < E
£
gkt
¡
c,∆0

¢¤
, ∀∆ 6=∆0, (C.1.1)

and
E
£
gkt
¡
c,∆0

¢¤
< E

£
gkt
¡
c0,∆0

¢¤
, ∀c 6= c0, (C.1.2)

for k = 1, 2, 3, 4. Consider the case k = 1; then (C.1.1) is equivalent to

E {[1− I (y1t − c1)] [1− I (y2t − c2)] log [f (y1t, y2t;θ1 |zt ) /pt (c,∆) ]}

< E
©
[1− I (y1t − c1)] [1− I (y2t − c2)] log

£
f
¡
y1t, y2t;θ

0
1 |zt

¢ ±
pt
¡
c,∆0

¢¤ª
,

(C.1.1a)

since θ01 ⊂∆0. From Jensen’s inequality we have

E

(
[1− I (y1t − c1)] [1− I (y2t − c2)] log

"
f (y1t, y2t;θ1 |zt ) /pt (c,∆)
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0
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< logE
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< 0,
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so that (C.1.1a) holds. By applying the same procedure for k = 2, 3, 4, the result in (C.1.1) is shown
to hold. Similarly, to prove (C.1.2) consider the case k = 1; therefore

E
©
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,

which is equivalent to
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(C.1.2a)

We then have
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further,
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since f
¡
y1t, y2t;θ

0
1 |zt

¢
is positive if and only if y1t ≤ c01 and y2t ≤ c02. Therefore, (C.1.2a) is fulfilled.

Applying the same procedure for k = 2, 3, 4 the result in (C.1.2) is shown to hold: therefore, (C.1) also
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holds. The result in (C.2) is proved by noting that for k = 1¯̄
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.

A similar result holds for k = 2, 3, 4. Therefore, (C.2) is also verified.

Remark 8 The result stated in (C.1) is a standard condition in Maximum Likelihood estimation, and
it is sufficient to ensure that the pdf is maximised at the true parameters values θ0. The result in (C.2)
is equivalent to the one stated in Lemma 1 in Chan (1993).
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Table 1: Bias, RMSE, Size and Power in the Case of Experiment 1
Bias RMSE

α1 = α2 = 0.5
(π, T) 50 100 200 500 1000 50 100 200 500 1000

FIML
0.005 0.3365 0.0978 0.0407 0.0352 0.0090 1.1403 0.9474 0.8232 0.6806 0.5075
0.01 0.1906 0.0530 0.0309 0.0109 -0.0008 1.0172 0.8481 0.7190 0.5022 0.3258
0.05 0.0098 0.0084 -0.0002 0.0040 -0.0009 0.7458 0.5370 0.3500 0.2032 0.1422
0.10 -0.0188 -0.0001 0.0051 0.0016 -0.0021 0.5556 0.3837 0.2607 0.1588 0.1117
0.20 -0.0110 -0.0047 -0.0015 0.0021 0.0010 0.4322 0.3035 0.2093 0.1333 0.0939
0.30 -0.0211 -0.0063 -0.0071 -0.0028 0.0019 0.4114 0.2756 0.1927 0.1254 0.0871
0.40 -0.0189 -0.0112 -0.0106 -0.0045 0.0023 0.4027 0.2775 0.1913 0.1230 0.0858
0.50 -0.0233 -0.0040 -0.0036 -0.0022 -0.0001 0.4071 0.2778 0.1943 0.1215 0.0849

GIVE, m = 1
0.005 23.3750 5.0538 -1.3774 -5.4219 0.6535 860.7200 249.6600 87.9290 166.4500 508.6500
0.01 7.5300 -2.6424 0.7927 -1.3885 -0.1173 159.0100 115.6700 54.1780 54.5050 4.9310
0.05 27.0600 0.2628 -0.3140 -0.0448 -0.0219 1009.0000 32.6530 5.6176 1.3038 0.7818
0.10 -0.4459 -1.6106 -0.1570 -0.0227 -0.0115 31.7830 53.9930 2.8133 0.7032 0.4491
0.20 0.3352 0.0203 -0.0789 -0.0093 0.0070 65.8750 10.4750 0.7326 0.4214 0.2793
0.30 0.2083 -0.0919 -0.0604 -0.0062 -0.0054 15.3230 1.4431 0.5897 0.3420 0.2272
0.40 -0.2902 -0.0932 -0.0519 -0.0057 -0.0059 6.3756 1.2605 0.5162 0.3132 0.2079
0.50 0.0403 -0.0834 -0.0486 -0.0060 -0.0053 5.8288 1.5639 0.5091 0.3094 0.2059

