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Abstract

The relationship between in�ation and the output gap can be mod-
eled simply and e¤ectively by including an unobserved random walk
component in the model. The dynamic properties match the stylized
facts and the random walk component satis�es the properties nor-
mally required for core in�ation. The model may be generalized to
as to include a term for the expectation of next period�s output, but
it is shown that this is di¢ cult to distinguish from the original spec-
i�cation. The model is �tted as a single equation and as part of a
bivariate model that includes an equation for GDP. Fitting the bi-
variate model highlights some new aspects of unobserved components
modeling. Single equation and bivariate models tell a similar story:
an output gap two per cent above trend is associated with an annual
in�ation rate that is one percent above core in�ation.
KEYWORDS: Cycle; hybrid new Keynesian Phillips curve; in�a-

tion gap; Kalman �lter, output gap.

1 Introduction

There has been something of a resurgence of interest in the Phillips curve in
recent years; see the opening remarks to a recent conference at the Federal
Reserve by Bernanke in 2007. A popular model is the hybrid New Keynesian
Phillips curve (NKPC) in which the rate of in�ation is assumed to depend on
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lagged in�ation, the expected value of in�ation in the next period and a mea-
sure of the output gap, such as detrended GDP; see Gali and Gertler (1999).
The lagged variable is designed to capture in�ation persistence. Formulations
of this kind play a prominent role in dynamic stochastic general equilibrium
(DSGE) models, such as the one described by Smets and Wouter (2003),
and they are taken for granted in a good deal of macroeconomic modeling.
Hence issues surrounding the speci�cation have wider implications than just
in�ation.
The proposed model is a simple modi�cation of the backward-looking

Phillips curve in which lagged in�ation is replaced by an unobserved random
walk component. The role of the random walk component is to capture the
underlying level of in�ation. Since the output gap is stationary, the long-run
forecast is the current expected value of the random walk. This is often taken
as a de�nition of core in�ation; see Bryan and Ceccheti (1994) and Cogley
(2002).
The model can be extended to include a forward-looking term and as

such it can be regarded as a modi�cation of the hybrid NKPC. It is shown
that in�ation can be written as a linear combination of the expectation of
core in�ation, the output gap, the discounted sum of expectations of the
output gap and a residual. Issues of identi�ability for the hybrid NKPC are
discussed in Nason and Smith (2006) and similar considerations arise here.
When the discounted sum of expectations of the output gap depends only on
current and (possibly) lagged values of the output gap, the model essentially
reverts to its original speci�cation. In these circumstances, it is di¢ cult to
produce convincing estimates of the coe¢ cient of the forward-looking term.
The hybrid NKPC cannot adequately deal with nonstationarity1 and is

sometimes estimated after detrending, usually with a Hodrick-Prescott �l-
ter. The use of detrended in�ation begs the question of what explains core
in�ation; see also Fukac and Pagan (2006). Gali and Gertler (1999, p.203)
write �Oddly, enough, however, the hybrid Phillips curve has met with rather
limited success.� Their response is to use marginal cost. But the problem is
that the dynamic speci�cation of the hybrid NKPC is �awed and hence there
is nothing odd about its failure. The proposed speci�cation encompasses the
hybrid NKPC and other models and in doing so exposes their shortcomings.
The papers by Kuttner (1994), Planas and Rossi (2004), Domenech and

1Furthermore GMM attempts to estimate the model with nonstationary series run into
di¢ culties; see Mavroeidis (2005), Stock, Wright and Yogo (2002) and Pesaran (1987).
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Gomez (2006) and Planas, Rossi and Fiorentini (2007) are related in that
they use unobserved components in models linking in�ation with the output
gap. The in�ation equation proposed here di¤ers signi�cantly from the ones
in Kuttner (1994) and Planas and Rossi (2004) in that the lagged growth
rate of GDP is dropped and a stochastic trend included. Note that the main
motivation in these papers is to use the information in in�ation to obtain
better estimates of the output gap. This point is worth bearing in mind
when bivariate estimation of our model is considered.
The statistical case for the proposed model is made in section 2 where

univariate unobserved components methodology is used to examine the out-
put and in�ation gaps and the relationship between them. The model is set
out in section 3 and extended to include a forward-looking term. Estima-
tion is considered in section 4. Bivariate estimation makes use of some new
capabilities in the STAMP package of Koopman et al (2007).

