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Abstract

The copula function is the joint distribution function of a random vector with uni-
form marginals. It is used to de�ne multivariate distributions with given marginals.
The elliptic class of copulae is a subset of the class of copula functions that is fully
determined by a scaling matrix and a function with domain in the positive reals. It
contains the normal copula and the t-copula often used in applications as well as
many other ones. This class is somehow �parsimonious� relative to the whole class
of copulae, yet attention is usually con�ned to the Gaussian and Student case only.
Here we establish weak conditions for posterior consistency (in a frequentist sense)
of the Bayesian semiparametric estimator of copulae in the elliptic class when the
scaling matrix is full rank. Conditions for consistency when the marginals are given
but subject to estimation error are provided.

KeyWords: Copula, copula modelling, Dirichlet prior process, Kullback-Leibler
support, Mixture of Gaussian Densities.

1 Introduction

Multivariate distributions are complex objects and it is often conceptually di�cult to
model directly the whole distribution F of a multivariate random variable X = (X1, ..., XK),
while it can be conceptually easier to model the univariate marginals F1, ..., FK �rst and
then try to model their dependence structure. The formal validity of this approach relies
on Sklar's theorem (e.g. Schweizer and Sklar, 1983, Scarsini, 1989, for extensions) that
provides a representation of any joint distribution function in terms of a function of the
marginals

F (x) = C (F1 (x1) , ..., FK (xK)) ,

where C is called copula function (x := (x1, ..., xK)). When the marginals are continuous,
the copula is unique and Fk (Xk) is [0, 1] uniformly distributed. If this is not the case,
there is still a transformation that maps the original variables into uniform [0, 1]. Hence,
we can assume that the marginals are continuous, so that the copula is simply the joint
distribution of a [0, 1]Krandom vector with uniform marginals.
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Lately, there has been considerable interest in the copula as a tool for modelling in
�nancial applications (e.g. Embrechts et al., 2002, Patton, 2006, see also Mikosch, 2006,
for a critique) as well as in other areas (e.g. Ho�, 2007, and references therein) as opposed
to its �rst use as a tool to describe probabilistic metric spaces (e.g. Schweizer and Sklar,
1983) and dependence conditions (e.g. Joe, 1997).

Modelling and inference for joint distributions via the copula is often parametric,
where the copula function is assumed to be known up to a �nite dimensional parame-
ter. Nonparametric estimation and inference has also been considered by several authors
(e.g. Fermanian et al., 2004, Fermanian and Scaillet, 2003, Sancetta and Satchell, 2004,
Sancetta, 2007, and references therein). Parametric methods are often subject to bias,
while nonparametric methods are subject to the well known �curse of dimensionality�
but can consistently estimate almost any copula density function (Sancetta, 2007, pro-
vides almost universal consistency using Bernstein/Kantarovich polynomials). A middle
ground alternative is semiparametric estimation by restriction of the class of copulae (e.g.
Gagliardini and Gouriéroux, 2007, for the class of Archimedean copulae).

Here, the class of possible copulae will be restricted to the class of elliptic copulae.
Elliptic copulae are related to elliptic distributions, routinely used in multivariate analysis
(e.g. Fang et al., 2002, Hult and Lindskog, 2002). We shall restrict attention to elliptic
copulae with full rank scaling matrix Σ, which is also an unknown parameter. The goal
of the paper is to de�ne a Bayesian semiparametric estimator for this class of copulae and
to provide conditions under which the posterior is strongly consistent. There is a rich
literature on Bayesian estimation for in�nite dimensional parameters (e.g. Barron et al,
1999, Ghosal et al., 1999, 2000, Ghosal and van der Vaart, 2007a, 2007b, Kleijn and van
der Vaart, 2006, Lijoi et al., 2005, Walker, 2004, Walker et al., 2007); see Walker 2004 for
a review of results up to 2004. These results are directly relevant to this study. However,
considerable e�ort is required to establish primitive weak and easy to verify conditions
that lead to consistency for the Bayesian semiparametric estimator of an elliptic copula.
Mutatis mutandis, it is possible to draw some parallels with the problem of consistency
of the Bayesian nonparametric density estimator via Gaussian mixtures. However, the
details di�er and previous results cannot be directly used (e.g. Ghosal et al., 1999, Lijoi
et al., 2005). Moreover, we shall allow the marginals to be subject to estimation error
and show that consistency is still possible.

Below, we shall review some basic de�nitions concerning elliptic copulae. Section 2
formally introduces the estimation problem and studies the frequentist properties of the
Bayesian estimator of the copula when the true marginals are known. Conditions for
posterior strong consistency when the marginals are subject to estimation error are also
established. Virtually all the proof are deferred to Section 3.

1.1 Background on Elliptic Copulae

Let X be a K dimensional elliptically distributed random vector with mean zero, full

rank scaling matrix Σ and generator g. Then, X has density |Σ|−1/2
g
(
X ′Σ−1X

)
, where

the prime stands for the transpose. If Σ is not full rank, this representation does not hold
(see Hult and Lindskog, 2002, for the general case). In this paper, attention is restricted
to the subclass of elliptic copulae with full rank scaling matrix Σ. The class of elliptic
copula densities is de�ned as a transformation of the class of elliptic densities where Σ
is a positive de�nite matrix with diagonal entries equal to one. Then, the univariate
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marginal distributions Fg are all the same and only depend on g (Fang et al., 2002, eq.
1.5, for the exact form). De�ne the quantile function Qg (u) := infx∈R {Fg (x) > u}. Let
U = (U1, ..., UK) be a random variable with values in the unit K dimensional cube and

with uniform [0, 1] marginals. Let Qg : [0, 1]K → RK be an operator such that

Qg (U) = (Qg (U1) , ..., Qg (UK)) . (1)

Then, U has elliptic copula with full rank scaling matrix Σ if and only if its density at u

is |Σ|−1/2
g
(
Qg (u)′ Σ−1Qg (u)

)
Jg (u) where Jg (u) is the Jacobian of the transformation

x 7→ Qg (u). In compact notation, we just write

cg (u|Σ) := |Σ|−1/2
g
(
Qg (u)′ Σ−1Qg (u)

)
Jg (u) . (2)

By the properties of elliptic random variables (Hult and Lindskog, 2002), deduce that U
has elliptic copula (2) if and only if the following stochastic representation holds

Qg (U) d= RAS (3)

where
d= is equality in distribution, S is uniformly distributed in the unit hypersphere{

s ∈ RK : s′s ≤ 1
}
, A is full rank such that AA′ = Σ and R is a positive real random

variable. The generator g is uniquely determined by R up to a scaling factor, i.e. X1 with
scaling matrix Σ and generator g (x) has same distribution as X2 with scaling matrix
vΣ and generator g (xv). For this reason, there is no loss of generality in restricting the
diagonal entries of Σ to be equal to one.

1.2 Example of Copula Modelling

An elliptic copula can be used to construct parsimonious multivariate models for high
dimensional data even in a time series context. To provide some motivation for the
estimation of a copula and for the sake of de�niteness we remark on a natural extensions
of the Constant Conditional Correlation GARCH of Bollerslev (1990). Clearly, this is
one of many important problems (e.g. Ho�, 2007, for survey data modelling), but it
seems instructive to dwell on this speci�c time series example. To this end, suppose Xt =
(Xt1, ..., XKt) has components each following a univariate t-GARCH model with possibly
di�erent degrees of freedom. Denote the resulting univariate conditional distributions
by Fk (x|Ft−1) where Ft−1 is the sigma algebra generated by past observations of Xt.
For simplicity, just assume that Fk (x|Ft−1) is known. The practical case when the
marginals need to be estimated will also be considered in this paper. By the univariate
GARCH assumption, each Xtk depends on Ft−1 only through its past values. De�ne
Utk = Fk (Xtk|Ft−1) and Ut = (Ut1, ..., UtK). Then, Utk is a uniform [0, 1] random
variable independent of Ft−1 (e.g. Rio, 2000, Lemma F.1). Assuming that the �true�
copula is in the elliptic class, this paper shows that we can consistently estimate the
posterior distribution of the joint density of Ut by Bayesian semiparametric methods.
Note that independence between Ut and Ft−1 implies that both the scaling matrix Σ and
the generator g are independent of the past, i.e. independent of Ft−1. Hence, (2) can be
directly used in a time series context as well (under time homogeneity of Σ and g).

