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Abstract

This paper studies the speed of price adjustment to aggregate technology shocks

and to monetary policy shocks in a Bayesian VAR model. Determining the speed of

price adjustment to di¤erent types of shocks provides information on the ability of

sticky price models to account for price level impulse responses. I show that, in the

United States, the price level adjusts much faster to aggregate technology shocks than

to monetary policy shocks. Results are robust to di¤erent identi�cation assumptions

and measures of aggregate prices. This evidence challenges existing models of price

stickiness.



1 Introduction

This paper investigates whether the U.S. aggregate price level adjusts faster to aggre-

gate technology shocks than to monetary policy shocks. Assessing the speed of price

adjustment to di¤erent types of shocks is an important task in the macroeconomic

literature, not only to establish the main sources of business cycle �uctuations, but

also to understand the way di¤erent shocks transmit through the economy and to

distinguish among available models. While a recent literature has quickly developed

assessing the degree of price stickiness to sector-speci�c idiosyncratic shocks versus

aggregate shocks, surprisingly little attention has been paid to di¤erences in price

stickiness within di¤erent types of aggregate shocks.1

Altig, Christiano, Eichenbaum and Linde (2005) and Dupor, Han and Tsai (2007)

show that sticky price models resulting from staggered price setting have a hard

time generating substantial di¤erences in price adjustment speed to technology and

monetary policy shocks. In these models the frequency of price adjustment is invariant

to di¤erent shocks. Golosov and Lucas (2006) show that state-dependent models of

price setting resulting from menu costs have di¢ culties generating di¤erent degree

of price rigidity to di¤erent types of shocks. In these models when the �rm pays

the menu cost it can adjust prices to all realized shocks. As a consequence, large

di¤erences in the speed of price adjustment would favor, for instance, those theories

that model price stickiness to monetary policy shocks mostly as the outcome of wage

rigidity, rather than frictions in price setting, as suggested by Galí and Gertler (1999).

By the same argument, large di¤erences would also favor those theories that model

frictions in price setting as the result of imperfect information rather than staggered

price setting or menu costs. In fact, as suggested by Woodford (2002), if �rms were

better informed about technology shocks then about monetary policy shocks, prices

1See, for instance, Boivin, Giannoni and Mihov (2008) for an empirical investigation of price
adjustment speed to sector-speci�c and aggregate shocks; Golosov and Lucas (2006); Gertler and
Leahy (2008); Máckowiak and Wiederholt (2008); Nakamura and Steinsson (2008b) for theoretical
applications.
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would adjust faster to technology shocks than to monetary policy shocks.

In order to assess the speed of price adjustment to technology and monetary policy

shocks, I use a Bayesian VAR (BVAR) model with a large number of macroeconomic

indicators and with standard Litterman priors. Recently Banbura, Giannone and

Reichlin (2007) have shown that BVAR models including a large number of variables

can be estimated, achieving relatively accurate forecasts and improving the structural

analysis to monetary policy shocks. The importance of conditioning on large informa-

tion set when identifying monetary policy shocks has also been shown in frameworks

related to factor analysis by Bernanke, Boivin, and Eliasz (2005) and Giannone, Re-

ichlin, and Sala (2004). In addition, I follow the structural VAR (SVAR) literature

in making explicit identifying assumptions to isolate estimates of monetary policy

and aggregate technology shocks while keeping the model free of the many additional

restrictive assumptions needed to give every parameter and equation an economic in-

terpretation. The model is estimated on U.S. data from 1960:I to 2007:II. I estimate

explicit measures of price adjustment speed to aggregate technology and monetary

policy shocks. Given these measures, I characterize the posterior probability distrib-

ution of the di¤erence in price adjustment speed to technology and monetary policy

shocks.

I obtain that the price level adjusts much faster to aggregate technology shocks

than to monetary policy shocks. Under the benchmark speci�cation of the model, it

takes approximately 5.5 quarters less for the median price level response to accomplish

half of its long-run adjustment to a permanent technology shock than to a monetary

policy shock. Two years after a technology shock, the price level response has ac-

complished approximately two-thirds of its long-run adjustment, while, in the same

period of time, the price level has accomplished only about one-�fth of its long-run

adjustment to a monetary policy shock. The posterior probability that prices adjust

faster to technology shocks than to monetary policy shocks is about 95 percent.

There is a large empirical literature investigating how aggregate macroeconomic
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variables respond to monetary policy shocks in the context of SVARs. These studies

provide evidence of stickiness of the aggregate price level in response to monetary

policy shocks.2 A recent paper by Altig, Christiano, Eichenbaum and Linde (2005)

estimates the responses of macroeconomic variables to both aggregate technology and

monetary policy shocks within a SVAR. Interestingly, they show that point estimates

of in�ation impulse responses display substantially larger persistence to monetary

policy shocks than to technology shocks. However, the relatively large error bands

associated to in�ation responses, and the price puzzle in in�ation response to mon-

etary policy shocks, make it di¢ cult deriving sharp conclusions about di¤erences in

price adjustment speed to the two types of shocks.

This paper contributes to the existing literature on at least two dimensions. First,

I estimate a model with a larger number of macroeconomic variables than in previ-

ous studies. The larger set of variables improves the structural analysis of impulse

responses. For instance, more information helps solving the price puzzle following

monetary policy shocks. This is important to properly quantify di¤erences in price

adjustment speed to the two types of shocks. Second, I assess robustness of �ndings

against di¤erent identi�cation assumptions and measures of aggregate prices. For

instance, standard identi�cation assumptions allow the price level to respond only

with a lag to monetary policy shocks, but contemporaneously to technology shocks.3

I show that estimated di¤erences in price adjustment speed are robust to a di¤erent

set of identi�cation assumptions implying similar restrictions on the dynamic of prices

to the two types of shocks.

The paper is organized as follows. Section 2 describes the BVAR model, the data,

the prior and the identi�cation assumptions, as well as deriving impulse responses

to aggregate technology and monetary policy shocks. Section 3 studies measures of

price adjustment speed and discusses results. Section 4 assesses robustness of �ndings

against the main assumptions behind the procedure adopted in the paper. Section 5

2See Christiano, Eichenbaum and Evans (1999) for a review.
3See Christiano, Eichenbaum and Evans (1999) and Galí (1999).

3



concludes.

2 The benchmark BVAR model

This section describes the baseline empirical model consisting of a SVAR for a n-

dimensional vector of variables, Yt. The SVAR model is given by

A0Yt = � + A1Yt�1 + :::+ ApYt�p + et; (1)

where Yt = (y1;t y2;t :::yn;t)
0 is the set of time-series at period t, � = (�1 �2 ::: �n) is

a vector of constants, A0; A1;..Ap are n� n matrices of structural parameters, p is a

non-negative integer, and et is an n-dimensional Gaussian white noise with unitary

covariance matrix, E fete0tg = I; representing structural shocks.

The reduced form VAR model associated to (1) is given by

Yt = c+B1Yt�1 +B2Yt�2 + :::+BpYt�p + ut; (2)

where c = A�10 �; Bs = A�10 As for s = 1; ::p; and ut = A�10 et: It is assumed that

all the roots of the VAR polynomial lie outside the unit circle. It follows that � �

E futu0tg = A�10
�
A�10

�0
:

Following Banbura, Giannone and Reichlin (2007), Yt includes a relatively large

number of macroeconomic variables. Model (2) is estimated using the Bayesian VAR

approach to overcome the curse of dimensionality. This approach consists in imposing

prior beliefs on the parameters of (2). These priors are set according to the standard

practice which builds on Litterman (1986)�s suggestions, which are often referred to

as Minnesota priors. According to these priors, Yt is assumed to evolve according to

Yt = c+ diag (�1; ::::; �n)Yt�1 + ut; (3)
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where the ith equation in (2) is centered around a random walk with drift if the ith

element of Yt is highly persistent; �i = 1; and around a white noise otherwise, �i = 0.