2 Preliminary modeling and stylized facts

It is useful to begin with an exploration of the relationship between in�ation
and output based on �tting univariate unobserved components (UC) models.
We do not want to impose a tight �theoretical�speci�cation at the outset,
particularly one involving a speci�c lag structure or a dogmatic statement
of the way in which expectations enter the model. Instead we use UC mod-
els to yield a decomposition into persistent and transitory movements, the
interpretation of which is informed by economic theory.
The model is developed with US data. Output is measured by the log-

arithm of quarterly real U.S. Gross Domestic Product (GDP), denoted yt;
while the (annualized) rate of in�ation, �t; is measured as the �rst di¤er-
ences of the quarterly CPI multiplied by four. We have data from 1947(1) to
2007(2), obtained for GDP fromDepartment of Commerce (website: www.bea.gov)
and, for CPI, U.S. Bureau of Labor Statistics (website: www.bls.gov). There
is a case for starting estimation in 1952(1), since the early observations show
quite extreme movements because of the Korean war. Models were also �t-
ted using the GDP de�ator to measure in�ation. Although there are some
di¤erences, the overall message remains the same and the results are not
reported.
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2.1 Output gap

A trend-cycle model can be set up as

yt = �t +  t + "t; t = 1; :::; T (1)

where �t is an integrated random walk,

�t = �t�1 + �t�1;
�t = �t�1 + �t;

; t = 1; :::; T (2)

 t is a stochastic cycle and "t is white noise. The stochastic cycle24  t

 �t

35 = �

24 cos�c sin�c

� sin�c cos�c

3524  t�1

 �t�1

35+
24 �t

��t

35 ; t = 1; :::; T; (3)

where �c is frequency in radians, � is a damping factor, with 0 � � < 1; and
�t and ��t are two mutually independent white noise disturbances with zero
means and common variance �2�: The reduced form is an ARMA(2; 1) process
in which the autoregressive part has complex roots. The disturbances, "t, �t,
�t and ��t are serially and mutually uncorrelated with variances �

2
" and �

2
� for

the irregular and slope and �2� for the two cycle disturbances. The model is
assumed to be Gaussian and is estimated by maximum likelihood (ML). The
smoothed estimates of the cycle can serve as a measure of the output gap.
When the model is �tted to US GDP, �2" is estimated to be zero and so the
cycle is the same as the detrended series. A smoother cycle can be produced
by using the higher-order models proposed in Harvey and Trimbur (2003).
The Hodrick-Prescott (HP) �lter is widely used for detrending time series

in macroeconomics. The detrended series can be computed as the smoothed
estimates of the irregular component in a model in which yt = �t + "t;where
�t is an integrated random walk as in (2) and signal-noise ratio, q = �2�=�

2
";

is �xed at 1/1600 for quarterly data. The output gap series produced by
HP detrending is close to the cycle series obtained by �tting the trend-cycle
model. However, while the HP �lter may be relatively e¢ cient in the middle
of a series, it is much less e¢ cient at the end; see Mise, Kim and Newbold
(2005). Furthermore a model is needed to produce forecasts.

2.2 In�ation

Cogley and Sargent (2007, section 2) argue that �A consensus has emerged
that trend in�ation is well approximated by a driftless random walk�. A
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simple model is the random walk plus noise or local level model:

�t = �t + "t; "t � NID(0; �2"); t = 1; :::; T (4)

�t = �t�1 + �t; �t � NID(0; �2�); (5)

The disturbances, "t and �t are serially and mutually uncorrelated and the
notation NID (0; �2) denotes normally and independently distributed with
mean zero and variance �2. When �2� is zero, �t is a constant. The signal-
noise ratio, q = �2�=�

2
"; plays the key role in determining how observations

should be weighted for prediction and signal extraction. Stock and Watson
(2007) extend the model to allow the disturbances to be generated by sto-
chastic volatility (SV) processes. This is not done here but it would be an
option.
More generally, the in�ation gap, the di¤erence between in�ation and core

(trend) in�ation, �t � �t; can be modeled as a stationary process. Cogley
and Sargent (2007) focus on how its dynamics and volatility have changed
over time. They do this by adding lagged in�ation to the model and letting
its coe¢ cient evolve as a random walk. However, adding a lagged dependent
variable to the model takes us in a di¤erent direction from the one in which
we wish to go.
Figure 1 shows the smoothed components from a UC model in which

a stochastic cycle and a stochastic seasonal, speci�ed as in Koopman et al
(2007), have been added to (4), that is

