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Abstract

The speed of in�ation adjustment to aggregate technology shocks is substantially larger than to

monetary policy shocks. Prices adjust very quickly to technology shocks, while they only respond

sluggishly to monetary policy shocks. This evidence is hard to reconcile with existing models

of stickiness in prices. I show that the di¤erence in the speed of price adjustment to the two

types of shocks arises naturally in a model where price setting �rms optimally decide what to pay

attention to, subject to a constraint on information �ows. In my model, �rms pay more attention

to technology shocks than to monetary policy shocks when the former a¤ects pro�ts more than the

latter. Furthermore, strategic complementarities in price setting generate complementarities in the

optimal allocation of attention. Therefore, each �rm has an incentive to acquire more information

on the variables that the other �rms are, on average, more informed about. These complementarities

induce a powerful ampli�cation mechanism of the di¤erence in the speed with which prices respond

to technology shocks and to monetary policy shocks.

1 Introduction

I present a model that is consistent with the empirical evidence that prices respond much

more quickly to technology shocks than to monetary policy shocks. I show that this response

pattern arises naturally in a framework based on imperfect information with an endogenous

choice of information structure similar to Sims (2003). In my model, the only obstacle that

1� I am particularly grateful to Martin Eichenbaum, Giorgio Primiceri and Mirko Wiederholt for continous

comments, support and suggestions. I have also bene�ted from very useful discussions with Larry Christiano,

Lars Hansen, and Eva Nagypal and seminar partecipants at Northwestern Univeristy. Any errors are my

own. E-mail address: l-paciello@northwestern.edu. Tel.: +1-847-287-6520.
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�rms have when changing their prices is that they might not be well informed about the

realizations of the shocks of the economy. The ability of a �rm to adjust its price quickly

to a particular shock depends on how well informed the �rm is about the realization of that

shock. The more attention a �rm chooses to pay to a given shock, the more informed the

�rm is about the realizations of that shock. Similar to Sims (2003), I assume there is a limit

on the total attention the �rm can pay to the di¤erent shocks impacting on the economy.

Therefore, if the �rm allocates more attention to technology shocks, it must allocate less

attention to monetary policy shocks. In my model, the �rm will optimally choose to allocate

more attention to those particular shocks that most reduce pro�ts when prices are not

adjusted properly. Since technology shocks a¤ect pro�ts more than monetary policy shocks,

the �rm will allocate more attention to technology shocks than to monetary policy shocks.

Other things being equal, this e¤ect helps to rationalize the observed di¤erential speed

with which prices respond to technology shocks and to monetary policy shocks. However,

this e¤ect alone is not large enough to quantitatively account for the di¤erential response.

Fortunately, complementarities in price setting generate complementarities in �rms�decision

about which information to acquire1. These complementarities induce �rms to acquire and

process more information on the same variables that other �rms are more informed about.

The reallocation of attention in favor of technology shocks, and away from monetary pol-

icy shocks, generates a large ampli�cation in the di¤erence with which prices respond to

technology shocks and to monetary policy shocks.

I choose the parameters governing �rms� information processing capabilities such that

the loss each �rm faces from not being perfectly informed is a very small fraction of prof-

its. The degree of strategic complementarity in price setting in my model is similar to the

degree of strategic complementarity in price setting generally adopted in the large literature

investigating the implications of price stickiness for the dynamics of macroeconomic vari-

ables2. As it turns out, under my assumptions, �rms respond to technology shocks roughly

as they would under complete information. In contrast, �rms respond much more slowly to

monetary policy shocks than they would under complete information.

There is a large empirical literature investigating how macroeconomic variables respond

to monetary policy shocks. In this literature, there is substantial consensus that in�ation

1Hellwig and Veldkamp (2007) theoretically study the role of strategic complementarities in information

choices.
2See Woodford (2003) for a review.
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responds slowly to monetary policy shocks3. A more recent literature investigates the e¤ects

of technology shocks using structural vector autoregression (SVAR) models. Papers in this

literature consistently �nd that prices respond in general very quickly to technology shocks4.

Paciello (2007) studies the di¤erential speed in the adjustment of prices to technology and

monetary policy shocks in the context of SVAR models using a variety of alternative iden-

ti�cation schemes, sub-samples, and data from di¤erent countries. I show that the basic

�ndings of the SVAR literature with respect to the di¤erence in the speed with which prices

respond to technology shocks and monetary policy shocks are very robust. The same pat-

terns that hold for the United States also hold for Canada, France, Japan, and the United

Kingdom. I argue that the SVAR results for the United States re�ect a negative, and statis-

tically signi�cant, correlation between quarterly aggregate total factor productivity growth

and di¤erent measures of aggregate in�ation.

The di¤erent speed with which prices respond to technology shocks and to monetary

policy shocks is not easy to reconcile with existing models of price stickiness. For instance,

Smets and Wouters (2003, 2007) estimate a large-scale dynamic stochastic general equilib-

rium model with many nominal and real frictions, using U.S. and European data. In their

paper, sticky prices are modeled using Calvo style time-dependent contracts. Smets and

Wouters (2003, 2007) �nd that the response of prices to technology shocks is very similar

to the response of prices to monetary policy shocks, in terms of speed of adjustment and

persistence. In a related literature, other authors model nominal frictions as arising from

the presence of menu costs5. These costs generate state-dependent pricing. In these mod-

els, �rms can adjust prices any time they wish by paying a menu cost. To the best of my

knowledge, the impact of menu costs has not been analyzed in an environment where there

are both aggregate technology shocks and monetary policy shocks. In general, the frequency

of response of prices to technology shocks will be large if these shocks are large. Once �rms

have paid the menu cost, they can adjust prices to all realized shocks. Therefore, if �rms ad-

just prices very frequently to aggregate technology shocks, they will most likely adjust prices

frequently to monetary policy shocks. Menu costs models would then have a di¢ cult time

in accounting for the di¤erent speed with which prices respond to technology and monetary

policy shocks.

3See for example Christiano, Eichenbaum and Evans (1999).
4See for example Shapiro and Watson (1998) or Altig, Christiano, Eichenbaum and Linde (2005).
5See for example Gertler and Leahy (2006), Golosov and Lucas (2006), Midrigan (2006), Nakamura and

Steinsson (2007).
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The model I propose is related to Woodford (2002). Woodford (2002) uses an incomplete

information model to explain the sluggish response of prices to nominal shocks. He argues

that such a framework could potentially deliver a di¤erential response of prices to aggregate

supply shocks relative to nominal demand shocks, if �rms were relatively more informed

about the former than they were about the latter. However, he leaves open the question

of why �rms should choose to be relatively more informed about some shocks. Sims (2003)

and Mackóviak and Wiederholt (2007) study the endogenous optimal choice of the infor-

mation structure. In particular, Mackóviak and Wiederholt (2007) focus on the di¤erential

response of prices to aggregate nominal shocks versus idiosyncratic shocks in a framework

with limited information-processing capabilities, and with an exogenous process for nominal

spending. Firms use signals to set prices, but in their paper the signals are endogenous.

Firms decide to be relatively more informed about idiosyncratic shocks because the latter

have a larger impact on the pro�t-maximizing price. Furthermore, when �rms pay limited

attention to aggregate conditions, there is a lower incentive for other �rms to pay attention

to aggregate conditions. The model I propose di¤ers from Máckoviak and Wiederholt (2007)

in at least two dimensions. The �rst di¤erence is that I introduce two types of aggregate

shocks. This assumption has important consequences, as it allows me to not only provide

an explanation for the di¤erential speed of adjustment of prices to such shocks, but it gen-

erates a large di¤erence in the allocation of attention by price setters across shocks through

complementarities in price setting. The second di¤erence is that I embed the attention allo-

cation problem in a more standard general equilibrium framework that captures the roles of

di¤erent actors in in�uencing the di¤erential responses of prices, with particular emphasis

on the central bank.

The rest of the paper is organized as follows: in section 2, I introduce the main empirical

facts that motivate the paper. In section 3, I describe the model. In section 4, I derive the

solution of the attention allocation problem in the special case when the model is calibrated

to be static. In section 5, I outline the numerical procedure to solve the model, choose

the parameters, and comment on the results. Section 6 contains an analysis of the roles of

complementarities, monetary policy, and information structure in the di¤erential response

of prices. Section 7 concludes.
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2 Facts

Paciello (2007) investigates in details the responses of aggregate prices to monetary policy

and technology shocks using SVAR models. Here, I report the results from the benchmark

estimation procedure for the U.S. economy. I use a SVAR methodology to document the

responses of aggregate prices to total factor productivity (TFP) shocks and monetary policy

shocks. To this aim, I consider the following reduced form VAR:

Yt = �(L)Yt�1 + ut;

where Y contains all the variables of interest, and �(L) is a lag operator of order p. The

covariance matrix of the vector of reduced-form residuals, ut; is �: The variables I include

in the benchmark speci�cation are the growth rate in labor productivity, the Federal Re-

serve Funds rate (FFR), the GDP de�ator in�ation, commodity in�ation, the logarithm of

per-capita hours worked, the logarithms of the ratios of consumption and investment to out-

put, the logarithm of money velocity and the logarithm of labor productivity adjusted real

hourly wages6. In this speci�cation, the Federal Reserve Fund rate is the monetary policy

instrument, although results hold for other choices of instruments too. The sample period is

1959:2 - 2007:27 and, based on the Akaike criterion, I choose the number of lags to be four,

even if results are robust to di¤erent choices. Identi�cation in the structural VAR litera-

ture amounts to providing enough restrictions to recover the decomposition of the estimated

matrix of variance covariance of the reduced form VAR:

� = A0A
0
0:

From this relationship and imposed restrictions, there is a unique mapping from ut to the

vector of orthogonal structural shocks, �t; such that ut = A0�t: Once this map is de�ned, it

6This speci�cation is similar to the one used by Altig, Christiano, Eichenbaum and Linde (2005), Francis

and Ramey (2005). Results would be unchanged to more parsimonious speci�cations.
7The following variables were obtained from DRI Basic Economic Database. Nominal gross output is mea-

sured by GDPD, real gross output by GDPQ. Nominal investment is GCD (household durables consumption)

plus GPI (gross private domestic investment). Nominal consumption is measured by GCN (nondurables) plus

GCS (services) plus GCE (government consumption). Per capita hours worked are measured by LBMNU

(Nonfarm business hours) divided by P16 (US population above 16). Real wages per capita are measured by

LBCPU (nominal hourly non-farm business compensation) divided by the price index and P16. The price

index is GDP/GDPQ. Commodity price index is an index over commodities available from DRI.

I obtained the Federal Funds rate (FedFunds) and M2 (M2MSL) from FRED. Monthly data were converted

into quarterly frequency averaging over the quarter.
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is possible to estimate the series of structural shocks and the responses of the variables into

the system to such shocks. Since I am interested in two structural shocks, I only need to

give conditions to de�ne the mapping from ut to the neutral and monetary policy technology

shocks. I identify the column of A0 relative to the neutral technology shocks through long

run restrictions as in Gali (1999), using a property of standard neoclassical models, where the

only type of shock having an impact on labor productivity in the long run is a permanent

technology shock. The column of A0 relative to the monetary policy shocks is identi�ed

as in Christiano et al (2003), relying on the assumption that the Federal Reserve set the

monetary policy instrument after some other variables have been realized. This means that

there is a subset of variables in Y; the ones in the Federal Reserve�feedback rule, to which

the monetary policy shock is orthogonal. I therefore assume that all variables in the VAR

enter the feedback rule except for the velocity of money.