GIVE, m = 6
0.005 1.5123 1.2912 1.1796 0.6736 0.5867 3.6240 4.8315 5.9986 7.3796 6.0088
0.01 1.2101 1.0030 0.9293 0.5643 0.3472 3.3271 4.3309 5.2081 4.4033 2.7120
0.05 0.8519 0.5646 0.3313 0.1807 0.1080 2.5011 2.0547 1.4033 0.9200 0.6378
0.10 0.6285 0.3964 0.2228 0.1187 0.0626 1.7170 1.2117 0.8830 0.5589 0.3986
0.20 0.4708 0.2808 0.1377 0.0731 0.0345 1.0363 0.8172 0.5768 0.3777 0.2653
0.30 0.4213 0.2410 0.1088 0.0536 0.0261 0.8877 0.6832 0.4859 0.3208 0.2202
0.40 0.3957 0.2296 0.0980 0.0497 0.0207 0.8446 0.6461 0.4524 0.2970 0.2026
0.50 0.3918 0.2182 0.0973 0.0477 0.0200 0.8429 0.6359 0.4471 0.2972 0.2002

α1 = α2 = 1
FIML

0.005 0.3195 0.1408 0.0272 0.0187 0.0030 1.1148 0.9466 0.8193 0.6585 0.4613
0.01 0.2005 0.0498 0.0183 0.0321 -0.0090 1.0159 0.8181 0.7357 0.4733 0.2981
0.05 0.0065 -0.0087 -0.0030 0.0045 -0.0010 0.7250 0.4975 0.3186 0.1944 0.1370
0.10 0.0072 -0.0065 -0.0015 0.0029 -0.0012 0.5276 0.3578 0.2434 0.1488 0.1054
0.20 -0.0159 -0.0066 -0.0038 0.0024 -0.0003 0.4006 0.2745 0.1913 0.1202 0.0846
0.30 -0.0052 0.0017 0.0016 0.0009 0.0021 0.3658 0.2503 0.1815 0.1139 0.0768
0.40 -0.0107 -0.0034 -0.0042 0.0001 0.0014 0.3569 0.2374 0.1704 0.1084 0.0745
0.50 -0.0153 -0.0007 -0.0085 -0.0021 -0.0006 0.3602 0.2415 0.1709 0.1079 0.0748

GIVE, m = 1
0.005 21.4380 -0.7559 0.4001 0.4183 -0.2641 859.5400 65.2020 57.1470 30.3990 6.1158
0.01 1.3279 -0.9211 -1.0822 -0.3590 -0.0797 46.0970 83.6690 17.7820 6.7448 2.2480
0.05 20.9690 -0.1499 -0.1164 -0.0076 -0.0080 934.8900 7.7591 1.3300 0.7427 0.4837
0.10 -0.1055 -0.0948 -0.0499 -0.0006 -0.0027 5.7757 1.2589 0.6867 0.4168 0.2783
0.20 -0.0964 -0.0411 -0.0231 0.0024 -0.0009 1.0901 0.6372 0.4114 0.2578 0.1742
0.30 -0.0549 -0.0270 -0.0176 0.0023 -0.0007 0.7812 0.4951 0.3274 0.2088 0.1416
0.40 -0.0387 -0.0217 -0.0152 0.0025 -0.0003 0.6700 0.4460 0.2987 0.1903 0.1289
0.50 -0.0398 -0.0218 -0.0140 0.0024 -0.0003 0.6624 0.4397 0.2921 0.1872 0.1266

GIVE, m = 6
0.005 1.1439 0.9439 0.7949 0.3483 0.1124 2.4759 3.0206 3.6763 4.2947 2.7626
0.01 0.9248 0.7151 0.3537 0.2110 0.0902 2.2931 2.8683 3.2232 2.2001 1.1328
0.05 0.4628 0.2318 0.1040 0.0394 0.0244 1.8185 1.3823 0.8378 0.4971 0.3399
0.10 0.2766 0.1199 0.0492 0.0221 0.0135 1.1910 0.7574 0.5127 0.3226 0.2247
0.20 0.1665 0.0727 0.0226 0.0148 0.0074 0.7422 0.5100 0.3573 0.2254 0.1581
0.30 0.1285 0.0453 0.0153 0.0119 0.0048 0.6303 0.4259 0.3040 0.1933 0.1343
0.40 0.1176 0.0374 0.0115 0.0110 0.0040 0.5799 0.4030 0.2825 0.1812 0.1245
0.50 0.1194 0.0350 0.0099 0.0109 0.0032 0.5746 0.4028 0.2771 0.1794 0.1222

34



(Table 1 continued)
Size (5% level, H0 : β1 = 0.00) Power (5% level, H0 : β1 = 0.50)