By the mentioned independence of Ut with Ft−1, the two stage modelling of marginals
and copula requires extra care in order to avoid common mistakes found in applied work.
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For example, Engle (2002) assumes that Fk (x|Ft−1) is the distribution of a GARCH
process and uses a Gaussian copula to join these marginals (he does not uses the termi-
nology used here, but the result is the same; see his eq. 26). The novelty of that paper
is to make the scaling matrix dependent on Ft−1 (he uses the notation Rt for the scaling
matrix), but by the previous remarks, the scaling matrix cannot depend on Ft−1. Basi-
cally, Engle's Dynamic Conditional Correlation model violates Kolmogorov consistency of
probabilities (i.e. such process does not exist). This mistake is common in related work
that uses the same terminology used here (e.g. Patton, 2006, eq.'s 6-11,16,17, among
others). Clearly, the scaling matrix (or copula parameters in general) can be time inho-
mogeneous. Frequentist methods that assume local stationarity often allow to deal with
time inhomogeneous parameters under suitable conditions (e.g. Dahlhaus, 1997). Time
inhomogeneous parameters will not be considered here.

2 Estimation Problem

The goal of this paper is give weak conditions for posterior consistency of the elliptic
copula densities cg (u|Σ) without making any assumption on the generator g, though
some regularity condition will be used. The estimated copula needs to satisfy the usual
properties of copulae (e.g. Schweizer and Sklar, 1983) and one notable property is that the
marginals need to be uniform. This requires some structure on the estimation procedure.
We address this issue via the next result that provides a representation of elliptic copulae
via mixtures of Gaussian copulae.

Theorem 1 Any elliptic copula with full rank scaling matrix Σ can be written as

Cg (u|Σ) = ECφ (u|Σ/V ) (4)

where Cφ is the Gaussian copula and V is some positive random variable (expectation is
w.r.t. V ).

Proof. From (3), Qg (U) d=
√

χ2
K/V AS, where V

d= χ2
K/R2 and χ2

K is a Chi

square random variable with K degrees of freedom. Conditioning on V = v, Qg (U) d=
N (0K ,Σ/v) where N (0K ,Σ/v) is a Gaussian random variable with mean vector zero and
covariance matrix Σ/v. Then, take expectation.

Hence, the problem of consistently estimating the density of Cg (u|Σ) is equivalent to
the problem of estimating the �nite dimensional parameter Σ and the law of V , which we
denote by P , an in�nite dimensional parameter. Next we de�ne the Bayesian semipara-
metric estimator and show that its posterior is consistent.

2.1 Nonparametric Bayesian Estimation

By Theorem 1, the problem reduces to the estimation of a mixture of Gaussian copulae.
Bayesian nonparametric estimation of mixtures models requires to select a prior measure
Π on the set P of distributions with support, in this case, in the positive real line. If
also Σ is unknown, the prior Π is assumed to have support in Θ = C × P where C is
a suitable subset of the set of correlation matrices (any positive de�nite matrix Σ with
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diagonal entries equal to one is a correlation matrix). The prior Π through the map
(Σ, P ) =: θ 7→ cθ induces a prior on the set of elliptic copula densities{

cθ (u) =
∫ ∞

0

cφ (u|Σ/v) P (dv) : (Σ, P ) ∈ C × P = Θ
}

. (5)

Then, the posterior Πn induces a random copula as follows

cn (u) =
∫

Θ

cθ (u) Πn (dθ) (6)

where, for A ⊆ Θ,

Πn (A) :=

∫
A

∏n
i=1 cθ (Ui) Π (dθ)∫

Θ

∏n
i=1 cθ (Ui) Π (dθ)

and (Ui)i>0 are iid random variables with values in [0, 1]K and joint density in (5). By the
remarks in Section 1.2, if the marginals are known, there is no loss to assume that the data
are iid with uniform marginals (e.g. Rio, 2000, Lemma 1F for the general construction).
The case when the marginals are subject to estimation error will be considered later.

2.2 Consistency of Posterior

We need to recall some de�nitions. For two arbitrary measures P and Q, on some set X
with densities p and q w.r.t. some dominating measure µ, their Kullback-Leibler distance
is de�ned as D (P,Q) =

∫
X ln (p/q) dP while their Hellinger and total variation distance

are de�ned as dH (P,Q) =
∣∣∣∫X ∣∣√p−√q

∣∣2 dµ
∣∣∣1/2

and dTV (P,Q) =
∫
X |p− q| dµ and they

are just the L2 distance of the square root of two densities and the L1distance of densities.
The following relations are known (e.g. Pollard, 2002, p. 61-62):

dH (P,Q)2 ≤ dTV (P,Q) ≤ dH (P,Q) ≤ D (P,Q)1/2
(7)

showing that dTV and dH are topologically equivalent. The relation between total vari-
ation and Kullback-Leibler distance is often called Pinsker inequality. We de�ne the
following sets

Kε := {θ ∈ Θ : D (Cθ0 , Cθ) ≤ ε} (8)

Aε := {θ ∈ Θ : dTV (Cθ0 , Cθ) > ε} . (9)

The support of Π is in Θ = (C,P) and we write ΠΣ (•) = Π (•,P) and ΠP (•) = Π (C, •)
for the marginals. An element P0 ∈ P is said to be in the support of ΠP if every open
neighborhood of P0 in the weak topology is given positive ΠP measure. We shall establish
a.s. convergence to zero of the posterior over Aε with respect to the �true� ∞-fold product
measure C∞

θ0
, the in�nite product of the copula measure induced by the copula density

cθ0 , assumed to be the true density of the data. We shall use linear functional notation
for the expectation w.r.t. Π. Hence, Π (A) means expectation of A under the prior Π,
where A can be a set or some other object for which the expectation makes sense (i.e.
measurable). Introduce the following conditions that will be discussed at length after the
statement of the main results. Recall that K is the dimension of Ui.

Condition 2
∫∞
0

vK/2+αP0 (dv) < ∞ for some α > 0.
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Condition 3 Σ0 is full rank.

Condition 4 (i.) For a → ∞, a(K/2+α)ΠP (P ([a,∞))) → 0 for some α > 0; (ii.) for

M → ∞, exp {α1M
α2}ΠΣ

({
Σ ∈ C : |Σ|−1

> M
})

→ 0 for some α1, α2 > 0 (|Σ| is the
determinant of Σ).

These conditions are su�cient for strong consistency of the posterior.

Theorem 5 Suppose that θ0 is in the support of Π. Under Conditions 2, 3, and 4,
Πn (Aε) → 0, C∞

θ0
-a.s.

Remark 6 The above conditions imply that if θ0 is in the support of Π then Π (Kε) > 0,
i.e. θ0 is also in the Kullback-Leibler support of Π.

A common example of nonparametric prior is the Dirichlet process D (ν, G) where
ν ∈ (0,∞) is a scaling parameter controlling the con�dence on the mean prior probability
measure G with support [0,∞). In particular, we derive consistency using D (ν, G) as
prior. It is convenient to use following hierarchical representation

Ui|Vi,Σ ∼ Cφ (u|Σ/Vi)
Vi|P ∼ P

P ∼ D (ν,G)
Σ ∼ PΣ.

Corollary 7 For the above hierarchical representation, suppose that v(K/2+α)G ([v,∞)) →
0, as v →∞, for some α > 0, and PΣ is a distribution having support Cs := {Σ ∈ C : |Σ| ≥ s}
for some s > 0. Then, Πn (Aε) → 0, C∞

θ0
-a.s. for any P0 satisfying Condition 2 and any

Σ0 ∈ Cε.

2.2.1 Remarks on Condition 2 and 3

Conditions 2 and 3 restrict the class of elliptic copulae. In particular, Condition 2 restricts
the mixing measure but does not rule out strong tail dependence (e.g. Joe, 1997 for
de�nitions). To appreciate this point, note that if X is a K dimensional student t random

variable with r degrees of freedom and scaling matrix Σ, then X
d= N (0,Σ) /

√
V where

V
d= χ2

(r)/r. Since P0 is the law of V , then
∫∞
0

vK/2+αP0 (dv) < ∞ for any r > 0 and K

(�nite). Finally, the full rank condition of Σ is required for the representation in (4) to
be true and cannot be weakened.

