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1 Introduction

Since the first studies in the 1970’s (see Pagan, 1975), Structural Time Series (STS) mod-

els have become quite widespread in empirical macroeconomics. Researchers typically

resort to structural components for describing potential output (Clark, 1987), technologi-

cal growth (Hansen, 1997), permanent income (Hall and Mishkin, 1982), reservation wage

(Planas, Roeger and Rossi, 2007), and core inflation (Cogley and Sargent, 2005; Stock

and Watson, 2007). Ideally macroeconomics should guide the time series model choice.

Economic theories however rarely point to a unique specification, and discriminating

between different possibilities can be a difficult task, especially when classical inference

becomes non-standard. In the STS context, examples are testing for a deterministic ver-

sus a stochastic component (see Harvey, 2001) and inferring about a stationary against

a non-stationary slope. Through the marginal likelihood, the Bayesian framework offers

a conceptually simple answer to the model selection problem (see Kass and Raftery,

1995, or Koop, 2003), with the important advantage of involving exact finite sample

distributions instead of asymptotic approximations. Estimating the marginal likelihood

can however be non-trivial: the number of parameters to be integrated out is usually

relevant and the likelihood function is typically highly concentrated with respect to the

prior distribution (see Fruhwirth-Schnatter, 2004).

In this paper we simplify the evaluation of the marginal likelihood in Gaussian STS

models. For this we exploit the statistical properties of STS models and a theorem by

Dickey (1968) to obtain the likelihood function marginally to all variance parameters.

Our strategy applies under inverted gamma-2 prior distributions for the structural shocks

variances, an assumption that is prevailing in the time series literature (see Fruhwirth-

Schnatter, 1994; Chib and Greenberg, 1994). In general, we show that marginalizing

out the variance parameters greatly improves the accuracy of the Laplace method (see

Tierney and Kadane, 1986). Moreover, in some empirically relevant cases such as the

local level and the local linear trend, it yields the marginal likelihood by single or double

integration over a finite support, without any Monte Carlo Markov Chain (MCMC)

sampling.

In Section 2 we derive simple expressions for the likelihood function marginally to

the variance parameters. For most trend plus noise models, this gives an easy tool for

isolating the most likely trend equation. We also give an insight about the posterior

distribution of the unobserved components in the local level model. More complex
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models are considered in Section 3. For these we suggest to integrate out the conditional

mean parameters by applying the Laplace method after marginalizing with respect to

the variance parameters. We show in a simulation study that this strategy greatly

improves over the traditional Laplace marginal likelihood estimator, and that the results

are comparable to bridge sampling (Meng and Wong, 1996) although no importance

sampling is needed.

This methodology gives us the opportunity to weight models for the NAIRU in the

US and in the euro area (EA). The NAIRU is of particular interest because it is related

to the imperfect equilibrium of the labor market. The European Commission (EC) uses

it for evaluating the potential growth of Member States and for the cyclical adjustment

of budget balances, in application of the Stability and Growth Pact (see Denis, Grenouil-

leau, Mc Morrow and Roeger, 2006). Central Banks also scrutinize the NAIRU when

monitoring inflation, following Phillips curve theory (see for instance Stiglitz, 1997). A

debate is however still open about the dynamic properties of the NAIRU, especially for

the US (see for instance Staiger, Stock and Watson, 1997; Ball and Mankiw, 2002). In

Section 4 we rank twenty seven models for the US and for the EA NAIRU. We end up

with some empirical evidence that, we believe, can be of interest to policy makers and

analysts. Section 5 concludes.

2 The marginal likelihood of trend plus noise models

2.1 Background

The theoretical results in this paper use a theorem due to Dickey that we reproduce

below:

Theorem (Dickey, 1968, p.1623, Theorem 2) Let τ1,...,τK have independent standard

qk-dimensional multivariate t distributions with ν1,...,νK > 0 degrees of freedom (centers

0, matrices ν−1
k Iqk

). Then the random r-vector δ,

δ =
∑

Bkτk

has the representation,

δ = (
∑

u−1
k νkBkB

′
k)

1/2z
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where the uk are independently chi-squared distributed with νk degrees of freedom, and z

is an independent r-dimensional standard normal vector. Consequently, δ has the further

representation,

δ = (
∑

v−1
k (νk/ν)BkB

′
k)

1/2τ

where, with ν =
∑

νk, the vk = uk/
∑

uk, v1,...,vK are jointly Dirichlet distributed:

vk > 0,
∑

vk = 1, with density Γ(ν/2)
∏

k v
νk/2−1
k /Γ(νk/2) in v1,...,vK−1, and τ has an r-

dimensional standard multivariate t distribution with ν degrees of freedom. If the matrix
∑

BkB
′
k is non singular, the distribution of δ is non degenerate with the density function

f(δ) = Γ(
ν + r

2
)π−r/2/

∏

k

Γ(νk/2)×
∫

σ

∏

k

v
νk/2−1
k | ∑

v−1
k νkBkB

′
k) |−1/2 [1 + δ′(

∑
v−1

k νkBkB
′
k)
−1 δ]−

ν+r
2 dv1 · · · dvK−1

the range σ of the vk as above.

Proof: see Dickey (1968).