In particular, prior beliefs are such that

E
�
(Bs)ij

�
=

8<: �i; if i = j; s = 1

0; otherwise
;

V
�
(Bs)ij

�
=

�2

s2
�2i
�2j
;

for i = 1; :::; n; j = 1; :::; n; s = 1; :::; p; and the matrix � has prior expectation

E (�) = diag (�21; ::::; �
2
n) : The scale parameters �

2
i are set equal to the variance of

the residual from a univariate autoregressive model of order p for the ith element

of Yt: The hyper-parameter � governs the overall tightness of the prior distribution

around (3) : Next subsection describes choices of � and �i: Under these assumptions,

the posterior distribution of B = (B1; ::::; Bp; c)
0 and � is Normal inverted-Wishart.

See Appendix B for more details.

2.1 Data and priors

Model (2) includes twenty-three U.S. macroeconomic indicators, among which there

are four di¤erent indices of aggregate prices: GDP price de�ator, consumer price

index, producer price index and personal consumption expenditure de�ator.4 This

allows the study of the dynamics of di¤erent aggregate price indices within the same

model. The time span is from January 1960 through June 2007. Model (2) is esti-

4The model includes: labor productivity (GDPQ/LBMNU), hours worked (LBMNU), the nomi-
nal interest rate (FYFF), the GDP price de�ator (PGDP), the Standard and Poor�s stock price index
(FSPCOM), the number of employees on non-farm payrolls (CES002), personal income (A0M051),
real consumption (JQCR), real non-residential investments (IFNRER), real residential investments
(JQIFRESR), industrial production (IPS10), capacity utilization (UTL11), unemployment rate
(LHUR), housing starts (HSFR), the index of sensitive material prices (PSM99Q), the producer
price index (PWFSA), the personal consumption expenditures price de�ator (GDMC), the con-
sumer price index (PUNEW), average hourly earnings (CES275), M1 monetary stock (FM1), M2
monetary stock (FM2), non-borrowed reserves (FMRRA) and total reserves (FMRNBA).
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mated on a quarterly frequency, and the number of lags p is set equal to 4.

The model is speci�ed so that the vector Yt is stationary, ensuring that all the

roots of the VAR polynomial lie outside the unit circle.5 In particular, all the highly

persistent variables enter Yt in log-di¤erences with the exception of the federal funds

rate.6 Given that persistent variables enter Yt in log-di¤erences, a white noise prior,

�i = 0; is assumed for all variables but the federal funds rate. This choice of � =

(�1; :::; �n) is consistent with Banbura, Giannone and Reichlin (2007) and Stock and

Watson (2005). Results of this paper are robust to di¤erent speci�cations of �: Finally,

the hyper-parameter � is chosen similarly to Banbura, Giannone and Reichlin (2007)

and set equal to 0:065:7

2.2 Identi�cation of the structural parameters

Identi�cation of (1) amounts to putting enough restrictions on the model to be able

to recover A0; A1::; Ap and � from the equations above, given estimates of the reduced

form parameters, �; B1; :::; Bp and c: This is achieved in the benchmark speci�cation

of the model by appealing to the combination of standard identi�cation assumptions

for technology and monetary policy shocks. This choice has the advantage of making

results easily comparable to the existing literature. The main disadvantage is that

these standard identi�cation assumptions restrict price level response to monetary

policy shocks in the period of the shock. However, in section 4, I show that results

are robust to di¤erent identi�cation assumptions that allow for prices to respond

contemporaneously to all shocks.

First, it is assumed that only technology shocks may have a permanent e¤ect on

the level of labor productivity, as originally proposed by Galí (1999). This restriction

5Stationarity of (2) is needed to implement the identi�cation scheme in the next sub-section.
6The twenty-three indicators are entered in Yt in levels, logarithms or log-di¤erences depending

on the persistence of each indicator. See Appendix A for details on how each indicator is entered in
Y .

7The model includes a set of variables similar to Banbura, Giannone and Reichlin. Results are
robust to di¤erent choices of �: See Appendix C for more details on the choice of �:
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is satis�ed by a broad range of business cycle models under standard assumptions. In

particular, let�s de�ne the matrix C � (I �B1 � :::�Bp)
�1A�10 ; and suppose that

labor-productivity growth is the ith element of vector Yt; and that the technology

shock is the jth element of vector et: It is assumed that all the elements of the ith row

of C are zero except for the one associated to the jth column.

Second, similarly to Christiano, Eichenbaum, and Evans (1999), it is assumed that

monetary policy targets a policy instrument, St; according to

St = f (zt) + !est ; (4)

where zt is the information available to the central bank as of time t; ! is a constant

and est is the monetary policy shock. Following the Bernanke-Blinder assumption,

St is set equal to the 3-month federal funds rate. Variables in Yt are divided in four

subsets, Yt = (Xt; St; Zt; Ft)
0 : Similarly to the recursive assumption of Christiano,

Eichenbaum, and Evans (1999), it is assumed that variables in Xt; mainly quantities

and prices, may respond to monetary policy shocks, est ; with one period lag. It

is also assumed that the FED targets the monetary policy instrument so that St

is unresponsive to contemporaneous changes in Zt; where Zt includes M1 and M2

monetary stocks as well as non-borrowed and total reserves.8 Ft is equal to the S&P

stock price index and there is no restriction on the short-run relationship between Ft

and the other variables in Yt.9

Finally, the column of A�10 corresponding to the impact of monetary policy shocks

on Yt is normalized so that monetary policy shocks are associated to a contemporane-

ous increase in the federal funds rate; the column of A�10 corresponding to the impact

of technology shocks is normalized so that such shocks are associated to a permanent

8Similarly to Christiano, Eichenbaum, and Evans (1999), results are robust to using non-borrowed
reserves, M1 or M2 as the monetary policy instrument, S:

9This implies that the monetary policy instrument St is allowed to respond contemporaneously
to Ft; as well as Ft is allowed to respond contemporaneously to St: See Appendix D for details.
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increase in labor productivity.10 Under this set of assumptions the impulse responses

of Yt to monetary policy and technology shocks are exactly identi�ed.11

2.3 Impulse responses

Impulse responses are generated according to the methodology proposed by Ramirez,

Waggoner and Zha (2007). In particular, the model reduced-form parameters B1; :::;

Bp and � are drawn from the estimated Normal inverted-Wishart posterior distribu-

tion. For each draw of B1; :::; Bp and �; the model structural-form parameters A0; :::;

Ap are computed according to the identi�cation assumptions above. Given the struc-

tural parameters, the impulse responses of Yt to a one standard deviation technology

shock and to a one standard deviation monetary policy shock are computed for each

draw.12

[Figures 1, 2 and 3 about here]

Figure 1 plots the median impulse responses to aggregate technology and mon-

etary policy shocks, and the associated 68 and 90 percent con�dence intervals, of

the GDP price de�ator (PGDP), the consumer price index (PUNEW), the personal

consumption expenditure de�ator (PCEPI) and the producer price index (PWFSA).

Figure 2 plots the impulse responses of some key variables such as the federal funds

rate, GDP, PGDP-in�ation and labor productivity. Figure 3 plots the impulse re-

sponses of the remaining macroeconomic indicators of the model. Given the focus

on price adjustment, this paper only discusses results about price impulse responses.