The results presented in Figure 1 show that a positive TFP shock has a sudden impact

on the GDP de�ator, with in�ation dropping contemporaneously to the shock and then

quickly converging to zero. In particular, a one basis point increase in TFP reduces prices

on impact by approximately 0.35 basis points. The two standard deviations error bands

con�rm that this result is signi�cant at a 5 percent signi�cance level. On the inverse, the

GDP de�ator responds very slowly to a FFR shock, with the peak of the response taking

place approximately twelve quarters after the shock. In particular, following a negative one

basis point shock to the FFR, we have to wait approximately six quarters before in�ation

is positive and statistically di¤erent from zero. But even then, the magnitude of in�ation

is no larger than 0.08 basis points. Table 1 contains the variance decomposition of the

forecast error for in�ation in terms of fractions of total variance. The �rst result is that

the TFP shock accounts for most of the variance of the forecast error of in�ation for the

�rst 10 quarters. The second is that on the inverse the monetary policy shock explains a

marginal proportion. Hence technology shocks are a much more important determinant of

the volatility of in�ation than monetary policy shocks.

These �ndings support the thesis that prices respond much more quickly to a technology

shock than they do to a monetary policy shock. Most of the adjustment to the former

takes place along with the shock, while most of the response to the latter materializes

several quarters after the shock. The di¤erential speed of adjustment in prices is very large,

suggesting that the two shocks generate very di¤erent incentives for �rms to adjust their

prices accordingly.
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3 The model economy

I introduce a dynamic general equilibrium model with three types of actors: households,

�rms and central bank. Since I am interested in �rms�price-setting behavior, I assume that

these have limited information processing capabilities of the type suggested by Sims (2003).

For tractability, I assume that households and central bank have complete information8.

Households choose consumption, bond holdings, investments in physical capital, amount of

working hours and capital services to supply to �rms. The central bank sets nominal rates

following a Taylor type rule. There is a constant return to scale production function common

to all producers, which use labor, capital and intermediate inputs as factors of production.

The only two exogenous shocks are an aggregate neutral technology shock and a monetary

policy shock.

3.1 Households

The household side of the economy is modeled along the same lines as that of Smets and

Wouters (2007). Households have complete information. They maximize expected dis-

counted utility given by:

E0

1X
t=0

�t
�
ln (Ct � bCt�1)�

 0
1 +  l

L
1+ l
t

�
; (1)

where � 2 (0; 1) is the discount factor, Ct is the households aggregate consumption, Lt
denotes the household supply of labor, b is the coe¢ cient de�ning the degree of habit per-

sistence in preferences,  0 and  l determine respectively the level and the convexity of the

disutility of labor. A complete set of Arrow-Debreu contingent securities, Vt+1 (!) ; is traded

in the economy. The household budget constraint and the technology to accumulate capital

at period t can be written as:

PtCt +
Bt

Rt

+ PtIt +

Z



gt (!)Vt+1 (!) d! (2)

= Bt�1 + PtWtLt + Pt
�
rkt ut �	(ut)

�
Kt + Vt + Pt�t;

Kt+1 = (1� �)Kt +

�
1� S

�
It
It�1

��
It; (3)

8Adams (2007) uses similar assumptions of complete information on households and central banks to study

the optimal monetary policy in an economy where �rms have limited information processing capabilities.
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where Kt is the stock of physical capital at the beginning of period t, ut is the capital utiliza-

tion rate so that utKt is the total service of capital at time t; It is the level of investments,

Rt is the gross nominal interest rate on the risk free bonds Bt, Wt and rkt are respectively

the real wage and the rental rate of capital in period t, �t is the dividend received from full

ownership in the �rms, Pt is the price of the unique �nal good of the economy and gt (!) is

the set of prices of state contingent securities. The function S
�

It
It�1

�
represents the installa-

tion (disinstallation) costs associated with accumulating (decumulating) stock of capital, and

similarly to Altig, Christiano, Eichenbaum and Linde (2005) satis�es S (1) = S 0 (1) = 0; and

S 00 (1) > 0. This captures the idea that installation costs are smaller for smoother growth

rates in investments9. The cost of capital utilization is captured by the function 	(ut). As

in Smets and Wouters (2007), I assume ut = 1 and 	(ut) = 0 on the non-stochastic balanced

growth path.

Knowing the history up to time t, the household chooses the quantities fCt; Bt; It; Kt+1; Lt; utg
and the optimal holdings of state contingent securities, Vt+1 (!) ; so to maximize the expected

discounted utility in (1) subject to (2)� (3).

The composite �nal good, Yt; is a Dixit-Stiglitz aggregator over the set of di¤erentiated

goods indexed by z;

Yt =

�Z 1

0

Yt (z)
��1
�

� �
��1

; (4)

where � is the elasticity of substitution across di¤erent varieties. I assume that Yt is ag-

gregated by the household and can be used indi¤erently for consumption, investments or

production as an intermediate input.

3.2 Monetary Policy

The monetary policy authority sets short term nominal interest rates, Rt; following a Taylor

type rule described by:

Rt

�R
=

�
Rt�1
�R

��r �1 + �t
1 + ��

��� �1 + yt
1 + �y

��y
e"

r
t ; (5)

9Although capital adjustment costs do not play any role in the di¤erential response of prices to the two

aggregate shocks, they turn out to be important in order to have a drop in nominal rates, Rt; following a

negative shock to "r:
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where "rt � N (0; �2r) is the iid shock to the policy rule, �R and �� are the non-stochastic

steady state values of nominal interest rates and in�ation, �t is the in�ation rate at t, yt is

the growth rate in real value added output10 at time t, and �y is the non-stochastic steady

state value of output growth. Orphanides (2003b) has shown that a rule speci�ed in terms of

output growth is at least as well representative of the actual monetary policy in the United

States as a rule speci�ed in terms of output levels11. The reliance of information regarding

growth rates, as opposed to natural-rate gaps, is also consistent with verbal descriptions of

policy considerations and is easy to communicate, since output growth rates are usually used

to describe the state of the economy. Orphanides and Williams (2003, 2006) also show that

the rule expressed in terms of growth rates in output is to be preferred to the rule expressed

in terms of levels of output, when the state of the economy, and, in particular, potential

output are unknown. In such a case, a rule speci�ed in di¤erences reduces the volatility of

in�ation and output induced by errors in the perception of the output gap. Related to this

argument is the fact that I am assuming the central bank has complete information, which

means it perfectly observes current output growth and in�ation. If I were to model the

rule depending on the levels, I should have scaled the potential output level by the state of

technology in order to have a stationary output gap, as in my model there is a non-stationary

stochastic component of the technology process. In that case, assuming complete information

on the side of the central bank would have implied that the central bank perfectly knows

the current state of technology, which is arguable as sustained by Orphanides and Williams

(2003, 2006). In contrast, the speci�cation in terms of output growth requires the central

bank to only observe current in�ation and output growth, and to know their steady state

values, which is equivalent to estimate a time trend. I believe that it is realistic to assume

a central bank has enough information processing capabilities to implement such a rule.

3.3 Modeling the limited information capability

Here I introduce the tools used in this paper to model the limited information capability

of �rms. I need to de�ne a measure to quantify the reduction in uncertainty coming from

10Real value added output is the sum of real aggregate consumption and investment, Ct + It:
11For example, similar to Justiniano and Primiceri (2005):

Rt
�R
=

�
Rt�1
�R

��r �1 + �t
1 + ��

��� � Yt
At

��y
e"

r
t



10

information processing. I build on the seminal work of Sims (2003) and use the concept of

entropy to measure uncertainty in economic models. The larger is the entropy of a random

variable, the larger is the uncertainty about its realizations. The entropy H of a stationary

multivariate normally distributed random variable, xT = (x1; x2; :::xT ) ; equals:

H(xT ) =
1

2
log2

h
(2�e)T j
xT j

i
;

where j
xT j is the determinant of the variance-covariance matrix of xT . Therefore, a normal
random variable has an entropy that depends only on the second moments of the distribution.

Close to the de�nition of entropy is the de�nition of conditional entropy of xT = (x1; x2; :::xT )

given sT = (s1; s2; :::sT ) :

H(xT j sT ) = 1

2
log2

h
(2�e)T

��
xT jsT ��i ;
where xT and sT must have a joint multivariate normal distribution, and where

��
xT jsT �� is the
determinant of the conditional-covariance matrix of xT given sT : I then de�ne the reduction

in uncertainty about a vector of multivariate normally distributed random variables xT ; from

observing a vector of multivariate normally distributed random variables sT ; as the di¤erence

between the entropy of xT and the conditional entropy of xT given sT :

I(xT ; sT ) = H(xT )�H(xT j sT ):

This measure is called mutual information. I can then de�ne the information �ow between

two stochastic processes as the average per period amount of information that one process

contains about another process. If xT and sT are the �rst T realizations of the processes

fxtg and fstg ; then the information �ow can be de�ned as:

�I (fxtg ; fstg) = lim
T!1

1

T
I(xT ; sT ): (6)

In this paper, restricting information processing capabilities means restricting the average

information processed by an agent per period. The information �ow de�ned in (6) is the

measure used for it. In the case of stationary multivariate normally distributed random

variables the information �ow reduces to:

�I (fxtg ; fstg) = lim
T!1

1

T
log2

 
j
xT j��
xT jsT ��

!
;

and it is independent of the realizations of the signal process. When the process fstg is
completely uninformative about the realizations of the process fxtg ; as for example if fstg
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is a constant, the conditional variance-covariance matrix is identical to the unconditional

one, and the implied information �ow is zero. When the process fstg is perfectly revealing
about the realizations of fxtg ; there is no more uncertainty about the latter, and

��
xT jsT ��
is zero, implying an in�nite information �ow. A process fstg that is not fully revealing,
but contains some information about the realization of fxtg will imply a �nite and strictly
positive information �ow.

3.4 Firms

There is a continuum of Dixit-Stiglitz monopolistically competitive �rms of mass one, and

indexed by z. Each �rm specializes in the production of a di¤erentiated product. Like Basu

(1995) and Nakamura and Steinsson (2007)12, I assume that all products serve both as �nal

output in consumption and investments, and as intermediate inputs into the production

process of other products. Incorporating intermediate inputs into the production function

increases the degree of strategic complementarity in price setting. Being that prices of

intermediate inputs are directly linked to the aggregate price, the rigidity of prices to shocks is

therefore ampli�ed and transmitted to �rms through rigidity of intermediate inputs prices. In

this structure, there is no �rst product that is made without the use of other products13. Each

�rm z uses an index of intermediate inputs, Xt(z); for production, which is, for simplicity,

assembled by the household as in (4). The production function of �rm z is then:

Yt (z) = At
�
Kt (z)

� Lt (z)
1���1��Xt(z)

�;

where Yt (z) is the gross output of �rm z, At is the aggregate productivity variable common

to all �rms, which follows an exogenous stochastic process de�ned by:

ln
At+1
At

= a + �a ln
At
At�1

+ "at+1; (7)

12Basu (1995) and Nakamura and Steinsson (2007) apply this structure to a menu costs type model,

obtaining a high degree of strategic complementarity in price setting. Furthermore, Nakamura and Steinsson

(2007) show that this type of complementarities is well suited to explain the high rigidity of aggregate prices

to demand shock, and the high frequency of price changes due to idiosyncratic productivity shocks.
13As sustained by Basu (1995) this is well representative of the U.S. economy: �Input-output studies

certainly do not support the chain of production view, where goods move in only one direction down the stages

of processing. Even the most detailed input-output tables show surprisingly few zeros. In its discussion of the

1977 input-output table, the BEA (1984 p. 50) notes that the table �shows heavy interdependence among

industries. Seventy-six of the 85 industries shown in the table required inputs of at least 40 commodities,

and 52 industries required inputs of at least 50 commodities.�
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where "at+1 is normally distributed, "
a
t+1 � N (0; �2a) ; and is iid over time. Kt (z) is the

amount of capital services rent from households, and Lt(z) is the labor input hired from the

households by �rm z. Total demand for good z; Yt (z) ; is:

Yt (z) = Yt

�
Pt (z)

Pt

���
;

where aggregate demand, Yt; is:

Yt = Ct + It +

Z 1

0

Xt (z) dz +	(ut)Kt:

Each �rm has three decisions to take at each period t. The �rm has to choose the optimal

price, Pt (z), at which it is willing to sell any quantity demanded, and the optimal mix

of inputs, both in terms of ratio of capital to labor, kt (z) � Kt(z)
Lt(z)

; and in terms of ratio

of intermediate inputs to the other factors of production, xt (z) � Xt(z)