α1 = α2 = 0.5
(π, T) 50 100 200 500 1000 50 100 200 500 1000

FIML
0.005 0.1385 0.0715 0.0505 0.0600 0.0555 0.1030 0.0985 0.1090 0.1775 0.2875
0.01 0.1020 0.0650 0.0600 0.0645 0.0565 0.1025 0.1105 0.1430 0.2815 0.4310
0.05 0.0730 0.0720 0.0630 0.0465 0.0525 0.1605 0.2235 0.3535 0.6830 0.9295
0.10 0.0645 0.0605 0.0565 0.0500 0.0520 0.1940 0.3060 0.5115 0.8775 0.9945
0.20 0.0575 0.0530 0.0540 0.0525 0.0515 0.2410 0.4115 0.6760 0.9665 0.9995
0.30 0.0665 0.0495 0.0495 0.0555 0.0435 0.2795 0.4410 0.7495 0.9835 1.0000
0.40 0.0660 0.0525 0.0510 0.0570 0.0530 0.2660 0.4780 0.7670 0.9865 1.0000
0.50 0.0655 0.0605 0.0590 0.0515 0.0465 0.2805 0.4655 0.7610 0.9880 1.0000

GIVE, m = 1
0.005 0.0055 0.0040 0.0030 0.0045 0.0080 0.0050 0.0025 0.0015 0.0030 0.0055
0.01 0.0065 0.0040 0.0035 0.0065 0.0155 0.0035 0.0015 0.0010 0.0065 0.0120
0.05 0.0075 0.0135 0.0175 0.0280 0.0330 0.0035 0.0065 0.0075 0.0295 0.0710
0.10 0.0150 0.0230 0.0280 0.0365 0.0360 0.0040 0.0105 0.0225 0.0765 0.1725
0.20 0.0255 0.0315 0.0350 0.0415 0.0385 0.0100 0.0165 0.0535 0.2020 0.4295
0.30 0.0315 0.0370 0.0350 0.0425 0.0385 0.0105 0.0225 0.0860 0.3020 0.5950
0.40 0.0340 0.0380 0.0365 0.0440 0.0390 0.0115 0.0310 0.1125 0.3700 0.6880
0.50 0.0360 0.0400 0.0370 0.0440 0.0405 0.0145 0.0300 0.1205 0.3775 0.6910

GIVE, m = 6
0.005 0.1095 0.0585 0.0330 0.0325 0.0355 0.0625 0.0335 0.0180 0.0190 0.0215
0.01 0.0830 0.0480 0.0295 0.0410 0.0395 0.0390 0.0195 0.0195 0.0200 0.0230
0.05 0.0670 0.0520 0.0490 0.0505 0.0450 0.0290 0.0200 0.0220 0.0385 0.0730
0.10 0.0800 0.0700 0.0580 0.0550 0.0515 0.0305 0.0240 0.0290 0.0685 0.1810
0.20 0.1075 0.0815 0.0520 0.0590 0.0485 0.0320 0.0285 0.0490 0.1735 0.4080
0.30 0.1090 0.0845 0.0560 0.0595 0.0460 0.0305 0.0310 0.0700 0.2685 0.5600
0.40 0.1070 0.0840 0.0615 0.0580 0.0435 0.0310 0.0345 0.0915 0.3235 0.6565
0.50 0.1105 0.0890 0.0625 0.0590 0.0410 0.0310 0.0345 0.0895 0.3360 0.6555

α1 = α2 = 1
FIML

0.005 0.1440 0.0835 0.0665 0.0530 0.0480 0.1105 0.1015 0.1250 0.1530 0.2425
0.01 0.1140 0.0595 0.0655 0.0615 0.0480 0.1105 0.1020 0.1470 0.2320 0.4330
0.05 0.0765 0.0575 0.0585 0.0460 0.0475 0.1520 0.2305 0.3585 0.7195 0.9500
0.10 0.0610 0.0630 0.0520 0.0575 0.0490 0.2065 0.3245 0.5650 0.9195 0.9980
0.20 0.0615 0.0605 0.0470 0.0475 0.0420 0.2755 0.4595 0.7550 0.9885 1.0000
0.30 0.0640 0.0615 0.0560 0.0565 0.0465 0.2990 0.5220 0.8050 0.9945 1.0000
0.40 0.0640 0.0490 0.0530 0.0525 0.0495 0.3310 0.5675 0.8535 0.9975 1.0000
0.50 0.0660 0.0470 0.0520 0.0580 0.0440 0.3410 0.5545 0.8495 0.9985 1.0000