2.2.2 Remarks on Condition 4(i.)

It seems reasonable that if the true mixing measure P0 needs to satis�es Condition 2, then
the mean of P under the prior ΠP also satis�es Condition 2, as implied by Condition 4(i.).
Under the Dirichlet process prior D (ν, G), this implies that G satis�es Condition 2.
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2.2.3 Remarks on Condition 4(ii.)

Checking Condition 4(ii.) can be challenging for two reasons. First, it can be di�cult
to �nd a prior on C or some suitable subset of it. It can be possible to simulate correla-
tion matrices via di�erent approaches. For example simulate a covariance matrix from a
Wishart distribution and then transform to a correlation matrix. To the author's knowl-
edge, these approaches do not lead to closed form expressions for the distribution of the
correlation matrix. The second related problem is that it can be di�cult to verify the
exponential tail condition on |Σ|−1

. Only ad hoc solutions seem to exist to these prob-
lems. One of these ad hoc possibilities is to use a factor representation of the correlation
matrix. We give some details next.

2.2.4 Calculations for a One Factor Representation of the Scaling Matrix

Suppose Y = γF + σZ where Y is a K × 1 vector, F is a mean zero variance one random
variable uncorrelated with Z, a K dimensional vector of iid mean zero variance one
random variables. The parameters γ and σ are K × 1 and one dimensional, respectively.
De�ning

Σ (σ, γ) := diag (EY Y ′)−1/2 EY Y ′diag (EY Y ′)−1/2

it is easy to see that

Σij (σ, γ) =
σ2δij + γiγj√

σ2 + γ2
i

√
σ2 + γ2

j

where δij = 1 if i = j, zero otherwise (Kronecker delta), and γi is the ith entry of γ. Clearly
C (σ, γ) :=

{
Σ (σ, γ) ∈ C : σ > 0, γ ∈ RK

}
⊂ C. The stringent restrictions imposed on C

are compensated by the great tractability for the Bayesian problem considered here. In
particular, we have the following.

Lemma 8 Suppose Σ ∈ C (σ, γ). Let e1, ..., eK−1 be arbitrary but �xed orthogonal K
dimensional vectors. Then,

Σ−1 = DΓΛ−1Γ′D

where:
Λ is the diagonal matrix of eigenvalues with Λ11 = σ2 + γ′γ and Λkk = σ2, for k > 1;
Γ := (Γ1, ...,ΓK) is a K ×K matrix of orthonormal vectors, Γ1 = γ/ |γ| (|γ| is the Eu-
clidean norm of γ) and for k > 1 Γk = ∆kek/ |∆kek|, ∆1 = IK , ∆k =

(
IK − Γk−1Γ′k−1

)
∆k−1,

IK is the K-dimensional identity matrix;
D is a diagonal matrix with Dkk =

√
σ2 + γ2

k.

It also follows that |Σ|−1 =
(
σ2K + γ′γσ2(K−1)

)−1∏K
k=1

(
σ2 + γ2

k

)
.

From Lemma 8, we can �nd a prior that satis�es Condition 4(ii.). However, we
will need to further restrict the class of scaling matrices to the following Ca (σ, γ) :={
Σ (σ, γ) ∈ C : σ ≥ a > 0, γ ∈ RK

}
. Hence, a prior with support in Ca (σ, γ) only allows

for σ ∈ [a,∞). This is strictly stronger than the assumption that the scaling matrices are
full rank.

Lemma 9 Let Σ ∈ Ca (σ, γ) and ΠΣ = Πσ × Πγ where Πσ ([a,∞)) = 1 and Πγ is a K
dimensional Gaussian distribution with �nite mean and �nite diagonal covariance matrix.
Then, Condition 4(ii.) is satis�ed.
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2.3 Consistency when the Marginals are Estimated

Statistical interest in the copula is when the marginals are given. However, in applied
problems, it is often the case that marginals have to be estimated. Then, it is natural
to ask if the results of this paper continue to hold. The answer is yes, clearly under
suitable conditions. To set the scene for the a�rmative solution of the problem, let
(Xi)i>0 be a sequence of random variables with values in RK with univariate marginals
F1 (x1) , ..., FK (xK) and elliptic copula. Suppose that the marginals are unknown, and
we use instead F1,i (x1) , ..., FK,i (xK) for the marginals of Xi. We call these the surro-
gate marginals. These may depend on the sample size n, though they not need to, as
it is the case in a prequential framework (e.g. Dawid, 1997). From the true and sur-

rogate marginals we derive (Ui)i>0 and
(
Ûi

)
i>0

, respectively as random variables with

values in [0, 1]K where (Ui)i>0 are assured to have uniform marginals (e.g. Rio, 2000,
Lemma F.1). While continuity of the marginals is not required, in practice problems may
arise depending on the estimator to be used (see Ho�, 2007, for problems that arise in
some circumstances when the marginals are discontinuous and estimated by the empirical

distribution). De�ne the posterior based on
(
Ûi

)
i>0

as

Π̂n (A) :=

∫
A

∏n
i=1 cθ

(
Ûi

)
Π (dθ)∫

Θ

∏n
i=1 cθ

(
Ûi

)
Π (dθ)

.

Given that both (Ui)i>0 and
(
Ûi

)
i>0

are de�ned on the same probability space, denote

this probability space by (Ω, P). The following conditions together with the ones used
previously are su�cient for strong consistency of Π̂n (A).

Condition 10 For any ε > 0,

P
({

ω ∈ Ω : lim
n→∞

sup
i≥n

∣∣∣Ui (ω)− Ûi (ω)
∣∣∣ > ε

})
= 0.

Condition 11 There is an α > 0, such that for Π- almost all θ ,

sup
i>0

E

∣∣∣∣∣∣ln
cθ

(
Ûi (ω)

)
cθ (Ui (ω))

∣∣∣∣∣∣
1+α

< ∞.

Theorem 12 Suppose that θ0 is in the support of Π. Under Conditions 2, 3, 4, 10 and
11, Π̂n (Aε) → 0, P-a.s. .

2.3.1 Checking Conditions 10 and 11

To avoid peripheral arguments, suppose that the marginals are continuous. Suppose also
that these marginals are indexed by some �nite dimensional parameter, continuous with
respect to it and that this parameter is unknown and needs to be either estimated or
calibrated. Then, by the continuous mapping theorem, Condition 10 is satis�ed if the
unknown parameter converges a.s. to the true one. Conditions for this to hold under
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maximum likelihood estimation are well known (e.g. van der Vaart and Wellner, 2000).
Alternatives based on sequential estimation like Bayesian or prequential estimation usu-
ally require weaker conditions; indeed for Condition 10 we only need prediction consis-
tency which is weaker than consistency of an estimator (see Dawid, 1997 and references
therein).

Finally, Condition 11 can be checked using the following.

Lemma 13 Suppose that ΠP is a Dirichlet prior process with base probability measure G
such that for some set [a1, a2] ⊂ (0, 1), G ([a1, a2]) > 0. Suppose that for any k = 1, ...,K,

supi>0 E
∣∣∣ln(1− Ûik (ω)

)∣∣∣(1+α)

< ∞ for some α > 0. Then, under Conditions 3 and 4,

Condition 11 is satis�ed.

2.4 Further Remarks

One of the fastest areas of research of Bayesian nonparametrics is concerned with compu-
tational issues. In particular the method of Escobar (1994) opened the way for Markov
Chain Monte Carlo (MCMC) estimation using Dirichlet processes (see also Walker, 2005,
and references therein for a review). A recent appealing approach is to use Sethuraman's
constructive de�nition of a Dirichlet process:

P (dv) =
∑
s>0

WsδVs
(dv)

where (Ws)s>0 are random variables in the in�nite unit simplex derived by stick breaking
construction (e.g. Sethuraman, 1994), (Vs)s>0 is a sequence of iid random variables from
the measure G of the Dirichlet process D (ν, G), while δV (•) is the point measure at V .

Given that it is simple to simulate from PN (dv) =
∑N

s=1 WsδVs
(dv), when N is �nite, a

natural approach is to approximate the posterior using PN as prior (Ishwaran and James,
2002, for details). This approach can be used here as well.

In some applications it can be interesting to allow for unknown time inhomogeneous
parameters. For the simpler problem of predictive density estimation, it is possible to
modify the posterior to account for time inhomogeneous �nite dimensional parameters
(e.g. Sancetta, 2007, using the results of Bousquet and Warmuth, 2002). It would be
interesting to investigate notions of posterior consistency in this more general framework.