The above Theorem expresses the density of a linear combination of independently

distributed multivariate t vectors as an integral of dimension one less than the number

of summands. Assuming standardized t-distributions for the τk vectors, the density of δ

is obtained as a function of the degrees of freedom νk and of the products νkBkB
′
k. As

we turn to see, this result can be exploited to simplify the computation of the marginal

likelihood of Gaussian STS models with inverted gamma-2 (IG) priors on the variance

parameters. We start with simple trend plus noise processes.

2.2 First-order random walk trends

We first consider the case of a time series yt that is made up of a random walk pt plus a

noise ct like in:

yt = pt + ct

∆pt = apt apt|Vp ∼ N(0, Vp)

ct = act act|Vc ∼ N(0, Vc) (2.1)

where ∆ ≡ 1− L and L is the lag operator. Model (2.1) is also known as the local level

model (see Durbin and Koopman, 2001, Chap.2). Given their respective variances, the
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structural shocks act and apt are independent and Normally distributed. The variance

parameters Vc and Vp are assumed to be random variables with IG prior distribution:

V` ∼ IG(s`0, ν`0) ` = c, p. (2.2)

We shall denote xT
k ≡ (xk, · · · , xT )′ and in short x ≡ xT

1 . IG-priors for variance pa-

rameters have been intensively used in time series analysis (see for instance Chib, 1993;

Chib and Greenberg, 1994). This assumption implies that the corresponding shocks are

marginally distributed according to the Student density:

f(a`) = t(0, s`0, IT , ν`0) ` = c, p

where IT is the T × T identity matrix. The structural shocks can be expressed as

a` = (s`0/ν`0)
1/2τ`, where τ` is the random vector with standard t-distribution:

f(τ`) = t(0, 1, IT /ν`0, ν`0) ` = c, p (2.3)

Let us define D1 the T − 1× T first-order difference matrix, i.e. D1(i, i) = −1, D1(i, i +

1) = 1, and 0 elsewhere. The stationary transformation of the observed process y verifies:

D1y = (sp0/νp0)
1/2τp + (sc0/νc0)

1/2D1τc

= Bpτp + Bcτc

Since the vectors τp and τc are mutually independent, Dickey’s Theorem applies to the

local level model with Bp = (sp0/νp0)
1/2IT−1 and Bc = (sc0/νc0)

1/2D1. This proves our

first result:

Lemma 1 The marginal likelihood of the local level model (2.1) with IG-prior (2.2) on

the variance parameters is such that:

fD(y) = π−
T−1

2 Γ(
ν

2
)Γ(

νp0

2
)−1Γ(

νc0

2
)−1

×
∫ 1

0
uνp0/2−1(1− u)νc0/2−1 | sp0

u
Mp +

sc0

1− u
Mc |−1/2

× [1 + (D1y − µy)
′(

sp0

u
Mp +

sc0

1− u
Mc)

−1(D1y − µy)]
− ν

2 du (2.4)
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with ν = νp0 + νc0 + T − 1, Mp = IT−1, Mc = D1D
′
1, and µy = 0.

Lemma 1 reduces the problem of evaluating the marginal likelihood of the local level

model with T observations to a simple one-dimensional integration over the (0, 1) open

interval. Notice that for this model, the evaluation of the marginal likelihood does not

require any MCMC simulation. To facilitate computations, let Mc = PcΛcP
′
c be the

eigenvalues and eigenvectors factorization of Mc. Since Mp = IT−1 we can write:

(
sp0

u
Mp +

sc0

1− u
Mc)

−1 = Pc{sp0

u
IT−1 +

sc0

1− u
Λc}−1P ′

c (2.5)

where the central term is a diagonal matrix and the eigenvectors do not depend on u.

Since |Pc| = 1, expression (2.5) also simplifies the computation of the determinant in

(2.4).

In empirical macroeconomics, a constant slope is often added to the trend (see for

instance Stock and Watson, 1988):

∆pt = µp + apt (2.6)

Considering the standard assumption that µp, Vp are jointly NIG-distributed like in

µp|Vp ∼ N(µp0, Vpvµ0), (2.7)

the distribution of the trend growth marginally to the parameters µp and Vp becomes:

f(D1p) = t(µp0, sp0, (IT−1 + 1T−1vµ0)
−1, νp0)

where 1k is the k × k matrix of ones (see Bauwens et al., 1999, p.300, 304). In terms

of the standardized t-variables defined in (2.3), we have now τp = (sp0/νp0)
−1/2(IT−1 +

1T−1vµ0)
−1/2ap. The stationary transformation of the observed series verifies:

D1y = µp0 + (sp0/νp0)
1/2(IT−1 + 1T−1vµ0)

1/2τp + (sc0/νc0)
1/2D1τc

Hence Dickey’s Theorem applies with Bp = (sp0/νp0)
1/2(IT−1 + 1T−1vµ0)

1/2 and Bc =

(sc0/νc0)
1/2D1. We get:

Lemma 2 The marginal likelihood of the random walk with drift plus noise model with

prior distributions (2.2) and (2.7) is given by equation (2.4) with ν = νp0 + νc0 + T − 1,

Mp = IT−1 + 1T−1vµ0, Mc = D1D
′
1, and µy = µp0.
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In this case the simple diagonalization (2.5) cannot be used anymore for speeding up the

integration. One must instead resort to the simultaneous diagonalization Q′MpQ = IT−1

and Q′McQ = Λc, where Λc is a diagonal matrix (see Magnus and Neudecker, 1988,

p.22). This yields:

(
sp0

u
Mp +

sc0

1− u
Mc)

−1 = Q{sp0

u
IT−1 +

sc0

1− u
Λc}−1Q′

The matrix Q is obtained as Q = PpΛ
−1/2
p P ?, where Pp and Λp are the eigenvectors and

eigenvalues matrices of Mp, and P ? is the eigenvector matrix of (PpΛ
−1/2
p )′McPpΛ

−1/2
p .