GIVE, m = 1
0.005 0.0090 0.0080 0.0060 0.0110 0.0200 0.0065 0.0055 0.0045 0.0105 0.0195
0.01 0.0110 0.0090 0.0070 0.0200 0.0305 0.0065 0.0040 0.0080 0.0185 0.0335
0.05 0.0165 0.0255 0.0285 0.0395 0.0410 0.0115 0.0215 0.0425 0.0930 0.1605
0.10 0.0240 0.0345 0.0380 0.0440 0.0410 0.0225 0.0405 0.0945 0.2165 0.4305
0.20 0.0320 0.0425 0.0410 0.0470 0.0425 0.0410 0.1035 0.2225 0.5070 0.8180
0.30 0.0415 0.0475 0.0445 0.0470 0.0420 0.0700 0.1585 0.3315 0.6780 0.9495
0.40 0.0430 0.0480 0.0425 0.0475 0.0425 0.0835 0.2005 0.3980 0.7710 0.9770
0.50 0.0465 0.0485 0.0440 0.0480 0.0425 0.0910 0.2070 0.4160 0.7805 0.9830

GIVE, m = 6
0.005 0.1310 0.0770 0.0495 0.0485 0.0415 0.0720 0.0390 0.0330 0.0355 0.0375
0.01 0.0975 0.0550 0.0450 0.0490 0.0475 0.0520 0.0275 0.0330 0.0385 0.0515
0.05 0.0645 0.0500 0.0470 0.0480 0.0455 0.0355 0.0370 0.0595 0.1365 0.2630
0.10 0.0695 0.0510 0.0455 0.0505 0.0480 0.0470 0.0595 0.1165 0.3060 0.5890
0.20 0.0640 0.0580 0.0450 0.0505 0.0495 0.0540 0.1125 0.2560 0.5895 0.8940
0.30 0.0645 0.0520 0.0495 0.0515 0.0490 0.0775 0.1590 0.3570 0.7285 0.9630
0.40 0.0665 0.0500 0.0465 0.0480 0.0455 0.0845 0.1845 0.4035 0.7950 0.9815
0.50 0.0705 0.0535 0.0460 0.0485 0.0385 0.0925 0.1890 0.4160 0.7980 0.9895

Notes: The DGP is yrit = δi + αixrit + βiI yrjt − cj + urit, i, j = 1, 2, i 6= j, with β1 = 0, β2 = 0.2 and c1 = c2 = 1.64;

δ1 = c1 − α21 + 1 Φ−1 (1− π) , δ2 is calibrated so to control for the unconditional probability of crisis π. urit =

γif
r
t + εrit γ2i + 1

−1/2 , where εrit ∼ NID (0, 1), frt ∼ NID (0, 1) and γi ∼ U (0.8, 1), γi fixed in repeated samples.

Regressors generated as xrit = φih
r
t + qrit φ2i + 1

−1/2 , where qrit ∼ NID (0, 1), hrt ∼ NID (0, 1) and φi ∼ U (0.8, 1),
φi fixed in repeated samples.
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Table 2: Bias, RMSE, Size and Power in the Case of Experiment 2
Bias RMSE

α1 = α2 = 0.5
(π, T) 50 100 200 500 1000 50 100 200 500 1000

FIML
0.005 0.4310 0.2209 0.0928 0.0322 0.0208 1.1169 0.9104 0.8173 0.6992 0.5338
0.01 0.2294 0.0949 0.0072 0.0088 -0.0064 0.9769 0.8235 0.7510 0.5277 0.3444
0.05 0.0018 -0.0098 -0.0078 -0.0138 -0.0030 0.7671 0.5607 0.3624 0.2232 0.1533
0.10 -0.0067 0.0030 -0.0070 -0.0046 -0.0027 0.6022 0.3775 0.2597 0.1647 0.1198
0.20 0.0024 -0.0152 -0.0049 -0.0017 -0.0057 0.4739 0.3099 0.2163 0.1366 0.0960
0.30 -0.0135 0.0052 -0.0004 -0.0017 0.0005 0.4244 0.2904 0.1982 0.1290 0.0913
0.40 -0.0074 0.0011 -0.0075 -0.0055 0.0029 0.4167 0.2887 0.1907 0.1251 0.0877
0.50 -0.0088 0.0041 -0.0056 0.0013 0.0001 0.4089 0.2802 0.2020 0.1218 0.0870