However, the estimated impulse responses of the other variables in Y are consistent

with results obtained in previous studies.13 The main �ndings of this analysis are as

follows.
10Results are robust to di¤erent normalization assumptions, and in particular to the likelihood

preserving normalization proposed by Waggoner and Zha (2003).
11See Appendix D for details.
12Results are based on 5,000 draws and are robust to larger number of draws.
13See for instance Francis and Ramey (2005), Altig, Christiano, Eichenbaum and Linde (2005),

Galì (1999).
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First, the aggregate price level is more responsive to technology shocks than to

monetary policy shocks. In particular, the median price level response to a monetary

policy shock is approximately zero for the �rst 6 quarters, and only afterwards starts

converging slowly towards its new long-run level. It takes about 15 quarters before

90 percent of the posterior distribution of price level response to a one standard

deviation monetary policy shock is di¤erent from zero. In contrast, the median price

level starts adjusting immediately to a technology shock, accomplishing most of its

long run-adjustment within 8 quarters from the shock. Moreover, 90 percent of the

posterior distribution of price level response is always below zero. This evidence

suggests that price adjustment is substantially faster to technology shocks than to

monetary policy shocks.

Second, the shape and the dynamic of price impulse responses do not change much

across di¤erent measures of aggregate price. For a given shock, either to technology

or monetary policy, the median responses of the consumer price index, the GDP

de�ator, the personal consumption expenditure de�ator and the producer price index

are very similar both in terms of magnitude and in terms of dynamics. This evidence

is consistent, for instance, with empirical microeconomic studies of price adjustment

which show that sectoral level �nished good producer prices and consumer prices

share similar distributions of frequency of price adjustment.14

Third, the estimated impulse responses of the price level to monetary policy shocks

display no price puzzle. With the exception of the consumer price index, the median

response of the price level to a tightening in monetary policy is negative at all horizons.

The median consumer price index response to a monetary policy shock displays a mild

price puzzle, lasting only two quarters. However, the consumer price index response

is statistically zero for those quarters. The ability of the model to eliminate the

price puzzle relies on two main ingredients. The �rst one is the inclusion in Yt of a

relatively large number of variables. As shown by Banbura, Giannone and Reichlin

14See for instance Nakamura and Steinsson (2008).
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(2007), increasing the number of variables in the BVAR model helps substantially

in solving the price puzzle. The second ingredient is allowing the central bank to

respond to contemporaneous changes in the S&P stock price index. This permits the

model to better distinguish monetary policy shocks from systematic responses of the

monetary policy instrument to changes in asset prices.15

Fourth, technology shocks are much more important than monetary policy shocks

in explaining in�ation forecast error variance. Table 1 contains the forecast error

variance decomposition of the four di¤erent measures of aggregate price in�ation.

[Table 1 about here]

Technology shocks account for a relatively large fraction of the forecast error de-

composition of in�ation, at all horizons of forecast, ranging from a minimum of 20

percent for the producer price index at 2 quarters forecasting horizon, to a maximum

of 46.7 percent for the GDP de�ator at 16 quarters forecasting horizon. In contrast,

monetary policy shocks explain a negligible fraction of the forecast error variance of

in�ation at all horizons and for all measures of aggregate prices.

3 Price adjustment speed

The impulse responses in the previous section provided valuable information on price

adjustment speed to technology and monetary policy shocks. This section investigates

price adjustment speed more in detail. Let�s de�ne price adjustment speed to shock

15This is also the interpretation of the price puzzle originally given by Sims (1992): the monetary
policy authority may have better information than what is assumed by the model.
As a check on the importance of including asset prices into the information set by the central

bank, I have identi�ed the monetary policy shock by adopting the standard recursiveness scheme
of Christiano, Eichenbaum and Evans (1999), as done in Banbura, Giannone and Reichlin (2007).
In this exercise, Yt has a large number of variables, but the monetary authority set rates without
responding to contemporaneous change in asset prices. Under this identi�cation scheme, the price
impulse response to the monetary policy shock displays a price puzzle similar in magnitude to the
one in Banbura, Giannone and Reichlin (2007).
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x as the time it takes for the price level to complete �fty percent of its long-run

adjustment to that shock. This measure of price adjustment speed is given by

�x � min
j

�
j 2 [0; 1; 2; ::::::) :

��j;x�� � 1

2
j�xj

�
; (5)

where j;x is the impulse response of the price level to shock x evaluated j periods

after the shock, and �x is the long-run response of the price level to shock x. In the

computation of ��;x; �x and j;x are normalized so that �x is negative. The long-run

response �x is de�ned as the price level response 5 years after the shock. According to

standard new-keynesian and real business cycle theories, both a permanent technology

shock and a monetary policy shock to the nominal interest rate are expected to have

a permanent impact on the price level.16 However, in order to assess robustness of

results against di¤erent shapes of price level impulse responses, I have considered

di¤erent horizons in computing long-run response �x:
17 Results are indeed robust. It

follows that the di¤erence in the price adjustment speed between monetary policy

and technology shocks is given by

� � � s � � z;

where z and s denote the technology and the monetary policy shocks, respectively.

18 The larger is � , the faster the price level adjusts to technology shocks than to

monetary policy shocks.

Let�s de�ne also a second measure of price adjustment speed as the fraction of the

long-run price adjustment accomplished by the price level j periods after the shock.

This measure is given by

 x �
j;x
�x

; (6)

16See for instance Smets and Wouters (2007).
17If price level impulse responses were hump-shaped we should �nd results to be sensitive to this

choice.
18Qualitative results are robust to di¤erent choices of �:
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where j;x and �x are de�ned as above. According to this measure, the closer is the

price level to its new long-run adjustment level, j periods after the shock, the faster

it has adjusted to that shock. The di¤erence in price adjustment speed is given by

 �  z �  s;

where j is set equal to 8 quarters.19 The larger is  ; the faster the price level adjusts

to technology shocks than to monetary policy shocks.

3.1 Results from posterior draws

This subsection reports main statistics about � and  computed for the posterior

draws of section 2. To better characterize price adjustment to the two types of shocks,

for each measure of aggregate price level, draws are divided in four subsets depending

on the sign of the long-run price response to the two types of shocks. In particular,

draws are divided according to whether the associated long-run price response is

negative to both types of shocks, to one or to none of the two types of shocks. The

characterization of � and  on the basis of the price level long-run response to the two

types of shocks is useful when associated to predictions from standard new-Keynesian

and real business cycle theories. According to these theories, prices in the long-run

are expected to be permanently lower after a tightening in monetary policy, while

the sign of the long-run price response to a positive technology shock depends on

the parameterization of the model. However, under standard parameterization and

behavior of monetary policy, the price level is also expected to drop in the long-run

following the increase in productivity.20 Figure 4 displays scatter plots for the draws

of � and  associated to each of the four measures of aggregate price. For each

measure of aggregate price level, draws are labeled according to the sign of the price

level long-run response to the two types of shocks. The main results from this analysis

19Qualitative results are robust to di¤erent choices of j:
20See Dedola and Neri (2006) and Uhlig (2006) on this point.
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are as follows.

[Figure 4 about here]

First, the vast majority of draws is in the upper-right corner of the scatter plots

for all measures of aggregate prices. This means that the posterior probability that

the price level adjusts faster to technology shocks than to monetary policy shocks is

: i) relatively high; ii) a similar across all four measures of aggregate price level.

Second, the vast majority of draws, about 95 percent of the total, displays negative

sign in the long-run price response to both technology and monetary policy shocks.

This is true across all four price indices. These results are consistent with standard

economic theory. About 1.5 percent of draws displays positive sign in the long-run

price response to technology shocks, while approximately 3.5 percent of draws displays

positive sign in the long-run price response to monetary policy shocks.