�t = �t +  t + t + "t; t = 1; :::; T:

If the in�ation gap is estimated by the cycle it is somewhat smoother than
the detrended ( and seasonally adjusted) series because the irregular has been
�ltered out.
The above formulation in terms of additive components is preferred to

one in which the dynamics of the in�ation gap are picked up by a lagged
dependent variable, that is

�t = �t + ��t�1 + "t; "t � NID
�
0; �2"

�
; t = 1; :::; T: (6)

The disadvantage of (6) is that the dynamics of the in�ation gap are imposed
on the underlying level (core in�ation), since

�t = (1� �L)�1�t + (1� �L)�1"t; t = 1; :::; T
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Figure 1: In�ation and its decomposition into stochastic level, cycle, seasonal
and irregular.

2.3 Output gap and in�ation gap

Figure 2 shows a joint plot of the cycles extracted from the models �tted
in the last two sub-sections. It shows clearly why insisting on a model with
time invariant dynamics is unwise. Output clearly leads in�ation in the 1970s,
primarily at the time of the two oil crises, but this is not the case later on.

3 Model speci�cation

The analysis of the previous section suggests that in�ation should be modeled
so as to be integrated of order one, that is stationary in �rst di¤erences.
The output gap is stationary by construction. These properties need to be
borne in mind when assessing the dynamic properties of various Phillips curve
models.
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Figure 2: Smoothed estimates of the cycles obtained from univariate models
for in�ation and (log) GDP

3.1 A short history of the Phillips curve

The basic Phillips curve relating in�ation to the output gap is, ignoring the
constant,

�t = �xt + "t; "t � NID
�
0; �2"

�
; t = 1; :::; T (7)

where xt is the output gap, such as detrended GDP. This model is inade-
quate for capturing dynamics and the initial response was to add a lagged
dependent variable (Friedman-Phelps). This also proved inadequate for mod-
eling behaviour and in the new Keynesian Phillips curve (NKPC) the lagged
dependent variable was replaced by a future expectation to give

�t = Et(�t+1) + ��xt + "t; t = 1; :::; T (8)

where 0 �  � 1: However, when expectations are based on this model,
in�ation depends exclusively on the discounted sequence of future output
gaps. If xt is assumed to be a stationary AR(1) process with coe¢ cient �;
the model reverts to (7) with � = ��=(1 � �): If xt were assumed to be
AR(p) with for p � 2 it would introduce p � 1 lags of xt into the equation
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and allow  to be identi�ed; see Nason and Smith (2006, p5) and Pesaran
(1987, propositions 6.1 and 6.2). More generally, identifying information
is only available when p is greater than the number of lags in the original
equation.
The hybrid NKPC is

�t = ��t�1 + Et(�t+1) + ��xt + "�t (9)

Solving for Et(�t+1), as in Nason and Smith (2006, p5), and substituting in
the original equation yields

�t =
�

1� �1
�t�1+

��

(1� �1)�2

1X
j=0

�
1

�2

�j
Et(xt+1+j)+

��

1� �1
xt+

1

1� �1
"t

where �1 and �2 are, respectively, the stable and unstable roots of �L�1 +
�1 � ��1L: Identi�ability issues are much the same as with the NKPC.
Thus if xt is AR(1), the model has the form of the original, (9). The rate
of in�ation is stationary if j�=(1� �1)j < 1: Setting � = 1 � ; implies
�1 = 1 so that �t is then nonstationary. However, writing the equation as
��t = �xt+"t makes it clear that what we have is not really a Phillips curve
(though adding lags of xt and incorporating a unit root could retrieve the
situation). On the other hand, a stationary model could only �t the data if
in�ation were detrended �rst.

3.2 The unobserved components Phillips curve

Instead of using a lagged variable to capture in�ation persistence, we might
use an unobserved random walk so

�t = �t + �xt + "t; "t � NID
�
0; �2"

�
; t = 1; :::; T (10)

where �t is as in (5). Since xt is stationary, the long-run forecast is the current
expected value of �t and so is a measure of core in�ation. It is consistent
with the univariate model �tted in sub-section 2.2, the di¤erence being that
the in�ation gap is now explained by the output gap. The model captures
backward price setting behaviour because it can be expressed as