GIVE, m = 1
0.005 9.6778 -4.8751 2.2369 -9.5134 -0.0638 352.3700 683.6100 111.7300 618.6900 29.2580
0.01 2.8382 1.7954 -4.4530 2.4026 -0.4521 105.3900 102.4400 223.7300 158.2600 5.5134
0.05 -0.6524 -0.5033 -2.1864 -0.5075 -0.0276 76.6690 54.9430 88.1270 17.0750 0.8826
0.10 -5.8597 3.9361 -0.1695 -0.0424 0.0087 244.8900 172.2500 1.6451 0.7411 0.4946
0.20 -0.2877 -0.0976 -0.0613 -0.0161 -0.0162 11.7670 2.1990 0.7608 0.4296 0.2939
0.30 -0.7818 -0.1109 -0.0537 -0.0147 -0.0088 21.2290 1.1750 0.6216 0.3445 0.2381
0.40 -0.3326 -2.8504 -0.0568 -0.0309 -0.0063 11.3580 123.2400 0.5294 0.3247 0.2184
0.50 -0.0290 -0.1392 -0.0697 -0.0139 -0.0082 6.8367 1.6120 0.5322 0.2979 0.1997

GIVE, m = 6
0.005 1.6760 1.5688 1.4124 1.0284 0.4905 3.6957 4.7504 6.1861 7.9464 6.4147
0.01 1.3449 1.2179 1.0248 0.6203 0.1280 3.3504 4.3551 5.4093 4.6099 2.9890
0.05 0.8261 0.7258 0.3617 0.1521 0.0952 2.5407 2.4675 1.7684 0.9891 0.6941
0.10 0.6668 0.4999 0.2600 0.1211 0.0705 1.7984 1.3279 0.9580 0.5995 0.4323
0.20 0.5311 0.3135 0.1488 0.0682 0.0251 1.1181 0.8355 0.6072 0.3855 0.2697
0.30 0.4276 0.2609 0.1291 0.0471 0.0201 0.9313 0.7118 0.5336 0.3231 0.2274
0.40 0.4340 0.2481 0.1056 0.0260 0.0188 0.8638 0.6572 0.4640 0.3024 0.2120
0.50 0.4012 0.2379 0.0915 0.0391 0.0162 0.8221 0.6383 0.4359 0.2833 0.1937

α1 = α2 = 1
FIML

0.005 0.4534 0.1901 0.0931 -0.0083 -0.0066 1.1080 0.9208 0.8427 0.6561 0.4738
0.01 0.2641 0.0866 0.0144 0.0062 -0.0195 0.9666 0.8369 0.7356 0.4779 0.3140
0.05 0.0330 0.0103 -0.0065 -0.0016 -0.0090 0.7117 0.5286 0.3317 0.2061 0.1424
0.10 -0.0025 -0.0111 -0.0098 -0.0066 -0.0084 0.5389 0.3539 0.2437 0.1537 0.1068
0.20 -0.0146 0.0060 -0.0058 -0.0022 0.0008 0.4146 0.2881 0.1941 0.1237 0.0854
0.30 -0.0091 -0.0059 -0.0065 0.0033 -0.0026 0.3836 0.2532 0.1815 0.1147 0.0805
0.40 -0.0074 0.0006 -0.0025 -0.0020 -0.0005 0.3589 0.2543 0.1707 0.1050 0.0776
0.50 -0.0029 -0.0003 -0.0014 0.0012 -0.0018 0.3592 0.2475 0.1727 0.1095 0.0747

GIVE, m = 1
0.005 3.6306 0.6777 2.4918 -0.5485 -0.2554 90.0590 26.6220 108.7800 18.3800 8.3601
0.01 -3.7421 1.3135 0.1553 -0.2521 -0.1108 142.8100 45.0780 24.8280 6.9161 2.4211
0.05 -0.2076 -0.2253 -0.1438 -0.0233 -0.0338 29.9500 5.3762 2.1257 0.7764 0.5271
0.10 -0.2836 -0.0762 -0.0209 -0.0215 -0.0189 3.3814 1.2088 0.7330 0.4286 0.2945
0.20 -0.0469 -0.0354 -0.0278 -0.0070 0.0009 1.3700 0.6527 0.4324 0.2602 0.1781
0.30 -0.0384 -0.0195 0.0000 0.0020 -0.0051 1.0424 0.5014 0.3418 0.2099 0.1479
0.40 -0.2217 -0.0091 -0.0044 -0.0078 0.0008 10.2830 0.4544 0.3017 0.1916 0.1362
0.50 -0.0329 -0.0118 -0.0042 0.0004 -0.0002 0.6776 0.4174 0.2869 0.1807 0.1292

