
I. Sample Selection Models

� Consider a population of womenwhere only
a sub-sample are engaged in market em-
ployment and report wages.

� Suppose we are interested in identifying the
determinants of the wages of these working
women to make statements regarding the
determinants of wages for all women.

� The di¤erences between the workers and
non-workers determines whether an issue
of selection bias arises.

� To illustrate this characterize each individ-
ual by her endowments of observable and
unobservable characteristics.
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� First assume that the working sub-sample
is chosen randomly from the population.

� If the working sub-sample have similar en-
dowments of characteristics as the non-working
sample there is no reason to suspect selec-
tivity bias will be induced by examining
the working sample.

� That is, as the sample is randomly cho-
sen the average characteristics, in terms of
both observable and unobservables, of the
working sample should be similar to the
average characteristics of the population.
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� Now consider where the decision to work
is no longer random and as a consequence
the working and non-working samples po-
tentially have di¤erent characteristics.

� Sample selection bias arises when some com-
ponent of the work decision is relevant to
the wage determining process. That is,
when some of the determinants of the work
decision are also in�uencing the wage.

� However, if the relationship between the
work decision and the wage is purely through
the observables one can control for this by
including the appropriate conditioning vari-
ables in the wage equation.

� Thus, sample selection bias will not arise
purely on the basis of di¤erences in observ-
able characteristics.
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� However, if we now assume the unobserv-
able characteristics a¤ecting the work de-
cision are correlated with the unobservable
characteristics a¤ecting the wage we gen-
erate a relationship between the work de-
cision and the process determining wages.

� Controlling for the observable characteris-
tics when explaining wages is insu¢ cient
as some additional process is in�uencing
the wage, namely, the process determining
whether an individual works or not.

� If these unobservable characteristics are cor-
related with the observables then the fail-
ure to include an estimate of the unobserv-
ables will lead to incorrect inference re-
garding the impact of the observables on
wages. Thus a bias will be induced due to
the sample selection
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� This discussion highlights that sample se-
lectivity operates through unobservable el-
ements, and their correlationwith observed
variables, although often one can be alerted
to its possible presence through di¤erences
in observables across the two samples.

� However, this latter condition is no means
necessary, or even indicative, of selection
bias. Although this example is only illus-
trative it highlights the generality of the is-
sues and their relevance to many economic
examples.

� The possibility of sample selection bias arises
whenever one examines a sub-sample and
the unobservable factors determining in-
clusion in the sub-sample are correlatedwith
the unobservables in�uencing the variable
of primary interest.
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II. The Model

� The conventional sample selection model
has the form:

y�i = x0i� + �i; i = 1::N (1)

d�i = z0i
 + vi; i = 1::N (2)

di = 1 if d�i > 0; di = 0 otherwise (3)

yi = y�i � di; (4)

where y�i is a latent endogenous variable with
observed counterpart yi; d

�
i is a latent vari-

able with associated indicator function di

re�ecting whether the primary dependent
variable is observed andwhere the relation-
ships, between di and d�i ; and yi and y�i respec-
tively, are shown in (3) and (4). (1) is the
equation of primary interest and (2) is the
reduced form for the latent variable captur-
ing sample selection; xi and zi are vectors of
exogenous variables; � and 
 are vectors of
unknown parameters; and �i and vi are zero
mean error terms with E[�ijvi] 6= 0:

�We let N denote the entire sample size and
use n to denote the sub-sample for which
di = 1
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:

� At this point we allow zi to contain at least
one variable which does not appear in xi al-
though this is sometimes seen to be a con-
troversial assumption and, as such, we re-
turn to a discussion of it below.

�While this exclusion restriction is typically
not necessary for parametric estimation it
is generally crucial for semi-parametric pro-
cedures. For now we assume that xi is con-
tained in zi: The primary aim is to consis-
tently estimate �.
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�

�Well known that ordinary least squares (OLS)
estimation of � over the sub-sample corre-
sponding to di = 1 will generally lead to in-
consistent estimates due to the correlation
between xi and �i operating through the re-
lationship between �i and vi:

� A number of remedies, however, exist. The
�rst is maximum likelihood estimation and
relies heavily on distributional assumptions
regarding �i and vi: A second approach is
characterized by two-step procedures which
approximate or eliminate the non-zero ex-
pectation of �i conditional on vi
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III. Maximum Likelihood Estimation

A. Parametric methods
� The �rst solution to sample selection bias
was suggested byHeckman (1974) who pro-
posed amaximum likelihood estimator. This
requires distributional assumptions regard-
ing the disturbances and Heckman made
the following assumption:

� Assumption 1: �i and vi; i = 1::N; are inde-
pendently and identically distributed N(0;

P
)

where P
=

�
�2� ��v
��v �2v

�
and (�i; vi) are inde-

pendent of zi:
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� Using Assumption 1 it is straightforward
to estimate the parameters for the model
in Section 3 by maximizing the following
average log likelihood function:

L =
1

N

NX
i=1

fdi�ln[
Z �(z0i
)

�1
��v(yi�x0i�; v)dv]+(1�di)�[ln

Z 1

�(z0i
)

Z 1

�1
��v(�; v)d�dv]g

(5)

where ��v denotes the probability density func-
tion for the bivariate normal distribution.
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� This is closely related to the Tobit estima-
tor although it is less restrictive in that the
parameters explaining the censoring are not
constrained to equal those explaining the
variation in the observed dependent vari-
able.

� For this reason it is also known as Tobit
type two (see, for example, Amemiya 1984).
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� As estimation heavily relies on the normal-
ity assumption the estimates are inconsis-
tent if normality fails. This is an unattrac-
tive feature although it is straightforward
to test the normality assumption using tests
such as those proposed byGourieroux, Mon-
fort, Renault andTrognon (1987) andChesher
and Irish (1987). It is also possible to em-
ploy the conditional moment framework of
Newey (1985) and Tauchen (1985) as dis-
cussed in Pagan and Vella (1989).
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� It is clear that estimation would be simpli-
�ed if ��v = 0 as (5) would then reduce to the
product of the two marginal likelihoods.

� That is, a product of the likelihood func-
tion explaining whether di was equal to 1 or
0; over the entire N sample, and the likeli-
hood function explaining the variation in yi

for the n sub-sample satisfying di = 1:
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� Alternatively, when ��v 6= 0 it is necessary to
evaluate double integrals. Moreover, since
there is no selection bias when ��v = 0 a test
of this hypothesis is a test of whether the
correlation coe¢ cient ��v is equal to zero
as this parameter captures the dependence
between � and v: Alternatively, one could es-
timate under the null hypothesis of no se-
lection bias and test ��v = 0 via the lagrange
multiplier or the conditional moment ap-
proaches.
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�When the model is estimated by maximum
likelihood the parameter estimates are fully
e¢ cient.

� This is an important characteristic as sev-
eral alternative estimators do not require
the same parametric assumptions for con-
sistency. However, the relaxation of para-
metric assumptions is accompanied by an
e¢ ciency loss. Accordingly, the maximum
likelihood estimates are a benchmark to
examine the e¢ ciency loss of these proce-
dures under normality (see, for example,
Nelson 1984).
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� Furthermore, much of the development of
this literature is devoted to the trade-o¤
between e¢ ciency and robustness. While
maximum likelihood is the best when the
model is correctly speci�ed there exists a
willingness to trade-o¤ some e¢ ciency for
estimators which are more robust to distri-
butional assumptions.

� The ease of implementation is also an im-
portant issue.
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� One way to relax the normality, while re-
maining in the maximum likelihood frame-
work, was suggested by Lee (1982, 1983).

� Lee proposes transforming the stochastic
components of the model into random vari-
ables which can be characterized by the bi-
variate normal distribution.
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� For example, suppose the errors � and v are
drawn respectively from the non-normal but
known distributions F (�) and G(v):

� It is possible to transform � and v into nor-
mal disturbances via the functions J1 and J2

, which involve the inverse standard normal
distribution function, such that:

�� = J1(�) � ��1[F (�)] (6)

v� = J2(v) � ��1[G(v)] (7)

where the transformed errors �� and v� now
have standard normal distributions.