3 Proofs

We �nd convenient to collect here the notation used in the lemmata and the proofs and
refer to it when required. The reader can just browse to it whenever unfamiliar/unde�ned
notation is found in the proofs.

Notation 14 P is the set of measures on the positive reals;
C is the set of full rank K dimensional correlation matrices;
. and & stand for inequality up to a �nite absolute constant, while � implies that the
right hand side is proportional to the left hand side;
Φ is the standard Gaussian distribution and φ its density; if the argument of φ is a vector,
then, φ will denote the standard multivariate Gaussian density;
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For a positive de�nite matrix Σ, write Σ1/2 for the matrix such that
(
Σ1/2

) (
Σ1/2

)′
= Σ,

|Σ| stands for its determinant, |Σ|∞ := max1≤i,j≤K |Σij |, Λ (Σ) is the matrix of eigenval-
ues of Σ and λk (Σ) is its kth eigenvalue;
For a > 0, δ ∈ (0, 1)and constants m < M , de�ne the the following classes of mixtures of
normals

F :=
{∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) : P ∈ P,Σ ∈ C

}
FP :=

{∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) : Σ ∈ C

}
FΣ,

a :=
{∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) : P ((0, a]) = 1

}
FΣ

a,δ :=
{∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) : P ((0, a]) > 1− δ

}
FM

P :=
{∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) : |Σ|−1 ≤ M

}
Fm,M

P :=
{∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) : m < |Σ|−1 ≤ M

}
Fm,M

a,δ :=
{∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) : P ((0, a]) > 1− δ,m < |Σ|−1 ≤ M

}
;

For any set of functions G, and δ > 0, N (δ,G) is the δ-covering number of G under the
L1 norm (van der Vaart and Wellner, 2000, for details).

The lemmata are numbered sequentially and proofs may refer to technical results that
are only stated subsequently in order not to interrupt the the �ow of the main steps of
each proof.

3.1 Proof of Theorem 5

Proof of Theorem 5. According to a slight extension of Theorem 4 in Walker (2004) (see
the proof of Theorem 1 in Lijoi et al., 2005), it is enough to show that: (1.) Π (Kε) > 0
and (2.) for any δ > 0 there is a countable partition (Aj)j>0 of Aε such that Aj :={
θ ∈ Θ : dTV

(
Cθj

, Cθ

)
< δ
}
where dTV

(
Cθ0 , Cθj

)
> ε for any j and

∑
j Πβ (Aj) < ∞ for

some β ∈ (0, 1). This is accomplished using Lemmata 15 and 18, respectively.

3.1.1 Statement and Proof of Lemma 15

At some stage in the proof we recall the following fact: an open set centered at P0 in the
weak topology of P can be metricized by the Bounded Lipschitz Metric (Dudley metric){

P ∈ P : sup
f∈BL1

∣∣∣∣∫ fd (P − P0)
∣∣∣∣ ≤ ε

}
, (10)

where BL1 is the class of functions where each element f satis�es ‖f‖BL = ‖f‖L+‖f‖∞ ≤
1, ‖f‖L being the Lipschitz constant of f and ‖f‖∞ its L∞ norm (Dudley, 2002, ch. 11.2
for further details).
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Lemma 15 Under Conditions 2, 3 and 4(i.), if θ0 := (P0,Σ0) is in the support of Π,
then Π (Kε) > 0, Kε as in (8).

Proof. De�ne

f0 (x) :=
∫ ∞

0

vK/2φ
(
v1/2Σ−1/2

0 x
)

P0 (dv) ,

fP (x) :=
∫ ∞

0

vK/2φ
(
v1/2Σ−1/2

0 x
)

P (dv) ,

fPΣ (x) :=
∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) .

By the change of variables uk 7→ Φ (xk) for k = 1, ...,K,

D (Cθ0 , Cθ) =
∫

RK

f0 (x)

|Σ0|1/2
ln

f0 (x) |Σ|1/2

fPΣ (x) |Σ0|1/2
dx

=
∫

RK

f0 (x)

|Σ0|1/2
ln

f0 (x)
fPΣ (x)

dx + ln
|Σ|1/2

|Σ0|1/2

=
∫

RK

f0 (x)

|Σ0|1/2
ln

f0 (x)
fP (x)

dx +
∫

RK

f0 (x)

|Σ0|1/2
ln

fP (x)
fPΣ (x)

dx + ln
|Σ|1/2

|Σ0|1/2

≤ sup
x∈RK

|f0 (x)− fP (x)|+
∫

RK

f0 (x)

|Σ0|1/2
ln

fP (x)
fPΣ (x)

dx + ln
|Σ|1/2

|Σ0|1/2

[by Lemma 16]

= I + II + III

and we bound each term separately.
Control over I.
De�ne

Γ0 :=
{

γ > 0 :
∫ ∞

γ

vK/2P0 (dv) < ε

}
, ΓP :=

{
γ > 0 :

∫ ∞

γ

vK/2P (dv) < ε

}
.

Condition 2 assures that Γ0 is not empty, and, by Lemma 17, ΓP is also not empty Π-a.s.,
but for convenience we will suppress the a.s. quali�er throughout as, by the statement of
the lemma, we are only interested in Π-non-null sets. Hence, de�ne

a = inf {γ > 0 : γ ∈ Γ0 ∩ ΓP } . (11)

Then,

I = sup
x∈RK

∣∣∣∣(∫ a

0

+
∫ ∞

a

)
vK/2φ

(
v1/2Σ−1/2

0 x
)

(P − P0) (dv)
∣∣∣∣

≤ sup
x∈RK

∣∣∣∣∫ a

0

vK/2φ
(
v1/2Σ−1/2

0 x
)

(P − P0) (dv) +
∫ a

0

vK/2 (P + P0) (dv)
∣∣∣∣

[because φ < 1]

≤ sup
x∈RK

∣∣∣∣∫ a

0

vK/2φ
(
v1/2Σ−1/2

0 x
)

(P − P0) (dv)
∣∣∣∣+ 2ε

11



by de�nition of a. To bound the remaining term, note that the family of functions

v 7→
{

vK/2φ
(
v1/2Σ−1/2

0 x
)
{v ∈ [0, a]} : x ∈ RK

}
(12)

is bounded by some constant proportional to aK/2 and Lipschitz with Lipschitz constant
less or equal to

sup
v∈[0,a],x∈RK

∣∣∣∣( d

dv

)
vK/2φ

(
v1/2Σ−1/2

0 x
)∣∣∣∣

≤ sup
v∈[0,a],x∈RK

v(K−2)/2

2
φ
(
v1/2Σ−1/2

0 x
) (

v2x′Σ−1
0 x + K

)
[di�erentiating and rearranging]

. a(K−2)/2

because φ
(
v1/2Σ−1/2

0 x
) (

v2x′Σ−1
0 x + K

)
is bounded for any v ∈ [0, a] and x ∈ RK as long

as K ≥ 2. Then, each element, say f , in (12) satis�es ‖f‖BL1
. a(K−2)/2 + aK/2 . aK/2.

This implies that the family of functions in (12) is equicontinuous. De�ne weak neighbors
of P0 of diameter δ in terms of the Dudley metric in (10). Choosing δ . εa−K/2 assures
that we can �nd a P in the support of ΠP such that

sup
x∈RK

∣∣∣∣∫ ∞

0

vKφ
(
v1/2Σ−1/2

0 x
)
{v ∈ (0, a]} (P − P0) (dv)

∣∣∣∣ ≤ ε,

implying I . ε.
Control over II

Let Σij be the i, j entry of Σ and similarly for Σ0ij . Since Σ0 is in the support of ΠΣ,

we can choose Σij = (1 + ε) Σ0ij , ε > 0. Then, Σ−1 = (1 + ε)−1 Σ−1
0 , implying

Σ−1
0 − Σ−1 =

ε

(1 + ε)
Σ−1

0 . (13)

Hence,

ln
fP (x)
fPΣ (x)

≤ sup
v≥0

ln

φ
(
v1/2Σ−1/2

0 x
)

φ
(
v1/2Σ−1/2x

)


= sup
v≥0

−v

2
x′
(
Σ−1

0 − Σ−1
)
x

= sup
v≥0

− vε

2 (1 + ε)
x′Σ−1

0 x

[by (13)]

= 0

because ε > 0, and x′Σ−1
0 x ≥ 0, Σ−1

0 being positive de�nite. This implies that II ≤ 0.
Control over III.

