1 Panel Data

« In many empirical investigations it is common
to have repeated observations on the same
unit and this then gives us variation across
time and across individuals.

. In this way it is common to write the model

asS
Yie = Bo + T+ ci + ui

where . is an individual specific effect.
. In the treatment of these models it is common

to assume
Elut|zt, ] =0..t =1..T



« One implication of this condition is
Elug|z¢] = 0.
. If we were to assume £[q = 0o then one could
also apply OLS to the above model.

« However, if the individual effect is correlated
with the »s then OLS would not be biased.



« In proceeding to estimate the parameters of
this model it is important that we clarify our
treatment of the individual components.

« An important distinction is whether they are
treated as random or fixed.

« We will discuss this more in detail below.



« Another important issue is the exogeneity as-
sumptions regarding the a's.

o It

is very restrictive to assume the /s are non

random as this excludes potential feedback
from 4, tO ;. for s>+

O

. V}/ith,an unobserved effect the clearest form

strict exogeneity 1s

Elyit|@it, Tio, ... xir,¢i] = Elyit|zie, ¢;] = zaf + ¢

where the second equality is a functional form
assumption.



« When this above assumption holds (ie. the
first equality) we say that the »s are strictly

exogenous conditional on the unobserved ef-
fect.

« Generally the strict exogeneity assumption is

written in terms of the idiosyncractic errors
as

E(ugt|i1, zio, -...wim,ci) = 0



« This assumes that the explanatory variables
in each time period are uncorrelated with the
idiosyncractic errors in each time period.

« That is,

E(ziuy) =0, s,t =1..T

o This is much stronger than contemporaneous
correlation.

. However, note that it does not impose any
restrictions on the relationship between . and

C.



1.1 Estimation by Pooled OLS
« Write the model as

Yir = Tit + Vst
. where

Vit = Ci + Ut

« We know that OLS is consistent if e =0
which essentially implies that

E(m;tuit) = E(a?;tci) =0



« Note, that even the esti &nates will be_consis-
tent it 1s necessary to adjust the standard er-

to.account for tlf C(C)lrrelatlo which is
111 uced since ¢, 1s included in each error for

the same individual.



1.2 Random Effects Estimation
« It is useful, from an efficiency perspective, to
account for the presence of ; in the calculation
of the standard errors and this is essentially
what random effects estimation does.

« However, in doing so it imposes additional as-
sumptions above what is required for consis-
tency than pooled OLS.

« Assumption RE.1: o)Euulzic) = 0.t = 1.7; b)E(c;|z) =
E(c;) =0 noting that = = (@, .2im).



« We can see that strict exogeneity is implied
by the above. Under the above assumption it
follows that

E(vit|z;) =0
« Write the model for all T time periods as

yi = Xiff +v;

and +, can be written as v = ¢,jr +w; Where j, 1S
the Tx1 vector of ones
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« Define the unconditional variance matrix of
as
Q = E(v;v))

which is a TXT matrix that is positive defi-
nite.

« For consistency of GLS we require the usual
rank condition for GLS

« Assumption RE.2: rank pxno1x) =k
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« Now, a feasible GLS estimator using a con-

stent e dlmate of lﬁ 8(:0 sltent b t
1S would not eXp oit the indivi specitic

component of the error term.

« A standard random effects estimator imposes
structure which exploits this feature.
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« The first assumption is that the unconditional
variance of the idiosyncratic term is constant
across t. That is,

Bw?)=0%, t=1.T

« The second assumption is that the idiosyn-
cratic error terms are uncorrelated.

E(u;uis) =0, allt # s
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« Under these two assumptions we can derive

the variances and covariances of the elements
O (R

« Under RE.1a E(cuy) =0 and thus
E(v}) = E(c}) + 2E(uici) + E(uf,) = o7 + o3,
Also, for all ¢

E(vivis) = El(c; + uit)(c; + uis)] = 02'
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« Therefore under the above assumptions

2 2 2 2
o, +20u 206 , . o,
_ N Jc Jc + au
Q= E(vv;) =
2 2 2
fo . o, + oz,
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« Since jrj is the TXT matrix with unity in
every element, we can write the above as

Q= O'iIT + O'?jT‘]év

. The o above has a random effects structure
and rather than depending on T(T+1)/2 un-

restricted variances and covariances it only
depends on the two unknown parameters o2
and o2.
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« We can summarize the assumptions as

Assumptlon RE.3: a) Buwlsi,c) = o2 Ir. b)B(2|z:) =

Under RE 3 . Eud|z,cl=02,t=1.T alld Elugus|zi, ¢i] =
0.t #s.ts=1.7. RE3.a. assumes the conditional

variances are constant and the conditional co-
variances are zero.

« Assumption RE.3.b is the same as the ho-
moskedasticity assumption on the unobserved
effect.
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« To implement a feasible GLS procedure define
oy =0 +a,

and assume, for now, that we have consistent
estimates of -2 and 2.

« Thus we can form
O =327 +024rjr (1)

which is éx %' T' matrix that we assume to be
positive definite.
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. ﬂ%he FGJJS estimator that uses 1 is known as
the random effects estimator.

N -1 /N
B = (z X;@—lxi) (z xny) | 2)
i=1 i=1

« To implement this RE estimator we need es-
timates of the variances which we assumed to
have above.
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. It is easiest to first obtain 2 =52 + 52

v =

« Under assumption RE3a. -2 = 712" r@2) for
all «.

. Thus averaging .z across all i and ¢ gives a
consistent estimate of 2.

- However, this requires an initial estimate of s
and one can use the pooled OLS estimate 3.
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. Let 5, denote the pooled OLS residuals.
« A consistent estimator of -2 is given by

~2
E (UTS

t=1

WE

1
v (NT —K) 4

K2

Il
-

. To find a consistent estimator of -2 recall that
02 = E(vivis), aﬂ t#s.