18



� The joint distribution of the transformed
errors is now fully characterized through
the bivariate normal distribution. Further-
more, it is possible to construct a likeli-
hood function for the transformed errors
as is done in equation (5) noting, however,
that an additional set of parameters, char-
acterizing F (�) and G(v), must be estimated.
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B. Semi-nonparametric methods
� To avoid distributional assumptions it is
possible to employ the general estimation
strategy of Gallant and Nychka (1987) who
approximate the underlying true joint den-
sity with:

b�v = (
KX
k=0

JX
j=0

�kj�
kvj)���v (8)

where b�v denotes the true joint density; �� and �v

denote the normal densities for � and v respec-
tively; and �kj denote unknown parameters.

� The basic idea is to multiply the product
of these two marginal normal densities by
some suitably chosen polynomial such that
it is capable of approximating the true joint
density.
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� The estimate of b�v must represent a density
and this imposes some restrictions on the
chosen expansion and the values of �kj. Gal-
lant and Nychka show that the estimates of
� and 
 are consistent providing the number
of approximating terms tends to in�nity as
the sample size increases.

�While Gallant and Nychka provide consis-
tency results for their procedure they do
not provide distributional theory.

� However, when K and J are treated as known
inference can be conducted as though the
model was estimated parametrically.
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IV. Two-Step Estimation

�While the semi-nonparametric procedures
can be computationally challenging themax-
imum likelihood procedures of Heckman and
Lee are relatively straightforward. How-
ever, their use in empirical work is rela-
tively uncommon.

� The more frequently employed methods for
sample selection models are two-step esti-
mators. In considering the two-step pro-
cedures it is useful to categorize them into
three �generations�.
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� The �rst fully exploits the parametric as-
sumptions.

� The second relaxes the distributional as-
sumptions in at least one stage of estima-
tion.

� The third type are semi-parametric in that
they relax the distributional assumptions.
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A. Parametric Two-Step Estimation
� To examine the two-step version of the fully
parameterizedmodel we retainAssumption
1.

� The primary equation of interest over the
n sub-sample corresponding to di = 1 can be
written:

yi = x
0
i� + �i; i = 1::n (9)

recallingOLS estimation leads to biased es-
timates of � since E[�ijzi; di = 1] 6= 0 (that is, the
conditional mean of y is misspeci�ed).
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� The general strategy proposed byHeckman
(1976,1979) is to overcome this misspeci�-
cation through the inclusion of a correction
term which accounts for E[�ijzi; di = 1]:

� To employ this approach take the condi-
tional expectation of (9) to get:

E[yijzi; di = 1] = x0i� + E[�ijzi; di = 1]; i = 1::n:
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� Using Assumption 1 and the formula for
the conditional expectation of a truncated
random variable we note that E[�ijzi; di = 1] =
��v
�2v
f �(z

0
i
)

�(z0i
)
g where �(:) and �(:) denote the proba-

bility density and cumulative distribution
functions of the standard normal distribu-
tion.

� The term in curly brackets is known as the
inverse Mills ratio.
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� To obtain an estimate of the inverse Mills
ratio we require the unknown parameters

 and �v: By exploiting the latent structure
of the underlying variable capturing the se-
lectivity process, and the distributional as-
sumptions in Assumption 1, we can esti-
mate 
=�v by Probit.

� Thus the two-step procedure suggested by
Heckman (1976,1979) is to �rst estimate 


over the entire N observations by maximum
likelihood Probit and then construct an es-
timate of the inverse Mills ratio.

� One can then consistently estimate the pa-
rameters by OLS over the n observations
reporting values for yi by including an esti-
mate of the inverse Mills ratio, denoted �̂i;

as an additional regressor in (9).
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� More precisely, we estimate:
yi = x

0
i� + ��̂i + �i (10)

by OLS to obtain consistent estimates of �
and �; where �i is the term we use through-
out the paper to denote a generic zeromean
error uncorrelated with the regressors and
noting � =��v

�2v
:

� This procedure is also known as a �con-
trol function�estimator (see, for example,
Heckman and Robb 1985a,b).
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� The t-test on the null hypothesis � = 0 is a
test of ��v = 0 and represents a test of sample
selectivity bias. Melino (1982) shows this
represents the optimal test of selectivity
bias, under the maintained distributional
assumptions, as it is based on the samemo-
ment as the lagrange multiplier test.

� That is, both the lagrange multiplier test
and the t-test for the coe¢ cient on �̂i are
based on the correlation between the er-
rors in the primary equation and the errors
from the selection equation noting that the
inverseMills ratio is the error from the Pro-
bit equation explaining selection.

�We return to this interpretation of the in-
verse Mills ratio below.
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� TheHeckman two-step estimator is straight-
forward to implement and the second step
is only complicated by the standard errors
having to be adjusted to account for the
�rst step estimation (see, for example, Heck-
man 1976,1979, Greene 1981 and Maddala
1983).

� However, one concern is related to identi-
�cation.
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�While the inverse Mills ratio is nonlinear
in the single index (z0i
) the function map-
ping this index into the inverse Mills ratio
is linear for certain ranges of the index.

� Accordingly the inclusion of additional vari-
ables in zi in the �rst step can be important
for identi�cation of the second step esti-
mates. However, there are frequently few
candidates for simultaneous exclusion from
xi and inclusion in zi: In fact, many theoret-
ical models impose that no such variable
exist.
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� For example, empirical models based on
the Roy (1951) model often employ the es-
timated covariances to infer the nature of
the sorting. The underlying economicmodel
often imposes the same variables to appear
in both steps of estimation.

� Thus many applications constrain xi = zi and
identify � through the non-linearity in the
inverse Mills ratio. However, as the inverse
Mills ratio is often linear the degree of iden-
ti�cation is often �weak�and this results
in in�ated second step standard errors and
unreliable estimates of �: This has proven
to be a major concern (see, for example,
Little 1985) and remains a serious point of
contention.
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� Given this is a relatively important issue
for empirical work it has been the object of
several monte-carlo investigations (see, for
a recent example, Leung and Yu 1996).

�While most studies �nd that the two-step
approach can be unreliable in the absence
of exclusion restrictions Leung andYu (1996)
conclude that these results are due to the
experimental designs.

� They �nd that the Heckman two-step esti-
mator is e¤ective providing at least one of
the x0is display su¢ cient variation to induce
tail behavior in the inverse Mills ratio.
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� An examination of the inverse Mills ratio
reveals that while it is linear over the body
of permissible values the single index can
take, it becomes non-linear at the extreme
values of the index.

� Accordingly, if the x0is display a relatively
large range of values; even in the absence of
exclusion restrictions, then it is likely that
the data will possess values of the single
index which induce the non-linearity and
assists in model identi�cation. However,
despite this �nding these two-step proce-
dures should be treated cautiously when
the models are not identi�ed through ex-
clusion restrictions.
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� It is worth reformulating the Heckman two-
step estimator from a di¤erent and more
restrictive perspective as this provides some
insight into models we examine below.

� By imposing the restrictive assumption that
the parameters are the same for each sub-
sample it is possible to view the sample se-
lection model as a model with a censored
endogenous regressor. That is rewrite the
model as:

yi = x0i� + �di + �i; i = 1::N (11)

d�i = z0i
 + vi; i = 1::N (12)

di = 1 if d�i > 0; di = 0 otherwise (13)

where rather than sample selection we have
an endogenous dummy variable.
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� Estimating � and � over the whole, or any
chosen, sub-sample results in inconsistent
estimates due to the correlation between di

and �i operating through the non-zero co-
variance ��v:

� This is known as an �endogenous treat-
ment model�and is closely related to the
sample selection model (see, for example,
Heckman 1978).
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� It is well known, (see, for example, Haus-
man 1978 and Heckman 1978), that the in-
consistency in (11) can be overcome by; i)
projecting di onto zi to obtain d̂i and then re-
placing di with d̂i; or ii) obtaining the resid-
uals from this projection, v̂i and including
both v̂i and di in (11):

� A similar approach, which exploits the dis-
tributional assumptions and the dichoto-
mous nature of the di; involves estimating

 by Probit and then computing the corre-
sponding Probit residual.

37



� That is, by using our distributional assump-
tions we can rewrite (11) as:

yi = x
0
i� + �di + �vi + �i:

� The Probit residual is known as a general-
ized residual (see Gourieroux et al. 1987)
and has the form di � ��v

�2v

h
�(z0i
̂)
�(z0i
̂)

i
+ (1 � di) �

h
��(z0i
̂)
1��(z0i
̂)

i
.

This can be identi�ed as the inverse Mills
ratio for the entire sample.

� This term possesses two important char-
acteristics of a residual. First, it has mean
zero over the whole sample.