Third, among the 5 percent of total draws for which prices adjust faster to mone-

tary policy shocks than to technology shocks, about half of the draws displays positive

sign in the long-run price response to monetary policy shocks.

[Table 2 about here]

Table 2 reports main statistics about the posterior distribution of � and  . These

statistics are very similar across the di¤erent measures of aggregate price level. On

average it takes about 5.5 quarters more for the price level to accomplish half of the

long-run response to a monetary policy shock than to a technology shock. Similarly,

eight quarters after the shock, the average di¤erence in the fraction of the long-run

response accomplished by the price level is between 0.38 and 0.44, depending on

the measure of aggregate price level. According to � ; the posterior probability that

the price level adjusts faster to technology shocks than to monetary policy shocks

ranges from a minimum of 0.94, for the personal consumption expenditure de�ator,

to a maximum of 0.97 for the producer price index. Similarly, according to  ; the
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posterior probability that 8 quarters after the shock the price level has accomplished

a larger fraction of the long-run adjustment to a technology shock than to a monetary

policy shock ranges from a minimum of 0.93 to a maximum of 0.96.

When conditioning on the 95 percent of total draws with negative signs in the long-

run response to both shocks, results about the di¤erence in price adjustment speed

are stronger than the ones obtained from all draws. In such a case, the posterior

probability that the price level adjusts faster to technology shocks than to monetary

policy shocks is between 0.98 and 0.99 according to � ; and between 0.97 and 0.98

according to  :

3.2 Interpretation of results

The fact that price adjustment speed di¤ers substantially across di¤erent types of

aggregate shocks implies that the degree of price stickiness to aggregate shocks �

de�ned as the speed of price adjustment � appears to be conditional on the source of

shocks. Large di¤erences in the degree of price stickiness suggest that the frequency

of price changes is not decisive for price level impulse responses. In fact, in models of

price setting with Calvo-style staggered contracts, pro�t-maximizing prices are typi-

cally given by a markup over nominal marginal costs. In these models the price level

can be sticky in response to a shock as the result of a combination of: i) relatively

low frequency of price adjustment; ii) relatively high strategic complementarities in

price setting; iii) sticky factor prices.21 Everything else being equal, low frequency

of price adjustment implies high price rigidity to all shocks. Similarly, higher strate-

gic complementarities in price setting increase price rigidity to all aggregate shocks.

Therefore it is unlikely that, in absence of other frictions, a combination of frequency

21The standard new-keynesian aggregate supply relation implies

�t = �Et�t+1 + �st;

where �t is in�ation, � is a coe¢ cient depending on the frequency of price adjustment and strategic
complementarities in price setting, st are real marginal costs in deviations from the steady state.
See Woodford (2003) chapter 3 for more details.
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of price adjustment and complementarities can generate substantially di¤erent price

adjustment speed to technology and monetary policy shocks. This result poses a

new challenge to existing models of sticky prices. In fact, as shown by Nakamura

and Steinsson (2008b), increasing strategic complementarities in price setting helps

standard sticky price models generating high price rigidity to aggregate shocks and

low price rigidity to sector-speci�c idiosyncratic shocks. However, higher strategic

complementarities would not explain di¤erent degrees of price rigidity to di¤erent

aggregate shocks.22

A possibility to reconcile existing models with the empirical evidence on price ad-

justment speed is through sticky factor prices, such as real or nominal sticky wages.23

In fact, marginal costs depend on factor prices as well as on the state of technology.

If factor prices are sticky, marginal cost dynamics are mainly determined by techno-

logical innovations. It follows that, in absence of substantial frictions in price setting,

the price level is sticky to monetary policy shocks but responsive to aggregate tech-

nology shocks. However, as shown by Del Negro and Schorfheide (2008), in absence

of substantial frictions in price setting standard DSGE models may have a hard time

explaining the joint behavior of in�ation, output and labor share of production costs.

With low price rigidities, movements in the labor share are dominated by mark-up

shocks, which tend to generate a counterfactual negative correlation between labor

share and in�ation.

Di¤erently from time-dependent models of price setting, menu cost models allow

for state-dependent pricing. To the best of my knowledge there is no paper studying

price responsiveness to aggregate technology and monetary policy shocks in a model

of sticky prices with menu costs. In these models �rms adjust prices faster in re-

sponse to those shocks that have a larger impact on pro�t-maximizing prices. For

22Interestingly, Burstein and Hellwig (2007) show that estimated degree of strategic complemen-
tarities in price setting is too low to explain, in absence of other frictions, di¤erences in price rigidity
between sector speci�c and aggregate shocks.
23Galí and Gertler (1999) also suggest that wage rigidity is potentially important to account for

in�ation dynamics.
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instance, everything else being equal, if technology shocks are larger than monetary

policy shocks, �rms decide to pay the menu cost and adjust prices, on average, more

frequently in response to technology shocks than to monetary policy shocks. However,

when �rms pay the menu cost they can adjust prices to all realized shocks. Economic

intuition suggests that, similarly to Golosov and Lucas (2006), if �rms adjust prices

frequently to aggregate technology shocks, or to other types of shocks, they adjust

prices frequently as well to contemporaneous realizations of monetary policy shocks.

It follows that, in such a case, the frequencies with which di¤erent shocks realize may

matter in explaining di¤erences in price adjustment speed.

Similarly to time- and state-dependent models of price setting, incomplete infor-

mation theories have been popular in accounting for the sluggish price adjustment in

response to monetary policy shocks. Such a framework can deliver prices responding

more to aggregate technology shocks than to monetary policy shocks, if �rms are

relatively better informed about aggregate technology shocks than they are about

monetary policy shocks. In particular, as suggested by Paciello (2008), a model in

which �rms make pricing decision under incomplete information, and allocate atten-

tion across di¤erent sources of uncertainty along the lines of Máckowiak and Wieder-

holt (2008), can generate prices to be more responsive to aggregate technology shocks

than to monetary policy shocks if, for instance, technology shocks are more volatile

than monetary policy shocks.24

Exploring further the ability of di¤erent models of price setting to capture the

behavior of prices in response to di¤erent types of aggregate shocks is in the author�s

view an important avenue for future research.

24Empirical estimations based on U.S. TFP growth suggest that technology shocks are approx-
imately 2 times more volatile than innovations to the Federal Funds rate. See Fernald (2007) for
estimates of TFP growth.
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4 Robustness analysis

This section investigates to what extent results from the benchmark BVAR model are

robust to several features of the estimation procedure, such as identi�cation assump-

tions and subsample stability. The insights from these exercises reinforce the results

obtained in the previous sections.25

4.1 A Solow-residual based identi�cation for technology

One of the identifying assumptions in the previous sections is that the technology

shock is the only shock a¤ecting labor productivity in the long-run. This restric-

tion holds in a wide range of business cycle models. However, there exist models

that do not satisfy it. For example, this assumption is not true in an endogenous

growth model where all shocks a¤ect productivity in the long-run, nor is it true in

a model where there are permanent shocks to the tax rate on capital income. To

address these issues, this subsection adopts a di¤erent identi�cation assumption for

technology shocks, relying on a Solow-residual measure of quarterly total factor pro-

ductivity (FTFP) growth estimated by Fernald (2007). Fernald�s quarterly measure

explicitly accounts for variable capital utilization and labor hoarding.26 The FTFP

series is added to Y and the posterior distribution of (B;�) is estimated as in sec-

tion 2. Di¤erently from section 2, in this subsection the identifying assumption is

that a technology shock is the only shock a¤ecting FTFP in the long-run, while the

long-run response of labor productivity is unrestricted. Relative to the identi�cation

assumptions of section 2, the advantage of this procedure is that, by explicitly assum-

25Robustness analyses has been conducted also with respect to the tightness prior hyper-
parameter, �; and frequency of the data, namely monthly instead of quarterly. Results are similar
to the ones obtained under the benchmark speci�cation and therefore omitted. These results are
available on the author�s web-page.
26The growth rate of FTFP is given by:

� ln(FTFP ) = � ln(GDP )� � (� ln(K) + � ln(Z))� (1� �) (� ln(QH) + � ln(E)) ;

where Z is capital utilization, K is capital input, E is labor e¤ort per (quality-adjusted) hour worked,
Q is labor quality (i.e., a labor composition adjustment), and H is hours worked.
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ing an aggregate production function, it directly estimates total factor productivity

growth.27 This procedure has been originally applied by Christiano, Eichenbaum

and Vigfusson (2004), suggesting there could be high frequency cyclical measurement

error in Solow-residual based measures of total factor productivity, that the long-

run restriction might clean out.28 As long as the assumption about the aggregate

production function holds at low frequencies, the model provides unbiased estimates

of technology shocks. The remaining assumptions required to jointly identify the

monetary policy shock are unchanged from section 2.