2.3 Second-order random walk trends

For some macroeconomic variables like unemployment, the hypothesis of constant growth

is unrealistic. A possibility is to assume an integrated slope. The trend equation becomes:

∆pt = µt−1 + apt apt|Vp ∼ N(0, Vp)

∆µt = aµt aµt|Vµ ∼ N(0, Vµ) (2.8)

Model (2.8) is known as the local linear trend. If Vp = 0, it reduces to the I(2) plus noise

process that is implicitly considered in Hodrick-Prescott (HP) filtering (see Hodrick and

Prescott, 1997, and Harvey and Jaeger, 1993). Equation (2.8) introduces one more latent

variable, µt, with associated variance parameter Vµ for which we assume the IG-prior

distribution:

Vµ ∼ IG(sµ0, νµ0) (2.9)

Like previously, the IG-prior hypothesis implies that marginally to the variance parame-

ters, the shocks of the slope equation aµ re-scaled as τµ = (sµ0/νµ0)
−1/2aµ has a standard

t-density. Let D2 denote the T − 2× T second-order difference matrix. In terms of the

τ -variables, the measurement equation can be written as:

D2y = (sµ0/νµ0)
1/2τµ + (sp0/νp0)

1/2D1τp + (sc0/νc0)
1/2D2τc

Clearly, for such models D1 is a T − 2× T − 1 matrix. We have now:

Lemma 3 The marginal likelihood of the local linear trend (2.1)-(2.8) with IG-priors

(2.2) and (2.9) verifies:

fD(y) = π−
T−2

2 Γ(
ν

2
)Γ(

νµ0

2
)−1Γ(

νp0

2
)−1Γ(

νc0

2
)−1
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×
∫ 1

0

∫ 1

0
u

νµ0/2−1
1 u

νp0/2−1
2 (1− u1 − u2)

νc0/2−1

× | sµ0

u1

Mµ +
sp0

u2

Mp +
sc0

1− u1 − u2

Mc |−1/2

× [1 + D2y
′(

sµ0

u1

Mµ +
sp0

u2

Mp +
sc0

1− u1 − u2

Mc)
−1D2y]−

ν
2 du1du2

(2.10)

with ν = νµ0 + νp0 + νc0 + T − 2, Mµ = IT−2, Mp = D1D
′
1, and Mc = D2D

′
2. When

Vp = 0, the marginal likelihood of the I(2)-trend plus noise model reduces to:

fD(y) = π−
T−2

2 Γ(
ν

2
)Γ(

νµ0

2
)−1Γ(

νc0

2
)−1

×
∫ 1

0
u

νµ0/2−1
1 (1− u1)

νc0/2−1 | sµ0

u1

Mµ +
sc0

1− u1 − u2

Mc |−1/2

× [1 + D2y
′(

sµ0

u1

Mµ +
sc0

1− u1

Mc)
−1D2y]−

ν
2 du1

with ν = νµ0 + νc0 + T − 2, Mµ = IT−2, and Mc = D2D
′
2.

Because simultaneous diagonalizations do not extend to the three-matrix case, the double-

integration (2.10) is computationally more demanding than for first-order random walk

models. Lemma 3 can be easily extended to the m-th order trend plus noise models

discussed by Harvey and Trimbur (2003). We now examine models with conditional

mean dynamics.

2.4 STS models with conditional mean dynamics

When the structural processes contain some dynamics, Lemmas 1-3 give the likelihood

only conditionally on some parameters. For instance, the damped trend model assumes

a stationary zero-mean autoregressive slope such as (see Harvey, 1989, p.46):

µt = φµµt−1 + aµt
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Let Σµ denote the variance-covariance matrix of µ/V 1/2
µ , i.e. Σµ = V (µT−1

1 )/Vµ. Marginally

to Vµ, the distribution of µ given φµ is a Student-t density with precision matrix Σ−1
µ .

In this case:

Lemma 4 For the damped trend plus noise model with IG priors (2.2) and (2.9) on

variance parameters, the likelihood of y conditional on φµ is given by equation (2.10)

with Mp = IT−1, Mc = D1D
′
1, Mµ = Σµ, and replacing D2y with D1y.

More often however it is the short-term component that evolves dynamically. Indeed

many macroeconomic time series display recurrent short-term movements, usually related

to the business cycle, and for such series the STS model must complement the long-

term trend with a cyclical component. The regularity of the cyclical fluctuations can

be reproduced using an AR(2) process with complex roots parameterized in terms of

amplitude A and periodicity ϕ as in:

(1− 2A cos
2π

ϕ
L + A2L2)ct = act act|Vc ∼ N(0, Vc) (2.11)

This specification is closely related to the stochastic cycle discussed in Harvey (1989,

p.46). The amplitude-periodicity parameterization is appealing as it suits well the prior

information available about the business cycle (see Planas, Rossi and Fiorentini, 2008).