� Second, it is uncorrelated with the vari-
ables which appear as explanatory variables
in the �rst step Probit model.
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� As the inclusion of the generalized residual
accounts for the correlation between �i and
di; it is possible to estimate � over either
sub-sample corresponding to d = 0 or d = 1

after including the generalized residual.
� This model is identi�ed in the absence of
exclusion restrictions due to the non-linearity
of the residual. Also note that the gener-
alized residual is uncorrelated with the z0is;

over the whole sample, by construction.
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� Thus the consequences of a high degree of
collinearity between the generalized resid-
ual and the z0is, which is a concern in the
sample selection model, does not arise.

� An advantage of this interpretation is that
it generalizes to alternative forms of cen-
soring. Moreover, if we assume E[�ijvi] is a
linear function we can also relax the distri-
butional assumptions for vi: We return to
this below.
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� The parametric procedures are based on
the exploiting the relationship between �i

and vi operating through the distributional
assumptions.

� Bivariate normality dictates that the re-
lationship between the disturbances is lin-
ear.

� Accordingly, one may test, or even correct,
for departures from normality by including
terms which capture systematic deviations
from linearity. Lee (1984) suggests approx-
imating the true density by the product
of normal density and a series of Hermite
polynomials.

� Although the test that Lee motivates is
based on the lagrangemultiplier framework
he also presents a variable addition type
test in which (10) is augmented with the
additional terms.
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� Pagan and Vella (1989) adopt a similar ap-
proach and followGallant andNychka (1987)
and approximate the bivariate density of �i
and vi as:

b�v = (

KX
k=0

JX
j=0

�kj�
kvj)��v

recalling ��v is the bivariate normal density;
the �0s denote unknown parameters; and
�00 = 1:
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� If we set K = 0; let ��jv denote the conditional
normal density of � given v; and p = bv=�v; then:

E[�ijvi] =
JX
j=0

p�1�0j(���jvd�)v
j

=
JX
j=0

p�1�0j�v
j+1:

� Thus under the null hypothesis of joint nor-
mality:

E[�ijdi = 1] = �00E[vijdi = 1] +
JX
j=1

�0jE[v
j+1
i jdi = 1]

since p = 1 under the null hypothesis.
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� A test of normality is to add on the higher
order terms and test whether they are jointly
zero. To compute these terms we can use
the recursive formula provided inBera, Jar-
que and Lee (1984). They are proportional
to the inverse Mills ratio and take the form
E[vj+1i jzi; di = 1] = (z0i
)jf�(z0i
)=[�(z0i
)]g:

� Thus one computes these higher order terms
and inserts them in (10) and tests whether
they are jointly signi�cant. Given the na-
ture of the Hermitian expansion the addi-
tional terms employed by Pagan and Vella
are similar to those suggested by Lee.
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� It was quickly recognized that the heavy
reliance of the two-step procedures on nor-
mality could be partially relaxed by replac-
ingAssumption 1with the relatively weaker
Assumption 2:

� Assumption 2: The distribution of vi is known
and �i is a linear function of vi:

� This presents no advantage over the Heck-
man two-step procedure if we assume that
vi is normal as Assumption 2 implies joint
normality.

� It does however allow us to replace the nor-
mality of viwith alternative distributional
assumptions thereby allowing consistent �rst-
step estimation bymethods other thanPro-
bit
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� One procedure is suggested byOlsen (1980)
who assumes that vi is uniformly distrib-
uted.

� One can now replace the inverseMills ratio
with a simple transformation of the least
squares residuals derived from the linear
probability model (that is, the residuals
from regressing di on zi):
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� Olsen shows that when the disturbances in
the selection equation are uniformly dis-
tributed this two-step estimator is consis-
tent. More formally, Olsen shows that:

E[�ijzi; di = 1] = ��v(3)
1
2 (z0i
 � 1):

� This procedure generally produces results
similar to Heckman two-step procedure.

� This follows from the high degree of collinear-
ity between the respective corrections.
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� The Olsen estimator requires the exclusion
from the primary equation of at least one
variable which appears in the reduced form
as the model can no longer be identi�ed
through the non-linear mapping of the in-
dex z0i
 to the correction term.

� Atest of selectivity bias is captured through
a test of statistical signi�cance of the coef-
�cient of the correction term as this para-
meter captures the linear relationship be-
tween the two disturbances.
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� A more general approach, to relax joint
normality while remaining within the para-
metric framework, is proposed by Lee (1982,1983).

� A useful case is where the marginal distri-
bution of �i is normal and the marginal of
vi is known but non-normal.

� Thus the distribution of � and the trans-
formed disturbance v� is bivariate normal
and their dependence is captured by their
correlation coe¢ cient.

� More importantly, the relationship between
the disturbances is linear.
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� To implement the two-step version of the
Lee maximum likelihood estimator we note
that di = 1 when vi < z

0
i
.

� This implies, from (7) that J2(vi) < J2(z0i
):

� It follows that Pr[di = 1] = �[J2(z0i
)] = G(z0i
):
� Thus we can now write the conditional ex-
pectation of (9) as:

E[yijzi; di= 1] = x
0
i� + ���v�[J2(z

0
i
)]=G[z

0
i
]: (14)
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� Thus �rst we estimate the 
 from the dis-
crete choice model by maximum likelihood
where we employ G(vi) as the distribution
function for vi:

�We then substitute the estimate of 
 into
(14) and estimate by least squares.

� Lee (1982) generalizes this approach such
that J2 is a speci�ed strictly increasing trans-
formation such that vi < z0i
 () J2(vi) < J2(z

0
i
):
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� Let �J = E[J2(v)] denote the expected value of v
and let �2J denote the variance of [J2(v)]: Fur-
thermore assume that �i can be written as:

�i = � [J2(v)� �J ] + �i (15)

where �i and J2(vi) are independent andwhere
� = 0 if the disturbances are uncorrelated.
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� If we write the conditional mean of the
truncated disturbance as:

�(J2(z
0
i
)) = E[J2(vi)jJ2(vi) < J2(z0i
)]

then:

E[yijzi; di= 1] = x
0
i� + ���=�J

�
�(J2(z

0
i
))

G(z0i
)
� �J

�
: (16)

�While this methodology provides some�ex-
ibility it crucially depends on the assump-
tion in (15).

� This approach, in the conventional sam-
ple selection model, is typically associated
with the use of Logit.

� It is particularly attractive when there are
multiple unordered outcomes as maximum
likelihood estimation of the �rst step can
be computationally di¢ cult.
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V. Semi-Parametric Two-Step Estima-
tion

� An early criticism of the parametric sample
selection estimators was their reliance on
distributional assumptions

�While this can be relaxed, through the use
of di¤erent distributional assumptions, it
is appealing to consider alternatives which
have a limited reliance on parametric as-
sumptions.
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� To consider the available procedures re-
place Assumption 2 with a weaker state-
ment about the disturbances.
Assumption 3: E[�ijzi; di = 1] = g(z0i
) where g is an

unknown function.
� Assumption 3 is known as an index restric-
tion. While the parametric two-step ap-
proaches implicitly de�ne the function g(:)

through the distributional assumptions, or
assume it explicitly, the semi-parametric
procedures seek to avoid the imposition of
such information.
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� Estimation under Assumption 3 rather than
Assumptions 1 and 2 raises two di¢ cul-
ties.

� First, it is no longer possible to invoke dis-
tributional assumptions regarding vi to es-
timate 
.

� Second, we cannot use distributional rela-
tionships to estimate E[�ijzi; di = 1]: The �rst
problem is overcome through non-parametric
or semi-parametric estimation of the bi-
nary choice model.
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� For example, it is possible to estimate 


by the procedures of Cosslett (1983), Gal-
lant and Nychka (1987), Powell, Stock and
Stoker (1987), Klein and Spady (1993) and
Ichimura (1993), without imposing distri-
butional assumptions on vi.

�With these estimates it is straightforward
to compute an estimate of the single in-
dex z0i
 and the second di¢ culty can then
be overcome in a number of ways.
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VI. Semi-Parametric Estimation

� First, why should we be interested in semi-
parametric methods?

� Although non and semi-parametric proce-
dures are very popular with econometrician
theorists the ideas have caught on far less
with applied people.

� This is partially due to a number of factors.
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� i) Despite the fact they are simple they are
typically not well understood.

� ii) Frequently implementation is not seen
to be straightforward as various choices have
to be made and standard software is typi-
cally not applicable.