12



By choice of Σ as in Control over II, since each term of Σ is a (1 + ε) multiple of Σ0,

we have |Σ| = (1 + ε)K |Σ0| implying III . ε. Putting together I, II and III, we deduce
that the set Kε is not empty under Π.

Lemma 16 Suppose F0 and F are two distributions with densities f0/c0 and f/c w.r.t.
some dominating measure µ with support X , and c0, c are constants of integration. Then,

D (F0, F ) ≤ c0 + c

2c0
sup
x∈X

|f0 (x)− f (x)|+ ln
c

c0
.

Proof. By Taylor expansion with integral reminder

ln
(

x

y

)
=
∫ 1

0

x + τ (y − x)
x

dτ (y − x) . (14)

Then, by (14), and the de�nition of the K-L distance,

D (F0, F ) =
∫

RK

f0 (x)
c0

ln
f0 (x)
f (x)

+ ln
c

c0

≤ 1
c0

∫
RK

∫ 1

0

f0 (x)
(1− τ) f0 (x) + τf (x)

f0 (x)
dτdx sup

x∈X
|f0 (x)− f (x)|+ ln

c

c0

[by (14) and a simple upperbound]

=
∫ 1

0

(1− τ) c0 + τc

c0
dτ sup

x∈X
|f0 (x)− f (x)|+ ln

c

c0
,

using Fubini's Theorem because the integrals are �nite. Computing the integral w.r.t. τ
gives the result.

Lemma 17 Under Condition 4, for any ε > 0 there is a γ < ∞ such that∫ ∞

γ

vK/2P (dv) < ε, ΠP − a.s.

Proof. It is su�cient to show that
∫∞
0

vK/2P (dv) < ∞, ΠP -a.s. because integrability

would imply that eventually for γ large enough
∫∞

γ
vK/2P (dv) < ε, ΠP -a.s.. By Condition

4 ΠP (P ([v,∞))) . v−K/2−α for some α > 0. Then,

ΠP

(∫ ∞

0

vK/2P (dv)
)

= ΠP

(
K

2

∫ ∞

0

vK/2−1P ([v,∞)) dv

)
[integrating by parts, e.g. Petrov (1995, Lemma 2.4)]

≤ K

2

∫ ∞

0

vK/2−1v−K/2−αdv

[by Condition 4 (i.) ]
< ∞.

Since for any random variable Y , EY < ∞ implies that Y < ∞ a.s., then the result
follows.
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3.1.2 Statement and Proof of Lemma 18

Lemma 18 Under Conditions 3 and 4, for any δ > 0 there exists a δ-cover (Aj)j>0 of

Aε, as in (9), such that, for some β ∈ (0, 1),∑
j>0

Πβ (Aj) < ∞.

The poof of Lemma 18 is long and requires several intermediate results, which are
sequentially derived next. We shall make heavy use of Notation 14 particularly to de�ne
classes of functions that will be related to the mixture of Gaussian copulae. The reader
is recommended to consult Notation 14 while reading the statement of each lemma.

Lemma 19 For any δ ∈ (0, 1), there exists a �nite p > 0, depending on δ and K only,

such that N
(
δ,FΣ

a,δ

)
≤ ap |Σ|−p/K

.

Proof. For δ ∈ (0, 1) de�ne a sequence (ri)i≥0 such that r0 =
(
δ |Σ|1/2

/2
)2/K

and

ri = r0 exp {iδ/K}. From this sequence de�ne a countable partition (Ai)i≥0 of (0,∞) as
follows: A0 = {v : 0 < v ≤ r0}, and Ai = {v : ri−1 < v ≤ ri} for i > 0. Then, we will
need the following estimate for v ∈ A0:

I := |Σ|−1/2
∫

RK

∣∣∣vK/2φ
(
v1/2Σ−1/2x

)
− r

K/2
0 φ

(
r
1/2
0 Σ−1/2x

)∣∣∣ dx

≤ |Σ|−1/2 sup
x∈RK

∣∣∣vK/2φ
(
v1/2Σ−1/2x

)
+ r

K/2
0 φ

(
r
1/2
0 Σ−1/2x

)∣∣∣
≤ 2r

K/2
0

|Σ|1/2

by de�nition of A0, and for r0 as de�ned above, I ≤ δ. We also need an estimate when
v ∈ Ai+1 for i ≥ 0. In this case, by Taylor expansion with integral reminder, setting
r (τ) = ri + τ (v − ri) with τ ∈ [0, 1], we have the �rst equality in the next display

II := |Σ|−1/2
∫

RK

∣∣∣vK/2φ
(
v1/2Σ−1/2x

)
− r

K/2
i φ

(
r
1/2
i Σ−1/2x

)∣∣∣ dx

= |Σ|−1/2
∫

RK

∣∣∣∣∫ 1

0

r (τ)K/2
φ
(
r (τ)1/2 Σ−1/2x

)( K

2r (τ)
− x′Σ−1x

2

)
(v − ri) dτ

∣∣∣∣ dx

≤ |Σ|−1/2 (v − ri)
∫

RK

∫ 1

0

r (τ)K/2
φ
(
r (τ)1/2 Σ−1/2x

)( K

2r (τ)
+

x′Σ−1x

2

)
dτdx

[because Σ is positive de�nite and ri ≤ v ∈ Ai+1]

≤ |Σ|−1/2 (v − ri)
∫ 1

0

∫
RK

r (τ)K/2
φ
(
r (τ)1/2 Σ−1/2x

)( K

2r (τ)
+

x′Σ−1x

2

)
dxdτ

[by Fubini's Theorem because the double integral is �nite]

= (v − ri)
∫ 1

0

K

r (τ)
dτ

[performing integration with the change of variable r (τ)1/2 Σ−1/2x 7→ y]

= K ln
(

v

ri

)
,
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by direct integration and algebraic simpli�cation. Hence, when v ∈ Ai+1 with i ≥ 0, we
have II ≤ δ. Using the same arguments as in Ghosal et al. (1999, proof of Lemma 1,
p. 157) together with the estimates I and II, we deduce that we can �nd a 2δ-cover of
FΣ

a consisting of discrete probabilities with atoms at (ri)i∈{0,...,I} where I is the smallest

integer greater or equal than min {i > 0 : ri > a} and we can choose

I = 1 +

⌊
K

δ
ln

(
a |Σ|−1/K

(δ/2)2K

)⌋
,

bxc is the integer part of x. By Ghosal et al. (1999, p.157, see also Barron et al., 1999)
for the set PI of discrete probabilities with I atoms N (δ,PI) ≤ exp

{(
1 + ln 1+δ

δ

)
I
}
. By

these remarks, N
(
2δ,FΣ

a

)
≤ N (δ,PI) ≤ ap |Σ|−p/K

for some some p < ∞ depending only
on K and δ > 0. Moreover, following the proof of Lemma 2 in Ghosal et al. (1999), we

also deduce that N
(
2δ,FΣ

a,δ

)
≤ N

(
δ,FΣ

a

)
and the lemma is proved because δ ∈ (0, 1) is

arbitrary.
The next two lemmata will be used in the proof of Lemma 22 and the reader may

wish to skip them and look at them while reading the proof of Lemma 22.

Lemma 20 Fix an arbitrary δ ∈ (0, 1). Let A ⊂ C be a set such that for any Σ ∈ A,

there are constants s
(1)
k , s

(2)
k satisfying

[1− (δ/4)]2/K ≤ s
(1)
k /s

(2)
k (15)

such that s
(1)
k ≤ λk

(
Σ−1

)
≤ s

(2)
k , k = 1, ...,K. Moreover, if Σ1,Σ2 ∈ A, their matrices of

orthonormal eigenvectors D1, D2 are assumed to satisfy |D1 −D2|∞ ≤ δ2/
(
4K3 maxk s

(2)
k

)
.

Then, for any f1, f2 ∈ {FP ∩A} = {FP : Σ ∈ A},∫
RK

|f1 (x)− f2 (x)| dx ≤ δ.

Proof. For any two matrices Σ1,Σ3 ∈ A, let Σ2 ∈ A be a matrix similar to Σ1 and
with same eigenvectors as Σ3, i.e.