GIVE, m = 6
0.005 1.2721 1.1871 0.8028 0.4517 0.1461 2.4921 2.9440 3.7086 4.1390 3.2506
0.01 1.1110 0.7616 0.5858 0.1017 0.0410 2.5329 2.9238 3.5634 2.1502 1.1860
0.05 0.5461 0.2649 0.1070 0.0655 0.0161 1.8499 1.5439 0.8950 0.5232 0.3579
0.10 0.2438 0.1537 0.0510 0.0147 -0.0035 1.1606 0.7521 0.5385 0.3389 0.2348
0.20 0.2038 0.0605 0.0136 0.0099 0.0065 0.7782 0.5407 0.3562 0.2327 0.1600
0.30 0.1515 0.0559 0.0258 0.0120 0.0007 0.6280 0.4365 0.3098 0.1982 0.1376
0.40 0.1310 0.0490 0.0235 -0.0004 0.0028 0.5653 0.4200 0.2844 0.1828 0.1297
0.50 0.1279 0.0478 0.0214 0.0092 0.0035 0.5670 0.3886 0.2734 0.1758 0.1261
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(Table 2 continued)
Size (5% level, H0 : β1 = 0.50) Power (5% level, H0 : β1 = 1.00)

α1 = α2 = 0.5
(π, T) 50 100 200 500 1000 50 100 200 500 1000

FIML
0.005 0.1060 0.0675 0.0615 0.0765 0.0870 0.0850 0.0775 0.1130 0.1905 0.2735
0.01 0.0770 0.0625 0.0710 0.0785 0.0720 0.0915 0.1145 0.1835 0.2725 0.4145
0.05 0.0780 0.0750 0.0635 0.0545 0.0520 0.1650 0.2300 0.3270 0.6630 0.9045
0.10 0.0765 0.0505 0.0425 0.0490 0.0580 0.2035 0.2745 0.5005 0.8610 0.9900
0.20 0.0790 0.0640 0.0580 0.0500 0.0490 0.2380 0.3900 0.6585 0.9600 1.0000
0.30 0.0660 0.0590 0.0445 0.0590 0.0500 0.2610 0.4245 0.7095 0.9775 1.0000
0.40 0.0670 0.0645 0.0410 0.0575 0.0585 0.2540 0.4355 0.7590 0.9805 1.0000
0.50 0.0710 0.0575 0.0565 0.0495 0.0525 0.2600 0.4450 0.7390 0.9845 1.0000

GIVE, m = 1
0.005 0.0075 0.0055 0.0055 0.0030 0.0050 0.0040 0.0025 0.0055 0.0040 0.0045
0.01 0.0030 0.0035 0.0040 0.0100 0.0130 0.0025 0.0010 0.0005 0.0090 0.0110
0.05 0.0100 0.0110 0.0150 0.0370 0.0355 0.0035 0.0035 0.0075 0.0290 0.0670
0.10 0.0150 0.0230 0.0280 0.0415 0.0495 0.0070 0.0050 0.0205 0.0735 0.1435
0.20 0.0210 0.0270 0.0385 0.0430 0.0405 0.0090 0.0150 0.0450 0.1870 0.4035
0.30 0.0320 0.0385 0.0385 0.0405 0.0440 0.0080 0.0185 0.0815 0.2820 0.5660
0.40 0.0430 0.0415 0.0360 0.0485 0.0495 0.0095 0.0275 0.1055 0.3820 0.6745
0.50 0.0355 0.0445 0.0335 0.0425 0.0395 0.0125 0.0245 0.1180 0.3845 0.7145

GIVE, m = 6
0.005 0.1170 0.0730 0.0355 0.0310 0.0375 0.0605 0.0405 0.0175 0.0200 0.0225
0.01 0.0850 0.0395 0.0415 0.0335 0.0400 0.0350 0.0160 0.0170 0.0190 0.0275
0.05 0.0630 0.0550 0.0390 0.0515 0.0610 0.0220 0.0210 0.0135 0.0365 0.0695
0.10 0.0780 0.0645 0.0635 0.0585 0.0520 0.0315 0.0140 0.0260 0.0635 0.1515
0.20 0.1045 0.0715 0.0665 0.0545 0.0465 0.0305 0.0250 0.0450 0.1665 0.4065
0.30 0.1065 0.0950 0.0705 0.0565 0.0470 0.0190 0.0280 0.0675 0.2490 0.5490
0.40 0.1190 0.0955 0.0690 0.0540 0.0525 0.0275 0.0330 0.0910 0.3375 0.6500
0.50 0.1165 0.0940 0.0590 0.0520 0.0405 0.0250 0.0275 0.0945 0.3415 0.6915

α1 = α2 = 1
FIML

0.005 0.1195 0.0785 0.0690 0.0575 0.0500 0.0840 0.0815 0.1200 0.1845 0.2550
0.01 0.0880 0.0680 0.0690 0.0540 0.0550 0.0825 0.1080 0.1420 0.2430 0.4385
0.05 0.0695 0.0605 0.0520 0.0510 0.0510 0.1425 0.2220 0.3480 0.6830 0.9445
0.10 0.0655 0.0580 0.0575 0.0520 0.0495 0.1945 0.3280 0.5550 0.9150 0.9985
0.20 0.0610 0.0680 0.0615 0.0535 0.0515 0.2745 0.4390 0.7440 0.9840 1.0000
0.30 0.0735 0.0460 0.0520 0.0615 0.0485 0.3035 0.5280 0.8085 0.9915 1.0000
0.40 0.0715 0.0650 0.0510 0.0410 0.0530 0.3090 0.5505 0.8360 0.9965 1.0000
0.50 0.0725 0.0625 0.0530 0.0590 0.0485 0.3220 0.5635 0.8385 0.9965 1.0000