Notice that our results do not depend on the particular choice of the prior distribution for

the conditional mean parameters. For the prior distribution of Vc, we keep Assumption

(2.2). Let Σc denote the variance-covariance matrix of c/V 1/2
c , i.e. Σc = V (c)/Vc. Its

inverse gives the precision matrix of the t distribution of c given A and ϕ. If the AR(2)-

cycle complements a driftless random walk trend, then setting Mc = D1ΣcD
′
1 in equation

(2.4), Lemma 1, yields the likelihood of y given A and ϕ. The same correction applies

to Lemma 2 for random walks with drift. If instead the trend is described as a second-

order random walk, then it is enough to set Mc = D2ΣcD
′
2 in equation (2.10), Lemma

3. As can be seen, the extension of Lemmas 1-4 to models with short-term dynamics is

straightforward.

For obtaining the marginal likelihood, it remains to integrate out the conditional mean

parameters. Before turning to this problem, we briefly discuss another consequence of

the IG-priors on variance parameters in STS models.
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2.5 The posterior distribution of the latent components

By the Bayes theorem, the posterior distribution of the latent component c verifies:

f(c|y) = f(y|c)f(c)/f(y)

= f(p|p = y − c)f(c)/f(y)

Hence the posterior distribution of the unobservables is given by the product of the

prior distributions of c and p evaluated along the direction p + c = y with the marginal

likelihood as re-scaling factor. Let us focus for instance on the local level model. Since

marginally to the variance parameters, the unobserved variables have a t-prior distribu-

tion, we have:

Corollary 1 The posterior distribution of the increments D1c in the local level model

(2.1)-(2.2) is the poly-t 2-0 density:

f(D1c|y) ∝ t(D1y, sp0, IT−1, νp0)× t(0, sc0, {D1D
′
1}−1, νc0)

In the expression above, the first t-kernel corresponds to the prior distribution of D1p

evaluated at D1p = D1y − D1c while the second term is the prior distribution of D1c.

Given Corollary 1, the complete posterior distribution of the latent variables c and p can

be easily retrieved. Since f(c|y) = f(c1|D1c, y)× f(D1c|y), it can be seen that given the

increments D1c, the data do not bring further information about the starting point c1,

i.e. f(c1|D1c, y) = f(c1|D1c). Given the t marginal prior for c, the factor f(c1|D1c) is

a Student density. Multiplying it by the distribution in Corollary 1 yields the kernel of

the posterior distribution of the unobserved components. A constant drift in the trend

can be handled similarly.

This makes possible the use of Richard and Tompa’s (1980) results to draw posterior

samples of the unobservables marginally to the variance parameters in two steps: first

the increments, for instance following Appendix B.4.6 in Bauwens et al. (1999, p.321)

for sampling from poly-t 2-0 densities, and then the starting point given the increments.

Program simplicity would be the main appeal: neither diffuse Kalman Filter initialization

(see deJong, 1991) nor smoothing algorithm is needed. The cost however would be

a substantial computing time delay due to the resorting to matrix computations. If

the sampling of the state variable is inserted into a MCMC scheme, for instance when
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Corollary 1 holds conditionally on any other random quantity, such a delay can become

prohibitive. For these cases, a recursive scheme such as the Carter and Kohn (1994)

state-sampler remains preferable. At least so long as a procedure for factorizing poly-t

2-0 densities is not available.

Corollary 1 does not extend to second-order random walk trends. In this case the

posterior distribution of the components increments is an unknown form; it is a poly-t

2-0 density only when conditioning on one unobservable, for instance the slope. This is

one reason why we prefer to use Dickey’s results instead of Richard and Tompa (1980)’s

work about poly-t densities.

3 Dickey-Laplace approximation to the marginal like-

lihood

Let Λ denote the set of conditional mean parameters, for instance Λ = (A,ϕ) or

(A,ϕ, φµ). For integrating Λ out we bring into play the Laplace method (see Tierney

and Kadane, 1986). We describe below the details of the Dickey-Laplace combination.

3.1 Dickey-Laplace

The Laplace method has been used in the STS context for instance by Harvey et al.

(2007). It solves the marginal likelihood integral in the neighborhood of the posterior

mode using a normal estimates of the posterior density: the more precise the normal

approximation, the better the marginal likelihood evaluation. The strategy we put for-

ward here aims at improving the normal approximation by integrating out the variance

parameters using Section 2 results. Besides the benefit arising from the reduced num-

ber of parameters, an improvement is expected because variances are typically the main

responsible for the posteriors’ departure from normality (see for instance Figure 2 in

Harvey et al., 2007). Of course, given the asymptotics at work, the smaller the sample

size the larger should be the gain in accuracy.

A requirement is that posterior samples of model parameters are available. They

can be obtained following the MCMC scheme proposed for instance in Planas et al.