Σ−1
1 = D1Λ1D

′
1, Σ−1

2 = D2Λ1D
′
2 ,Σ−1

3 = D2Λ2D
′
2 (16)

where D1 and D2 are matrices of orthonormal eigenvectors. For r = 1, 2,3, de�ne

fr (x|v) =
vK/2

|Σr|1/2
φ
(
v1/2Σ−1/2

r x
)

where Σ1,Σ2,Σ3 are as in (16). We claim that for any v ≥ 0,∫
RK

|f1 (x|v)− f3 (x|v)| dx ≤ δ. (17)

Assuming for the moment that (17) holds, then for any Σ1,Σ3 ∈ A, we deduce the
following bound using the triangle inequality and Fubini's Theorem, which can be applied
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because the double integral below is �nite,∫
RK

∣∣∣∣∫ ∞

0

f1 (x|v) P (dv)−
∫ ∞

0

f3 (x|v)P (dv)
∣∣∣∣ dx ≤

∫ ∞

0

∫
RK

|f1 (x|v)− f3 (x|v)| dxP (dv)

[by Jensen Inequality and Fubini's Theorem]

≤ δ

∫ ∞

0

P (dv)

[by (17)]

= δ

and the lemma is proved. Hence, it remains to show that (17) holds. If v = 0, (17) is
obvious, as the densities are both zero. Hence, we assume v > 0. Then, by the triangle
inequality,∫

RK

|f1 (x|v)− f3 (x|v)| dx ≤
∫

RK

|f1 (x|v)− f2 (x|v)| dx +
∫

RK

|f2 (x|v)− f3 (x|v)| dx

= I + II.

We shall control each term separately.
Control over I.

The eigenvectors are orthonormal, hence their entries are bounded by one in absolute
value. By this remark derive the following inequality,∣∣Σ−1

1 − Σ−1
2

∣∣
∞ = |D1Λ1 (D1 −D2) + (D1 −D2) Λ1D2|∞

≤ 2K max
1≤k≤K

λk (Λ1) |D1 −D2|∞

[by the previous remark about the eigenvectors]

≤ 2K max
1≤k≤K

s
(2)
k |D1 −D2|∞

[by the eigenvalues for matrices in A]

≤ 1
2K2

δ2 (18)
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by the eigenvectors for matrices in A. Then,

I2 ≤
∫

RK

|Σ1|−1/2
vK/2φ

(
v1/2Σ−1/2

1 x
)

ln
|Σ1|−1/2

vK/2φ
(
v1/2Σ−1/2

1 x
)

|Σ2|−1/2
vK/2φ

(
v1/2Σ1/2

2 x
) dx

[by (7)]

=
∫

RK

|Σ1|−1/2
vK/2φ

(
v1/2Σ−1/2

1 x
)[
−1

2
vx′
(
Σ−1

1 − Σ−1
2

)
x

]
dx + ln

|Σ1|−1/2

|Σ2|−1/2

=
∫

RK

φ (y)
[
−1

2

(
Σ1/2

1 y
)′ (

Σ−1
1 − Σ−1

2

)
Σ1/2

1 y

]
dy

[by the change of variables v1/2Σ−1/2
1 x 7→ y and noting that Σ1,Σ2 have same eigenvalues]

≤ K2

2

∣∣Σ−1
1 − Σ−1

2

∣∣
∞

[computing the integral noting that
∣∣∣Σ1/2

1

∣∣∣
∞
≤ 1: Σ1 is a correlation matrix]

≤ δ2/4

by (18) so that I ≤ δ/2.
Control over II.

De�ne S1 as the matrix with eigenvalues equal to
{

s
(1)
k , k = 1, ...,K

}
and matrix of

eigenvectors equal to D2: S1 = D2Λ (S1) D′
2. De�ne S2 similarly, but with eigenvalues{

s
(2)
k , k = 1, ...,K

}
. For Σ2,Σ3 ∈ A as in (16),

(
S2 − Σ−1

2

)
,
(
S2 − Σ−1

3

)
are positive

de�nite. Moreover, |S1| ≤ |Σ2|−1
and |S1| ≤ |Σ3|−1

. These two remarks imply

|Σ3|−1/2
vK/2φ

(
v1/2Σ−1/2

3 x
)
≥ |S1|1/2

vK/2φ
(
v1/2S

1/2
2 x

)
and

|Σ2|−1/2
vK/2φ

(
v1/2Σ−1/2

2 x
)
≥ |S1|1/2

vK/2φ
(
v1/2S

1/2
2 x

)
.

By the last displays, and the triangle inequality,

II ≤
∫

RK

∣∣∣f2 (x|v)− |S1|1/2
vK/2φ

(
v1/2S

1/2
2 x

)∣∣∣ dx

+
∫

RK

∣∣∣f3 (x|v)− |S1|1/2
vK/2φ

(
v1/2S

1/2
2 x

)∣∣∣ dx

=
∫

RK

[
f3 (x|v)− |S1|1/2

vK/2φ
(
v1/2S

1/2
2 x

)]
dx

+
∫

RK

[
f3 (x|v)− |S1|1/2

vK/2φ
(
v1/2S

1/2
2 x

)]
dx

= 2

(
1− |S1|1/2

|S2|1/2

)
= δ/2 (19)

because the determinant is the product of the eigenvalues, which are chosen to satisfy
(15) in the statement of the lemma. Putting together I and II proves (17) as required.
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Lemma 21 Under Condition 3, if Σ ∈ C then mink λk

(
Σ−1

)
≥ 1/K, |Σ|−1

> K−K ,

and if |Σ|−1 ≤ M , then maxk λk

(
Σ−1

)
≤ MKK−1.

Proof. The sum of the eigenvalues of a K dimensional full rank correlation matrix
is K and these eigenvalues must be all positive. Hence, the largest eigenvalue of Σ is
bounded above by K implying that the smallest eigenvalue of Σ−1 is bounded below by
K−1. Since the determinant of a matrix is the product of its eigenvalues, we deduce
that |Σ|−1

>
∏K

k=1 K−1. Finally, if the smallest eigenvalue of Σ−1 is 1/K, the largest

eigenvalue of Σ−1 must be smaller or equal than MKK−1 if we want |Σ|−1 ≤ M .

Lemma 22 Let (Mi)i≥0 be any strictly increasing sequence such that M0 = K−K . Then,

FP ⊆
⋃

i>0 F
Mi−1,Mi

P and

N
(
δ,FM

P

)
. lnK (M)MK−1

for any P ∈ P and M > 0.

Proof. By de�nition of (Mi)i≥0, Lemma 21 implies that FP ⊆
⋃

i>0 F
Mi−1,Mi

P and

the �rst part is proved. To show the cardinality of a δ cover of FM
P we shall eventually

use Lemma 20. To this end, for arbitrary, but �xed δ ∈ (0, 1) de�ne the sequences(
sj(k)

)
j(k)≥0

where s0 = 1/K, sj(k) := s0 [1− (δ/4)]−2j(k)/K
, k = 1, ...,K. Let

Bj :=
{
Σ ∈ C : sj(k) ≤ λk

(
Σ−1

)
< sj(k)+1, k = 1, ...,K

}
. (20)

Note that (Bj)j∈NK is a countable cover of C because, as mentioned above, the smallest

eigenvalue of Σ−1 is bounded below by s0 = K−1. Let
(
E

Bj
r

)
r>0

be a countable cover

for Bj (j ∈ NK) such that if Σ1,Σ2 ∈ E
Bj
r , their orthonormal matrices of eigenvectors

D1, D2 satisfy |D1 −D2|∞ ≤ δ2/
(
4K3 maxk sj(k)+1

)
=: δ′. We claim that there is a �nite

Nj = N (Bj) such that Bj =
⋃Nj

r=1 E
Bj
r , implying that

(
E

Bj
r

)
r∈{1,...,Nj}

is a �nite cover

of Bj . To �nd this Nj , consider the set of orthonormal matrices

E :=
{
D ∈ RK×K : DD′ = D′D = IK

}
where IK is the K dimensional identity matrix. For each given matrix of eigenvalues, the
set of possible eigenvectors of a correlation matrix is a strict subset of E . To see this,
recall that the eigenvectors need also to satis�es the constraint that the diagonal elements
of the correlation matrix are all one. Moreover, given any K dimensional vector e, there
exist only 2K−1 possible sets of orthonormal vectors orthogonal to e. This is clear for
K = 2 and for K > 2 it follows by induction. Hence, the cardinality of a δ′ cover for the
set of unit vectors in RK is proportional to the cardinality of a δ′ cover for E . Given that
a unit vector in RK is a point on the unit dimensional sphere in RK , it is su�cient to �nd
the cardinality of a δ′ cover for the the surface of the unit sphere in RK , proportionally
equivalent to the cardinality of a δ′ cover for [−1, 1]K−1

. By these remarks it follows that

Nj � (1/δ′)K−1 �
(
maxk sj(k)+1/δ2

)(K−1)
when

(
E

Bj
r

)
r>0

is as de�ned above; for ease
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of notation we have partially suppressed dependence of Nj on K hence on s0 because
�nite and not required for the �nal result.