� iii) There is an incorrect sense that the
methods are not useful in that they do not
work well or, in some cases, give the same
kind of results as parametric methods.
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�We will now see that many of the available
methods are directly applicable to many
economic problems and show there is a very
large number of models which could be es-
timated by simple extensions on the avail-
able methods.s.

� The outline is the following. We will start
with simple density estimation. Then we
will examine how to estimate conditional
moments via the use of density estimates.
Once we have the ability to estimate con-
ditional moments we will examine several
models in which the estimated conditional
moments appear as important explanatory
variables.
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VII. Density Estimation

A. Empirical Distribution
� Start with the simple problem of estimat-
ing the cumulative distribution function (CDF)
FZ(z) = Pr(Z � z) of a random variable Z:

� Let 1(A)denote the indicator of some event
A which is equal to 1 if A occurs and zero
otherwise.

� Since FZ(z) is a probability it can be esti-
mated from an iid sample Z1:::Zn as

bFZ(z) = 1

n

nX
i=1

I(Zi � z)

� This is the empirical distribution.

� This puts weight of 1/n on each observa-
tion.

61



�While it has good properties it has the fea-
ture of being discrete.

� Thus it is not too good for density estima-
tion.

� The lack of smoothness is also a problem
whenwe look at estimators which are based
on the use of the non-parametric proce-
dures.
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B. Density Estimation
�We can construct a density estimator by
adding a bit of noise that smooths over the
discreteness.

� Let eZ = Zn + hU
where the cdf of Zn is the empirical CDF,
h is a positive scalar and U is continuously
distributed with pdf K(u):

� If we let
FU(u) =

Z u

�1
K(t)dt

be the cdf of U:
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� Then one can show that the CDF of eZ is
F eZ(z) =

nX
i=1

FU

�
z � Zi
h

�
=n

and the corresponding estimator of the pdf
is

� bfh(z) =dF eZ(z)
dz

=
nX
i=1

Kh(z � Zi); Kh(u) = h
�1K

�u
h

�
� This is the kernel density estimator.
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� The function K(u) is the kernel and h is the
bandwidth

� Note that h increases the density becomes
smoother.

� At the same time as h increases we have
more noise and this introduces more bias.

� Consistency generally requires that h! 0 as
the sample size increases. However, at a
rate which is not too fast (i.e. nh!1)
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� The choice of kernel is far less important
than the choice of the bandwidth.

� However, the kernel should have certain
properties

� Popular choices are the normal kernel or
Epanechnikov

K(u) = 1(juj � 1)(1� u2)(:75)

� Alot of the ideas that we will look employ
the use of density estimation so it is useful
to see how easily it can be programmed.
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� The following is gauss program for density estimation using a normal
kernel.

new;
n=100;
x=rndn(n,1);
fxn=zeros(n,1);
j=1;
sx=stdc(x);
h=1.06*sx*n^(-.2);
do until j>n;
d=(x[j]-x)/h;
fx1=pdfn(d);
fxn[j]=meanc(fx1/h);
j=j+1;
endo;
library pgraph;
xx=sortc(x~fxn,1);
xy(xx[.,1],xx[.,2]);
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� An important feature of the kernel estima-
tor is that is biased. The logic behind this
naturally is that the density at a certain
point is a weighted average of �all�the data
when really we only want the data at that
point. (This is the logic why h ! 0 as the
sample size increases)

� In general both the bias and the variance
depend on the kernel used and the shape
of the density.

� As bias and variance reduction methods
are a very important part of implementing
kernel estimation (as we will discuss be-
low) it is useful to examine the expression
for the bias for the kernel estimator.
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� Bias Result: If we assume that fo(z) is twice
continuously di¤erentiable with bounded sec-
ond derivative, R K(u)du = 1; R K(u)udu = 0; R u2K(u)du <
1 then

E
h bfh(z)i� fo(z) = h2f 00o Z K(u)u2du=2 + o(h2)

� Variance Result: If fo(z) is continuous and
bounded, R u2K(u)du <1, h! 0; and nh!1 then

V ar
h bfh(z)i = fo(z)Z u2K(u)du=(nh) + o(1=(nh))
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� Note that if we choose a very small h the
bias in the density estimate is small but the
variance is large.

� A very small h means we are using a small
number of points and this will may lead to
an estimate displaying many wiggles.

� On the other hand a large h oversmooths
the density.
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� In practice h should be set to achieve the
best trade o¤ between bias and variance.

� One possibility is to focus on some approx-
imation to the integrated mean squared er-
ror

MISE =

Z h�
Bias bfh(z)2�+ V ( bfh(z)i dz
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� Since Bias2 is O(h4) and variance is O(nh)�1 the
value for which they are of the same order
of magnitude is h _ n�1=5:

� The AMISE is now O(n�4=5)

�We can see that by h! 0 the MSE vanishes
slower than 1

n
and thus the non-parametric

density estimator converges at a rate slower
than 1p

n
:

� This slower convergence occurs because of
the avoidance of bias by h ! 0 means that
the fraction of the observations that the
estimator uses shrinks to zero.
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C. Bias Reduction
� Given that the density estimator is biased
it is common to use bias reduction meth-
ods.

� This is a potentially important issue given,
particularly inmultiple indexmodels, since
the type of bias reducing method employed
will in�uence the �nal estimates when the
density estimator is used as a means of
computing conditional moments.

� Two types of bias reducing methods which
can be employed are i) higher order kernels
and ii) local smoothing.

� Higher order kernels are functions which
integrate to one, but integrals of some pos-
itive powers of u are negative over some
range. These have the feature of reducing
bias.

� Although they work in theory there is some
concern that they may not work so well in
practice. This is particularly true for the
multiple index models.
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� Local smoothing is where we use a di¤er-
ent bandwidth depending on whereabouts
in the density of the random variable we
are. For example, when we are in the dense
part of the density the bandwidth shrinks
while once we are in a section of the density
where the observations are scarce we use
relatively more observations which means
a bigger bandwidth.

� The optimal bandwidth, in the MSE sense,
in this case can be shown to be

hi = cf(zi)
�:5

� Thus this requires the use of a pilot den-
sity in that we estimate the density once
to obtain f(zi) and then we use this as the
bandwidth.
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� The program below employs local smoothing to estimate the density of
x.

� new;

n=100;
x=rndn(n,1);
fxn=zeros(n,1);
fxln=zeros(n,1);
j=1;
sx=stdc(x);
h=1.06*sx*n^(-.2);
do until j>n;
d=(x[j]-x)/h;
fx1=pdfn(d);
fxn[j]=meanc(fx1/h);
j=j+1;
endo;
library pgraph;
xx=sortc(x~fxn,1);
j=1;
h=.25*(fxn.^(-.5));
do until j>n;
d=(x[j]-x)./h;
fx1=pdfn(d);
fxln[j]=meanc(fx1./h);
j=j+1;
endo;
xx=sortc(x~fxn~fxln,1);
xy(xx[.,1],xx[.,2 3 ]);
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Additional Issues
� Two additional issues are worth consider-
ing.

� Extension to multivariate density estima-
tion. This can be of particular value al-
though once the dimension of the random
variables is higher than 2 there can be some
di¢ culties in implementing the method of
estimation.

� Nevertheless, the extension to two allows
the estimation of a large class of estima-
tors.

� The simplest way to proceed to two is to
characterize the joint density as the prod-
uct of the two univariate kernels. This
works better in practice if the two random
variables are orthogonalized.
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� The second important issue is the choice of
the bandwidth.

�We will frequently see that the bandwidth
has to be in some range and frequently in-
volves the use of some unknown constant.

� Accordingly there is always a degree of ar-
bitrariness about the choice of h:

� Frequently there are some rules of thumb
which can be employed.

� A common approach is to employ Cross
Validation methods which is based on min-
imizing some estimate of the integratedMSE.
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VIII. Estimation of Conditional Mean
� Frequently in economics we are interested
in the use of conditional expectations.

� Usually we are interested in the value of
some endogenous value on the basis of some
conditioning values.

� In the case when the dimension of the con-
ditioning values is large we can use non-
parametric regression.

� This kind of approach typically su¤ers from
the curse of dimensionality.
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� In economics when there is a large condi-
tioning set it is useful to reduce the dimen-
sionality by making a single index restric-
tion. That is,

E[yijx1i; :::xki]
= E[yijx0i�]

� In most of the models that we will exam-
ine, the single index assumption will be im-
posed.