�t = Et�1(�t) + �xt + �t; �t � NID
�
0; �2

�
(11)
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where �t = �t �Et�1(�t) is the innovation and Et�1(�t) is weighted average
of past observations, corrected for the e¤ect of the output gap; in the steady
state2 this is an exponentially weighted moving average (EWMA), that is

Et�1(�t) = �
1
�
j=0
(1� �)j (�t�1�j � �xt�1�j) (12)

and � =
�
�q +

p
q2 + 4q

�
=2: This is very di¤erent from just including a

single lagged dependent variable, �t�1.
The model can also be regarded as forward-looking. The conditions under

which a model with an expectational term reverts to (10) are derived below.
The fact that the forecast function for a random walk component is constant
simpli�es matters considerably.
The reduced form of (10) is an ARMAX model in which ��t is equal to

��xt plus a moving average disturbance term. The autoregressive distrib-
uted lag reduced form

�t =
1X
i=1

�i�t�i + �xt +
1X
i=1

�ixt�i + �t (13)

where �i = �(1��)i and �i = ��i; i = 1; 2; :::; can be obtained from the AR-
MAX model or directly from (11). The coe¢ cients on the lags will typically
be quite small with a slow decay. For example, if q = 0:05; then � = 0:2: As
will be seen later, this has implications for model selection and interpretation.

3.3 Expectations

Suppose the hybrid NKPC is modi�ed by replacing lagged in�ation by an
unobserved random walk, ��t ; and setting its coe¢ cient to 1� , that is

�t = (1� )��t + Et(�t+1) + ��xt + "�t ; t = 1; :::; T (14)

with 0 �  � 1: Letting the coe¢ cients of ��t and Et(�t+1) sum to one is
not a constraint in the way it is for the hybrid NKPC since a free coe¢ cient
would be absorbed in �2��; the variance of the disturbance driving �

�
t ; and so

would not be identi�able.
2In practice the Kalman �lter is initiated with a di¤use prior and it only approaches the

steady-state asymptotically; see Harvey (1989). However, it simpli�es matters to assume
a steady-state at the outset.
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Some algebraic manipulation, set out in appendix A, yields

�t = Et�1(�
�
t ) + ��

1X
j=0

jEt(xt+1+j) + ��xt + �t; (15)

showing that in�ation decomposes into a linear combination of the expecta-
tion of core in�ation, the output gap, the discounted sum of expectations of
the output gap and a residual.
The future expectations can be removed as before by making an assump-

tion about the process followed by xt: Thus if xt is AR(1) and j�j < 1; (25)
becomes

�t = �yt +
���

1� �
xt + ��xt + "yt = �yt +

��

1� �
xt + "yt :

This cannot be distinguished from (10); but if xt is a stationary AR(2), which
corresponds approximately to the stochastic cycle used in (1), Et(xt+1+j);
j = 0; 1; 2; :::; depends on xt and xt�1, and identi�cation of  may be pos-
sible. However, as with the hybrid NKPC, it is di¢ cult to have con�dence
in the assumptions needed to separate out forward and backward e¤ects.
Furthermore the results in Rudd and Whelan (2005) lead them to conclude
that �..forward-looking terms play a very limited role in explaining in�ation
dynamics.� Similarly Nason and Smith (2006) conclude that �..there is littel
evidence of forward looking dynamics in U.S, U.K. and Canadian in�ation.�
If extra information, beyond univariate predictions of the output gap, is

used to form expectations, it needs to be taken on board. An interesting
possibility is add the expected target in�ation, ��t+1; of the Central Bank at
time t: Thus

�t = �t + �xt + �Et(�
�
t+1) + "t:

Dossche and Everaert (2005) incorporate some elements of this approach
into the hybrid NKPC by letting the expectational term in (9) be replaced
by Et(�

z
t+1), where �

z
t is a random walk that models the Central Bank�s

in�ation target. Such a term could be included in (14) instead of Et(�t+1);
but further assumptions would be needed to disentangle it from ��t : In the
absence of such assumptions we revert to (14) and the only issue is whether
to interpret ��t as (partly) re�ecting the Central Bank�s in�ation target.
Note that if the Central Bank were to announce a commitment to set-

ting the path of future output gaps to zero, the term in (24) containing the
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discounted sum of expectations of the output gap would disappear ( and
� = ��) if agents expected that this would indeed be the case.
In�ationary expectations may also be obtained from surveys. Basistha

and Nelson (2007) use the Michigan Consumer Survey in a UC model, but
their model is quite di¤erent from ours; for example the trend and cycle are
(negatively) correlated. They estimate � to be 0.29.
As a �nal point, note that the model proposed by Domencech and Gomez

(2006) in their equation (8) is

�t = (1� )�t + �t�1 + �xt + "t; t = 1; :::; T; (16)

where the notation has been adapted so as to be similar to that used here
and there is only one lag on �t to simplify the discussion. Setting  = 0 gives
(10), although if (10) is generalized, as is done later, so that �t � �t � �xt
is a stationary process, rather than white noise, the two formulations are
no longer nested; the reasons for preferring an additive formulation were
discussed at the end of sub-section 2.2.