GIVE, m = 1
0.005 0.0120 0.0070 0.0060 0.0120 0.0300 0.0070 0.0060 0.0035 0.0075 0.0245
0.01 0.0120 0.0105 0.0105 0.0220 0.0300 0.0090 0.0045 0.0105 0.0205 0.0340
0.05 0.0200 0.0230 0.0245 0.0445 0.0470 0.0110 0.0160 0.0275 0.0960 0.1680
0.10 0.0270 0.0260 0.0475 0.0455 0.0450 0.0190 0.0300 0.0895 0.2140 0.4235
0.20 0.0385 0.0520 0.0420 0.0505 0.0430 0.0470 0.0955 0.2055 0.4995 0.7970
0.30 0.0415 0.0390 0.0470 0.0505 0.0485 0.0540 0.1375 0.2960 0.6700 0.9425
0.40 0.0400 0.0535 0.0420 0.0505 0.0590 0.0795 0.1935 0.3675 0.7705 0.9675
0.50 0.0445 0.0425 0.0385 0.0405 0.0495 0.0835 0.1890 0.4110 0.7895 0.9760

GIVE, m = 6
0.005 0.1485 0.0830 0.0540 0.0465 0.0510 0.0640 0.0455 0.0340 0.0265 0.0370
0.01 0.1070 0.0615 0.0410 0.0430 0.0550 0.0560 0.0355 0.0280 0.0400 0.0535
0.05 0.0715 0.0590 0.0420 0.0510 0.0455 0.0315 0.0370 0.0425 0.1250 0.2535
0.10 0.0570 0.0475 0.0530 0.0570 0.0475 0.0395 0.0385 0.1195 0.3020 0.5825
0.20 0.0785 0.0675 0.0455 0.0635 0.0460 0.0605 0.1065 0.2375 0.5735 0.8845
0.30 0.0695 0.0460 0.0520 0.0485 0.0425 0.0630 0.1420 0.3160 0.7105 0.9595
0.40 0.0610 0.0610 0.0460 0.0455 0.0555 0.0715 0.1770 0.3755 0.8000 0.9790
0.50 0.0635 0.0540 0.0480 0.0495 0.0510 0.0820 0.1780 0.4035 0.8120 0.9830

Notes: The DGP is based upon yrit = δi + αixrit + βiI yrjt − cj + urit, i, j = 1, 2, i 6= j, and is given by the reduced

form in (19) with πEd = 0.5, β1 = 0.5, β2 = 0.2 and c1 = c2 = 1.64; δ1 and δ2 are is calibrated so to control for

the unconditional probability of crisis π. urit = γif
r
t + εrit γ2i + 1

−1/2 , where εrit ∼ NID (0, 1), frt ∼ NID (0, 1)

and γi ∼ U (0.8, 1), γi fixed in repeated samples. Regressors generated as xrit = φih
r
t + qrit φ2i + 1

−1/2 , where
qrit ∼ NID (0, 1), hrt ∼ NID (0, 1) and φi ∼ U (0.8, 1), φi fixed in repeated samples.
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Table 3: Bias, RMSE, Size and Power in the Case of Experiment 3

panel 1)
Bias RMSE

α1 = α2 = 1
(π, T) 50 100 200 500 1000 50 100 200 500 1000

FIML
0.005 0.5698 0.3420 0.1488 0.0281 0.0071 1.0650 0.8936 0.7844 0.6398 0.5120
0.01 0.3769 0.1618 0.0898 0.0060 0.0009 0.9296 0.7975 0.7057 0.4978 0.3335
0.05 0.0512 0.0247 0.0003 -0.0022 -0.0028 0.7311 0.5405 0.3620 0.2152 0.1527
0.10 0.0168 -0.0095 -0.0084 -0.0034 -0.0015 0.5968 0.4004 0.2712 0.1737 0.1199
0.20 -0.0111 0.0059 0.0030 -0.0060 -0.0057 0.4823 0.3332 0.2374 0.1424 0.1029
0.30 -0.0092 -0.0197 0.0045 -0.0050 -0.0013 0.4568 0.3264 0.2284 0.1368 0.0975
0.40 -0.0054 -0.0062 0.0009 0.0018 -0.0011 0.4673 0.3143 0.2157 0.1366 0.0982
0.50 -0.0293 -0.0034 0.0027 0.0061 0.0015 0.4732 0.3187 0.2286 0.1423 0.1045

panel 2)
Size (5% level, H0 : β1 = 0.50) Power (5% level, H0 : β1 = 1.00)