Proven that Nj < ∞, we then claim that there is a �nite integer J depending on M

only, such that
{

Σ ∈ C : |Σ|−1 ≤ M
}

can be covered by

{(
E

Bj
r

)
r≤Nj

: j ≤ (J, ..., J)
}
.

Choose J as the smallest integer such that J ≥ min
{
j (k) > 0 : sj(k)+1 ≥ M/sK−1

0

}
for

any k = 1, ...,K. In fact, by Lemma 21 if |Σ|−1 ≤ M then maxk sj(k)+1 ≤ M/sK−1
0 =

MKK−1. Hence,

J = 1 +
⌊

K (lnM + K lnK)
2 [ln 4− ln (4− δ)]

⌋
.

Therefore, our cover has cardinality

#
{(

EBj
r

)
r≤Nj

: j ≤ (J, ..., J)
}

< JKNJ � lnK (M) MK−1

using the fact that maxj≤(J,...,J) maxk sj(k)+1 � M suppressing dependence on δ and K.

To �nish the proof, note that FM
P ⊆

⋃
j≤(J,...,J)

⋃
r≤Nj

(
FP ∩ E

Bj
r

)
and that E

Bj
r satis�es

the conditions of Lemma 20 (i.e. set E
Bj
r = A where A is as in Lemma 20). Hence,{(

FP ∩ E
Bj
r

)
r≤Nj

: j ≤ (J, ..., J)
}

is a δ-cover in total variation for FM
P .

We can now prove Lemma 18.
Proof Lemma 18. The distances in (7) are all invariant w.r.t. the dominating

measure. Hence, map a Gaussian copula density to a Gaussian density (see proof of
Lemma 15). We show that we can �nd a δ-cover of F satisfying the statement of the
lemma. Let (ai)i>0 and (Mj)j>0 be sequences of strictly increasing positive numbers.
Note that

F ⊆
⋃

i,j>0

F
Mj−1,Mj

ai,δ

and

Fm,M
a,δ =

 ⋃
P :P ((0,a])>1−δ

 ⋃
Σ:m<|Σ|−1≤M

{∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv)

}
,

where, by Lemmata 19 and 22, and the triangle inequality,

N
(
δ,Fm,M

a,δ

)
. apM (p/K)+K−1 lnK (M) (21)

for some positive �nite p. De�ne the following sequence of sets (Gi,j,δ)i,j>0

Gi,j,δ :={∫ ∞

0

vK/2φ
(
v1/2Σ−1/2x

)
P (dv) : P ((0, ai−1]) ≤ 1− δ, P ((0, ai]) > 1− δ,Mj−1 < |Σ|−1 ≤ Mj

}
.

Mutatis mutandis, by the arguments in Lijoi et al. (2005, p.1295), for any δ ∈ (0, 1),
there is an integer N large enough such that for i > 0, N (δ,Gi,j,δ) ≤ N

(
δ,F

Mj−1,Mj

aN ,δ

)
.

ap
NM

(p/K)+K−1
j lnK (Mj) using (21) for the right hand term. Then, note that F ⊆
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⋃
i,j>0 Gi,j,δ. Hence, there exists a countable δ-cover (As)s>0 of Aε such that, for some

β ∈ (0, 1),∑
s>0

Πβ (As)

≤
∑

i,j>0

ap
NM

(p/K)+K−1
j lnK (Mj) Πβ (Gi,j,δ)

≤
∑

i,j>0

ap
NM

(p/K)+K−1
j lnK (Mj) Πβ

P (P ([ai−i,∞)) > δ) Πβ
Σ

(
|Σ|−1

> Mj−1

)
[by independence of P and Σ and obvious set inequalities]∑
i>0

ap
N

Πβ
P (P ([ai−i,∞)))

δβ

∑
j>0

M
(p/K)+K−1
j lnK (Mj) Πβ

Σ

(
|Σ|−1

> Mj−1

)
[by Markov inequality for P ]

< ∞

by Condition 4.

3.2 Proof of Theorem 12

Proof of Theorem 12. By Lemma 23 (below), the set {ω ∈ Ω : Π (Bδ (ω)) = 1}, where
Bδ (ω) is as in (22), has P-probability one for any δ > 0. Hence, multiplying and dividing
by cθ (Ui),

Π̂n (Aε) =

∫
Aε

[∏n
i=1 cθ

(
Ûi

)
/cθ (Ui)

]
[
∏n

i=1 cθ (Ui)] Π (dθ)∫
Θ

[∏n
i=1 cθ

(
Ûi

)
/cθ (Ui)

]
[
∏n

i=1 cθ (Ui)] Π (dθ)

=

∫
Aε∩Bδ(ω)

[∏n
i=1 cθ

(
Ûi

)
/cθ (Ui)

]
[
∏n

i=1 cθ (Ui)] Π (dθ)∫
Θ∩Bδ(ω)

[∏n
i=1 cθ

(
Ûi

)
/cθ (Ui)

]
[
∏n

i=1 cθ (Ui)] Π (dθ)

[ by the previous remarks about Bδ (ω) ]

≤
supθ∈Bδ(ω)

[∏n
i=1 cθ

(
Ûi

)
/cθ (Ui)

]
infθ∈Bδ(ω)

[∏n
i=1 cθ

(
Ûi

)
/cθ (Ui)

]
×
∫

Aε

∏n
i=1 cθ (Ui) Π (dθ)∫

Θ

∏n
i=1 cθ (Ui) Π (dθ)

≤ exp {2nδ}Πn (Aε)

P-a.s. by the remarks about Bδ (ω) for all but �nitely many n. By Theorem 5 and Walker
(2004, proof of Theorem 4, p. 2036), deduce that Πn (Aε) . exp {−nγ} a.s. for some
γ > 0. Then, choose 2δ < γ in the de�nition of Bδ (ω).

Lemma 23 Under Conditions 10 and 11, for any δ > 0,

P ({ω ∈ Ω : Π (Bδ (ω)) = 1}) = 1,
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where

Bδ (ω) :=

θ ∈ Θ : lim
n→∞

[
n∏

i=1

cθ

(
Ûi (ω)

)
/cθ (Ui (ω))

]1/n

∈ [exp {−δ} , exp {δ}]

 . (22)

Proof. We argue along the lines of Lemma 3 in Barron et al. (1999). Let

Bδ :=

ω ∈ Ω, θ ∈ Θ : lim
n→∞

[
n∏

i=1

cθ

(
Ûi (ω)

)
/cθ (Ui (ω))

]1/n

∈ [exp {−δ} , exp {δ}]

 .

Obvious readaptations of Lemma 11 and Lemma 10 in Barron et al. (1999), using

Condition 11 imply that 1
n

∑n
i=1 ln

(
cθ

(
Ûi (ω)

)
/cθ (Ui (ω))

)
is a measurable function

from Ω × Θ to R. A continuous function of a measurable function is measurable, then[∏n
i=1 cθ

(
Ûi (ω)

)
/cθ (Ui (ω))

]1/n

is also measurable. Then, the set Bδ is measurable

and we can apply Fubini's Theorem. Let Bδ (θ) be as in (23) below. By Lemma 24,
P (Bδ (θ)) = 1 for every θ ∈ Θ and integrating both sides of this equality w.r.t. Π,

1 =
∫

Θ

P (Bδ (θ))Π (dθ)

=
∫

Ω

Π (Bδ (ω)) P (dω)

by Fubini's Theorem. Since Π and P have range [0, 1], the last display implies the state-
ment of the lemma.