[Figures 5 and 6 about here]

Figure 5 plots technology shocks between 1961:II and 2007:II, estimated according

both to the benchmark identi�cation scheme of section 2 and to the identi�cation

scheme of this subsection. The time series of estimated technology shocks are very

similar across the two identi�cation assumptions, and have a high correlation equal

to 0.96. This suggests that the two identi�cation schemes deliver similar results in

terms of price adjustment speed to technology and monetary policy shocks.

Figure 6 plots the impulse responses of the di¤erent measures of price level to the

two types of shocks. The shape and dynamic properties of responses are very similar to

the ones obtained under the benchmark identi�cation scheme. Prices start adjusting

to a technology shock right after the shock, and complete most of the adjustment

within two years from the shock, while the response of prices to a monetary policy

shock is approximately zero for about one year and a half following the shock, and

only afterwards prices start slowly adjusting towards the new long-run equilibrium.

[Table 3 about here]

27See Chari, Kehoe and McGrattan (2008) for a criticism on long-run restrictions to labor pro-
ductivity.
28The technology shock estimated trough long-run restrictions on FTFP, as in this subsection,

has a 0.97 correlation with the residual of the equation associated to FTFP in the VAR. Therefore
in this case long-run restrictions do not a¤ect the estimates of technology shocks much.
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Statistics about � and  computed under the identi�cation assumptions of this sub-

section are reported in column (1) of Table 3. These statistics are, both quantitatively

and qualitatively, very similar to the ones obtained under the benchmark identi�ca-

tion scheme.

4.2 Identi�cation through sign restrictions

Under the benchmark identi�cation scheme, the price level is allowed to respond con-

temporaneously to realizations of technology shocks, while it is allowed to respond to

monetary policy shocks only with a lag. More generally, monetary policy shocks are

identi�ed through short-run type restrictions, while technology shocks are identi�ed

trough long-run type restrictions. This section adopts an agnostic method to iden-

tify both technology and monetary policy shocks. Such a method relies on imposing

sign restrictions to the impulse responses of Yt to each of the two types of shocks.

This method has been originally proposed by Faust (1998) and then applied by Uhlig

(2006) to the identi�cation of monetary policy shocks, and by Dedola and Neri (2007)

to the identi�cation of technology shocks. Intuitively, this identi�cation scheme treats

price responses to the two types of shocks symmetrically from an identi�cation stand-

point. For instance, it allows prices to respond immediately to both types of shocks.

Its main disadvantage is that it imposes relatively weak restrictions on the response

of the economy to the two types of shocks and, as a consequence, impulse responses

may be less tightly estimated than under the benchmark identi�cation scheme. From

a Bayesian point of view, sign restrictions amount to attributing probability zero to

reduced-form parameters giving rise to impulse responses which contravene the re-

strictions. To the extent that these restrictions do not lead to over-identi�cation, they

impose no constraint on the reduced form of the VAR. Standard Bayesian methods

can thus be used for estimation and inference. Apart from the di¤erent identi�cation

assumptions, the rest of the estimation procedure is as in the benchmark speci�cation

of the model.
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Sign restrictions on the impulse responses to monetary policy shocks are similar

to the ones adopted by Uhlig (2006), while sign restrictions on the impulse responses

to technology shocks are similar to the ones adopted by Dedola and Neri (2006).29 In

general, these restrictions require prices, monetary aggregates and quantities to move

in the opposite direction of the federal funds rate for at least two quarters in the case

of a monetary policy shock, and require quantities and labor-productivity to move in

the opposite direction of prices for a relatively large number of quarters in the case

of a permanent technology shock. Sign restrictions are reported in more details in

Table 4.30

[Table 4 about here]

Intuitively, this method distinguishes the two types of shocks on the basis of the facts

that: i) permanent technology shocks have a more persistent impact on quantities

than monetary policy shocks; ii) quantities and prices move in opposite directions

following a technology shock, but move in the same direction following a monetary

policy shock; iii) monetary policy shocks are associated to changes in monetary ag-

gregates and interest rates. Finally, this subsection adopts the algorithm proposed by

Ramirez, Waggoner and Zha (2007) to compute the posterior distribution of impulse

responses.31

[Figure 7 about here]

Figure 7 plots the impulse responses of the four measures of aggregate price level

to one standard deviation technology and monetary policy shocks. Although the

identi�cation scheme is very di¤erent from the one adopted under the benchmark

speci�cation, impulse responses to the two types of shocks are very similar to the

ones reported in section 2. The price level response is faster to technology shocks

29I refer to these authors for a discussion of the ability of these restrictions to distinguish technology
from monetary policy shocks as well as from other shocks.
30Results are robust to di¤erent speci�cations of sign restrictions, and in particular to di¤erent

assumptions about the number of periods they are expected to hold for.
31For more details see Ramirez, Waggoner and Zha (2007) pp. 38-40.
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than to monetary policy shocks. As a consequence, statistics about � and  reported

in column (2) of Table 3 con�rm the �ndings of the benchmark speci�cation. The

posterior probability that the price level adjusts faster to technology shocks than

to monetary policy shocks ranges from a minimum of 0.78 to a maximum of 0.89,

depending on the measure of price level and price adjustment speed adopted. The

average � is about 4 quarters, while the average  is between 27 and 31 percentage

points. Standard deviations of � and  are larger than under the benchmark speci�-

cation. The larger standard deviations and the slightly smaller median estimates of

� and  re�ect the weaker identi�cation assumptions.

An advantage of sign restrictions is that they do not require system (2) to be

stationary. This property allows assessing robustness of results above against the

speci�cation of model (2) in levels. Prior beliefs are adjusted accordingly.32 Results

about price adjustment speed to the two types of shocks are very similar to the ones

obtained under the benchmark speci�cation and are therefore omitted.

4.3 Subsample stability

This subsection brie�y discusses subsample stability of results. Galí, López-Salido and

Vallés (2003) have found that the e¤ects of technology shocks estimated with long-

run restrictions di¤er drastically between the two periods before and after Volcker�s

tenure at the helm of the Federal Reserve System. Precisely, a positive technology

shock causes in�ation to be much more persistent in the subsample up to the early

1980�s than afterwards. Boivin and Giannoni (2006) �nd that the impact of monetary

policy shocks on the U.S. economy is less e¤ective in the pre-1980 period than in

the post-1980 one. The smaller impact of monetary policy shocks is particularly

pronounced on in�ation which displays a statistically zero response in the post-1980

period. A similar break in the sample is also suggested by Stock and Watson (2002)

32All variables that under the benchmark speci�cation entered Yt in log-di¤erences are instead
entered in logarithms, and are given a random walk prior, �i = 1; instead of a white-noise prior:

21



who identify the beginning of the Great Moderation in the period between 1982:IV

and 1985:III. As a consequence, this subsection studies price adjustment speed in two

sub-sample starting and ending around the mid-80�s.