Kt(z)
�Lt(z)

1�� . I assume

there are three separate decision makers at each �rm, one responsible for the choice of the

selling price, one responsible for the optimal capital-to-labor ratio and one responsible for

the intermediate-inputs ratio14. For tractability, the �rm is not choosing the optimal basket

of intermediate inputs, Xt (z) ; which is assembled by the household15 as in (4). Formally

the problem of the price setter in each period t; at the �rm z; is choosing Pt (z) so to solve:

max
Pt(z)

E

" 1X
�=t

��� (P� (z) ; k� (z) ; x� (z) ; �� ) j stzp

#
(8)

where �� is the discount factor16 between period t and t+ � , and stzp = fszp;1; szp;2; ::::; szp;tg
denotes the realization of the signal process up to time t for the price setter at �rm z. Finally,

�t =
�
Yt; Pt; At;Wt; r

k
t

�
is the vector of realizations of the aggregate variables outside the

control of �rm z. The optimization problems of the other two decision makers are similar and

therefore reported in appendix A. Up to this point, the decision problem at �rm z is quite

standard. Each agent makes an optimal decision conditional on its information set. If the

information set contained all the realizations of current and past variables in the economy,

14This assumption is similar to the one used by Mankiw and Reis (2006). They assume that at each

�rm there is a price setting agent with incomplete information and an input decision maker with complete

information. One di¤erence is that I allow for incomplete information for each decision maker at each �rm,

but do not allow incomplete information on the household side.
15An equivalent assumption would be that there is a separate decision maker at each �rm that assembles

the basket of intermediate inputs in complete information.
16�t+j = �

j Ct�bCt�1
Ct+j�bCt+j�1 :
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we would be in the conventional case considered in the literature on monopolistically com-

petitive �rms applied to macroeconomic models: �rms would price with constant markups

to nominal marginal costs, and the optimal input choice would be de�ned by the relative

price of production factors. In such a case, it would make no di¤erence whether there are

three separate decision makers or only one, as choices are made on the basis of the same

information set. In this paper, the information sets are endogenous. The optimal signal

process fszp;tg is chosen by the price setter in period zero and satis�es a constraint on the
average �ow of information,

�I
�n
P ya;t (z) ; P

y
r;t (z)

o
; fszp;tg

�
� �p (9)

where
n
P ya;t (z) ; P

y
r;t (z)

o
is the vector of stochastic processes for the complete information

optimal responses to the two aggregate shocks. The sum of these two processes delivers

the optimal complete information price level, P yt (z) = P ya;t (z) + P yr;t (z). Therefore P
y
t (z) is

the price level the price-setter at �rm z would choose if she had complete information, or

equivalently if �p ! +1. In addition to choosing the price level at any period t, in period
zero the price setter at �rm z solves the following problem:

max
fszp;tg2S

E

" 1X
t=0

�t� (P
�
t (z) ; kt (z) ; xt (z) ; �t)

#
(10)

subject to (9) ; where P �t (z) solves (8) at each period t. The attention allocation problems

for the other two decision makers are similar and reported in appendix A.

The three decision makers at each �rm are indexed by j = p; k; x; indicating respectively

the price setter, the decision maker for the capital-to-labor ratio and the decision maker for

the intermediate-inputs ratio: Each decision maker is endowed with information processing

resources that allow her to process on average �j bits of information per period17. The allo-

cation of �j across separate decision makers is optimal, in the sense that the marginal value

of additional information across the three agents at each �rm is identical, and � =
P

j �j

is the total of information-processing resources at each �rm; � is chosen so that the overall

marginal value of information at the �rm level is very small18, implying a relatively small

17In information theory, the �ow of information is measured in bits. One bit is the �ow of information

necessary to completely reduce uncertainty about the realization of a discrete random variable with two

equally likely outcomes. See Cover and Thomas (1991) for more details.
18In principle it would be an easy exercise to set up a cost function, or a market for information processing

capabilities. But given there is no microeconomic empirical evidence on such a structure, it is equivalent to

calibrate directly the equilibrium value of �:
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friction: �rms would invest very few resources to acquire more information processing capa-

bilities at the equilibrium. Intuitively, my model is equivalent to an organization structure

where there are three separate managers at each �rm, a marketing manager in charge of the

price choice, a production manager in charge of the optimal mix of capital and labor, and

a purchasing manager, responsible for the optimal level of intermediate inputs relative to

the other factors of production. On top of the three managers, there is a CEO that allo-

cates optimally the �rm total information processing resources, �; across the three managers

in period zero. Each decision maker uses its information processing capability to acquire

and process information on those variables that most matter for its choice. Although each

decision maker maximizes the same pro�t function, the optimal choice of the variable she

is in control of, depends potentially on di¤erent factors. For example the decision maker

in charge of the price level has to process information on the impact its choice has on the

relative demand of the �rm. On the inverse, the two decision makers for the capital labor

and intermediate-inputs ratios do not need direct information on demand, as they minimize

the cost of production for any level of demand. I believe that the decision process at the

�rm level is a complex activity that involves many individuals, each of them in charge of

a piece of the decision process19. Therefore distributing the decision powers across several

individuals seems more realistic.

3.5 Restrictions on the set of signals for the benchmark model

I assume that signals cannot contain information about future realizations of shocks, "at and

"rt : This removes any forecasting power over shocks that have not yet been realized. This

assumption is not controversial as long as exogenous shocks are assumed to be independent

over time, and this is the case for this paper. Second, I restrict the signals to follow stationary

Gaussian processes:

fszj;t; "at ; "rtg is a stationary Gaussian process. (11)

This assumption allows having a closed form expression for the information �ow and facil-

itates the computation of a solution for the optimal signal structure, as it reduces to the
19Zbaracki, Levy and Bergen (2007) study the decision process for a price cut at a large manufacturing

�rm. They report that, although the reasons behind the price cut are understood and supported by all

agents, the decision about how to do that is a very complex activity. Di¤erent individuals, in the same �rm,

use di¤erent economic models to make optimal choices, each consistent with their own objectives, but also

each competing with the others.
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choice of variance-covariance matrices20. I assume that �rms acquire and process information

about the two types of shocks separately. This means that the signal �rm z receives at time

t is a vector that can be partitioned into two subvectors, one containing information about

f"at g and one containing information about f"rtg :

fszja;t; "at g and fszjr;t; "rtg are independent. (12)

This assumption is probably extreme, as in reality the two processing activities may have

some overlapping, and hence there might be some learning about one shock by processing

information about the other. I will relax this assumption later in the paper and show that

not only results do still hold, but they are actually reinforced. Finally, I assume that all the

noise in the signal is idiosyncratic, conveying the idea that all the information is available but

the limited information processing capability generates idiosyncratic errors in the processing

of available information.

3.6 Markets clearing conditions and resource constraint

In equilibrium, the markets for labor, capital and intermediate goods clear in each period

t: i) Lt =
R 1
0
Lt (z) dz; ii) utKt =

R 1
0
Kt (z) dz; iii) Xt =

R 1
0
Xt (z) dz: Also, the bonds and

state contingent securities markets clear at each period t and state ! : Bt = 0; Vt (!) = 0:

Finally, the resource constraint is satis�ed in any period t :

Yt = Ct + It +Xt +	(ut)Kt: (13)

4 The solution to the static version of the model

In this section I solve a static version of the model introduced in section 3. This will

provide useful insights and intuitions into how the attention allocation determines the dif-

ferential speed of adjustment of prices to the two aggregate shocks, and how complemen-

tarities and monetary policy a¤ect the responses of prices to these shocks. I impose �

20When the objective function is quadratic, this assumption is not binding, because Gaussian signals turn

out to be optimal. See Máckowiak and Wiederholt (2007) for a proof. I will obtain a quadratic objective

with a second order Taylor expansion. Then the normality assumption is not very restrictive as long as such

approximation is not a bad one.



16

equal to zero, so that labor and intermediate inputs are the only inputs in production:

Yt (z) = AtLt (z)
1��Xt (z)

�. I also assume that the decision maker choosing the optimal

intermediate-inputs ratio, xt, has complete information. Therefore in this economy only the

price setter faces an attention allocation problem. I impose that At is iid, hence lnAt = "at : I

also assume no habit persistence in the utility function, b = 0: Finally, I restrict the monetary

policy rule to be static, assuming �r = 0; and to take the form:

Rt

�R
=

�
Pt
�P

��� �Ct
�C

��y
e"

r
t ;

where Ct is aggregate demand and coincides with real value added output, and the rule

targets the deviation of the price level from steady state. I solve the model through a log-

linearization around the non-stochastic steady state. The solution procedure for the attention

allocation problem has two steps. In the �rst step I formulate a guess for aggregate prices

and I solve for the dynamics of the model implied by the guess. In the second step I solve the

attention allocation problem of the price setter, aggregate prices over �rms, and then solve

for the guess. The log-deviation of aggregate prices from steady state at time t is a linear

function of the realizations of two iid shocks at time t; which are the sole state variables21:

P̂t = �r"
r
t + �a"

a
t :

The optimal price of �rm z under complete information in log-deviations from steady state

is given by:

P̂ yt (z) = P̂t + �Ĉt � (1 +  l) "at ; (14)

where � = (1 +  l) (1� �) is the degree of strategic complementarities in price setting, as

de�ned in Woodford (2003)22, and Ĉt is the log deviation of real demand from steady state23.

A larger share of intermediate inputs in total costs, �; implies a larger degree of strategic

complementarity in price setting. Given the guess for aggregate prices and the solution for

Ĉt in terms of the two fundamental shocks, I obtain a linear equation that links the log

deviations of complete information optimal price, P̂ yt (z) ; to the two fundamental shocks:

P̂ yt (z) =

��
1� �

1 + ��
1 + �y

�
�r + #r

�
"rt +

��
1� �

1 + ��
1 + �y

�
�a + #a

�
"at ; (15)

where #r = � �
1+�y

; and #a =
�
1�� : The shock "

i; i = a; r, has an impact on the complete

information price directly through parameter #i; and indirectly through the feedback from
21All variable with a hat are intended in log-deviations from the steady state.
22A larger � means a lower degree of strategic complementarity in price setting.
23See appendix C for details on these derivations.
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aggregates prices. The magnitude of the latter is determined by the degree of strategic

complementarities in prices, and the monetary policy rule. A larger degree of strategic

complementarities, a lower �; implies everything else equal a larger feedback from aggregate

prices. This is intuitive as more complementarities in price setting imply that the action of

each price setter is in�uenced more by the average action of the other price setters.

In order to solve for the attention allocation problem in (10) ; I take a log-quadratic

approximation of the sum of the discounted expected pro�ts in (10), expressed in terms of

log deviations from steady state. The optimal allocation of attention problem reduces to24:

min
fszp;tg2S

!1E
�
P̂ �t (z)� P̂ yt (z)

�2
(16)

s:t:

i) : P̂ yt (z) =

��
1� �

1 + ��
1 + �y

�
�r + #r

�
"rt +

��
1� �

1 + ��
1 + �y

�
�a + #a

�
"at ;

ii) : P̂ �t (z) = E
h
P̂ yt (z) j stzp

i
;

iii) : �I (f"at ; "rtg ; fszp;tg) � �p:

In solving for the optimal signal process, the price setter minimizes the mean square error

in price setting. Since the objective is quadratic, the optimal price choice in any period t,

P̂ �t (z) ; will be the projection of P̂
y
t (z) on the realizations of the signal process up to time t.