Lemma 24 For any δ > 0,
P (Bδ (θ)) = 1,

where

Bδ (θ) :=

ω ∈ Ω : lim
n→∞

 n∏
i=1

cθ

(
Ûi (ω)

)
cθ (Ui (ω))

1/n

∈ [exp {−δ} , exp {δ}]

 . (23)

Proof. De�ne N := Nn � lnn. Then, n∏
i=1

cθ

(
Ûi

)
cθ (Ui)

1/n

= exp

 1
n

∑
i≤N

+
∑
i>N

 ln
cθ

(
Ûi

)
cθ (Ui)


= exp {I + II}
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and we shall upper and lowerbound each term separately. To this end, there is an α > 0
such that

P (|I| > ε) ≤ N1+α

(εn)1+α E

∣∣∣∣∣∣ 1
N

∑
i≤N

ln
cθ

(
Ûi

)
cθ (Ui)

∣∣∣∣∣∣
1+α

≤ N1+α

(εn)1+α sup
i>0

E

∣∣∣∣∣∣ln
cθ

(
Ûi

)
cθ (Ui)

∣∣∣∣∣∣
1+α

→ 0.

using Condition 11. Since, by de�nition of N , (N/n)1+α
is summable in n, the Borel-

Cantelli lemma gives |I| ≤ ε, P-a.s.. Finally,

|II| ≤ lim
N→∞

sup
i>N

∣∣∣ln cθ

(
Ûi (ω)

)
− ln cθ (Ui (ω))

∣∣∣
→ 0

P-a.s. by Condition 10, using the Continuous Mapping Theorem as the copula density is
continuous in its argument u for any θ. Since ε > 0 is arbitrary, the lemma follows.

3.3 Proof of Remaining Results

Proof of Lemma 8. Note that

DΣD = σ2IK + γγ′

and we shall �nd the eigenvalues of DΣD. Note that D is just the diagonal matrix of
standard deviations, so that decomposition of DΣD allows us to recover all the required
information for Σ. Hence, by direct calculation

(
σ2IK + γγ′

)
Γ1 = Λ11Γ1 con�rming that

Λ11 is an eigenvalue with eigenvector Γ1 as stated in the lemma. Since γγ′ has rank one,
all the other eigenvalues are σ2 with eigenvectors that only need to be orthogonal to γ and
to each other. Hence, by Gram-Schmidt orthogonalization, the eigenvectors are found as
given in the lemma for any initial basis e1, ..., eK−1. The determinant is directly found
from the eigenvalues of DΣD using the fact that D is diagonal.

Proof of Lemma 9. From Lemma 8

|Σ|−1 ≤ max
k∈{1,...,K}

(
σ2 + γ2

k

)K
σ2K + σ2(K−1)γ′γ

= max
k∈{1,...,K}

∑K
i=0

(
K
i

)
σ2(K−i)γ2i

k

σ2K + σ2(K−1)
∑K

k=1 γ2
k

.

Since the prior has support in Ca (σ, γ), we have σ ∈ [a,∞]. If σ → ∞, |Σ|−1 → 1, and
if σ = a the magnitude of |Σ|−1

is determined by |γ| → ∞, because for small γ, |Σ|−1
is

small. Hence,

|Σ|−1 ≤ max
k∈{1,...,K}

1 + 2Kγ2K
k

min (a2K , 1)
,
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by some bounding arguments. Let σ2
γ be the largest variance of the entries in γ. Then,

γ2/σ2
γ is a non central Chi-square. By these remarks, as M →∞,

Pr
(
|Σ|−1

> M
)

≤ K max
k∈{1,...,K}

Pr
(

1 + 2Kγ2K
k

min (a2K , 1)
> M

)
≤ K max

k∈{1,...,K}
Pr

((
γk

σγ

)2

>

(
2−K min

(
a2K , 1

)
M − 1

)1/K

σ2
γ

)

. exp

{
−α

(
2−K min

(
a2K , 1

)
M
)1/K

σ2
γ

}

for any α ∈ (0, 1/2) using �niteness of the moment generating function of γ2/σ2
γ and the

exponential Markov inequality. Condition 4(ii.) is then satis�ed.
Proof of Lemma 13. De�ne

f (x|v) = vK/2φ
(
v1/2Σ−1/2x

)
.

Let Qφ be as in (1) using the standard normal quantile function. By change of variables
and Minkowski inequality,

E

∣∣∣∣∣∣ln
cθ

(
Ûi (ω)

)
cθ (Ui (ω))

∣∣∣∣∣∣
1+α

= E

∣∣∣∣∣∣ln
∫∞
0

f
(
Qφ

(
Ûi (ω)

)
|v
)

P (dv)∫∞
0

f (Qφ (Ui (ω)) |v) P (dv)

∣∣∣∣∣∣
1+α

+E

∣∣∣∣∣∣
K∑

k=1

ln
φ
(
Φ−1 (Uik (ω))

)
φ
(
Φ−1

(
Ûik (ω)

))
∣∣∣∣∣∣
1+α

= I + II.

For any x, y > 0, |ln (x + y)| ≤ |ln (x)| + y. By this remark and by similar arguments
as in Control over I in the proof of Lemma 15, for some �nite a and a1 < a2 as in the
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statement of the lemma,

I ≤ E

∣∣∣∣∣∣ln
∫ a

0
f
(
Qφ

(
Ûi (ω)

)
|v
)

P (dv)∫∞
0

f (Qφ (Ui (ω)) |v) P (dv)

∣∣∣∣∣∣
1+α

+ E

∣∣∣∣∣ ε∫∞
0

f (Qφ (Ui (ω)) |v) P (dv)

∣∣∣∣∣
1+α

≤ E

∣∣∣∣∣∣ln
∫ a

0
f
(
Qφ

(
Ûi (ω)

)
|v
)

P (dv)∫ a

0
f (Qφ (Ui (ω)) |v)P (dv)

∣∣∣∣∣∣
1+α

+ E sup
v∈[a1,a2]

∣∣∣∣ ε

f (Qφ (Ui (ω)) |v) P ([a1, a2])

∣∣∣∣1+α

≤ E sup
v∈[0,a]

∣∣∣∣∣∣ln
f
(
Qφ

(
Ûi (ω)

)
|v
)

f (Qφ (Ui (ω)) |v)

∣∣∣∣∣∣
1+α

+ E sup
v∈[a1,a2]

∣∣∣∣ ε

f (Qφ (Ui (ω)) |v) P ([a1, a2])

∣∣∣∣1+α

= E sup
v∈[0,a]

(v

2

)1+α ∣∣∣Qφ (Ui) Σ−1Qφ (Ui)−Qφ

(
Ûi

)
Σ−1Qφ

(
Ûi

)∣∣∣1+α

+E sup
v∈[a1,a2]

∣∣∣∣∣∣ε
exp

{
(1+α)v

2 Qφ (Ui) Σ−1Qφ (Ui)
}

vK/2P ([a1, a2])

∣∣∣∣∣∣
1+α

≤
(a

2

)1+α
(

E
∣∣Qφ (Ui) Σ−1Qφ (Ui)

∣∣1+α
+ E

∣∣∣Qφ

(
Ûi

)
Σ−1Qφ

(
Ûi

)∣∣∣1+α
)

+

∣∣∣∣∣ ε

a
K/2
1 P ([a1, a2])

∣∣∣∣∣
1+α

E exp
{

(1 + α) a2

2
Qφ (Ui) Σ−1Qφ (Ui)

}
.

Noting that Qφ (Ui) is a Gaussian random vector with covariance matrix Σ, it follows
that the �rst expectation is �nite. If ΠP is a Dirichlet process prior with base probabil-
ity measure G such that G ([a1, a2]) > 0, then, ΠP (P [a1, a2] > 0) = 1 (Ferguson, 1973,
Proposition 1). Hence choose a2 such that (1 + α) a2 < 1. Then, also the third expecta-
tion is �nite ΠP -a.s., as (1 + α) a2 < 1, ΠP -a.s.. To bound the second expectation note
that

E
∣∣∣Qφ

(
Ûi

)
Σ−1Qφ

(
Ûi

)∣∣∣1+α

.
K∑

k=1

E
∣∣∣Φ−1

(
Ûik

)∣∣∣2(1+α)

.
K∑

k=1

E
∣∣∣ln(1− Ûik

)∣∣∣(1+α)

because for any u ∈ [0, 1],
∣∣Φ−1 (u)

∣∣ . |ln (1− u)|(1/2)
. This term is �nite by the condi-

tions of the lemma. The bound for II follows by similar but simpler arguments.
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