« Therefore for each i, there are are r(r-1),2 non
redundant error products that can be used to
estimate o2.
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o If we sum all these co%nbma ions and take the
expectation, we get, for eac

E(ZZ) Y Y B -3 Y R (@

t=1 s=t+1 t=1 s=t+1 t=1 s=t+1 t=1
= 2(T-1)+(T—-2)+...2+1)=2T(T - 1)

where we have used the fact that the sum of
the first T-1 positive integers is T(T-1)/2.

22



. ﬁ 111a1 a (:(i1 nsistent estimator, is obtained
y replacing the expectation with an average

(across # and replacing », with its pooled OLS
residual.

« We also make a DOF adjustment as a small
sample correction:

T-1

T
2 1 2o
% T INT(T —1)/2 — K] DD D bab

=1 t=1 s=t+1

is a consistent estimator of -2 under Assump-

tions RE.1-RE.3.
» Given that we have 5 and 2 we can form 3 -

O’U*O'
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1.3 Fixed Effects Estimation

« Recall that the model under investigation for
7 time periods has the form

« The random effects estimator essentially puts
the ¢, in the error term under the assumption
that it is orthogonal to the 2, and then ac-
counts for the implied correlation in the error
term from doing so.

24



« However, in many economic studies the inclu-

sion of the ., is precisely to capture that there
is some unobservable which is potentially cor-
related with the »'s.

« The fixed effects estimator is designed to ac-

count precisely for this possibility. The r equa-
tions can be written as

Yi = X;B8+ cijr + u; (5)
where the j, is the 721 vector of ones.

« This equation represents a single draw from
the cross section.
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« The first fixed effects assumption is strict ex-
ogeneity of the explanatory variables condi-
tional on

« Assumption FE.1.

E(uit|ziye;) =0, t =1,2..T.
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« One can immediately see that this type of as-
sumption regarding the individual effect is far
more appealing than that of the random ef-
fects procedures.

« However, this increased level of flexibility is

associated with a de,c&eas,e i]a the number of
parameters that are identified.

. That is, as we allow for any type of relation-
ship between the fixed effects and the s this
means the coefficients on any time invariant =
is not identified.

« Also note that this assumption retains the
strict exogeneity of the ..
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« The idea for estimating s under the fixed ef-
fects assumption is to transform the equations
in order to eliminate the .

. When we have at least two observations on
the same i we can eliminate . through an

appropriate "fixed effects transformation" or
"within transformation".

« To perform the FE transformation we first av-
erage over 4 to get

Y; =T+ ¢ +u; (6)

where 7, = L7 4, etc.
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« Subtracting this from the original model we
get

Yir — G = (X — T) B+ (uie — ;) (7)
or
Jit = T+ gy t = 1.T. 8)
where g, = .. — 7, €tc.
« The time demeaning of the original equation
has removed the individual effect «,.
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« The OLS estimation of 8, which represents FE
estimation, provides consistent estimates of s
provided

E(T, ) =0 (9)
noting that in general this condition does not
hold if we relax strict exogeneity.
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. We. cgn also write the model 8 for all time
periods

Ui = Xiﬁ +uy (10)
where 7, is Tx1, x, is a Txk and = is Tx1.

« This set of equations can be obtained by pre-
multiplying 5 by a time demeaning matrix .
Define ¢ = i — jr(iLjr)-'j Which is a TXT sym-
metric, idempotent matrix with rank T-1.

. Note that Qrjr = 0; Qry; =i QrXi = X Qrui = U and
SO premult1ply1ng 5 by ¢, gives the demeaned
equations is 10.
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. For the FE estimator to be well behaved we
require

o Assumption FE.2: rank (S B@ ) = rank [B(X(X)] =
K.

« Thus if the ., contains an element that does
not vary over : for any : then the correspond-
ing element in s, is zero and the above as-
sumption does not hold. Thus the coefficients
on time invariant variables are not identified.
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« The fixed effects estimator can be expressed
as

Ben = (zxgxi) (zm) )
N 7/1:1 N T
(zz) (zzg)

=1 t=1 =1 t=1

. This is also Caﬁled,the within estimator be-
cause 1t uses the time variation with within

each cross section.

« The between estimator, which uses only vari-

ation betgﬁgn ethe Cross SeCtlii%I(]:l observations

, 18 the stimator app to the time

averaged equation 6.

« This estimator is not consistent under assump-
tion FE.1 because ;) is not necessarily zero.
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« So far we have treated the ., as unobserved
random variables. However, often we treat

the ¢ as parameters to be estimated.

o If assumption FE.2 is changed to its finite
sample version, rank(¥%) = x then the models
satisfies the gauss markov assumptions condi-
tional on x.
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. To estimate each ; along with the parameters
s one possibility is to define v dummy vari-
ables, one for each cross sectional unit, such
that

dni
dni

lifn=1

0 otherwise
and then regress y, on a, di,.dn..

« The ¢ is the coeflicient on 41, etc.

« This regression also corresponds to the FE es-
timator described above and this is why the
FE estimator is also known as the dummy
variable estimator.
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« There is an important distinction between the
& and the 3,,.

« We know that the 3,, is consistent with r fixed
aS N — co.

. This is not the case with & as each additional
cross sectional unit (i.e. ~ increasing) means
that an additional parameter that has to be

fstimated and information does not accumu-
ate on any ¢ as v 1ncreases.

« Thus each z is an unbiased estimator of
when the ., are treated as parameters.

. This is a practical example of an estimator
which is unbiased but not consistent.

36