[Figures 8 and 9 about here]

Figure 8 reports price level impulse responses estimated in the pre-83 period,

while Figure 9 reports impulse responses estimated in the post-83 period.33 Price

level response to technology shocks is faster in the post-83 period than in the pre-83

period. This evidence is consistent with Galí, López-Salido and Vallés (2003). With

90 percent probability con�dence, price level response to monetary policy shocks is not

statistically di¤erent from zero in the post-83 period, while it is statistically di¤erent

from zero in the pre-83 period, although only after several quarters. This evidence is

consistent with Boivin and Giannoni�s (2006) �ndings.

Columns (3) and (4) in Table 3 report the main statistics about � and  computed

in the two sub-samples.34 These results show that price adjustment speed to tech-

nology shocks is larger than to monetary policy shocks in both subsamples. In the

post-83 period, the average di¤erence in price adjustment speed has slightly decreased

for the consumer price index, the GDP and the personal consumption expenditure

de�ators, while it has increased for the producer price index. However, due to samples

of smaller size, the standard deviations of � and  are larger than under full sample

speci�cation. It follows that the di¤erences in � and  across the two subsamples

are not statistically signi�cant. Moreover, the posterior probability of � > 0 rises

in the post-83 period, while the posterior probability of  > 0 drops in the post-83

period. Therefore, although price responsiveness to both technology and monetary

policy shocks has changed over the two sub-samples, there is no strong evidence of a

33This choice coincides with the second appointment of Volcker at the helm of the Federal Reserve.
34Due to the smaller sample size, the procedure adopted in section 2 to compute prior tightness

imply � = 0:1 in both subsamples.
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change in � and  :

5 Concluding remarks

This paper answers the question of whether, by how much and how likely it is that

the U.S. aggregate price level adjusts faster to aggregate technology shocks than to

monetary policy shocks. Under the benchmark speci�cation of the model, it takes

on average about 5.5 quarters less for the price level response to accomplish half

of its long-run adjustment to a technology shock than to a monetary policy shock.

Two years after a technology shock, the median price level response has accomplished

approximately two-thirds of its long-run adjustment, while two years after a monetary

policy shock the median price level response has accomplished only about one-�fth

of its long-run adjustment. According to the measures of price adjustment speed in

the paper, the posterior probability that the price level adjusts faster to technology

shocks than to monetary policy shocks is about 95 percent. The estimates of price

adjustment speed to a given shock are similar across di¤erent indices of aggregate

price level. These results are robust to di¤erent identi�cation assumptions.

These facts challenge existing models of price stickiness. Sticky price models have

a hard time matching di¤erent price level responsiveness to aggregate technology and

monetary policy shocks. Two main line of research seem promising exploring. One

line of research points toward wage rigidity as main source of price rigidity. The other

line of research is related to recent development on price setting under incomplete

information and rational inattention. Exploring further the ability of these models to

explain the estimated di¤erences in price adjustment speed is left for future research.
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[24] Máckowiak, Bartosz, and Mirko Wiederholt. 2008. �Optimal Sticky Prices under

Rational Inattention�. Forthcoming American Economic Review.

[25] Nakamura, Emi, and Jón Steinsson (2008): �Five Facts about Prices: A Reeval-

uation of Menu Costs Models�. Quarterly Journal of Economics.

[26] Nakamura, Emi, and Jón Steinsson (2008b):�Monetary Non-Neutrality in a

Multi-Sector Menu Cost Model.�NBER Working Paper No. 14001.

[27] Paciello, Luigi (2008): �Price Responsiveness to Aggregate Technology and Mon-

etary Policy Shocks under Rational Inattention.�Northwestern University PhD

dissertation.

26



[28] Ramirez, J. R., Daniel F. Waggoner and Tao Zha (2007): �Markov-Switching

Structural Vector Autoregressions: Theory and Application.� FRB of Atlanta

Working Paper No. 2005-27.

[29] Sims, Christopher A. (1992): �Interpreting the Macroeconomc Time Series Facts:

the E¤ects of Monetary Policy�. European Economic Review, Elsevier, vol. 36(5),

pages 975-1000.

[30] Stock, J. and MarcWatson (2002): �Has the Business Cycle Changed andWhy?�

NBER Working Paper No. 9127.

[31] Waggoner D.F., and T. Zha (2003): �Likelihood Preserving Normalization in

Multiple Equation Models�. Journal of Econometrics, 114, 329-347.

[32] Woodford, Michael. 2002. �Imperfect Common Knowledge and the E¤ects of

Monetary Policy�. In �Knowledge, Information, and Expectations in Modern

Macroeconomics: In Honor of Edmund S. Phelps�, Princeton University Press.

27



Appendices

A Data

Mnemon Series Component of Y=(X,S,Z,F) Lev Log d-Log

GDPQ/LBMNU Labor productiv ity X v

LBMNU Index total hours worked X v

FYFF INTEREST RATE: FEDERAL FUNDS S v

PGDP GDP price de�ator X v

FSPCOM Standard and Poor�s sto ck price index F v

CES002 Number of employees on non-farm payrolls X v

A0M051 Personal incom e (AR , B IL . CHAIN 2000 $) X v

JQCR Real Personal Consumption Exp enditures X v

IFNRER Real non-residentia l investm ents X v

JQ IFRESR Real residentia l investm ents X v

IPS10 Industria l production X v

UTL11 Capacity utilization X v

LHUR Unemploym ent rate X v

HSFR Housing starts (NONFARM) X v

PCOM Index of sensitive materia l prices X v

PWFSA Producer price index X v

PCPEPI Personal consumption exp enditures price de�ator X v

PUNEW Consumer price index X v

CES275 Average hourly earn ings X v

FM1 M1 monetary sto ck Z v

FM2 M2 monetary sto ck Z v

FMRRA Non-b orrowed reserves Z v

FMRNBA Total reserves Z v

FTFP Fernald�s (2007) TFP estim ate X v

28



The source of most of the data is the DRI Basic Economics Database, avail-

able on-line at Northwestern University. Output, GDP de�ator, residential and non-

residential investments were obtained from the BEA website. Most data is available

at a monthly frequency. Output, GDP de�ator, residential and non-residential in-

vestments are not. When I estimate the model at the monthly frequency, I use Sims

and Zha (2007) interpolated monthly series for these four time series. LBMNU is also

not available at the monthly frequency. In the monthly frequency analysis, the latter

is replaced by the BLS index for average weekly hours worked.