� Thus we can look at deriving the expecta-
tion of E[yijxi] where there is a single x as this
will be useful for examining E[yijx0i�]

� Suppose that the xi are iid random vari-
ables and we are interested in estimating
the conditional mean of y given x:

� Since m(xi) is the mean of the conditional
density f(yijxi) = f(Y jX = xi) we can use the den-
sity estimation procedure from above.
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� Now, by de�nition

m =

Z 1

�1
yf(y; x)dy=

Z 1

�1
f(y; x)dy

�We can evaluate these property at the den-
sity estimates for f(:; :).

� Assume X is a scalar and consider a bivari-
ate kernel k(u1; u2) where R

t(k(t; u2)dt = 0:

� Let the data be (Y1; X1); :::(Yn; Xn) and K(t; u2) =R
k(t; u2)dt:
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� By change of variables t = (yi�Y )
h
we get

� Z
y bfh(y; x)dy = n�1h�2

X
yk

�
y � Yi
h

;
x�Xi

h

�
dy

= n�1h�1
XZ

(Yi + ht)k(t;
x�Xi

h
)dt

= n�1h�1
X

Yi

Z
k(t;

x�Xi

h
)dt

= n�1h�1
X

YiK(
x�Xi

h
)

� Z bfh(y; x)dy = n�1h�2
X

k

�
y � Yi
h

;
x�Xi

h

�
dy

= n�1h�1
X

K(
x�Xi

h
)

81



� This can be written as

bm =

R
y bfh(y; x)dyR bfh(y; x)dy =

n�1h�1
P
YiK(

x�Xi
h
)

n�1h�1
P
K(x�Xi

h
)

� Thus this formula shows that estimating
the conditional mean is straightforward and
only requires the use of the marginal den-
sity.

� The interpretation is also quite clear. That
is, it takes a weighted average of the Y�s on
the basis of how far the values of xi are from
the candidate value of X:
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� This program shows how to adjust the density estimation programs to
estimate conditional means

/* Estimating conditional mean using constant kernel and local smooth-
ing*/
new;
n=100;
x=rndn(n,1);
y=-.1*x+.5*x^2;
fxn=zeros(n,1);
fxln=zeros(n,1);
j=1;
sx=stdc(x);
h=1.06*sx*n^(-.2);
do until j>n;
d=(x[j]-x)/h;
fx1=pdfn(d);
num=fx1.*y;
fxn[j]=sumc(num)./sumc(fx1);
j=j+1;
endo;
j=1;
h=.25*(fxn.^(-.5));
do until j>n;
d=(x[j]-x)./h;
fx1=pdfn(d);
num=fx1.*y;
fxln[j]=sumc(num)./sumc(fx1);
j=j+1;
endo;
xx=sortc(x~fxn~fxln~y,1);
xy(xx[.,1],xx[.,2 3 4]);
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/*ESTIMATINGCONDITIONALMEANUSINGESTIMATEDBIVARI-
ATE DENSITY*/
new;
n=100;
x=rndn(n,2);
y=5*x[.,1]+.5*x[.,2].^2+1*rndn(n,1);
fxn=zeros(n,1);
fxmm=zeros(n,1);
j=1;
h=1.06*n^(-.4);
do until j>n;
d=(x[j,.]-x)/h;
fx1=pdfn(d);
fxn[j]=meanc(prodc(fx1�/h));
fxm=sumc(prodc(fx1�/h).*y);
fxmm[j]=fxm./sumc(prodc(fx1�/h));
j=j+1;
endo;
library pgraph;
xx=sortc(y~fxmm,1);
xy(xx[.,1],xx[.,2]);
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Series Regression

� The computation of a conditional mean has
the intrepretation of a kernel regression.

� This has obvious problems when the di-
mension of the conditioning set is big.

� Another approach to non-parametric regres-
sion is to emply least squares using �exible
functional forms.

� In this case we would approximate g0(x) by a
linear combination of some approximating
functions pjK(x):
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� The estimator of g0(x) is the predicted value
from regressing Yi on pK(Xi) for pK(x) = (p1K(x)::::pKK(x))0:

� Consistency is obtained by letting K grow
with the sample size.

� If we let Y = (Y1; :::Yn)
0 and P = [PK(X1); :::P

K(Xn)]
0

then the estimator is
bg(x) = pK(x)0b�; where b� = (P 0P )�1P 0Y

� Popular choices for P are polynomials and
splines.
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� Polynomials have the disadvantage that they
are based on global approximations and
thus they are sometimes not ideal for lo-
cal �tting.

� Splines are more suited for local �tting.
� The series approximations are well suited
for multivariate cases by including cross
products etc.

� There is a large literature on the conver-
gence rates for bg(x):

� An advantages of series is that they are well
suited to several problems in econometrics
and they are easily employed for models
imposing additivity.

� Note that the K serves the same purpose as
h:
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� Robinson�s Estimator
� In many types of models there may be a
non-parametric element which is of poten-
tial interest or is form of nuisance.

� In these models it would be useful to esti-
mate the parameters of interest while elim-
inating the non-parametric component.

� Suppose the model has the form
�

Yi = X
0
i� + g(Zi) + ui

where g(:) is an unknown function.
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� One way to estimate the parameters and
the g(:) function is to solve the following
problem

argmin
�;g(:)

X
[Yi �X 0

i� � g(Zi)]
2

� Theminimization can occur in 2 steps. First,
solving for g over �xed �, substituting that
minimum into the objective function, and
then minimizing over �:

� The minimizer over g(:) for �xed � is
E [Yi �X 0

i�jZ] = E [YijZ]� E [XjZ] �
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� Substituting this back gives
�0 = argmin

�

X
E
��
[Yi � E [YijZ]]� [X � E [XjZ]]0 �

	�
� This estimator can be easily implemented
by replacing the terms E [YijZ] and E [XjZ] with
their non-parametric expectations. This
can be done either using the kernel or series
methods discussed above.
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� Note that one can also recover an estimate
of the g(:) function by performing the fol-
lowing non-parametric regression

Y �Xi�0 = g(Zi) + ui

� Note that the above has been extended to
models where there are parameters inside
the g(:) function. This widely extends the
number of applications that are available.
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� Klein and Spady Estimator
� This paper examines the discrete choicemodel
� Model has the formwe have discussed above.
That is,

�

y�i = x0i� + u (17)

yi = 1 if y�i > 0 (18)

= 0 otherwise

� A key assumption is that the model is a
single index model. That is the probability
that y is equal to 1 is a function only of the
index x0i�:
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� Recall that the log likelihood function for
this model is

log L =

nX
i=1

yi logF (x
0
i�) +

nX
i=1

(1� yi) logF [1� (x0i�)] (19)

where F (:) is some generic likelihood func-
tion. Note that we can also write this as

log L =

nX
i=1

yi log fPr(yi = 1jx0i�)g+
nX
i=1

(1�yi) log f1� (Pr(yi = 1jx0i�))g

(20)
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� KS make the observation that via the use
of Bayes Law one can write

Pr(yi = 1jx0i�) = Pr(yi = 1) �
gx0i�jy=1

gx0i�

where gx0i�jy=1 is the conditional density of the
index given y is equal to 1 and gx0i� is the
unconditional density for the index.
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�Writing the probability has the advantage
that rather than conditoning on the index,
we evaluate the index conditioned on some-
thing else (namely the y0s):

�We have seen above that to estimate these
densities and conditional densities is very
straightforward.

� Thus we evaluate the above density and
maximize the associated likelihood func-
tion.

�What is identi�ed?
� Local Smoothing.

� Trimming of the criterion function.
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Semiparametric Least Squares
� Another estimator we will consider the SLS
estimator of single indexmodel. This is the
estimator proposed by Ichimura (1993).

� The model has the following form
�

yi = � (� (Xi; �)) + "i

where �(:) is an unknown function and � is a
form of aggregation for the exogenous vari-
ables X and the unknown parameter vector
�: By making the single index assumption
we can rewrite the above as

�
yi= � (Xi�)+"i
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� The idea of the estimator is to use non-
linear least squares to de�ne the �0s: That
is, we want to estimate

argmin
��(:)

X
[yi � � (Xi�)]

2

� If we knew the form of the � (:) it would be
straightforward to estimate the �: However,
we can replace this with a non-parametric
estimate of E[yijXi�]:Thus we proceed bymin-
imizing over �(:) for a �xed �:
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� Thus the procedure works in the following
way. For a given � we have the index for
each i: Using this index we can now esti-
mate, non-parametrically, E[yijXi�], by kernel
methods as discussed before. We then con-
tinue to search for values of � until we min-
imize the sum of the squared errors from
above.
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� Some identi�cation restrictions need to be
imposed. First, there can be no constant
in X and one of the �0s must be set to 1.