Under the restrictions on S in (11)� (12), the signals take the form of true value plus noise,

sazp;t = "at + �au
a
zt (17)

srzp;t = "rt + �ru
r
zt (18)

where uazt and u
r
zt are iid normally distributed with zero mean and unitary variance. After

some algebra, the attention allocation problem in (16) reduces to25:

min
f�a�0;�r�0g

!1

264
�
~��a + #a

�2
�2a

1 + �2a
�2a

+

�
~��r + #r

�2
�2r

1 + �2r
�2r

375 (19)

s:t:

i :

�
1 +

�2a
�2a

��
1 +

�2r
�2r

�
� 22�

where I have de�ned for simplicity the variable ~� � 1� � 1+��
1+�y

; which represents the degree of

feedback from aggregate prices to individual �rm complete-information optimal prices, and
24See Appendix A for details.
25See Appendix C for more details.
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depends on the degree of complementarities and the monetary policy. The problem in (19)

has a very intuitive interpretation. Firm z chooses the precision of each signal, �i; facing the

constraint that the product of the two signal-to-noise ratios cannot exceed an upper bound

coming from limited information processing capabilities. In the case of an interior solution,

the optimal signal-to-noise ratio for each fundamental shock is given by:

1 +
�2a
��2a

= 2�
~��a + #a
~��r + #r

�a
�r
; (20)

1 +
�2r
��2r

= 2�
~��r + #r
~��a + #a

�r
�a
; (21)

A larger signal-to-noise ratio for a shock means being relatively more informed about that

shock. The signal-to-noise ratios will be larger, the larger the upper bound on information

�ow, �; is: the larger the information processing capability at each �rm, then the smaller the

�rm�s error as it processes any variable.

I use (20)� (21) and the fact that:

P̂t =

Z 1

0

E
h
P̂ yt (z) j stzp

i
dz;

to solve for the �xed point, (�a; �r) ; and to determine the response of the aggregate price level

to the fundamental shocks at an interior solution. The �xed point at an interior solution26

is:

�a = #a

�
1� ~� + ~�2�2�

�
� 2�� 1

�
1� ~�

�2
� 2�2�~�2

; (22)

�r = #r

�
1� ~� + ~�2�2�

�
� 2���

1� ~�
�2
� 2�2�~�2

: (23)

where

 � #a
#r

�a
�r
; (24)

26The conditions for an interior solution are:(
~� � 1� 1

 2
��

1�2�2� if  � 1
~� � 1�2��

1�2�2� if  > 1

The corner solutions are derived in appendix C.
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is the parameter de�ning the relative impact of a shock on the loss function. The response of

prices to the two shocks is proportional to the direct impact each shock has on the complete

information optimal choice, represented by #i; i = a; r: A larger  means that, everything

else being equal, there is a larger impact of the technology shock on the objective function,

and hence it is more costly to be uninformed about that shock. The larger �; the more

responsive aggregate prices are to the two shocks. As � converges to in�nity, the price

responses converge to the complete information counterparts, #i
1�~� :

4.1 Complementarities and trade-o¤ in attention allocation: the
ampli�cation mechanism

I derive an expression that links the relative precision of signals at an interior solution,
1 + �2a

��2a

1 + �2r
��2r

; to the coe¢ cient ; and to another coe¢ cient, � that I refer to as the attention

multiplier :

1 + �2a
��2a

1 + �2r
��2r

= 2�2; (25)

� �
1�

�
1� � 1+��

1+�y

��
1 + 1


2��
�

1�
�
1� � 1+��

1+�y

�
(1 + 2��)

: (26)

For  > 1; there is an initial incentive at the �rm level to process more information on

technology shocks because either they are more volatile, �a is larger than �r; or they have a

larger impact on the complete information pro�t-maximizing price, #a is larger than #r: The

attention multiplier, �; will amplify or reduce the incentive to process more information on

the technology shocks depending on the degree of strategic complementarity in price setting,

�; and on the monetary policy rule. If the degree of strategic complementarity in price

setting is large enough, or monetary policy is not too much more aggressive on in�ation than

it is on output, then there will be an ampli�cation of the allocation of attention in favor of

the shock that would already receive more attention, given the initial incentive implied by

the value of . A larger degree of strategic complementarity in price setting, a smaller �;

implies a larger feedback from aggregate prices to the �rm level complete information optimal

price, P̂ yt (z). This causes a larger di¤erence in the allocation of attention as price-setters

at each �rm reallocate resources from one shock to the other, eventually making aggregate
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prices respond even more to technology shocks and even less to monetary policy shocks,

and triggering new reallocations until the �xed point is reached. Therefore, through the

positive feedback from aggregate prices, each price-setter has an incentive to allocate more

resources to acquire information on the same type of shocks that other �rms acquire more

information on. This mechanism can potentially cause a large diversion of attention towards

the technology shocks. In fact, the attention multiplier, �; has no upper bound:

lim
�!��

� = +1; 8 > 1

where � = 2��

1+2��
1+�y
1+��

: This result is particularly important, as it implies that no matter how

small the initial incentives to allocate more attention to the technology shock are, hence how

close  is to 1, it is always possible to have a large di¤erence in the allocation of attention

across the two shocks, by choosing a high enough degree of strategic complementarity in

price setting. This is appealing as it implies that such a framework can naturally generate

a very di¤erent response of aggregate prices to the two aggregate shocks, despite that in

principle the impact of such shocks on the variability of the pro�t-maximizing price is very

similar under complete information. This means that it can achieve a large di¤erence in

the responsiveness of prices to shocks when standard models of price stickiness cannot. For

example, consider a case where  is equal to 2 , and �y is equal to ��: If � is equal to 1;

then � is 0:5: This means that a degree of strategic complementarity, 1 � �; close to 0:5

would imply a multiplier, �; close to in�nity. If � is equal to 3; then � is 0:2; and then, for

a degree of strategic complementarity close to 0:8; the attention multiplier would be close

to in�nity. These levels of strategic complementarities are not unreasonable if compared to

those typically assumed in the literature on sticky prices27.

The degree of strategic complementarity in price setting and the upper bound on the

information processing capabilities are not the only determinants of the attention multiplier.

The monetary policy has a central role too. In fact, a monetary policy authority more aggres-

sive on prices, or less aggressive on output, reduces the di¤erential allocation of attention,

and the di¤erential speed in price adjustment to the two shocks. For a given increase in

prices, a more aggressive policy on prices, a larger ��; causes real rates to be larger and

current real demand, Ct; to be smaller. Then, everything else being equal, a smaller change

in Ct causes a smaller change in the complete information pro�t-maximizing price, P̂
y
t (z) ; in

(14) : Therefore, the variability of P̂ yt (z) is reduced in response to each shock. However, this

27Woodford (2003) suggests a degree of strategic complementarity in price setting, 1��; between 0.85 and
0.9.
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also reduces the di¤erence in the variability of P̂ yt (z) due to the two shocks, which then feed-

backs into the allocation of attention inducing a smaller di¤erence in the attention allocation

across the two shocks. Therefore, a more aggressive monetary policy on prices reduces the

feedback from aggregate prices to �rms level complete information pro�t-maximizing prices,

P̂ yt (z) ; inducing lower complementarities in the allocation of attention. A similar argument

holds for a less aggressive monetary policy on output.

In this section, I set �� equal to 1:5 and �y equal to 0:5. I assume that
�a
�r
is equal to 1,

and that � is equal to 0:75. I also impose  l equal to 1. This parameterization implies a value

of  equal to 6. The implied degree of strategic complementarity in price setting, 1��; is 0:5:
At this value the feedback from aggregate prices to �rm level complete information optimal

prices, ~� is positive at 0:17. In Figure 2; I plot the price responses to the two shocks under

rational inattention as a fraction of the response under perfect information, and expressed as

a function of �. The closer the fraction is to 1, the closer the price responses under rational

inattention are to the ones under complete information. With low values of � the �rm will

pay attention only to the technology shocks, "at ; not responding at all to the monetary policy

shocks, "rt . As � increases, the response to the technology shocks converges quickly to the

complete information one, while the one to the monetary policy shocks has a much slower

convergence. In Figure 3; I plot the value of the attention multiplier, �; as a function of

�. For small enough values of � there is a corner solution in attention allocation. As �

increases the attention multiplier converges, as expected, to 1; but remains substantially

large for intermediate values. In Figure 4; I plot the attention multiplier �; as a function

of �; setting � equal to 3. For low values of �; and therefore for large degrees of strategic

complementarities in prices, the attention multiplier gets particularly large, pushing towards

a corner solution where all the attention is allocated to the technology shocks. In Figures

5 and 6; I plot the relative responses of prices to shocks to "at and "
r
t as a function of both

� and �: A larger � increases the relative responses of prices to both shocks, while a larger

� reduces strategic complementarities in prices, and everything else being equal, increases

price responses to both shocks. It has to be said that a value of  equal to 6 is already

a very large incentive to allocate more information processing resources to the technology

shocks. This reduces the need for a particularly high degree of strategic complementarities

in prices to generate a large di¤erence in the allocation of attention across the two aggregate

shocks. We will see, however, that this will not be the case in the �full-blown� dynamic

model parameterized in section 5.
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5 The numerical solution to the model

In this section I solve the dynamic model introduced in section 3 with numerical methods. In

subsection 5.1, I describe the numerical routine, in subsection 5.2, I choose the parameters of

the model and in subsection 5.,3 I comment the results of the attention allocation problems

and the implied dynamics of aggregate prices.

5.1 The solution routine

I apply a two-step solution procedure28. In the �rst step I formulate a guess for the aggregate

price, P̂t; a guess for the aggregate capital-to-labor ratio, k̂t; and a guess for the aggregate

intermediate-inputs ratio, x̂t; all in log-deviations from the non-stochastic balanced growth

path, and solve for the dynamics of the model economy.

In the second step, I solve for the optimal allocation of attention of each decision maker,

given the processes for the endogenous variables of the model economy obtained in the �rst

step. In order to solve each agent�s attention allocation problem; I take a log-quadratic

expansion of the sum of the discounted expected pro�ts around the non-stochastic balanced

growth path29. In order to save on space, I express the attention allocation problems of the

three decision makers in terms of the variable �̂j;t (z) ; which I de�ne in the following way:

�̂j;t (z) �

8><>:
P̂t (z) ; j = p

k̂t (z) ; j = k

x̂t (z) ; j = x

:

The attention allocation problem for the decision maker choosing �̂j;t (z) at �rm z, can be

28See Appendix B for more details.
29As discussed by Sims (2006) p. 161, and Máckoviak and Wiederholt (2007) pp. 35-37, solving the

attention allocation problem through a second order Taylor expansion of the objective function allows for a

good approximation of the solution, as long as departures from complete information are not signi�cant. At

the value of � considered in this paper, the marginal value of additional information is low at the �rm level,

implying potentially small departures from the solution obtained. See Appendix A for more details.
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then expressed as:

min
fszj;tg2S

!jE
�
�̂
�
j;t (z)� �̂

y
j;t (z)

�2
(27)

s:t:

i) : �̂
�
j;t (z) = E

h
�̂
y
j;t (z) j stzj

i
; (28)

ii) : �I
�n
�yaj;t (z) ; �

y
rj;t (z)

o
; fszj;tg

�
� �j; (29)

iii) : �̂
y
j;t (z) = �yaj;t (z) + �yrj;t (z) (30)

where !j > 0, �̂
y
j;t (z) is the log-deviation from the non-stochastic balanced growth path of

the optimal choice of �yj;t (z) in the case of a perfectly informed decision maker j; and �̂
�
j;t (z)

is the projection of �̂
y
j;t (z) on the realization of signals for decision maker j; up to time t;

and at �rm z. The processes for
n
�yaj;t (z) ; �

y
rj;t (z)

o
are obtained from the �rst step. I can

then solve the attention allocation problems in (27)� (30), obtaining the implied processes
for aggregate prices, capital-to-labor ratio and intermediate-inputs ratio:

P̂ �t =

Z 1

0

P̂ �t (z) dz;

k̂�t =

Z 1

0

k̂�t (z) dz;

x̂�t =

Z 1

0

x̂�t (z) dz:

I then update the guess and start again from the �rst step, iterating until convergence.