α1 = α2 = 1
(π, T) 50 100 200 500 1000 50 100 200 500 1000

FIML
0.005 0.0975 0.0600 0.0550 0.0515 0.0870 0.0565 0.0540 0.0935 0.1840 0.2800
0.01 0.0690 0.0495 0.0655 0.0730 0.0680 0.0535 0.0840 0.1350 0.2620 0.3825
0.05 0.0800 0.0695 0.0580 0.0535 0.0500 0.1390 0.1945 0.3275 0.6395 0.9095
0.10 0.0740 0.0560 0.0545 0.0500 0.0490 0.1755 0.2915 0.4690 0.8345 0.9890
0.20 0.0670 0.0625 0.0635 0.0465 0.0485 0.2265 0.3440 0.6010 0.9430 0.9970
0.30 0.0680 0.0625 0.0630 0.0475 0.0440 0.2310 0.3940 0.6225 0.9540 0.9980
0.40 0.0760 0.0595 0.0485 0.0465 0.0505 0.2365 0.3750 0.6295 0.9555 1.0000
0.50 0.0775 0.0600 0.0660 0.0565 0.0655 0.2525 0.3725 0.6245 0.9425 0.9985

Notes: The DGP is based upon yrit = δi + αix
r
t + βiI yrjt − cj + urit, i, j = 1, 2, i 6= j, and is given by the reduced

form in (19) with πEd = 0.5, β1 = 0.5, β2 = 0.2 and c1 = c2 = 1.64; δ1 and δ2 are is calibrated so to control for

the unconditional probability of crisis π. urit = γif
r
t + εrit γ2i + 1

−1/2 , where εrit ∼ NID (0, 1), frt ∼ NID (0, 1)

and γi ∼ U (0.8, 1), γi fixed in repeated samples. Regressors generated as x
r
t = (φhrt + qrt ) φ2 + 1

−1/2 , where qrt ∼
NID (0, 1), hrt ∼ NID (0, 1) and φ ∼ U (0.8, 1), φi fixed in repeated samples.
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Table 4: Daily stock market returns. Period: 06/08/1990 to 30/06/2005.

panel a)
Descriptive statistics

Statistics S&P 500 DAX 30 SMI CAC 40
Mean 0.0323 0.0211 0.0311 0.0183
Median 0.0631 0.0742 0.0488 0.0498
Maximum 5.7708 7.1683 7.0489 10.3560
Minimum -5.5327 -13.0580 -9.1340 -10.2510
Std. Dev. 1.0251 1.4215 1.1597 1.3371
Skewness -0.0292 -0.3517 -0.1293 0.0130
Kurtosis 6.0354 7.4717 7.0317 7.4367
Jarque-Bera 1436.7∗∗ 3194∗∗ 2544.1∗∗ 3068.4∗∗

[0.0000] [0.0000] [0.0000] [0.0000]

panel b)
Correlation matrix

S&P 500 DAX 30 SMI CAC 40
S&P 500 1.0000 0.5567 0.4720 0.5766
DAX 30 1.0000 0.7214 0.7588
SMI 1.0000 0.6890
CAC 40 1.0000

Notes: ∗∗ denotes significance at 1% level.
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Table 5: Empirical application, FIML Estimation.
Period: 13/08/1990 to 30/06/2005.

Market 1 Market 2

DAX 30 vs S&P 500
ci 3.06 2.44
ni 89 69
πi 0.0238 0.0185
βi 0.5823 0.5035
σ2ui 0.9954 0.9754
ρu1u2 0.4485
logL -10137.40

SMI vs S&P 500
ci 3.15 2.69
ni 26 43
πi 0.0070 0.0115
βi 0.5731 0.7403
σ2ui 0.9906 0.9877
ρu1u2 0.3923
logL -10250.70

CAC 40 vs S&P 500
ci 2.20 2.69
ni 164 43
πi 0.0439 0.0115
βi 0.6438 0.3412
σ2ui 0.9893 0.9628
ρu1u2 0.5130
logL -9955.72

Notes: The table reports the results of the estimation of the model in (40) by FIML. ci denotes the threshold parameter;
ni the number of crises periods; πi the proportion of crisis periods; βi the contagion coefficient; σ

2
ui
the variance of ui

and ρu1u2 the correlation between u1 and u2; logL the value of the log-likelihood function
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