4 Estimation

This section reports the estimation of the model in (10), �rstly as a single
equation, with the output gap obtained by extracting a cycle from a univari-
ate model of GDP, and secondly as a bivariate system in which the output
gap and the in�ation gap are modeled jointly. Models for �tted for two pe-
riods, one starting in 1947 and the other starting in 1986. After the mid
80s the rate of in�ation is much lower and marks the beginning of what Sar-
gent has called the �Great Moderation.� The (edited) results for one of the
bivariate models are shown in appendix B; others are available on request.

4.1 Single equation estimation

The model in (10) can be estimated easily using the STAMP package of
Koopman et al (2007). Using data from 1947 suggests a model with lags
of the output gap at one and four quarters with no contemporaneous e¤ect.
Estimating from 1952(1) makes very little di¤erence. Figure 3 shows the
components in a model of the form (10) extended to include a stochastic
cycle and a seasonal, t; as well as lags of xt; that is

�t = �t +  t + t + �1xt�1 + �4xt�4 + "t; t = 1; :::; T (17)
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Figure 3: Components (excluding seasonal) in model relating in�ation to
(lagged) output gap

Including the cycle gives a slightly smaller equation standard error. More
importantly perhaps, core in�ation is much less erratic. The estimates of �1
and �4 are 0.50 (3.93) and 0.19 (1.51), with t�statistics� shown in paren-
theses. The diagnostics are not entirely satisfactory, but given the erratic
movements in the 70s and the subsequent sharp fall in the early 80s this is
not surprising. However, if we start in 1986(1), the diagnostics are much
better, even without including a cycle. There is no evidence for lags beyond
one and the contemporaneous and lagged one estimates of output gap coe¢ -
cients, �0 and �1; are 0.11 (.34) and 0.39 (1.19). In fact a contemporaneous
output gap provides a good �t, the estimate of � being 0.49 with a t-statistic
of 3.56. Using the output gap series estimated from 1947 gives an estimate
of 0.42.
Multi-step forecasts from the end of 1997 are shown in �gure 4. The

movements, which are conditional on the output gap, are not big but the
higher in�ation around 2000 is picked up. The volatility of the series in
recent years has made accurate forecasting of any one quarter di¢ cult, a
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Figure 4: Multi-step predictions made from the end of 1997, conditional on
the output gap estimated from the full sample

point made by Stock and Watson (2007).
If �ltered estimates of the output gap are used in the equation estimated

from 1986, the diagnostics are still satisfactory, but the coe¢ cients on the
output gap are small and insigni�cant. Using the predictive (one-step ahead)
�lter, obtained starting in 1947, the coe¢ cient on the current output gap is
0.16(0.38). With the contemporaneous �lter it is 0.09(0.26).
Autoregressive distributed lag models, (13), are often used to make fore-

casts based on the Phillips curve; see, for example, Orphanides and van
Norden, (2002). However, the estimates are erratic and di¢ cult to interpret.
For a data set beginning in 1986, the results of with four lags are as shown
in table 1. There is no clear interpretation to the pattern. Using the �Au-
tometrics�option in the PC Give module3 in Oxmetrics only gives lags at
one and three only and the negative coe¢ cient in lag 3 of the output gap
is puzzling, to say the least. Note that the seasonally adjusted CPI series
was used to create the in�ation series since using unadjusted data with �xed
seasonal dummies would have resulted in the changing seasonal pattern be-

3Doornik and Hendry (2007)
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coming incorporated into the lag structure. The estimates from the full data
also show no clear pattern.