(2008). Let Λ̃ denote the posterior mode of the parameters Λ and Σ(Λ̃) represent minus

the inverted Hessian matrix of the logarithm of the non-normalized marginal posterior
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fD(y|Λ)f(Λ) evaluated at Λ̃:

Σ(Λ̃) = −[
∂2 log{fD(y|Λ)f(Λ)}

∂Λ′∂Λ
|Λ=Λ̃]−1

The second-order expansion of the non-normalized log-posterior around its mode is such

that:

log {fD(y|Λ)f(Λ)} ' log {fD(y|Λ̃)f(Λ̃)} − 1

2
(Λ− Λ̃)Σ(Λ̃)−1(Λ− Λ̃)′

The last term above takes the form of the kernel of a normal distribution with mean Λ̃

and variance-covariance matrix Σ(Λ̃). Exponentiating and integrating out Λ yields:

fDL(y) = (2π)d/2|Σ(Λ̃)|1/2fD(y|Λ̃)f(Λ̃) (3.1)

where d is the dimension of Λ. We shall refer to equation (3.1) as the Dickey-Laplace

marginal likelihood estimates. In (3.1), the term f(Λ̃) assigns a prior weight to the

posterior mode while fD(y|Λ̃) is the model likelihood marginally to the IG-variance

parameters given in Lemmas 1-4.

3.2 Comparison with Laplace and bridge sampling

We evaluate the Laplace (LP) and Dickey-Laplace (D-LP) marginal likelihood estimators

in a simulation exercise using the Meng-Wong (MW, 1996) bridge sampler as benchmark.

During the last two decades, econometricians have most often resorted to importance

sampling for computing marginal likelihoods (see Kloek and Van Dijck, 1978; Geweke,

1989). MW’s technique is an extension that re-weights both the importance function and

the posterior density through a bridge function. We adopt this method as benchmark as

a consensus is emerging about its potential superiority over the other estimators available

(see Meng and Schilling, 1996; diCiccio et al., 1997; and Fruhwirth-Schnatter, 2004).

Let S and Sq denote the support of the parameter posterior distribution and of an im-

portance function, say q(θ), where θ represents the model parameters including variances.

Let also h(θ) represent a function defined over S
⋂

Sq. The MW marginal likelihood es-
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timate is obtained from (see also Gelman and Wong, 1998):

f(y) =

∫
Sq

h(θ)
q(θ)

dq(θ)
∫
S

h(θ)
f(y|θ)f(θ)

df(θ|y)

Equivalent formulations are sometimes given in terms of a function γ(θ) such that

γ(θ)q(θ)f(y|θ)f(θ) = h(θ) (see Fruhwirth-Schnatter, 2004). The bridge function h(θ)

reduces the estimation error when located at an intermediate position between the im-

portance function and the parameter posterior distribution. MW propose as optimal

choice a recursive procedure based on:

h(θ) ∝ q(θ)f(θ|y)

nqq(θ) + nyf(θ|y)

where the constants nq and ny refer to the number of draws from the importance function

and from the posterior density, respectively. The recursions are introduced through the

term f(θ|y) that involves a preliminary marginal likelihood estimate. We initialize the

algorithm using the standard Laplace approximation and then iterate for ten rounds; no

further sampling is needed for iterating. The MW estimator can also be built around

likelihood functions marginal to the variance coefficients, i.e. using fD(y|Λ) in place of

f(y|θ). Because Dickey’s integral would need to be evaluated for every sample out of

the importance function, we discard this possibility for its computational cost.

We simulate three series of respective length T = 25, 100, 250 from a random walk

with drift plus AR(2) cycle like in (2.6) and (2.11). The coefficients are set to µp = .1,

A = .8, ϕ = 10, Vp = .01 and Vc = .05. The marginal likelihoods of the simulated

series are estimated using the LP, D-LP and MW methods for eight models obtained as

combinations of four trend models, i.e. I(2), integrated random walk (irw), random walk

plus drift (rw), and damped trend (dt), with two models for the cycle, i.e. the white noise

(wn) and the autoregressive model (ar2) in (2.11). The prior distributions are omitted for

the sake of space. For each model, we record two thousand samples from the parameters

posterior distribution out of two hundred thousand simulations using the Gibbs sampling

scheme detailed in Planas et al. (2008), after a burn-in of ten thousand iterations. The

sparse recording serves at lowering chain autocorrelations. This MCMC output is then

used to compute the marginal likelihoods, and the whole computations are repeated
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twenty times in order to get numerical averages and standard deviations. Lemmas 1-4

integrals are calculated over grids of one thousand points in dimension one, and over

squares of four hundred points in each side in dimension two; their standard deviations

are neglected as of irrelevant size. Notice that when the STS model includes some

autoregressive dynamics, the normalizing constants of the full conditional distributions

are not entirely known so Chib’s (1995) marginal likelihood estimator does not apply.

Table 1 displays the results. The average marginal likelihoods are reported with a

minus sign and the numerical standard deviations lie between brackets. The models are

ranked according to the number of parameters, from the I(2) plus noise model with 2

parameters to the damped trend plus AR(2) cycle with 6 parameters. For models with

only variance coefficients, MW and Lemmas 1-3 based estimates are in close agreement:

the differences are of the third digit order, whatever the sample size. When dynamic

parameters are introduced, the deviations get to the first digit order. The error in the

LP estimates can instead reach a unit, especially in short sample. As can be seen,

marginalizing out the variance parameters always improves the approximation. For

the models and sample sizes considered, the improvement is such as to make the D-LP

estimate almost as accurate as the MW one. This result is interesting because no further

sampling from an importance function is needed with the D-LP approach.