5.2 Calibration

I set the discount factor � equal to 0:99. The depreciation rate is equal to 0:025: The

elasticity of value added output with respect to capital, �, is assumed to be 0:36, a value

roughly consistent with observed income shares. I set the habit parameter b equal to 0:7, and

the inverse of the Frisch�s elasticity,  l; equal to 1; similar to Altig, Christiano, Eichenbaum,

and Linde (2005). I choose  0 so that on the non-stochastic balanced growth path households

supply an amount of labor equal to one. The dynamics of capital adjustment costs around

the non-stochastic balanced growth path are shaped by the second derivative of the capital

adjustment cost function evaluated at steady state, S 00(1): I set the capital adjustment cost

parameter, S 00(1); equal to 5. This is larger than the value estimated by Altig, Christiano,
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Eichenbaum, and Linde (2005), but it is slightly smaller than the one obtained by Smets

and Wouters (2007). The elasticity of the cost of capital utilization, � =
 00(1)
 0(1) , is set to 0:5;

which is similar to the value estimated by Burnside and Eichenbaum (1996). I choose the

elasticity of substitution across goods, �; and the share of intermediate inputs in total costs,

�; following Nakamura and Steinsson (2007)30. Therefore, I set � equal to 4; and � equal

to 0:75: From input-output tables relative to the U.S. economy, Nakamura and Steinsson

(2007) estimate that the weighted average of the share of intermediate inputs in revenues is

approximately 56 percent. Then, given the average markup implied by �, the steady state

share of intermediate inputs in total costs of production is 0:75.

The parameters in the Taylor rule, �r; �� and �y; are obtained by estimating the rule
31

on the U.S. data from 1959:2 to 2007:2. I estimate the Taylor rule through an e¢ cient

GMM estimator similar to Clarida, Gali and Gertler (2000). The instruments set includes

the four lags of rt; �t and yt; and the four lags of in�ation in commodity prices, of M2 growth

and of the �spread� between the ten years and the three months U.S. treasury bonds32.

Table 3 contains the results of the estimation with associated robust standard errors in

parenthesis. Therefore, �r; �� and �y are set equal to 0:96; 0:12 and 0:2 respectively. The

test of overidentifying restrictions rejects the null at one percent signi�cance level. The

autocorrelation coe¢ cient, �a; and the constant, a; are chosen according to the estimates of

an AR(1) process on an estimate of the U.S. quarterly growth rate in TFP33, from 1959:2 to

2007:2. The estimated autoregressive coe¢ cient cannot be statistically distinguished from

zero, therefore I set �a = 0: The standard deviations of the two shocks, �a and �r; are

obtained respectively from the standard deviation of the U.S. quarterly growth rate in TFP;

and from the standard deviation of the residual of the estimated Taylor rule, over the period

30�Berry et al. (1995) and Nevo (2001) �nd that markups vary a great deal across �rms. The value of �

I choose implies a markup similar to the mean markup estimated by Berry et al. (1995) but slightly below

the median markup found by Nevo (2001). Broda and Weinstein (2006) estimate elasticities of demand for

a large array of disaggregated products using trade data. They report a median elasticity of demand below

3. Also, Burstein and Hellwig (2006) estimate an elasticity of demand near 5 using a menu cost model.

Midrigan (2005) uses �= 3 while Golosov and Lucas (2006) use �= 7.�
31The equation I estimate is:

rt = c+ �rrt�1 + ���t + �yyt + u
r
t ;

where rt is the Federal Fund rate, �t is the log-di¤erence in the GDP price de�ator, and yt is the deviation

of the growth rate of output from a linear trend.
32Quarterly measures were computed averaging over months.
33Fernald (2007) estimates a quarterly series for the U.S. TFP growth rate trough a Solow residual ac-

counting technique similar to Basu, Fernald, Kimball (2004).
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1959:2-2007:2: The standard deviation of the U.S. quarterly growth rate in TFP is about 4

times the standard deviation of the residual from the Taylor rule34. In mapping the estimated

standard deviation of the TFP growth rate to the standard deviation of the technology shock

in the model, I have to adjust for the fact that the TFP growth rate has been estimated

according to a model with a value added production function with no intermediate inputs35.

Therefore, I need to scale the standard deviation of the estimated TFP growth rate by 1��.
Since � has been set equal to 0:75, the ratio of standard deviations of shocks in the model,
�a
�r
; is set equal to 1: Finally the total information processing capabilities at the �rm level, �;

is chosen so that in equilibrium the loss each �rm faces from not being completely informed

is a relatively small fraction of pro�ts. Hence I choose � equal to 4:

5.3 Results

In Figure 7; I plot the responses of in�ation and output to a one basis point shock to "a and

"r in the model under complete information, � ! +1: Not surprisingly, almost all of the

adjustment in prices to "a takes place in two quarters, while all of the adjustment in prices

following the shock to "r takes place in the period of impact of the shock. Under complete

information, in fact, a one basis point positive shock to "a reduces prices by about 12 basis

points on impact, and about 11 basis points after two quarters. A one basis point negative

shock to "r increases prices by approximately 8:5 basis points along with the shock. Since

the relative standard deviation of "a and "r is set equal to 1; and given that the impact of a

technology shock on the complete information aggregate price level is larger than the impact

of an equally sized monetary policy shock, there is an initial incentive for the �rm to pay

more attention to technology shocks than to monetary policy shocks, but such an incentive

is relatively small. Under complete information, in fact, the long-run impact of a one basis

point shock to "a on prices is about 30 percent larger than the long-run impact of a one basis

point shock to "r: Intuitively this initial incentive is the dynamic counterpart of the variable

 I derived in the static version of the model. Therefore, if this model has to generate a

large di¤erential in the response of prices to the two shocks, it must come from the attention

multiplier. Given that the monetary policy authority is substantially more aggressive on

output than it is on in�ation, and that the share of intermediate inputs in total costs, �; is

34I obtain similar results if I use the standard deviations of the estimated TFP and monetary policy shocks

from the VAR.
35See Appendix D for details.
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0:75, the feedback from aggregate prices to �rm level complete information pro�t-maximizing

price, P̂ yt (z) ; is substantial, inducing a large attention multiplier. In Figure 8; I plot the

impulse responses of output and in�ation in the model with limited information processing

capabilities, with � equal to 4. Prices adjust quickly to the "a shock, with almost all of the

adjustment taking place in the �rst two quarters. In contrast, prices adjust very sluggishly to

the "r shock, inducing a large real e¤ect of the monetary policy shock. The response of output

to the "r shock is very persistent and takes many quarters to converge to zero. The optimal

allocation of � across the di¤erent decision makers is such that 50 percent of � is allocated to

price decision maker, 33 percent is allocated to the intermediate-inputs ratio decision maker

and the remaining to the capital-to-labor ratio decision maker. The price decision maker

allocates almost all of its information processing resources to the technology shocks. The

other two decision makers allocate similar resources to the technology and monetary policy

shocks, as the capital-to-labor ratio and the intermediate-inputs ratio have similar impacts

across the two shocks on the variability of pro�ts. At equilibrium the marginal value of

additional information processing resources at the �rm level is small. Each �rm faces a loss

that is in the order of 1/1000 of its discounted sum of non-stochastic balanced growth path

pro�ts, where the loss is computed relative to the case the �rm had complete information,

�!1; and everything else being equal.

6 Complementarities, monetary policy and signals struc-

ture

In this section I investigate the roles of strategic complementarity in price setting, monetary

policy and the role of restrictions on the signals space for the results obtained above. Lastly,

I discuss potential extensions and shortcomings.

6.1 The role of complementarities

I reduce the share of intermediate inputs in total steady state costs, �; from 0:75 to 0:5. A

value of � equal to 0:75 implied in section 4 a value of � equal to 0:5. With � dropping to 0:5;

� increases to 1; and the degree of strategic complementarity in price setting is substantially

reduced: To have an idea of how low complementarities are in this model, it helps to consider
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the fact that Woodford (2003) recommends a value of � between 0:15 and 0:1 in models of

sticky prices.

With a smaller degree of strategic complementarity in price setting there are two e¤ects

that reduce the di¤erence in the allocation of attention across the two shocks for the price

setter. The �rst is a direct e¤ect that goes through the reallocation of attention at the price

setter level: smaller complementarities in price setting induce smaller complementarities in

the allocation of attention across price setters, and, everything else being equal, reduces the

di¤erential in the allocation of attention across shocks for each price setter. The second e¤ect

relates to the reallocation of information processing resources, �; at the �rm level: smaller

complementarities in price setting induce a larger variability of aggregate prices in response

to aggregate shocks, and, everything else being equal, increase the incentive to allocate more

resources to process information about prices than to process information about the capital-

to-labor ratio and the intermediate-inputs ratio. At the equilibrium, 75 percent of total

information processing resources, �; is allocated to the price setter, 16 percent is allocated to

the intermediate-inputs ratio decision maker and the remaining to the capital-to-labor ratio

decision maker. The price setter allocates 57 percent of its attention to technology. Therefore

the di¤erential in attention allocation across the two shocks is substantially smaller for this

decision maker relative to the case with larger complementairity in price setting. Capital-

to-labor and intermediate-inputs ratios will not be very responsive to the monetary policy

shocks, pushing the respective decision makers to allocate almost all of their attention to the

technology shocks. In Figure 9; I plot the responses of in�ation to a one basis point shock

to "a and "r; in the model with and without limited information processing capabilities.

Now, the adjustment of prices to "r takes place in two quarters, and therefore, the real e¤ect

of the monetary policy shocks are small and in�ation is not very persistent. Most of the

adjustment in prices to "a takes place in two quarters, similar to the benchmark calibration.

Since �a
�r
is set equal to 2; the initial impact of a one basis point shock to "a on pro�ts is

about 30 percent larger than the initial impact of a one basis point shock to "r; and therefore

the price setter�s initial incentive to allocate more attention to technology is similar to the

benchmark calibration36. However, with low complementarities in price setting, the initial

incentive does not get ampli�ed and the di¤erence in the allocation of attention across the

two shocks will be small.
36By the same argument in section 5:2; lowering � to 0:5; causes the relative standard deviation of shocks,

�a
�r
; to be set equal to 2.
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6.2 The role of monetary policy

In this paragraph I modify the parameterization of the monetary policy rule de�ned in (5) :

First, I decrease �y from 0:2 to 0:1, making the monetary authority less aggressive on output

growth. A less aggressive monetary policy on output growth a¤ects the speed of adjustment

of prices to the two aggregate shocks mainly through three channels. The �rst two channels

have to do with the allocation of attention at the price-setter level, the third channel is related

to the allocation of attention decision at the �rm level. A less aggressive monetary policy

on output growth, reduces the variability of prices following technology shocks, therefore

reducing the initial incentive to allocate attention to these shocks. The drop in �y is so large

that the price setter has an initial incentive to allocate more attention to monetary policy

shocks, being prices relatively more volatile to those shocks than to technology shocks under

complete information. The second impact of the lower �y is on the price setter�s allocation

of attention that takes place through a lower attention multiplier: a less aggressive monetary

policy on output growth reduces the feedback from aggregate prices to �rms level complete

information pro�t-maximizing prices, inducing lower complementarities in the allocation of

attention. Finally there is a reallocation of information processing resources at the �rm

level: more resource devoted to process information on the variability of prices to monetary

policy shocks cause prices to be more responsive to such shocks, and, as a consequence, the

capital-to-labor ratio and the intermediate-inputs ratio to have a smaller variability following

monetary policy shocks, as the economy dynamics following these shocks are closer to the

complete information counterparts. It follows that the price decision becomes relatively more

important than the other two decisions. Therefore more information processing capabilities

are allocated to the price setter. In fact, 76 percent of � goes to the price setter, 17 percent

goes to the intermediate-inputs decision maker, and the residual goes to the capital-to-labor

ratio decision maker. The price setter allocates 58 percent of her information processing

capabilities to monetary policy shocks, and 42 percent to technology shocks. Unlike the

benchmark speci�cation, there is no substantial ampli�cation in the di¤erential allocation

of attention in favor of the monetary policy shocks. In Figure 10; I plot the responses of

in�ation to a one basis point shock to "a and "r; in the model with and without limited

information processing capabilities. The speed of adjustment of prices to the two aggregate

shocks is similar, with prices adjusting slightly more quickly to "r than to "a:

In the second modi�cation to the parameterization of the Taylor rule, I increase �� from

0:12 to 0:3; holding the other parameters at the values of the benchmark calibration. This
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induces a more aggressive monetary policy on in�ation, which reduces, everything else being

equal, the variability of prices to any shock. The impact on the allocation of attention is

similar to the impact caused by a decrease in the degree of strategic complementarity in price

setting. The �rst direct e¤ect goes through the reallocation of attention at the price setter

level: a more aggressive monetary policy on in�ation reduces the feedback from aggregate

prices to �rms level complete information pro�t-maximizing prices, inducing lower comple-

mentarities in the allocation of attention, and therefore more attention devoted to monetary

policy shocks relative to the benchmark parameterization. The second, indirect, e¤ect re-

lates to the reallocation of information processing resources at the �rm level: when price

setters allocate more resources to process information on the variability of prices following

monetary policy shocks, aggregate prices become more responsive to such shocks, and, as a

consequence, the capital-to-labor ratio and the intermediate-inputs ratio become less respon-

sive to monetary policy shocks. It follows that the price setter is allocated more resources

relative to the benchmark parameterization. In contrast to the case in which I changed �y; a

change in �� has no substantial impact on the initial incentive for the price setter to allocate

more attention to technology shocks. As in the benchmark parameterization, there is an ini-

tial incentive to allocate more resources to process information about technology shocks, but

here there is no large ampli�cation of this incentive through the attention multiplier. At the

solution, the price setter allocates 56 percent of her information processing capabilities to

the technology shocks. Similarly to the case of a less aggressive monetary policy on output

growth, the capital-to-labor and intermediate-inputs ratios will be not very responsive to

the monetary policy shocks, and hence the respective decision makers will allocate almost

all of their attention to technology shocks. In equilibrium, 64 percent of � is allocated to the

price setter. In Figure 11; aggregate prices have similar speeds of adjustments to the two

aggregate shocks.