� Even with any normalization it is still pos-
sible to evaluate the partial derivative @y=@X:

� This procedure if very easy to implement
and its small sample properties are good.
Despite this however, it is not frequently
used in empirical work.
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� Now that we see how to estimate the in-
dex semiparametrically we can return to
the sample selection model

� Using the index restriction write the condi-
tional expectation of the primary equation
as:

E[yijzi; di = 1] = x0i� + g(z0i
); i = 1::n:

noting that it is not possible to distinguish
an intercept term in xi from an intercept in
g(:):

� Accordingly, the intercept term is not iden-
ti�ed in the following procedures.

�We discuss below, however, some ways to
infer the value of the intercept.

� Given consistent estimates of the single in-
dex the issue is how the g(:) function is ap-
proximated.

100



� The �rst suggestion to estimate the model
semi-parametrically is found in Heckman
and Robb (1985a).

� They suggest a two-step estimator in which
the �rst step is the non-parametric estima-
tion of Pr[di = 1jzi]; which is also known as the
propensity score (see, for example, Rosen-
baum and Rubin 1983).

� The second step is to approximate the g(z0i
);
which is equal to E[�ijzi; di = 1]; through a Fourier
expansion in terms of Pr[di = 1jzi]:
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� Cosslett (1991) proposes a two-step proce-
dure in which he �rst estimates 
̂ via the
non-parametric maximum likelihood esti-
mator outlined in Cosslett (1983).

� The �rst step approximates the marginal
distribution function of the selection error,
F̂ (:), as a step function constant on a �nite
number J of intervals fÎj � [ĉj�1; ĉj); j = 1::J and
c0 = �1; cJ =1g.

� In the second step Cosslett estimates the
primary equation while approximating the
selection correction, g(:) by J indicator vari-
ables f1(z0i
̂ 2 Îj)g:

� Consistency requires that J increase with
the sample size.
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� Newey (1988) suggests estimating the sin-
gle index by some semi-parametric proce-
dure.

� He then approximates g(z0i
) by ĝ(z0i
̂) =
PK

k=1 �
k(z0i
̂)

k�1

where 
̂ is some �rst step estimate and K;

denoting the number of terms in the ap-
proximating series, is allowed to grow with
the sample size.

� The second step is then estimated by OLS
while setting K equal to some �xed num-
ber. An advantage of the Newey approach
is that the estimates are p

n consistent and
it is straightforward to compute the second
step covariance matrix.
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� The above estimator employs the orthogo-
nality conditions E[�i�g(z0i
)jdi = 1; zi] = 0 to de�ne
the estimator of �:

� Newey argues e¢ ciency gains can be ob-
tained if the additional orthogonality con-
ditions implied by the independence of f�i�
g(z0i
)g and zi are exploited.

� Newey notes that f�i � g(z0i
)g is uncorrelated
with any function of zi:
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� To employ the additional orthogonality con-
ditions implied by this independence de-
�ne &j(�i) (j = 1::J) as some function of �i; and
�j(z

0
i
) = E(&(�i)jzi; z0i
):

� Newey then de�nes a generalized method
of moments estimator based on the orthog-
onality conditions E[k(&j(�i) � �j(z0i
))] where k is
some function of zi and z0i
:
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� .An alternative approach to the elimination
of selection bias is based on an estimation
strategy suggested by Robinson (1988) in
which the endogeneity is purged from the
model through a di¤erencing process.

� Powell (1987) exploits the index restriction
in estimation by identifying observations
by their value of this single index.

106



� The underlying intuition is that if two ob-
servations i and j have similar values for the
single index generating the selection bias,
then it is likely that subtracting the jth ob-
servation from the ith observation will elim-
inate the selection bias.

� Powell (1987) suggests an instrumental vari-
able estimator based on pairwise compar-
isons of all observations in the sample where
the contribution of each comparison is weighted
by the di¤erence in the values of the single
index.

107



� The estimator of �;denoted �p; has the form:

�p =

(
[n2 ]

�1
nX
i=1

nX
j=i+1

mijn(wijxij)
0

)�1
(
[n2 ]

�1
nX
i=1

nX
j=i+1

mijn(wijyij)
0

)

where wij; xij yij denote (wi�wj); (xi�xj) and (yi�yj)
respectively and mijn captures a weight de-
pending on the distance between the values
of the single indices for the ith and jth ob-
servations; and the w0ijs denote some chosen
instruments.
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� The weight is constructed such that obser-
vations that are nearby, in terms of the sin-
gle index, have a greater contribution than
those far apart.

� As the weights are unobserved the �rst step
is semi-parametric estimation of the single
indices z0i
 and z0j
:
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� A similar approach, based on di¤erencing
out the selectivity bias, �rst uses the index
restriction to rewrite the primary equation
as:

yi = x
0
i� + g(z

0
i
) + �i; i = 1::n: (21)

�With an estimate of z0i
 we condition (21)
on z0i
 to get:

E[yijz0i
] = E[xijz0i
]0� + g(z0i
); i = 1::n:

�We subtract this conditional expectation
from (21) to get:

yi � E[yijz0i
] = fxi � E[xijz0i
]g0� + �i; i = 1::n (22)

which can be estimated by OLS since the com-
ponent re�ecting the selection bias has been
eliminated.
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� Aclosely related estimator to that proposed
by Powell (1987) is Ahn and Powell (1993).

� The innovation in the Ahn and Powell pro-
cedure is their use of non-parametric kernel
methods to compute the propensity scores
Pr[di = 1jzi] and Pr[dj = 1jzj] :

� They then use these probabilities in place
of the estimated single indices z0i
 and z0i
 in
the computation of the weights mijn: This is
an important variation on Powell (1987) as
it relaxes the single index assumption.

� However, it is accompanied by a substan-
tial increase in computational requirements
as it is necessary to estimate the �rst step
non-parametrically. While the second step
is pn consistent one would expect some e¢ -
ciency loss due to the manner in which the
�rst step is estimated.
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� The�nal semi-parametric procedure for the
conventional sample selection model that
we consider was proposed by Ichimura and
Lee (1991) and is based on their estimator
for models with multiple indices.

� Although this procedure is a single equa-
tion estimator it is well motivated in the se-
quential equation framework. Recall that
the model for the sub-sample has the fol-
lowing form:

E[yijdi = 1; zi] = x0i� + g(z0i
); i = 1::n: (23)

which implies:
E[(yi � x0i�)jz0i
] = g(z0i
): (24)
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� Equations (23) and (24) characterize the
relationship between �; 
 and g(:).

� The Ichimura and Lee procedure is based
on the following iterative non-linear least
squares approach.

�With estimates of � and 
 we employ (24)
to estimate g(:) non-parametrically. T

� hen using (23) and our estimate of g(:) we
can estimate � and 
:
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A. Conditional Expectations and Bounds
�While we have focussed on the estimation
of the �, one may be interested in condi-
tional expectation of E[yij; zi; di]:

� This originally arose in Lee (1978) and
Willis and Rosen (1979) where the model
comprised two mutually exclusive and ex-
haustive sectors. Wages were observed for
each individual for the sector in which the
individual was located.
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� One objective in those studies was to com-
pute the wage for the sector in which the
individual was not observed. We now ex-
amine the case where yi is only observed for
a sub-sample.

� The generalization to the case of yi observed
for everyone, although individuals are in
di¤erent sectors, is straightforward.

� Suppose the two �sectors�refer to market
and non-market employment and the vari-
able y re�ects the o¤ered market wage.

� Furthermore, assume the errors are bivari-
ate normally distributed and we estimate
the model by the Heckman two-step proce-
dure. Denote the parameter estimates for
the sub-sample of those engaged in market
employment, as �M :
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� Consider the expectation CE1i = x
0
i�M :

� This represents the expected market wage
for an individual randomly selected from
the sample.

� That is, the conditioning set does not con-
tain any information regarding the sector
in which the individual is actually located.
This is the approach adopted in Lee (1978)
and Willis and Rosen (1979).