B Minnesota prior
Let�s rewrite model (2) as a system of multivariate regressions:

Y
T�n

= X
T�k

B
k�n

+ U
T�n

;

where Y = (y1; :::yT )
0, X = (X1; ::::; XT )

0 and with Xt =
�
Y 0
t�1; :::; Y

0
t�p; 1

�
; U =

(u1; :::; uT )
0 ; B = (B1; ::::; Bp; c)

0 ; and k = np + 1: The prior beliefs are such that B

and 	 have a Normal inverted Wishart distribution, according to which

	 v iW (S0; �0) and Bj	 v N (B0;	
 
0) :

The prior parameters S0; �0; B0 and 
0 are chosen so that the coe¢ cients in B1; B2;..,

Bp; denoted by (Bs)ij ; s = 1; ::p; i = 1; 2::; n; j = 1; 2; ::n; have prior expectations

and variances given by

E
�
(Bs)ij

�
=

8<: �i; if i = j; s = 1

0; otherwise
;

V
�
(Bs)ij

�
=

�2

s2
�2i
�2j
;

and the matrix 	 has prior expectation E (	) = diag (�21; ::::; �
2
n) : For details see

29



Kadiyala and Karlsson (1997). The scale parameters �2i are set equal to the variance

of the residual from a univariate autoregressive model of order p for the variable yi:

The prior is implemented by adding T0 dummy observations, Y0 and X0; to Y and

X respectively. It can be shown that this is equivalent to imposing a normal inverted-

Wishart prior withB0 = (X 0
0X0)

�1X 0
0Y0; 
0 = (X

0
0X0)

�1 ; S0 = (Y0 �X0B0)
0 (Y0 �X0B0)

and �0 = T0 � k � n� 1: It follows that the dummy-augmented VAR model is:

Y�
T��n

= X�
T��k

B
k�n

+ U�
T��n

;

where T� = T + T0; X� = (X 0; X 0
0) ; Y� = (Y 0; Y 0

0)
0 and U� = (U 0; U 00)

0 : To insure

the existence of the prior expectation of 	 it is necessary to add an improper prior

	~ j	j�(n+3)=2 : The posterior distribution of (B;	) is a Normal inverted-Wishart:

	jY v iW (S�; ��) and Bj	; Y v N (B�;	
 
�) ;

where B� = (X 0
�X�)

�1X 0
�Y�; 
� = (X 0

�X�)
�1 ; S� = (Y� �X�B�)

0 (Y� �X�B�) and

�� = T� � k + 2: See Banbura, Giannone and Reichlin (2007) for more details.

C Parameterization of �
Consider a n1-dimensional subset of Y . De�ne the in-sample mean squared fore-

cast error (MSFE) of the 1-step-ahead mean squared forecast as:

MSFE
(�;m)
i =

1

T � p� 1

TX
t=p+1

�
ŷ
(�;m)
i;t � yi;t

�2
;

where i = 1; ::::; n1 indices the variable the MSFE is computed for, T is the length

of the sample, ŷ(�;m)i;t is the one-step-ahead forecast computed in model m with prior

parameterization equal to �: This analysis studies three types of models, depending

on the number of variables included in the analysis and the value of �. The �rst

model, m = 1; includes n1 variables and is estimated with a �at prior, � = 1: The
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n1 variables considered are: labor-productivity, hours worked, GDP price de�ator,

Federal Funds rate, M2 money stock, commodity price index, capacity utilization

and average hourly earnings of production workers. This set of variables is similar to

the one adopted by other authors in the study of the response of the U.S. economy to

monetary policy and aggregate technology shocks35. The second model, m = 2; is the

benchmark model. It includes all the n macroeconomic indicators and is estimated

with the Minnesota prior described in the main text and depending on �: The third

model, m = 3; includes all the n variables and is estimated imposing the prior exactly,

� = 0: Following Banbura, Reichlin and Giannone (2007), I choose � in model m = 2

so to minimize the di¤erence in �t from model m = 1:

�� = argmin
�

�����z� 1

n1

n1X
i=1

MSFE
(�;1)
i

MSFE
(0;3)
i

����� ;
where z = 1

n1

Pn1
i=1

MSFE
(1;1)
i

MSFE
(0;3)
i

= 0:35 is the measure of relative �t associated to the

reference model. From this procedure �� is equal to 0:065.

C.1 Alternative measures of �

Section 4 considers di¤erent values of �: These values are chosen so to increase

or reduce the �t under the benchmark speci�cation, 1
n1

Pn1
i=1

MSFE
(�;1)
i

MSFE
(0;3)
i

; by 0.05. At

� = 0:04 is associated a measure of �t approximately equal to 0.4. At � = 0:12 is

associated a measure of �t approximately equal to 0.3.

D Identi�cation

Let�s order the variables in the model as Yt = (Xt; St; Zt; Ft)
0 ; where the �rst

element of Xt and Yt is log-labor productivity: Variables are entered in the VAR

according to Appendix A. Following Ramirez, Waggoner and Zha (2007) let�s express

35See for instance Christiano, Eichenbaum and Evans (1999) and Altig, Christiano, Eichenbaum
and Linde (2005).
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the set of linear restrictions onto the structural parameters of A0 as

H (A0) =

24 A�10

(I �B (1))�1A�10

35 � D

where B (1) = B1 + ::: + Bp and B1; :::; Bp are the estimates of the reduced form

autoregressive matrices. D is a 2n� n matrix of restrictions imposed on the impact

and long-run responses to structural shocks. Let�s de�ne nx and nz as the number of

variables in X and Z respectively. Let�s order the technology and monetary policy

shock as the nth and nthz +1 element of the vector of structural shocks et respectively.

The identifying restrictions are zero restrictions on the matrix D given by

D� =

26666666666666666664

0 0 Tx x

0 x x x

Tz x x x

x x x x

0 0 0 x

x x x x

x x x x

x x x x

37777777777777777775

; (7)

where Tz and Tx are nz � nz and nx � nx matrices respectively, and have the form of

upper triangular matrices with an inverted order of columns:

Ti =

26666664
0 � � � 0 x1;ni

0 � � � x2;ni�1 x2;ni

0 � ...
...

xni;1 � � � xni;ni�1 xni;ni

37777775 ;

where i = z; x: The zero restrictions on D� satisfy both the necessary and su¢ cient
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(rank) conditions for exact identi�cation derived by Ramirez, Waggoner and Zha

(2007). In order to recover A0 from the system of linear equations, H (A0) = D�

and A�10 A�100 = �; I recur to an algorithm proposed by Ramirez, Waggoner and Zha

(2007). Let � = SD
1
2 be the n�n lower diagonal Cholesky matrix of the covariance of

the residuals of the reduced form VAR, that is SDS0 = E[utu
0
t] = � andD = diag(�):

Let�s compute H (�) and de�ne matrices P1 and P2 as:

P1 �

26664
01�n 1 01�n�1

In�n 0n�1 0n�n�1

0n�n 0n�1 In�1�n�1

,

37775 (8)

P2 � [in; in�1; ::::; i1] ; (9)

where Is�s is the s-dimensional identity matrix and is is an n-dimensional column

vector of zeros with the sth element equal to 1.

Proposition 1 For given estimates of B and �; let � be the Cholesky factor associ-

ated to �; and let H (�) ; P1 and P2 be de�ned as in (8)� (9) : Let P3 be the Q factor

associated with the QR decomposition of the matrix P1H (�) and de�ne P = P3P
0
2.

Let also A0 satisfy the restriction H (A0) = D� where D� is de�ned as in (7) : It

follows that A0 = ��1P .