The ability of the model to generate the di¤erential response in prices depends, then, on

the fact that the monetary policy, estimated over the sample period 1959:2-2007:2, has been

relative more aggressive on output growth than it has been on in�ation. When I estimate

the same policy rule on the sub-sample37 from 1979:3, to 2007:2, I obtain that the monetary

37This sub-sample includes period from the Volcker�s presidency to 2007.
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policy has been relatively more aggressive on in�ation than it has been on output growth38.

In such a case the model would imply a much smaller ampli�cation of the di¤erential in

attention allocation. However, this does not mean necessarily the model would not capture

the di¤erential response on prices in that sub-sample: the estimated standard deviation of

the TFP shock is, in fact, about 8.5 times the estimated standard deviation of the monetary

policy shock over that sub-sample. The di¤erential response of prices would, then, be driven

more by the relative standard deviations of the shocks and less by the attention multiplier.

6.3 The role of the signal structure

So far I have assumed that attending to technology and monetary policy shocks are separate

activities. This means that each decision maker is always able to distinguish between the two

types of shocks. In this section I investigate what happens in the static version of the model

of section 4; when I remove the independency assumption in (12): Speci�cally, suppose that

the price-setter at �rm z can choose signals of the form:

szp;t =

8>>><>>>:
Ĉt + �cu

c
z;t

P̂t + �pu
p
z;t

R̂t + �ru
r
z;t

L̂t + �lu
l
z;t

; (31)

where ujt is assumed to be iid and normally distributed with zero mean and unitary variance:

In contrast to the signals in (17) � (18) ; the signals in (31) have the property that each
signal contains information about both technology and monetary policy shocks. This signal

structure conveys the idea that each decision maker processes information coming from

signals based on realizations of variables that are actually available in the real world.

The price setter at �rm z solves the attention problem in (19), by choosing the precision

of each signal, �j; j = c; p; r; l; in (31) ; and subject to the information �ow constraint:

�p � �I
�n
P̂ yt (z)

o
; fszp;tg

�
: (32)

38The estimated parameters on the sub-sample 1979:3-2007:2 are:

�r = 0:86

�� = 0:37

�y = 0:14
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In Figure 12; I plot the price responses to the two shocks under rational inattention,

and relative to perfect information as a function of �. For large values of information

processing capabilities, �; �rms make very small mistakes in setting their prices relative to

the complete information optimal choices. In this economy, the complete information pro�t-

maximizing price for each �rm; P̂ yt (z) ; coincides with the aggregate price, since, except

that for the realization of the signals, �rms are identical. Therefore, for large �; the error

coming from limited information processing capabilities is relatively small and the aggregate

price is a very good statistic for the optimal �rm level price. Firms will basically acquire

and process information almost only on aggregate prices. As � decreases, the errors �rms

make in setting prices increase, and the aggregate price becomes a less valuable statistic for

the optimal price. Hence �rms will increase the precision of the other signals relative to

the one for the aggregate price. In particular, they will process relatively more information

about aggregate demand, which appears directly in the equation for complete information

pro�t-maximizing price in (14) : There is, however, a characteristic of aggregate demand that

makes it very di¤erent from aggregate prices: while the covariance of aggregate prices with

P̂ yt (z) is positive independently of the type of shock, the sign of the covariance of aggregate

demand with P̂ yt (z) depends on the type of shock. In particular, demand is negatively

correlated with P̂ yt (z), conditioning on the technology shock, while it is positively correlated

with P̂ yt (z), conditioning on the monetary policy shock. Since a �rm faces, on average, a

larger loss when it is uninformed about the technology shocks than when it is uninformed

about the monetary policy shocks, it decides to respond with a decrease in prices to an

increase in demand. Therefore, for low values of k; aggregate prices are less informative and

hence receive a relatively lower weight while more attention is devoted to aggregate demand,

causing prices to respond with the wrong sign to the monetary policy shocks: prices raise

after a positive shock to "rt .

6.4 Final considerations and extensions

The household side of the economy has been modeled without any friction. Rationally

inattentive households would, most likely, not reduce the ability of the model I propose in

accounting for the di¤erence in the speed of adjustment of prices to the two aggregate shocks.

In the case in which households are monopolistic suppliers of factors, limited information

processing capabilities on them would introduce inertia in the response of factor prices to

shocks. This would have an asymmetric impact on the response of prices to the two aggregate
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shocks. After a monetary policy shock, less responsive factor prices mean less responsive

nominal marginal costs, and, therefore, less responsive aggregate prices when everything

else is equal. After a technology shock, less responsive factor prices would imply more

responsive nominal marginal costs. This is because if factor prices react less, real marginal

costs would move more, as they are a¤ected directly by technology. In fact, the latter

reduces the impact on real marginal costs of technology as it moves in the opposite direction.

Therefore, rationally inattentive households could, in principle, also amplify the di¤erence in

the allocation of attention of the price setter across technology and monetary policy shocks.

Understanding how big this e¤ect is, is left for future research.

There is a role for information sharing at the �rm level. If one decision maker was taking

all the decisions at the �rm level, therefore pooling information processing capabilities, the

outcome would be at least as good as the one obtained by having three separate decision

makers. Although it might not be completely realistic having only one agent taking all the

decisions at the �rm level, it would, most likely, not change substantially the results obtained

in this paper in terms of di¤erential speed of price adjustment to the two aggregate shocks.

The reason is that the price decision is much more important for the �rm that the other two

decisions. In fact, the weight in the component of the loss function due to errors in pricing

is an order of magnitude larger than the weights on the components of the loss function due

to errors in input choices. However, there might also be other e¤ects going on and further

research is eventually needed on this dimension.

7 Conclusions

I have shown that a model in which price setters have limited information processing capabil-

ities provides a natural explanation for the di¤erence in the speed of adjustment of prices to

neutral technology shocks and monetary policy shocks. Price setters allocate more attention

to technology shocks because it is relatively more costly to be uninformed about those shocks

than about monetary policy shocks. Therefore aggregate prices respond quicker to technol-

ogy shocks than to monetary policy shocks. The result is driven by the large di¤erence in the

allocation of attention by the price setter across the two shocks. The large di¤erence in the

allocation of attention is, in great proportion, generated by the interaction of complementar-

ities in price setting with limited information processing capabilities. Complementarities in

price setting induce complementarities in the optimal allocation of attention: any price setter
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at each �rm has an incentive to acquire more information on the same variables other �rms

are, on average, more informed about. Since there is an upper bound on the average �ow

of information processed by each decision maker, when more attention is paid to technology

shocks, less attention is necessarily paid to monetary policy shocks.

The monetary policy authority plays a major role in the determination of the di¤erential

speed of price adjustment to the two aggregate shocks. A more aggressive monetary policy

on in�ation, or a less aggressive policy on output, reduces the multiplicative e¤ect on the

di¤erence in the speed of price adjustment to technology and monetary policy shocks coming

from the allocation of attention.
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9 Appendix A: The solution to the rational inattention

problem

In this appendix I state the optimization problem for each of the three choices the �rm has to

make and take a second-order Taylor expansion around the non-stochastic balanced growth
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path.

The price setter problem is choosing P �t (z) so to maximize (8) and fszp;tg so to maximize
(10) subject to (9). Similarly, the decision maker for the capital-to-labor ratio choses k�t (z)

in each period t to solves:

max
kt(z)

E

" 1X
�=t

��� (P� (z) ; k� (z) ; x� (z) ; �� ) j stkp

#
; (33)

and chooses the optimal signal process fszk;tg so to solve:

max
fszk;tg2S

E

" 1X
t=0

�t� (Pt (z) ; k
�
t (z) ; xt (z) ; �t)

#
(34)

s:t: (35)

�k � �I
�n
kya;t (z) ; k

y
r;t (z)

o
; fszk;tg

�
(36)

where
n
kya;t (z) ; k

y
r;t (z)

o
is the vector of stochastic processes for the complete information op-

timal responses to the two aggregate shocks. Lastly, the decision maker for the intermediate-

inputs ratio sets x�t (z) in each period t to solve:

max
xt(z)

E

" 1X
�=t

��� (P� (z) ; k� (z) ; x� (z) ; �� ) j stxp

#
: (37)

and chooses the optimal signal process fszx;tg in period zero, so to solve:

max
fszx;tg2S

E

" 1X
t=0

�t� (Pt (z) ; kt (z) ; x
�
t (z) ; �t)

#
(38)

s:t: (39)

�x � �I
�n
xya;t (z) ; x

y
r;t (z)

o
; fszx;tg

�
(40)

where
n
xya;t (z) ; x

y
r;t (z)

o
is the vector of stochastic processes for the complete information

optimal responses to the two aggregate shocks.