� However, the expectation CE1i can be �im-
proved� via the inclusion of information
relaying the chosen sector. For example,
CE2i = E[yijzi; di = 1] = x0i�M + ��Mi represents the ex-
pected wages for those already located in
the respective sectors noting that the �M

denotes the inverse Mills ratios for those
in the market sector and the � is the esti-
mated parameter capturing the covariance
between the errors across equations.
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� This latter expectation varies from CE1i in
that it includes the respective returns to
the unobservables associated with market
sector (see, for example, Vella 1988).

� Accordingly, one may consider the follow-
ing counterfactual wages as conditional ex-
pectations of interest. Namely, CE3i = E[yijzi; di =
0] = x0i�M + ��Ni which represents the expected
wages for those in the non-market sector if
they obtained market employment noting
that �N is the inverse Mills ratio for those
in the non-market sector.

� Once again the term ��Ni captures the mar-
ket return to the unobservables.
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� Lee (1995) extends and generalizes this ap-
proach by providing a general strategy for
estimating the conditional expectations of
the outcomes not chosen.

� Furthermore, Lee provides the formulae for
the conditional expectations of outcomes
models with polychotomous outcomes in
models with sample selection bias.
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� Manski (1989) focuses on the estimation
of bounds for the conditional expectation
(that is, E[yijzi] over the support of zi) when
yi is only observed for either di = 1 or di = 0 but
not both.

� Manski considers the case where zi and di

are observed over the whole sample and
E[yijzi; di = 1] is observed. F

� irst, it is straightforward to see that:
E[yijzi] = E[yijzi; di = 1]Pr[di = 1jzi] + E[yijzi; di = 0]Pr[di = 0jzi]:

(25)
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� Manski assumes that the support of yi con-
ditional on di = 0 and zi is known and lies
in the interval [KLz; KUz] which implies KLz �
E(yijzi; di = 0) � KUz: This, in turn with (25), im-
plies:
E(yijzi; di = 1)Pr(di = 1jzi) +KLz Pr(di = 0jzi) � E(yijzi) (26)

� E(yijzi; di = 1)Pr(di = 1jzi) +KUz Pr(di = 0jzi):

� The components of the bound are readily
available in most contexts and Manski dis-
cusses the methodology for implementing
the bound.
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� The �rst important feature of (26) is that
rather than focussing on a point estimate
it provides a bound.

� A second feature is that it can be imple-
mented non-parametrically as the compo-
nents of (26) can be estimated from sample
data without the imposition of parametric
assumptions.

� A possible criticism is that the estimated
bounds may be too wide to be informa-
tive. While this represents information in
itself Manski (1994) shows how the bounds
can be tightened through the use of addi-
tional information such as functional form
and exclusion restrictions
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.

IX. Sample Selection Models with Al-
ternative Censoring Rules

� The model has the form:
y�i = x0i� + �i; i = 1::N (27)

d�i = z0i
 + vi; i = 1::N (28)

di = h( d�i ) (29)

yi = j(di; y
�
i ) (30)

where we assume that �i and vi are bivariate
normally distributed and at this point we
restrict � to be constant for all values of di.

� The selectionmechanismnowhas the generic
form h(:) and the process determining the
observability of yi has the form j(:):
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A. Ordered Censoring Rules
� The �rst case we examine is where h(:) gen-
erates a series of ordered outcomes through
the following rule:

di = 1 if �1 < d�i � 0; di = 2 if 0 < d�i � �1; ::::
::::di = 3 if �1 < d

�
i � �2; :::di = J if �J�1 < d�i ;

where the �0s denote separation points sat-
isfying �0 < �2:: < �J where �0 and �J equal -1
and +1 respectively, and noting we may
only observe yi for a speci�ed value(s) of di:

� That is, the j(:) function speci�es that yi =

y�i � I(di = j): It is now necessary to incorpo-
rate the ordering of the outcomes when ac-
counting for the selection bias.

� This model is considered in Vella (1993)
and following that general methodology we
estimate the �rst step by ordered Probit to
obtain estimates of the �0s and 
0s.
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� We then compute the generalized residuals
for each outcome, di = j; which take the form:

�(�̂j�1 � z0i
̂)� �(�̂j � z0i
̂)
�(�̂j � z0i
̂)� �(�̂j�1 � z0i
̂)

which we include as the selection correction
rather than the Inverse Mills ratio. We can
then estimate over the various sub-samples
corresponding to di¤erent values of di:
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� A second model which exploits the order-
ing in the selection equation is the contin-
uous selection model of Garen (1984).

� Garen considers the case where d�i is contin-
uously observed (namely, di = d�i) and there is
a subset of the N observations correspond-
ing to each permissible value of d�i :
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� Rather than estimate a di¤erent set of pa-
rameters for each value of d�i Garen suggests
estimation of:

yi = x
0
i� + di�+ (di � vi)�1 + vi�2 + �i (31)

where we have replaced the y�i and d�i with their
observed counterparts

� To implement this procedure we obtain an
estimate of vi; denoted v̂i; by estimating the
reduced formby ordinary least squares. We
then replace vi with v̂i and estimate (31) by
ordinary least squares.

� Note that the ordering of the outcome vari-
able in the selection equation is important
as it ensures the residual has the appropri-
ate interpretation.
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B. Tobit Type Censoring Rule
� A further type of commonly encountered
censoring is one in which the dependent
variable in the selection equation is par-
tially observed.

� This model is also known as Tobit type
three. For example, in the labor supply
context we often not only observe if the in-
dividual works but also observe the number
of hours they work. This information can
be exploited in estimation.
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� To capture this process specify h(:) as:
di = d�i if d

� > 0

di = 0 otherwise

and specify the j(:) function as:
yi = y

�
i � I(di > 0):

� Thus the censoring variable is observedwhen-
ever it is greater than some threshold and
equal to zero otherwise.

� Furthermore, the dependent variable on the
primary equation is only observed when
the censoring variable is positive.

� The appropriate way to estimate the cen-
soring equation is by Tobit.
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� FollowingVella (1993) we compute the gen-
eralized residuals which take the form:

(1� Ii) � f
��(zi
̂)

(1� �(zi
̂))
g+ Ii � fdi � zi
̂):

� Note that when the second step estimation
is only over the sample for which Ii = 1 the
residuals have a very simple form.

� It is clear that this procedure is closely re-
lated to the original Heckman (1976) two-
step procedure. Accordingly we refer to
this as a control function procedure.

� The strong reliance on normality of this
control function estimator could be relaxed
in a number of ways.
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� First, one could relax normality in the sec-
ond step by taking a series expansion around
v̂i which, for the observations corresponding
to Ii = 1; is equal to di � zi
̂:

� Second, to relax normality in both steps
one could estimate 
 semi-parametrically
by using the procedures in Powell (1984,
1986).

� Using this semi-parametric estimate of 


the residuals for the uncensored observa-
tions could be estimated and then the pri-
mary equation could be estimated by OLS
while including the estimated residual, and
possibly its higher order terms, as addi-
tional regressors.
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� Lee and Vella (1997) suggest an estimator
based on (21).

� They note that the selection bias operates
through the reduced form.

� That is, the selection bias is generated by
the presence of vi in the primary equation.

� Accordingly, they suggest purging themodel
of the component contaminated with vi:
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� To do this they propose an estimator based
on:

yi � E[yijvi] = fxi � E[xijvi]g0� + �i; i = 1::n (32)

To implement this procedure they require a
p
n consistent semi-parametric estimator of
the censored model to obtain an estimate
of 
 and they suggest the use of the estima-
tors proposed by Powell (1984, 1986).

� They de�ne the residuals for the sub-sample
corresponding to di > 0 as v̂i = di � z0i
̂ and pro-
pose estimation by themethodology in (32).
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C. Unordered Censoring Rules
� A feature of these two extensions of the se-
lectivity model is that while estimation is
somewhat complicated by the presence of
multiple outcomes it is greatly simpli�ed
by the imposition of ordering on the out-
comes.

�When it is not possible to impose such or-
dering it is necessary to treat the outcomes
in the �rst step as unordered.

� One possibility would be to estimate the
�rst step by multinomial Probit and then
compute the corresponding generalized resid-
ual to include as an additional regressor.

� Such an approach, however, will be di¢ -
cult to implement whenever there are more
than three outcomes.
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� Two alternative approaches are those out-
lined by Lee (1983a), and Hay (1980) and
Dubin and McFadden (1984).

� To analyze these approaches consider the
following model:

ysi = x0si�s + �si (33)

I�si = z0si
s + vsi

where the number of outcomes is given by
s = 1::M.