All marginal likelihood estimates point to the random walk with drift plus AR(2)

cycle as the most adequate model. Mispecifying the short-term dynamics implies quite

a large drop in the marginal likelihood. It could be argued that the Laplace estimator

remains useful for model discrimination in spite of the approximation errors, but such a

conclusion depends on the discrepancies between the alternatives considered. We shall

see in the next Section that discriminating between models with similar properties can

become difficult with the Laplace estimator. Moreover, when the model misses some

important pattern such as a cycle, the mispecification can yield posterior distributions

with bi-modal characteristics. In such cases the LP marginal likelihood is unreliable. For

this experiment we mitigated this problem by carefully tuning the prior distributions and,

in a few cases, by trimming the output.
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Table 1 Minus average log marginal likelihood

Trend Cycle T = 25
MW LP D-LP

i2 wn 23.772 [ .015 ] 23.143 [ .092 ] 23.765 [ ?? ]
irw wn 23.200 [ .022 ] 20.925 [ .101 ] 23.202 [ ?? ]
rw wn 21.378 [ .021 ] 19.510 [ .169 ] 21.378 [ ?? ]
dt wn 21.368 [ .023 ] 19.484 [ .123 ] 21.504 [ .088 ]
i2 ar2 11.012 [ .025 ] 9.693 [ .106 ] 10.286 [ .084 ]
irw ar2 11.230 [ .027 ] 9.113 [ .138 ] 10.532 [ .084 ]
rw ar2 9.075 [ .026 ] 7.406 [ .179 ] 8.383 [ .084 ]
dt ar2 9.700 [ .028 ] 7.915 [ .115 ] 9.170 [ .090 ]

T = 100
MW LP D-LP

i2 wn 77.607 [ .011 ] 77.512 [ .079 ] 77.606 [ ?? ]
irw wn 68.518 [ .014 ] 68.009 [ .298 ] 68.518 [ ?? ]
rw wn 64.946 [ .011 ] 64.840 [ .058 ] 64.946 [ ?? ]
dt wn 66.744 [ .080 ] 64.191 [ .311 ] 66.930 [ .140 ]
i2 ar2 21.893 [ .016 ] 21.428 [ .116 ] 21.707 [ .080 ]
irw ar2 21.702 [ .021 ] 20.872 [ .090 ] 21.551 [ .090 ]
rw ar2 15.627 [ .021 ] 14.928 [ .148 ] 15.492 [ .076 ]
dt ar2 24.612 [ .021 ] 23.270 [ .176 ] 24.230 [ .132 ]

T = 250
MW LP D-LP

i2 wn 141.749 [ .009 ] 141.763 [ .082 ] 141.746 [ ?? ]
irw wn 124.670 [ .013 ] 124.444 [ .077 ] 124.697 [ ?? ]
rw wn 114.732 [ .011 ] 114.751 [ .109 ] 114.730 [ ?? ]
dt wn 114.727 [ .018 ] 114.348 [ .119 ] 114.717 [ .034 ]
i2 ar2 54.653 [ .015 ] 54.345 [ .131 ] 54.468 [ .080 ]
irw ar2 54.817 [ .018 ] 54.192 [ .158 ] 54.720 [ .125 ]
rw ar2 37.354 [ .016 ] 36.860 [ .100 ] 37.251 [ .084 ]
dt ar2 57.289 [ .019 ] 56.439 [ .174 ] 57.065 [ .091 ]

Notes: MW Meng-Wong; LP Laplace; D-LP Dickey-Laplace. Models: rw random walk; irw second-

order random walk; i2 I(2); dt damped trend; wn white noise; ar2 AR(2). Standard deviations between

brackets, ?? means that the Laplace approximation is not needed.
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4 The US and the euro area NAIRU

We apply this methodology to the analysis of the NAIRU in the EA and in the US.

The NAIRU is of particular interest as it is related to the imperfect equilibrium of the

labor market. Characterizing the NAIRU is however difficult, mainly because of its

unobserved and changing nature. Staiger, Stock and Watson (1997) underlined the lack

of precision of estimates obtained with standard specifications. Also, although its time-

varying behavior is now well-accepted, not much is known about its actual variability.

For instance, the widely-used HP filter requires a prior hypothesis about the signal to

noise ratio, but this hypothesis is rarely confronted to the data. Here we take advantage

of the Bayesian framework to address the following questions: which STS models best

describe the EA and the US NAIRU? How smooth are these NAIRU? And how precise

can be their univariate STS estimates?

The EA unemployment series has been collected from AMECO, the national accounts

database of the EC Directorate General Economic and Financial Affairs, available at

europa.eu.int/comm/economy finance. The US data have been downloaded from the

Bureau of Labor Statistics web-site www.bls.gov. Both series are annual averages over

1960-2007, the last figure being preliminary. Following standard practice in the NAIRU

literature, we describe these two series as made up of a trend plus a cycle. The cyclical

dynamics are represented with an AR(2) process parameterized as in (2.11), with ampli-

tude and periodicity parameters assumed to be Beta-distributed. The prior distribution

of the former is tuned so as to yield an average amplitude of 0.8 for the EA and of 0.7

for the US, in agreement with previous empirical business cycle studies (see for instance