Lag Coe¢ cient t-statistic Autometrics
Dependent 1 .29 2.41 .25 (2.42)
variable 2 -.10 -.86 -

3 .40 3.22 .34 (3.09)
4 -.08 -.62 -

Output 0 -.10 -.29 -
gap 1 .49 .97 .57 (2.70)

2 .38 -75 -
3 -.71 -1.40 -.47 (-2.27)
4 .06 .15 -

Table 1 Estimates of coe¢ cients in an unrestricted autoregressive distrib-
uted lag model for in�ation.

4.2 Bivariate model

Rather than �rst estimating the output gap from a univariate model for GDP,
in�ation and GDP may be modeled jointly as�

�t
yt

�
=

�
��t
�yt

�
+

�
 �t
 yt

�
+

�
"�t
"yt

�
(18)

where ��t is a random walk, as in (5), and �yt is an integrated random walk,
as in (2). These two stochastic trends are independent of each other. The
irregular disturbances may be correlated and are assumed to have a covari-
ance matrix, �". A seasonal component can be added to the model and
in the estimates reported seasonal e¤ects were included in the equation for
in�ation. The stochastic cycles are modeled as �similar cycles�, as in Harvey,
Trimbur and van Dijk (2007), so that if  t = ( 

�
t ;  

y
t )
0; then24  t

 �t

35 =
24�
0@ cos�c sin�c

� sin�c cos�c

1A
 I2
3524  t�1

 �t�1

35+
24 �t
��t

35 ; t = 1; :::; T;

(19)
where �t and ��t are 2 � 1 vectors of the disturbances such that E(�t�0t) =
E(��t�

�0
t ) = ��; where �� is an 2� 2 covariance matrix, and E(�t��

0
t ) = 0.

Because the damping factor and the frequency, � and �c; are the same in all
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series, the cycles in the di¤erent series have the same autocorrelation func-
tions. As in the univariate models, the trend, cycle, seasonal and irregular
components are assumed to be mutually independent.
A simple transformation of the bivariate similar cycle model allows the

cycle in in�ation to be broken down into two independent parts, one of
which depends on the GDP cycle, that is  �t = � yt +  �yt ; where � =
Cov( �t ;  

y
t )=V ar( 

y
t ) = Cov(��t ; �

y
t )=V ar(�

y
t ) and  

�y
t is a cyclical compo-

nent speci�c to in�ation. Substituting in the in�ation equation in (18) gives

�t = ��t + � yt +  �yt + "�t

If the cycle disturbances ��t and �
y
t are perfectly correlated, the above expres-

sion corresponds to (10) if  yt is set to xt: However, (10) could be extended
to include a stochastic cycle, as was done in (17).
The model estimated over the full period works quite well - but the case

for a contemporaneous relationship is undermined by the lag structure identi-
�ed from �gure 2. With data from 1986(1), the diagnostics are much better,
although there is still some residual serial correlation in in�ation; see appen-
dix. But more to the point, a contemporaneous relationship is reasonable.
The model was also �tted with GDP lagged one period, but the �t was found
to be very similar.
The almost perfect correlation, 0.998, means that the implied equation

for �t is e¤ectively as in (10). The correlation matrix of the cycle gives an
estimate of � equal to 0:52: The two left-hand panels in �gure 5 show the
e¤ect of the output gap on in�ation.

5 Conclusion

The simple unobserved components Phillips curve is parsimonious and pro-
vides a good �t to the data. It embodies core in�ation and has dynamic
properties consistent with the data. The model can be extended to include
forward-looking behaviour but, as in all such model, identi�cation is di¢ cult.
An important part of the unobserved components statistical methodology

is the use of graphical output for assessing whether extracted components
have a meaningful interpretation. In this case a preliminary analysis based
on univariate time series models gives a clear indication of a relationship
that has changed over time and a warning that the uncritical use of lagged
dependent variables may be problematic.
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Figure 5: Smoothed components from a bivariate model for GDP and in�a-
tion

A bivariate model allows the output and in�ation gaps to be estimated
simultaneously, and it could be argued that this makes the best use of the
available data. If the model were to be further extended, common trends -
and hence co-integration - could easily be imposed on variables such as GDP
and investment.
The models seem fairly stable when estimated using quarterly data from

the mid-eighties and are robust to minor changes in the speci�cation. Single
equation and bivariate models tell a similar story: an output gap two per cent
above trend is associated with an annual in�ation rate that is one percent
above core in�ation. There is some evidence for a lag of one quarter, but this
may not be stable. Core in�ation has been relatively stable, not moving far
from 3%.
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Appendix A - Expectations in the UC model
Shifting (14) forward one time period and taking expectations at time t

gives
Et(�t+1) = (1� )Et(�

�
t+1) + Et(�t+2) + ��Et(xt+1) (20)

as Et(�t+2) = EtEt+1(�t+2) by the law of iterated expectations. Substituting
in (14) yields