� This model is characterized by a di¤erent
parameter vector for each outcome.
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� First, consider the approach of Lee (1983a).
Assume the selection rule, determining the
chosen outcome, is based on the following
rule:

Ii = s i¤ I�si > max I
�
ji; j = 1::M ; j 6= s:

� If we let �si = max I�ji � vsi it follows from the
selection rule that:

Ii = s i¤ �si < z0si
s; j = 1::M ; j 6= s:

Thus the model can now be characterized
by a series of observed ysi which are only
observed if �si < z0si
s:
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�When the distribution function of �si is known
we are able to proceed in the same manner
as for the binary choice model. That is, we
estimate:

E[yijzi; di = 1] = x0i� + ���v�[J2(z0i
)]=G[z0i
] (34)

where we either assume themarginal distri-
bution of the untransformed �i is normal or
that the relationship between � and trans-
formed vs is normal.

�We require a �rst step estimate of 
 which
accounts for the polychotomous nature of
Ii:

� A popular way to proceed is to assume
that vsi has a type 1 extreme value distrib-
ution which then allows estimation of 
s by
multinomial Logit.
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D. Censoring Rules Based on Multiple
Indices

� A feature of many of these models, even
in the case of unconventional forms of cen-
soring, is that the selection bias is treated
purely as a function of a single index.

� Nowconsider the following re-characterization
of our original model where the selectivity
bias is a function of multiple indices:

y�i = x0i� + "i (35)

d1i = I(z0i
1 > �v1i) (36)

d2i = I(z0i
2 > �v2i) (37)

yi = y�i � d1i � d2i (38)

where I(:) is an indicator function and the
additional notation is obvious
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� The sample selection is now based on mul-
tiple indices and multiple criteria.

� The method of estimation relies crucially
on;

� i) the relationship between v1i and v2i; and

� ii) the observability of the two indices d1i

and d2i:
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� The simplest case is where the disturbances
are jointly normally distributed; v1i and v2i

are uncorrelated and both d1i and d2i are ob-
served.

� In that case it is relatively straightforward
to use the procedures discussed above to
compute the following correction terms to
include as regressors in the primary equa-
tion:

E["ijzi; d1i = 1; d2i = 1]

= (�"v1=�
2
v1)
�(z0i
1)

�(z0i
1)
+ (�"v2=�

2
v2
)
�(z0i
2)

�(z0i
2)
:
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� To implement this model one �rst indepen-
dently estimates (36) and (37) by Probit to
obtain 
1 and 
2:

� The corresponding two Inverse Mills ratios
can then be computed and included as cor-
rection terms in the primary equation.
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�While this model is easily estimated it re-
stricts the error terms in the two censoring
equations to be uncorrelated.

� This is an assumption that most empirical
studies would be reluctant to impose.

� Moreover, one could imagine that the two
di¤erent selection rules would be related in
various ways above the nature of the cor-
relation of their respective disturbances.
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� Perhaps the most commonly encountered
of this comes under the heading of partial
observability examined by Poirier (1980).

� In Poirier�s model neither d1i or d2i are ob-
served but we observe their product d3i =
d1i � d2i:

� Furthermore, we assume we only observe
the y0is for the sub-sample corresponding to
d3i = 1:

� Poirier examines the conditions for the es-
timation and identi�cation of 
1 and 
2 by
maximum likelihood while employing d3i as
the dependent variable.
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� Furthermore, he also shows:

E["ijzi; d3i = 1] = �"v1

"
�(z0i
1)�(z

0
i(
2 � �12
1)=(1� �212)

1
2

�b(zi
1; zi
2; �12)

#

+�"v2

"
�(z0i
2)�(z

0
i(
1 � �12
2)=(1� �212)

1
2

�b(z0i
1; z
0
i
2; �12)

#

� where �b denotes the bivariate normal dis-
tribution; �12 denotes the correlation coef-
�cient for v1 and v2; and we normalize �2v1 =
�2v2 = 1:

� To adjust for sample selection in this model
one computes the above two additional terms
to include as regressors in the conditional
mean function for yi:
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E. Conditional Maximum Likelihood
� Thus far we have focussed onmodels where
the dependent variable in the selection equa-
tion is censored and we have a continuous
variable in the primary equation.

� In many instances we confront a contin-
uous, or partially continuous, dependent
variable in the selection equation and a cen-
sored or limited dependent variable in the
primary equation.
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� The model has the following structure:
y�i = x0i� + �di + �i; i = 1::N (39)

di = z0i
 + vi; i = 1::N (40)

yi = l(y�i ); (41)

yi = j(di) (42)

where we assume that the error terms are
jointly normally distributed with non-zero
covariance and the l(:) function maps the
latent y�i into the observed yi noting that at
this stage the yi is reported for the whole
sample.
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� This model is similar to (11)-(13) except
that the censoring occurs in the primary
equation and not the reduced form.

� The model in (39)-(41) is considered by
Smith and Blundell (1986), where l(:) gen-
erates Tobit type censoring, and by Rivers
and Vuong (1989) for the case where l(:)

generates Probit type censoring.
� Single equation maximum likelihood esti-
mation of (39), while accounting for the
form of l(:); will not produce consistent es-
timates of � due to the endogeneity of di:
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� One method of estimation is conditional
maximum likelihood by which one �rst em-
ploys the bivariate normality assumption
to rewrite (39) as:

y�i = x
0
i� + �di + �vi + ei; i = 1::N

where � = ��v=�
2
v and ei is a zero mean and

normally distributed error term. As vi is
normally distributed we are able to obtain
a consistent estimate as v̂i = di � z0i
̂ where 
̂

denote the OLS estimates from (40).
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� One then estimates:
y�i = x

0
i� + �di + �v̂i + e1i; i = 1::N (43)

by maximum likelihood noting that e1i = ei +
�(vi�v̂i) has zeromean and, most importantly,
is normally distributed.

� The normality is retained as v̂i is a linear
transformation of normally distributed ran-
dom variables.
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� This di¤ers from the model in (11)-(13) as
the censoring of the endogenous variable in
the reduced form results in the generalized
residuals being non-linear functions of nor-
mally distributed randomvariables and the
variable (vi� v̂i) is subsequently non-normal.

� As the coe¢ cient � captures the correlation
between the errors a t�test on the null � = 0
is a test of the weak exogeneity of di:
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� The conditional maximum likelihood esti-
mator can be extended to the sample selec-
tion case if the selection rule, captured by
the j(:) function in (42), is within a certain
class of functions:

� For example, if yi was only observed when
di > 0 then the second step estimation would
only involve the sub-sample satisfying this
selection rule and one would still estimate
the primary equation by maximum likeli-
hood with v̂i included.

� Moreover, in this sub-sample case it is nec-
essary to include v̂i even if � = 0 whereas this
is unnecessary if we observe the whole sam-
ple. Finally, despite only observing yi for
speci�ed values of di we are still able to es-
timate by maximum likelihood as the error
term retains its normality despite the in-
clusion of v̂i:
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� The above discussion illustrates that when
the second step estimation of the primary
equation is performed by maximum likeli-
hood it is necessary to impose some restric-
tions on the mapping from the �rst step
parameter estimates, and variables, to the
residuals operating as correction factors.

� More explicitly, the inclusion of the correc-
tion factor cannot corrupt the normality of
the primary equation�s disturbance.

� This naturally does not apply to models es-
timated by full information maximum like-
lihood in which case the selection and pri-
mary equation�s dependent variables can
take any sensible form and estimation can
proceed providing the likelihood function
can be constructed.

� However, as noted above it is clear that
maximum likelihood can be employed in
the second step whenever the residuals are
a linear function of the variables as this
transformation preserves the assumed nor-
mality.
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� One particular case of interest is consid-
ered by Vella (1992) who examines a model
where the primary equation has a binary
outcome variable and the selection equa-
tion has a dependent variable which is par-
tially observed and has Tobit type censor-
ing.

� For that model it is possible to perform the
reduced form �rst step estimation over the
entire sample byTobit. One then estimates
the Tobit residuals for the sub-sample cor-
responding to di > 0 which simply take the
form v̂i = di � z0i
̂ where the hats now denote
the Tobit estimates.

� It is then possible to estimate the primary
equation by Probit over the subset satisfy-
ing di > 0 while including v̂i as an explanatory
variable:

� However, while this is how one would pro-
ceed for amodel with Probit type censoring
it is possible to estimate a number of mod-
els, depending on the form of l(:), provided
they require normality.
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