Non-stationary variables are scaled in the following way: ct � Ct

A
(1��)(1��)
t�1

; yt � Yt

A
(1��)(1��)
t�1

;

wt � Wt

A
(1��)(1��)
t�1

; it � It

A
(1��)(1��)
t�1

; Ht � Kt

A
(1��)(1��)
t�1

; ~Ht � Kt

A
(1��)(1��)
t�1

; kst � kt

A
(1��)(1��)
t�1

; �t �

�tA
(1��)(1��)
t�1 ; xst � xt

A
(1��)2(1��)
t�1

; at � At
At�1

: The other (stationary) endogenous variables are
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Rt; r
k
t ; �t; �t; ut where �t�t is the Lagrangian multiplier on the capital accumulation equation,

and hence �t is the real price of installed capital. I de�ne a variable with a hat to be the log

deviation from its steady state, hence �xt = ln (xt)� ln (�x) : De�ne the real pro�t function of
�rm z at time t as:

� (Pt (z) ; kt (z) ; xt (z) ; Yt; Pt; At;Wt; rt) �
�
Pt (z)

Pt
� Q (kt (z) ; xt (z) ;Wt; rt)

At

��
Pt (z)

Pt

���
Yt;

(41)

where Yt is aggregate demand; kt (z) � Kt(z)
Lt(z)

is the capital-to-labor ratio at �rm z, and

xt (z) � Xt(z)

Kt(z)
�Lt(z)

1�� is the ratio of intermediate inputs to the composite input derived from

capital and labor. Q (kt (z) ; xt (z) ;Wt; rt) is given by:

Q (kt (z) ; xt (z) ;Wt; rt) �
�
rkt kt (z)

1�� xt (z)
�� +Wtkt (z)

�� xt (z)
�� + xt (z)

1��� : (42)

I then construct the discounted pro�t function, multiplying the pro�t function by the (scaled)

discount factor, �t:

~�

�
Pt (z)

Pt
; kst (z) ; x

s
t (z) ; Yt; At;Wt; rt; �t

�
� �t

� (Pt (z) ; kt (z) ; xt (z) ; Yt; Pt; At;Wt; rt)

A
(1��)(1��)
t�1

where qt =
Q(kt(z);xt(z);Wt;rt)

A
(1��)(1��)
t�1

: Hence I express the pro�t function ~� as a function of variables

in log-deviations from the balanced growth path:

��
�
P̂t (z)� P̂t; k̂

s
t (z) ; x̂

s
t (z) ; ŷt; ât; ŵt; r̂t; �̂t

�
� ~�

�
eP̂t(z)�P̂t ; �kek̂

s
t ; �xex̂

s
t ; �yeŷt ; eât ; �weŵt ; �rer̂t ; ��e�̂t;

�
:

I then take a second order Taylor expansion of �� around the non-stochastic balanced growth

path:

��
�
P̂t (z)� P̂t; k̂

s
t (z) ; x̂

s
t (z) ; ŷt; ât; ŵt; r̂t; �̂t

�
� �� (0; 0; 0; 0; 0; 0; 0; 0) + ��1

�
P̂t (z)� P̂t

�
+ ��2k̂

s
t (z) + ��3x̂

s
t (z) + ��4ŷt + ��5ât + ��6ŵt + ��7r̂t + ��8�̂t +

+
��11
2

�
P̂t (z)� P̂t

�2
+
��22
2
k̂st (z)

2 +
��33
2
x̂st (z)

2 +
��44
2
ŷ2t +

��55
2
â2t +

��66
2
ŵ2t +

��77
2
r̂2t +

��88
2
�̂
2

t +

+��12

�
P̂t (z)� P̂t

�
k̂st (z) + ��13

�
P̂t (z)� P̂t

�
x̂st (z) + ��14

�
P̂t (z)� P̂t

�
ŷt + ��15

�
P̂t (z)� P̂t

�
ât

+��16

�
P̂t (z)� P̂t

�
ŵt + ��17

�
P̂t (z)� P̂t

�
r̂t + ��18

�
P̂t (z)� P̂t

�
�̂t +

+��23k̂
s
t (z) x̂

s
t (z) + ��24k̂

s
t (z) ŷt + ��25k̂

s
t (z) ât + ��26k̂

s
t (z) ŵt + ��27k̂

s
t (z) r̂t + ��28k̂

s
t (z) �̂t +

+��34x̂
s
t (z) ŷt + ��35x̂

s
t (z) ât + ��36x̂

s
t (z) ŵt + ��37x̂

s
t (z) r̂t + ��38x̂

s
t (z) �̂t +

+��45ŷtât + ��46ŷtŵt + ��47ŷtr̂t + ��48ŷt�̂t + ��56âtŵt + ��57âtr̂t + ��58ât�̂t +

+��67ŵtr̂t + ��68ŵt�̂t + ��78r̂t�̂t:
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In order to simplify further the problem, I subtract from the second order Taylor expansion

for pro�ts under incomplete information, the equivalent expression when the decision maker

has complete information, everything else being equal. For example in the case of the price

setter:

��
�
P̂ �t (z)� P̂t; k̂t (z) ; x̂t (z) ; ŷt; ât; ŵt; r̂t; �̂t

�
� ��

�
P̂ yt (z)� P̂t; k̂t (z) ; x̂t (z) ; ŷt; ât; ŵt; r̂t; �̂t

�
:

The latter does not in�uence the attention allocation problem. Maximizing the discounted

sum of pro�ts relative to the optimal signal structure is equivalent to maximize it in devia-

tions from the value under complete information, as the latter is independent of the signal

choice. Therefore the objective for the attention allocation problem of the price setter is

approximated by:

E
1X
t=0

h
��
�
P̂ �t (z)� P̂t; k̂

s
t (z) ; x̂

s
t (z) ; ŷt; ât; ŵt; r̂t; �̂t

�
� ��

�
P̂ yt (z)� P̂t; k̂

s
t (z) ; x̂

s
t (z) ; ŷt; ât; ŵt; r̂t; �̂t

�i
� �!1E

�
P̂ �t (z)� P̂ yt (z)

�2
where !1 =

�Y (��1)
2(1��) ; and where I have used the results from the second order Taylor expansion

and the fact that:

i) : E��1 = 0; (43)

ii) : E

 
��11

�
P̂ yt (z)� P̂t

�
+ ��12k̂

s
t (z) + ��13x̂

s
t (z)+

��14ŷt + ��15ât + ��16ŵt + ��17r̂t + ��18�̂t

!
= 0: (44)

From (44) ; and computing the values of (��11; ��12; ��13; ��14; ��15; ��16; ��17; ��18) from (41) ; it is

possible to show that the complete information optimal log-price coincides with the log-

deviation of aggregate nominal marginal costs:

P̂ yt (z) = P̂t + q̂t � ât

= P̂t + (1� �)
�
�r̂kt + (1� �) ŵt

�
� ât:

The attention allocation problem for the price setter reduces to:

min
fszp;tg2S

!1E
�
P̂ �t (z)� P̂ yt (z)

�2
(45)

s:t:

i) : P̂ �t (z) = E
h
P̂ yt (z) j stzp

i
;

ii) : �p � �I
�n
P̂ yat (z) ; P̂

y
rt (z)

o
; fszp;tg

�
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where the optimal choice of prices, P̂ �t (z) ; is a projection of the complete information price

over the signal realization up to time t. This is due to the fact that the objective function is

quadratic. It can be proven that the objective function is well de�ned in the sense that at

the optimal solution it is �nite:

Similarly, it can be shown that the objective in the attention allocation problem for the

capital labor ratio choice can be approximated with a second order Taylor expansion by:

�!2E
�
k̂�t (z)� k̂yt (z)

�2
where !2 =

�Y (��1)
2(1��))

�(1��)
�

: The complete information optimal choice for the capital labor ratio

depends on the relative ratio of real wages to rental rates:

kyt (z) =
�

1� �

Wt

rkt
;

then by log-linearizing the above expression:

k̂yt (z) = Ŵt � r̂kt ;

Then the attention allocation problem is:

min
fszk;tg2S

!2E
�
k̂�t (z)� k̂yt (z)

�2
(46)

s:t:

i) : k̂�t (z) = E
h
k̂yt (z) j stzk

i
;

ii) : �k � �I
�n
k̂yat (z) ; k̂

y
rt (z)

o
; fszk;tg

�
:

Finally, the objective in the attention allocation problem for the intermediate-inputs ratio

to the other factors, can be approximated with a second order Taylor expansion by:

�!3E
�
x̂�t (z)� x̂yt (z)

�2
where !3 =

�Y (��1)
2(1��)

�(1��)
�

: The optimal intermediate-inputs ratio under complete information

is given by:

xyt (z) =
�

1� �

�
rkt
��
W 1��
t

�� (1� �)1��
;

and then by log-linearizing the expression above I obtain :

x̂yt (z) = �r̂kt + (1� �) Ŵt:
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Then the attention allocation problem for the production department is:

min
fszx;tg2S

!3E
�
x̂�t (z)� x̂yt (z)

�2
(47)

s:t:

i) : x̂�t (z) = E
h
x̂yt (z) j stzx

i
;

ii) : �x � �I
�n
x̂yat (z) ; x̂

y
rt (z)

o
; fszx;tg

�
:

Notice that in the information �ows for all three problems, I have replaced the levels with

the logs. Given that this is a monotonic transformation the value of the information �ow

will be unchanged, and hence the level of uncertainty of the two processes is the same.

9.1 Appendix B: the solution routine

This is a two step procedure. In the �rst step the endogenous variables are scaled, and the

�rst order conditions are log-linearized around the non-stochastic balanced growth path for

given guesses for fgp;tg, fgk;tg and fgx;tg ; obtaining a linear state space representation. In
the second step the rational inattention problems are solved and the guesses are veri�ed and

updated.

9.1.1 Step 1

There are fourteen endogenous variables
�
ct; yt; wt; it; Ht; ~Ht; k

s
t ; �t; x̂

s
t ; Rt; r

k
t ; �t; �t; ut

�
. Af-

ter log-linearizing the scaled model around its balanced growth path, I obtain the fourteen

equations that de�ne the equilibrium. Three of these equations are directly liked to the ratio-

nal inattention problems. The equations directly involving the rational inattention problems

are the one de�ning aggregate prices, the one relative to the aggregate capital-to-labor ratio,

and the one relative to the intermediate-inputs ratio. These problems are solved in step 2,

but in step 1 I give a guess for aggregate prices, the ratio of aggregate capital to labor, and

the ratio of intermediate-inputs to capital and labor. Formally, the three guesses take the
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form of the sum of stationary MA (T ) processes39:

gp;t � gap;t + grp;t =

T�1X
l=0

ap;l"
a
t�l +

T�1X
l=0

rp;l"
r
t�l; (48)

gk;t � gak;t + grk;t =

T�1X
l=0

ak;l"
a
t�l +

T�1X
l=0

rk;l"
r
t�l; (49)

gx;t � gax;t + grx;t =

T�1X
l=0

ax;l"
a
t�l +

T�1X
l=0

rx;l"
r
t�l: (50)

The equilibrium condition that de�nes the aggregate price is:

P̂t =

Z 1

0

E
h
P̂ yt (z) j stzp

i
dz;

which I express as:

P̂t = P̂ yt + gp;t;

which implies that the equilibrium price can be expressed as the price that would prevail

under complete information for the decision maker, plus a process that depends on the

realizations of the only two exogenous variables in the model. The condition above can

then be manipulated to obtain an expression that does not depend on price level. This is

important as the price level is not stationary. Therefore:

P̂t = P̂ yt (z) + gp;t

P̂t = P̂t + (1� �)
�
�rkt + (1� �) ŵt

�
� ât + gp;t

0 = (1� �)
�
�rkt + (1� �) ŵt

�
� ât + gp;t (51)

where the second equation derives from the de�nition of P̂ yt (z). In a similar way I obtain a

condition for aggregate capital-to-labor ratio,

k̂t =

Z 1

0

E
h
k̂yt (z) j stzk

i
dz;

and express it as:

k̂t = k̂yt (z) + gk;t

= Ŵt � r̂kt + gk;t;

k̂st = ŵt � r̂kt + gk;t: (52)

39Stationarity comes from the fact that these di¤erences converge to zero after a one time shock.
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Finally, the condition de�ning the aggregate intermediate-inputs ratio is given by:

x̂t =

Z 1

0

E
h
x̂yt (z) j stzx

i
dz;

and it is expressed as:

x̂t = x̂yt (z) + gx;t

= (1� �) Ŵt + �r̂kt + gx;t:

x̂st = (1� �) ŵt + �r̂kt + gx;t (53)

I then formulate the guess for the 6T parameters,
�
ap;l; 

r
p;l; 

a
k;l; 

r
k;l; 

a
x;l; 

r
x;l

	T�1
l=0
, for

a large T . Once this is done, I can solve the model, represented by the sixteen equations,

three of which are (51) ; (49) ; (53) ;and obtain a state space representation. In particular I

can obtain the responses of P̂ yt (z), k̂
y
t (z) and x̂

y
t (z) to the two shocks, which is all I need to

solve the rational inattention problems:

P̂ yt (z) � P̂ yat (z) + P̂ yrt (z) =
T�1X
l=0

�ap;l"
a
t�l +

T�1X
l=0

�rp;l"
r
t�l; (54)

k̂yt (z) � k̂yat (z) + k̂yrt (z) =
T�1X
l=0

�ak;l"
a
t�l +

T�1X
l=0

�rk;l"
r
t�l; (55)

x̂yt (z) � x̂yat (z) + x̂yrt (z) =
T�1X
l=0

�ax;l"
a
t�l +

T�1X
l=0

�rx;l"
r
t�l (56)