Kuttner, 1994, Gerlach and Smets, 1999). The standard deviations are set to one-tenth

of the mean so as to not impose too much precision. Namely, we use a Beta(19.2, 4.8) for

the EA cycle amplitude and a Beta(29.3, 12.6) for the US one. The periodicity parameter

is also assumed to be Beta-distributed, with support translated to [2, T ] where T = 48

is the sample length. Still according to business cycle studies, we tune the periodicity

prior distribution so as to get cycles of mean length 9 years for the EA and 8 years for

the US, with standard deviations of 2 and 1.5 years, respectively. Formally, we assume

(ϕ − 2)/(48 − 2) ∼ Beta(10.2, 57) for the EA and (ϕ − 2)/(48 − 2) ∼ Beta(13.8, 91.9)

for the US. Finally, the IG-distribution for the short-term shocks variance has been set

so as to add a mean deviation of 0.5 for euro and 0.7 for US, with the distributions

IG(1.9, 9.6) and IG(2.6, 7.1) respectively.
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For describing the NAIRU we consider the four specifications discussed in Section

2, namely the driftless random walk, the I(2), the second-order random walk and the

damped trend. Three different prior distributions are used for the variance parameters

Vp and Vµ: IG(.08,6), IG(.28,6) and IG(.80,6). The expected values of the variances

implied by these priors are 0.02, 0.07, and 0.20, respectively; we shall refer to these

priors as low (L), medium (M) and high (H). As can be seen in Figure 1, they cover

quite a wide range of patterns. For its empirical relevance we also consider the damped

trend model without shocks on the trend level, i.e. Vp = 0. Finally, the prior for the slope

autoregressive parameter φµ has been set to the Normal distribution N(.85, 1/30)I(0,1)

truncated to the stationary positive region. Altogether, the combination of the trend

model specifications with the different variance priors yields twenty seven models for the

NAIRU.

Table 2 reports the posterior probabilities of each model and ranks the models accord-

ingly. These posterior probabilities are defined as p(Mi|y) = f(y|Mi)p(Mi)/
∑

k f(y|Mk)

×p(Mk), where a discrete uniform prior on the models is assumed. The densities f(y|Mk)

have been evaluated using the Dickey-Laplace approximation to the marginal likelihood

discussed in Section 3. For both EA and US series, the first five models receive a total

posterior weight greater than 50%. Of these best fitting models, all but one are inte-

grated of order 1: the data strongly support the I(1) hypothesis. With all I(2) models

ranked last, the evidence is particularly striking for the US. This result can be related

to the failure of I(2) models to produce reasonable long-term forecasts of unemployment

rate series. The data also express an overwhelming preference for the damped trend

model, i.e. the model that accounts for a time-varying slope with moderate persistence.

Finally, the EA NAIRU seems to have received larger shocks on its slope than on its

level, perhaps explaining why for the EA some I(2) models receive a relevant posterior

weight. On the contrary, the shocks on US structural unemployment seem to have hit

mostly its level, an observation that pleads against the use of the HP filter for estimating

the US NAIRU.
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Table 2 Posterior model probabilities

EA US
Rank Trend Vp-Vµ p(Mi|y) Trend Vp-Vµ p(Mi|y)

1 dt 0-M .126 rw H-0 .141
2 dt 0-L .114 dt H-L .113
3 dt L-L .108 dt M-L .098
4 dt L-M .102 dt L-L .085
5 i2 0-L .089 dt 0-L .081
6 irw L-L .081 rw M-0 .065
7 dt M-L .058 dt 0-M .064
8 dt M-M .052 dt M-M .062
9 irw M-L .047 dt H-M .061
10 dt 0-H .043 dt L-M .055
11 i2 0-M .034 dt L-H .027
12 irw L-M .033 dt M-H .024
13 dt L-H .029 dt 0-H .024
14 irw M-M .017 rw L-0 .019
15 dt M-H .014 dt H-H .019
16 dt H-L .014 irw H-L .012
17 irw H-L .010 irw M-L .011
18 dt H-M .010 irw L-L .011
19 i2 0-H .006 i2 0-L .010
20 irw L-H .005 irw M-M .004
21 irw H-M .003 irw H-M .004
22 dt H-H .002 irw L-M .003
23 irw M-H .002 i2 0-M .003
24 irw H-H .000 irw M-H .001
25 rw H-0 .000 irw L-H .001
26 rw M-0 .000 irw H-H .001
27 rw L-0 .000 i2 0-H .001

Notes: rw random walk; irw second-order random walk; i2 I(2); dt damped trend. Priors for variance

parameters: for ` = p, µ, L V` ∼ IG(.08, 6); M V` ∼ IG(.28, 6); H V` ∼ IG(.80, 6); 0 V` = 0.

18



Given Section 3 results, the robustness of the model classification to the marginal

likelihood estimator is worth verifying. For the best five models, Table 3 shows the

posterior weights and the ranking obtained with the MW and LP estimators. The D-LP

results are reported for comparison. As can be seen, D-LP and MW are in very close

agreement: the discrepancies between the posterior weights are always less than 10% of

the estimates and the classification differs in only one occasion, two successive models

being permuted. The LP outcome is instead quite different: the posterior weights show

variations that can reach 100% of the estimates and the ranking is upset. Hence for

these models we consider the LP marginal likelihood as unreliable. Probably because 48

observations are not enough to make the posterior distribution of the variance parameters

close to the Normal density.