�t = (1� )��t +
(1� )

1� L�1
Et(�

�
t+1) +

��

1� L�1
Et(xt+1) + ��xt + "�t ;

Since ��t is a random walk, Et(��t+j) = Et(�
�
t ); for j = 1; 2; ::; and so

�t = (1� )��t + Et(�
�
t ) + ��

1X
j=0

jEt(xt+1+j) + ��xt + "�t (21)

Now consider the equation

�t = at�
�
t + btEt�1(�

�
t ) + ctzt + dt"

�
t (22)

where at; bt; ct and dt are non-stochastic and zt = ���jEt(xt+1+j) + ��xt:
The Kalman �lter can be applied to this equation since Et�1(��t ) is known
at time t�1 ( and we continue to assume that xt and its future expectations
are known). The updating equation linking Et(��t ) to Et�1(�

�
t ) is

Et(�
�
t ) = Et�1(�

�
t ) + kt(�t � Et�1(�t))

where kt is the Kalman gain and Et�1(�t) = (at+ bt)Et�1(��t ) + ctzt. Substi-
tuting in (21) and re-arranging gives

�t =
1� 

1� kt
��t +

(1� (at + bt)kt)

1� kt
Et�1(�

�
t ) +

(1� ktct)zt
1� kt

+
1

1� kt
"�t

Comparing with (22), it can be seen that at = (1 � )=(1 � kt); bt =
(� kt)=(1� kt); ct = 1 and dt = 1=(1� kt): Note that at+ bt = 1 and so

�t =
1� 

1� kt
��t +

(1� kt)

1� kt
Et�1(�

�
t ) + zt +

1

1� kt
"�t (23)

In the steady-state, kt = �: An equivalent (reduced form) model can be
obtained by taking expectations in equation (23) at time t� 1 to give

�t = �
1
�
j=0
(1� �)j (�t�1�j � zt�1�j) + zt + �t; (24)
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where �t is the innovation; �t � Et�1(�t) and � depends on the signal-noise
ratio for the unobserved components, which is (1 � )2�2��=�

2
"�: The same

equation can be obtained from a model with measurement equation

�t = �yt + zt + "yt (25)

where the signal-noise ratio is (1 � )2�2��=�
2
"�: The MSEs will be the same

if both variances are divided by 1� �:
Writing (24) may be written as in as (15).

Appendix B Output from STAMP 8 for bivariate model

A full explanation of the output can be found in Koopman et al (2007).

Estimation done by Maximum Likelihood (exact score)
The databased used is US2007.in7
The selection sample is: 1986(1) - 2007(2)
The dependent vector Y contains variables:
INFLATION log_GDP
The model is: Y = Trend + Seasonal + Irregular + Cycle

Log-Likelihood is 786.57 (-2 LogL = -1573.14).
Prediction error variance/correlation matrix is

INFLATION log_GDP
INFLATION 0.00024 0.07683
log_GDP 0.00001 0.00002

Summary statistics
INFLATION log_GDP

T 86.000 86.000
d 4.0000 2.0000
std.error 0.015398 0.0046256
Normality 10.381 0.019840
H(28) 1.2380 0.82929
DW 1.6741 2.1718
r(1) 0.12075 -0.095475
q 7.0000 6.0000
r(q) 0.14403 -0.021789
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Q(q,q-d) 8.7686 6.4688
Rs^2 0.36595 0.11430

Variances of disturbances in Eq INFLATION:
Value (q-ratio)

Level 2.79672e-006 (0.01765)
Seasonal 1.70226e-006 (0.01074)
Cycle 4.26745e-006 (0.02693)
Irregular 0.000158439 ( 1.000)

Variances of disturbances in Eq log_GDP:
Value (q-ratio)

Slope 2.90808e-007 ( 0.5250)
Cycle 5.53937e-007 ( 1.000)
Irregular 0.000000 ( 0.0000)

Cycle variance/correlation matrix:

INFLATION log_GDP
INFLATION 4.267e-006 0.9984
log_GDP 8.260e-006 1.604e-005

Cycle other parameters:

Period 30.77785
Period in years 7.69446
Damping factor 0.95330
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