9.1.2 Step 2

In the second step I solve for the attention allocations problems. In order to save on space, I

express the attention allocation problems of the three decision makers in terms of the variable

�̂j;t (z) ; which I de�ne in the following way:

�̂j;t (z) �

8><>:
P̂t (z) ; j = p

k̂t (z) ; j = k

x̂t (z) ; j = x

:
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Given the assumption of independent signals in (12) ; I can express the attention problem

for the choice of signals for decision maker j as:

min
(fszja;tg;fszjr;tg)2S

!jE
�
�̂
y
ja;t (z)� �̂

�
ja;t (z)

�2
+ !jE

�
�̂
y
jr;t (z)� �̂

�
jr;t (z)

�2
(57)

s:t:

i) : �̂
�
ja;t (z) = E

h
�̂
y
ja;t (z) j stzja

i
;

ii) : �̂
�
jr;t (z) = E

h
�̂
y
jr;t (z) j stzjr

i
;

iii) : �j � �I
�n
�̂
y
ja;t (z)

o
; fszja;tg

�
+ �I

�
�̂
y
jr;t (z) ; fszjr;tg

�
;

I can then solve separately six attention allocation problems, two for each of the three decision

makers, as the objective functions are separable, and the information �ow constraints are

additive. One can show that the objective function in (57) is �nite at a solution. One

can also show that, in this framework, �I
�n
�̂
y
ja;t (z)

o
; fszja;tg

�
= �I

�n
��̂

y
ja;t (z)

o
; fszja;tg

�
:

Also, Máckoviak and Wiederholt (2007) show that the attention allocation problem can be

solved directly in terms of conditional expectations. I report only the solution procedure

to attention allocation to shock f"at g for choice j. The procedure for f"rtg is identical.
Therefore, consider the optimal attention allocation for �̂ja;t (z) relative to the f"at g process.
The signal and the optimal price process

�n
�̂
y
ja;t (z)

o
; fszpa;tg

�
are normally distributed and

the variable to process information about is univariate. I can then express the attention

allocation problems as:

min
(faj;lg;fbj;lg)

!j lim
T!1

"
�2a

T�1X
l=0

�
~aj;l � �aj;l

�2
+

T�1X
l=0

~b2j;l

#
s:t:

i) : �ja � �I
�n
��̂

y
ja;t (z)

o
;
n
��̂

�
ja;t (z)

o�
;

ii) : ��̂
�
ja;t (z) = E

h
��̂

y
ja;t (z) j stzja

i
� lim

T!1

"
T�1X
l=0

aj;l"
a
t�l +

T�1X
l=0

bj;lu
a
t�l

#
;

ii) : ut�l iid s N(0; 1);

iv) : ~aj;l =

lX
i=0

aj;l; ~bj;l =

lX
i=0

bj;l;

where the information �ow is de�ned by:

�I
�n
��̂

y
ja;t (z)

o
;
n
��̂

�
ja;t (z)

o�
= lim

T!1

1

T

�
0:5 log2

���(2�e)T

��̂

y
ja;t

���� 0:5 log2 ���(2�e)T
��̂yja;tj��̂�ja;t���� ;



46

where 

��̂

y
ja;t
is the variance-covariance matrix of

n
��̂

y
ja;t

o
and 


��̂
y
ja;tj��̂

�
ja;t
is the variance-

covariance matrix of
n
��̂

y
ja;t

o
conditional on

n
��̂

�
ja;t

o
: Both are stationary objects. The

implied process for ��̂t;ja is then

��̂ja;t = lim
T!1

T�1X
l=0

a�j;l"
a
t�l:

In order to solve the model, I �x a large T and solve the model for that T: I can then update

the guess in the following way:

a
0

j;l = (1� {) aj;l + {
�
~a�j;l � �aj;l

�
;

where { is a constant chosen small enough to ensure convergence. Notice that at a solution,

~a�j;l � �aj;l = aj;l:

In the same way I solve for the process f"rtg and update for the corresponding guesses. Once
I have all the new guesses, I start again from step 1 and iterate until convergence.

9.2 Appendix C: Solution to the static model

The log-linearized equations de�ning the solution to the static version in section 4 of the

model are:

Ŷt = (1� �) Ĉt + �X̂t; (58)

Ĉt = �R̂t � P̂t; (59)

R̂t = ��P̂t + �yĈt + "rt ; (60)

Ŷt = �X̂t + (1� �) L̂t + "at ; (61)

Ŵt =  lL̂t + Ĉt; (62)

X̂t = L̂t + Ŵt; (63)

P̂ yt (z) = P̂t + (1� �) Ŵt � "at : (64)

By substituting (58) into (61) I get an expression for hours worked, L̂t = Ĉt � "at
1�� ; which I

then substitute into (62) ; to get an expression for real wages as a function of demand and

technology, Ŵt = (1 +  l) Ĉt �  l
"at
1�� : Substituting the latter into (64) gives:

P̂ yt (z) = P̂t + �Ĉt � (1 +  l) "at :
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where � = (1 +  l) (1� �) : Using equations (59) and (60) ; I obtain an expression for Ĉt as

a function of P̂t and "rt ; Ĉt = �
1+��
1+�y

P̂t� "rt
1+�y

: Finally, using the last result and the guess for

aggregate prices, P̂t = �r"
r
t + �a"

a
t ; I obtain an expression for complete information optimal

prices as a function of the shocks only:

P̂ yt (z) =

��
1� �

1 + ��
1 + �y

�
�r + #r

�
"rt +

��
1� �

1 + ��
1 + �y

�
�a + #a

�
"at ;

#a � � (1 +  l) ;

#r � � (1 +  l) (1� �)
1

1 + �y
:

I can then solve the price setter attention problem expressing it as:

min
fszp;tg2S

!1E
�
P̂ �t (z)� P̂ yt

�2
s:t:

i) : P̂ yt (z) =

��
1� �

1 + ��
1 + �y

�
�r + #r

�
"rt +

��
1� �

1 + ��
1 + �y

�
�a + #a

�
"at ;

ii) : P̂ �t (z) = E
h
P̂ yt (z) j szpt

i
;

iii) : szprt = (��r + #r) "
r
t + urzt

iv) : szpat = (��a + #a) "
a
t + uazt

v) : urzt ? uazt; u
a
zt~N(0; �

2
a); u

r
zt~N(0; �

2
r)

vi) :
1

2
log2

�
1 +

�2a
�2a

�
+
1

2
log2

�
1 +

�2r
�2r

�
� �p

Using the constraints (i)� (v), and solving for the unconditional expectation, the objective
the problem becomes:

min�
�2a
�2a
�0;�

2
r
�2r
�0
�!1

264
�
~��a + #a

�2
�2a

1 + �2a
�2a

+

�
~��r + #r

�2
�2r

1 + �2r
�2r

375
s:t:

i :

�
1 +

�2a
�2a

��
1 +

�2r
�2r

�
� 22�:

where ~� = 1� � 1+��
1+�y

: The interior solution to the problem above is:

1 +
�2a
��2a

= 2�
~��a + #a
~��r + #r

�a
�r
; (65)

1 +
�2r
��2r

= 2�
~��r + #r
~��a + #a

�r
�a
: (66)
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Then solving for the �xed point, �a and �r; and substituting the result into (65) � (66)
implies:

1 +
�2a
��2a

= 2�
1� ~�

�
1 + 2��



�
1� ~� (1 + 2��)

;

1 +
�2r
��2r

=
2�



1� ~� (1 + 2��)
1� ~�

�
1 + 2��



� :
The conditions on parameters for an interior solution are obtained by imposing

�2j
�2j
� 0; and

are given by: (
~� � 1� 1


2��

1�2�2� if  � 1
~� � 1�2��

1�2�2� if  > 1

Then, the corner solutions for �a and �r are:8<: (�a; �r) =
�
#a

1�2�2�
1�~�(1�2�2�) ; 0

�
if ~� > 1�2��

1�2�2� and  > 1

(�a; �r) =
�
0; #r

1�2�2�
1�~�(1�2�2�)

�
if ~� >

1� 1

2��

1�2�2� and  � 1

9.3 Appendix D

The production function Fernald (2007) uses to estimate the TFP growth rate through a

Solow residual is:

Y va
t = Zt (Ktut)

� L1��t

where Y va
t is value added output, and the measure of labor takes into account of the quality

and e¤ort into hours worked. The implied expression for the Solow residual is:

Ẑt = Ŷ va
t �

�
�K̂t + �ût + (1� �) L̂t

�
:

By log-di¤erentiating the aggregate production function in mymodel on the non-stochastic

balanced growth path, I obtain:

Ât = Ŷt � (1� �)
�
�K̂t + �ût + (1� �) L̂t

�
� �X̂t:

Then, considering the fact that gross output growth, Ŷt; can be partitioned in intermediate

inputs growth, X̂t; and value added output growth, Ŷ va
t :

Ŷt = �X̂t + (1� �) Ŷ va
t ;
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I obtain the �nal expression for the Solow residual implied by my model:

Ât
(1� �)

= Ŷ va
t �

�
�K̂t + �ût + (1� �) L̂t

�
:

Therefore Ẑt = Ât
(1��) ; which implies �a = (1� �)�z:



Tables 
 

Table 1- Forecast error decomposition –VAR, U.S., 1959-2:2007:2 
Horizons 1 5 10 20 

Technology Shock 0.68 
(0.20) 

0.52 
(0.14) 

0.45 
(0.12) 

0.33 
(0.11) 

Monetary policy shock 0.00 
(0.00) 

0.01 
(0.02) 

0.05 
(0.03) 

0.14 
(0.07) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 - Taylor rule estimation, U.S., 1959:2-2007:2 
c ρr φπ φy 

-0.2 
(0.07) 

0.96 
(0.03) 

0.12 
(0.04) 

0.2 
(0.04) 

ttyttrt uyrcr ++++= − φπφρ π1  

The constant c is scaled on the basis of annualized nominal interest rates, expressed in percent. SSR is 0.64. 

The R2 is 0.94. 

 
 

Table 2 - Parameters Calibration 

β 1.03-0.25 

δ 0.025 

ϕl 1 

α 0.36 

b 0.7 

S’’(1) 5 

ψσ  0.5 

θ 4 

μ 0.75 

γa 0.001 

ρa 0 

r

a

σ
σ

 
1 

κ 4 



Figures 
 

Figure 1: IRF to 1 b.p. TFP and FFR shock, Benchmark VAR, U.S. 1959:2-2007:2 
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Figure 2: Price responses relative to complete information, Static Model 
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Figure 3: Attention Multiplier as a function of κ, Static Model 
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Figure 4: Attention Multiplier as a function of ξ, Static Model 
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Figure 5: Price responses to εr relative to complete information as a function of  
               ξ and κ, Static Model 
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Figure 6: Price responses to εa relative to complete information as a function of   
               ξ and κ, Static Model 
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Figure 7: IRF to 1 basis point shock to εa and εr, Complete information∗ 

0 2 4 6 8 10 12 14
2

3

4

5

6
output 

0 2 4 6 8 10 12 14
-15

-10

-5

0

5
inflation

Technology Shock

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
output 

0 2 4 6 8 10 12 14
-2

0

2

4

6

8

10
inflation

Interest rate shock

 
Figure 8: IRF to 1 basis point shock to εa and εr, Rational Inattention 
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∗ Notice that a 1 basis point shock to εa corresponds to a 1/(1-μ) basis point shock to TFP in the VAR. For 
more details see Appendix D. All responses are expressed in percent values. 



Figure 9: IRF to 1 basis point shock to εa and εr, Rational Inattention and 
Complete Info, low strategic complementarities in prices, μ=0.5 
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Figure 10: IRF to 1 basis point shock to εa and εr, Rational Inattention and 
Complete Info, monetary policy less aggressive on output growth, φy= 0.1 
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Figure 11: IRF to 1 basis point shock to εa and εr,  Rational Inattention and 
Complete Info, monetary policy more aggressive on inflation, φπ= 0.3 
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Figure 12: Price responses relative to complete information as a function of κ, 
Static Model with signals on endogenous variables 
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