Table 3 Classification robustness

EA

Trend Vp-Vµ D-LP MW LP
Rank P (Mi|y) Rank P (Mi|y) Rank P (Mi|y)

dt 0-M 1 .126 1 .132 5 .088
dt 0-L 2 .114 2 .107 3 .112
dt L-L 3 .108 4 .097 1 .167
dt L-M 4 .102 3 .105 2 .121
i2 0-L 5 .089 5 .088 6 .063

US

Trend Vp-Vµ D-LP MW LP
Rank P (Mi|y) Rank P (Mi|y) Rank P (Mi|y)

rw H-0 1 .141 1 .138 6 .062
dt H-L 2 .113 2 .106 3 .110
dt M-L 3 .098 3 .101 4 .115
dt L-L 4 .085 4 .088 1 .200
dt 0-L 5 .081 5 .076 7 .061

Notes: D-LP Dickey-Laplace; LP Laplace; MW Meng-Wong. Models: rw random walk; i2 I(2); dt

damped trend. Priors for variance parameters: for ` = p, µ, L V` ∼ IG(.08, 6); M V` ∼ IG(.28, 6); H

V` ∼ IG(.80, 6); 0 V` = 0.
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The best fitting model is, for the EA, the damped trend with no level shocks and for

the US, the random walk without drift. This last has been frequently used in empirical

studies of the US NAIRU, for instance by Staiger, Stock and Watson (1997) and by

Gordon (1998). Figure 2 shows the corresponding estimates. As can be seen, the EA

NAIRU is continuously decreasing since the mid-1990’s peak. It is tempting to see here

the effect of new regulations for increasing the flexibility of EA labor markets, following

the European Employment Strategy (1997) within the Lisbon agenda. The US NAIRU

seems to be almost constant in the last ten years, after fifteen years of steady decrease

between 1982 and 1997. As expected given the relative labor markets flexibility, it

embodies more short-term dynamics than the EA one.

In order to analyze the NAIRU smoothness, we compare the ratios between the vari-

ance of the cycle and the variance of the trend second difference, i.e. V (ct)/V (∆2pt).

This quantity is a slight generalization of the inverse signal to noise ratio typically consid-

ered in HP filtering. More elaborate measures of smoothness have been proposed in the

literature (see for instance Froeba and Koyak, 1994), but the acquaintance of economists

with the HP filter gives such variance ratios the advantage of immediacy. Figure 3 shows

the posterior distribution of the generalized inverse signal to noise ratio; the continuous

line refers to the best model and the dashed one is obtained marginally to the model

choice. As can be seen, the US NAIRU participates more to the unemployment fluctu-

ations than the EA one, and this evidence is strong enough to hold marginally to the

model choice: the variance ratio mode is about 2 for the US against 8.0 for the EA with

the best model, 5.0 after model marginalizing. These results are in broad agreement

with the findings by Ravn and Uhlig (2002) about annual data. Notice that the pos-

terior distribution of the variance ratio is quite diffuse for the EA, perhaps reflecting a

substantial time-varying behavior.

Finally, Figure 4 shows the posterior distribution of the 2007 NAIRU for the EA

and for the US. Again, the continuous line refers to the best model and the dashed one

corresponds to the model average. The current NAIRU is measured about 7.5 for the

EA and about 5-5.1 for the US. This result is obtained with both the best model and

marginally to the model specification. A 95% confidence band around the modes covers

about 2.6 points, with the interval (6.2,8.9) for the EA and (3.7,6.3) for the US. This is

comparable with the uncertainty that Staiger et al. (1997) reported for the US NAIRU

in 1991’s first quarter using also inflation data. There is a close matching between the

posterior distribution obtained with the best model and the one obtained marginally to
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the model specification, mainly because the models that receive the highest posterior

weights yield similar NAIRU estimates. Hence, as long as a reasonable model is used

like for instance Table 2’s first five, researchers should not worry too much about model

uncertainty.

5 Conclusion

We obtain simple expressions for evaluating the marginal likelihood of Gaussian STS

models by taking benefit of the model properties and of a theorem by Dickey (1968).

For trend plus noise models, they only require an integration over a finite support. For

trend plus cycle models, we show that combining this approach with the Laplace method

yields a substantial gain in accuracy with respect to the traditional Laplace marginal

likelihood estimator. Overall the precision is comparable to that of the MW estimator,

without requiring any importance sampling.

We apply this methodology to the analysis of the EA and the US NAIRU. As best

models, we found the damped trend for the EA and the driftless random walk for the

US; these would be our recommendation to practitioners. The NAIRU smoothness seems

compatible with the inverse signal to noise ratio suggested by Ravhn and Uhlig (2002)

for HP-detrending annual data. Model uncertainty does not seem to add much variation

to the NAIRU estimates, at least so long as a reasonable model is used. Although this

specification has been somewhat overlooked in empirical macroeconomics, the damped

trend dominates the other models for both EA and US unemployment series. We could

see that conducting this analysis with the traditional version of the Laplace marginal

likelihood gives misleading results, perhaps because of the limited sample size. The

methodology we propose can be extended to STS models including a third unobserved

variable such as the irregular component, and can also be adapted to bivariate system

such as the Kuttner (1994) Phillips-curve augmented model for output gap.
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Figure 1

Prior distributions for Vp and Vµ
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Figure 3

Variance ratio V (c)/V (∆2p) posterior distribution
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Figure 4

Posterior distribution of 2007 NAIRU
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