For a proof see Ramirez, Waggoner and Zha (2007). These restrictions satisfy

both the necessary and the rank conditions for exact identi�cation. The structural

shocks et are obtained from et = A�10 ut: Finally, the order of the variables in X and

Z can be arbitrarily changed without any e¤ect on the identi�cations of the columns

for technology and monetary policy shocks. To see these, consider the matrix A0:
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These assumptions impose the following zero restrictions on the matrix A0;

A0 =

26666666666666666664

a11

(nx � nx)

0

nx � 1

0

(nx � nz)

a14

nx � 1

a21

(1� nx)

a22

(1� 1)

0

(1� nz)

a24

(1� 1)

a31

(nz � nx)

a32

(nz � 1)

a33

(nz � nz)

a34

(nz � 1)

a41

(1� nx)

a42

(1� 1)

a43

(1� nz)

a44

(1� 1)

37777777777777777775

:

Then consider the n� n orthonormal matrix

W =

26666664
W11 0 0 0

0 1 0 0

0 0 W33 0

0 0 0 1

37777775 ;

where W11 and W33 are nx�nx and nz �nz orthonormal matrices respectively. If A0
satis�es H (A0) = D�; any matrix ~A0 = WA0 also satis�es H

�
~A0

�
= D�:
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 Inflation Forecast Variance Decomposition 
 H=2 H=6 H=16 
 TECH MP TECH MP TECH MP 
PUNEW       
 25.7 0.3 33.9 0.7 34.4 2.3 
 (1.6) (0.5) (3.0) (0.7) (4.3) (1.6) 
PWSFA       
   20.0 0.3 25.1 0.8 25.1 2.4 
 (1.2) (0.5) (2.3) (0.7) (3.0) (1.5) 
PCEPI       
 36.2 0.2 42.4 0.6 41.9 2.1 
 (1.8) (0.4) (3.5) (0.7) (5.1) (1.7) 
PGDP       
 39.7 0.2 46.7 0.6 44.8 2.5 
 (2.1) (0.4) (4.0) (0.8) (5.9) (1.9) 

 
Table 1:  Average forecast-error variance decomposition, % of total. Standard deviations in parenthesis.  

H: horizon of forecast. PUNEW: CPI level; PWSFA: PPI level; PCEPI: PCE deflator; PGDP: 
GDP deflator.  

 
 
 

 τ ψ 
 Subset N Subset P All draws Subset N Subset P All draws 
PUNEW       
Average 5.93 -1.01 5.61 0.47 -0.08 0.44 
Median 6.00 -2.00 6.00 0.48 -0.19 0.48 
Std 2.34 6.04 3.01 0.18 0.46 0.23 
Pr(s>0 | Y)  0.99 0.37 0.96 0.98 0.34 0.95 
PWSFA       
Average 5.67 -0.49 5.49 0.44 0.00 0.42 
Median 6.00 -1.50 6.00 0.45 0.00 0.45 
Std 2.23 7.01 2.50 0.18 0.40 0.21 
Pr(s>0| Y)  0.98 0.47 0.97 0.98 0.45 0.96 
PCEPI       
Average 5.50 -1.14 5.12 0.40 -0.13 0.37 
Median 6.00 -2.00 5.00 0.41 -0.24 0.40 
Std 2.47 5.80 3.10 0.18 0.42 0.24 
Pr(s>0 | Y) 0.98 0.35 0.94 0.97 0.31 0.93 
PGDP       
Average 5.67 -1.41 5.32 0.41 -0.13 0.38 
Median 6.00 -3.00 6.00 0.41 -0.20 0.40 
Std 2.35 5.41 2.8 0.17 0.40 0.22 
Pr(s>0 | Y) 0.98 0.34 0.95 0.98 0.30 0.95 

 
Table 2: Benchmark BVAR. Statistics about τ and ϕ. N: subset-of draws with negative long-run response 

to both Tech and MP shocks; P:  subset-of draws with positive long-run response to at least one of 
the two shocks; Fraction of draws in N is 94%. Pr(s>0| Y) = Pr(τ>0 | Y) for columns 2-4 and  
Pr(s>0| Y)= Pr(ψ>0 | Y) for columns 5-7.  

 
 
 



 (1) (2) (3) (4) 
 τ ψ τ ψ τ ψ τ ψ 
PUNEW         
Average 5.38 0.45 3.92 0.27 4.29 0.36 1.71 0.11 
Std 3.23 0.26 5.24 0.37 4.81 0.37 4.42 0.34 
Pr(s>0 | Y) 0.95 0.94 0.81 0.78 0.84 0.83 0.79 0.36 
PWSFA         
Average 5.22 0.44 3.92 0.27 3.59 0.31 6.65 0.46 
Std 3.11 0.25 5.24 0.37 3.99 0.32 5.50 0.43 
Pr(s>0 | Y) 0.95 0.94 0.81 0.78 0.88 0.85 0.90 0.81 
PCEPI         
Average 5.01 0.39 4.11 0.27 4.22 0.35 3.94 0.20 
Std 3.30 0.26 4.65 0.33 4.40 0.33 4.13 0.30 
Pr(s>0 | Y) 0.94 0.93 0.85 0.81 0.86 0.84 0.91 0.78 
PGDP         
Average 5.22 0.41 4.20 0.31 4.62 0.36 3.25 0.21 
Std 3.20 0.25 3.92 0.27 4.56 0.33 4.17 0.30 
Pr(s>0 | Y) 0.95 0.95 0.89 0.88 0.86 0.86 0.92 0.79 

 
Table 3 : Robustness analysis. (1): FTFP identification of sect. 4.1; (2): Sign-restrictions identification of 

sect. 4.2; (3): Sub-sample 1960:I-1983:IV of sect. 4.3; (4): Sub-sample 1984:I-2007:II of sect. 4.4. 
Pr(s>0| Y) = Pr(τ>0 | Y) or  Pr(ψ>0 | Y) depending on the column. 

 
 
 
 
 
 MP TECH 
 # of Quarters Sign-Restriction # of Quarters Sign-Restriction 
PGDP 2 ≤ 0 20 ≤ 0 
M2 2 ≤ 0 - - 
FYFF 2 ≥ 0 - - 
IFNRER 2 ≤ 0 10 ≥ 0 
JQCR 2 ≤ 0 5 ≥ 0 
GDPQ/ LBMNU - - 20 ≥ 0 
LBMNU 2 ≤ 0 - - 
GDPQ 2 ≤ 0 10 ≥ 0 
CES275/PGDP - - 20 ≥ 0 
 
Table 4: Sign- Restrictions. The second and fourth columns contain the least number of quarters it is 

assumed to hold for. The third and fifth columns contain the sign restrictions. Remaining variables 
are unrestricted. 

 



 
Figure 1 :  Benchmark BVAR. Median, 68th and 90th percentiles impulse responses to one 

standard deviation shock. Horizontal Axis: quarters; Vertical Axis: percentage 
points. GDPQ: real GDP. FFR: annual FedFunds rate, PGDP: GDP deflator; 
PWFSA: producer price index; PCEPI: consumption expenditure deflator; 
PUNEW: CPI. Units are in basis points.  

 

 
Figure 2 :  Benchmark BVAR, Median, 68th and 90th percentiles impulse responses to one 

standard deviation shock. GDPQ: real GDP. FFR: annual FedFunds rate, Π: 
GDP deflator quarterly inflation, GDPQ/H: labor productivity. 



 

 

 
Figure 3 : Benchmark BVAR. Impulse response impulse responses to one standard 
deviation shock.  

. 
 
 
 
 



 
Figure 4 :  Benchmark BVAR, difference in the speed of price adjustment.  

o: long-run price responses are negative to both shocks; ◊: long-run price 
responses are positive to both; x: long-run price response is positive to MP 
and negative to TECH; +:  long-run price response is negative to MP and 
positive to TECH. 
 

 
Figure 5 :  Estimates of technology shocks. The solid-blue line is the benchmark 

identification scheme, the dashed-red line is the estimate obtained by 
imposing long-run restrictions on the FTFP series in the BVAR model. 



 

 
Figure 6 :  FTFP identification. Median, 68th and 90th percentiles impulse responses to 

one standard deviation shock. 
 
 

 
Figure 7 :  Sign-restrictions identification. Median, 68th and 90th percentiles impulse 

responses to one standard deviation shock. 
 



 
Figure 8 :  Sub-sample 1960:I-1982:III. Median, 68th and 90th percentiles impulse 

responses to one standard deviation shock. 
 

 
Figure 9 :  Sub-sample 1982:IV-2007:II. Median, 68th and 90th percentiles impulse 

responses to one standard deviation shock. 
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