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Abstract:

This paper analyzes and models the �ow of intermediate inputs across sectors by adopting a

network perspective on sectoral interactions. I apply these tools to show how �uctuations in ag-

gregate economic activity can be obtained from independent shocks to individual sectors. First, by

interpreting data in detailed input-use matrices through this lens, I characterize the structure of

input trade in the U.S.. On the demand side, a typical sector relies on a small number of key inputs

and sectors are homogeneous in this respect. However, in their role as input-suppliers sectors do

di¤er: many specialized input suppliers coexist alongside general purpose sectors that function as

hubs to the economy. The paper then constructs a network model of input-use matrices that can

reproduce these connectivity features in the data. In a standard multisector setup, I then use this

model of input-use matrices to provide analytical expressions linking the variability in aggregates

to the network structure of input trade. I show that the presence of sectoral hubs - by coupling

production decisions across the economy - leads to �uctuations in aggregates. Furthermore, I show

that this network approach provides a common framework for hitherto opposing arguments on how

fast the volatility of aggregates decays with the number of sectoral technologies.
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1. Introduction

Comovement across sectors is a hallmark of cyclical �uctuations. A longstanding line of research

in the business cycle literature asks whether trade in intermediate inputs can link otherwise indepen-

dent technologies and generate such behavior. The intuition behind this hypothesis is clear: factor

demand linkages can provide a source for comovement, as a shock to the production technology of a

general purpose sector - say, petroleum re�neries - is likely to propagate to the rest of the economy.

In this way, cyclical �uctuations in aggregates are obtained as synchronized responses to changes in

the productivity of narrowly de�ned but broadly used technologies.

Though intuitive, this hypothesis is faced with a strong challenge: by a standard diversi�cation

argument, as we disaggregate the economy into many sectors, independent sectoral disturbances will

tend to average out, leaving aggregates unchanged and yielding a weak propagation mechanism; see

the discussion in Lucas (1981) and the irrelevance theorems of Dupor (1999)1.

In this paper, I take on this challenge by adopting a network perspective on sectoral interactions.

From this vantage point, I provide answers to the following questions. First, given the availability of

detailed input use data, can we identify the main features of the structure of linkages across sectors?

Second, can we construct counterfactual models of input-output matrices that are able to mimic this

connectivity structure and are amenable to use in standard multi-sector models? If so, can we use

these models of connectivity to provide analytical results linking the variability of aggregates to the

network structure of input �ows? Finally, under what assumptions on the network structure can we

render ine¤ective the shock diversi�cation argument of the previous paragraph?

The argument linking the answers to these questions is the following: when determining whether

a sectoral shock propagates or not, the number of sectoral connections originating from the source

of the shock is the crucial variable to consider. Furthermore, if the number of connections varies

widely across sectors, some shocks will propagate throughout the economy and persist through time

while others will be short-lived and only propagate locally. As a consequence, economies where

every sector relies heavily on only a few sectoral hubs - general purpose input suppliers - will show

considerable conductance to shocks in those technologies. Conversely, as the structure of the economy

is more diversi�ed, di¤erent sectors will rely on di¤erent technologies and exhibit only loosely coupled

dynamics. The answer to the law of large numbers arguments in Lucas and Dupor thus lies in

1For the most part, the answer to this challenge has been in the empirical vein. Long and Plosser (1983, 1987),

Norrbin and Schlagenhauf (1990) and Horvath and Verbrugge (1996) document comovement of sectoral output growth

series through vector autoregressions. They all add that the explanatory power of a common, aggregate shock is limited

on its own and diminished once sector speci�c shocks are entertained. Shea (2002) and Conley and Dupor (2003) go

further and devise ways of testing - and rejecting- the hypothesis that sectoral comovement is being driven by a common

shock. Both emphasize positive cross-sectional covariance in sectoral productivity growth and show how this can be

explained by the existence of sectors with similar input demand relations. Concurrently, the strategy of using actual

input-output data in large scale multisector models generates aggregates that are quantitatively similar to data and to

one-sector real business cycle models; see Horvath (2000).
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understanding and modelling this tension between specialization and reliance on general purpose

technologies.

I build on and extend this key notion of sectoral connectivity - �rst put forth in Horvath (1998)

- by analyzing the structure of intersectoral linkages through graph-theoretical concepts and tools.

The starting point for this analysis is to establish that an input-use matrix can be characterized as

a network. That is, given a detailed list of production sectors and information on who trades with

whom, I can map such trade interactions to a network of input trade where sectors become vertices

and input-supply relations are represented by directed arcs. Given that these lists do exist in the

form of input-use matrices, providing data at a fairly disaggregated level, one can ask questions

related to the properties of such networks. In particular, from detailed input use matrices for the

U.S. economy, I characterize heterogeneity across sectors along the input-demand and input-supply

dimensions by exploiting well-de�ned measures of connectivity in a network.

Thus, along the demand side, I characterize sectors by the number of inputs used. This maps

directly into the in-degree sequence of a network, giving for each sector the number of distinct

inputs used in the production of the corresponding good. Re�ecting specialization, narrowly de�ned

production activities are found to rely only on a small number of inputs. Though di¤erent sectors

use a di¤erent set of inputs, sectors can be characterized as homogeneous along the demand side in

that the number of inputs used does not di¤er much across sectors.

This is to be contrasted with extensive heterogeneity across sectors in their role as input suppliers.

In the data, highly specialized input suppliers - say, for example, optical lens manufacturing - coexist

alongside general purpose inputs, such as iron and steel mills or petroleum re�neries. Speci�cally, I

characterize the empirical out-degree distribution of input-supply links - giving the number of sectors

to which any given sector supplies inputs to - as a power law distribution. What makes this power

law parameterization attractive is the following argument: the upshot of fat-tails, characteristic of

power law degree distributions, is that a small, but non-vanishing, number of sectors will emerge as

large input suppliers - or hubs - to the economy. As such, productivity �uctuations in these general

purpose sectors can have a disproportionately larger e¤ect in the aggregate economy.

I then show how to incorporate these network insights in multisector models by constructing

a data generating process for input-use matrices. Informed by the analysis of input trade data, I

show how one can construct and distinguish across models of input-use matrices by specifying three

key parameters: the number of sectors under consideration, the average number of inputs used in

a sector�s production process and a parameter controlling the heterogeneity across sectors in their

input-supply role. This enables me to build counterfactual connectivity structures for intersectoral

trade. In particular, I show how to specify classes of input-use matrices that mimic the homogeneous-

in-demand, heterogeneous-in-supply characterization of U.S. data.

Finally, I employ these models of input-use matrices in standard multisector economies and

characterize analytically how the variability of aggregates is mediated by the network structure of

these matrices. To achieve this I use a version of Long and Plosser�s (1983) multisector setup- used
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by Horvath (1998) and Dupor (1999)2. I �rst demonstrate that the opposing conclusions reached by

Horvath (1998) and Dupor (1999) can be traced to very particular restrictions on the intersectoral

network structure, namely on its outdegree sequence. Thus, I show that the exact results in Horvath

and Dupor - regarding the decay in the volatility of aggregates as a function of the total number

of sectors - can be shown using known properties of simple network structures: complete regular

networks in the case of Dupor and very particular sparse structures - star networks - in the case of

Horvath.

More generally, I derive analytical expressions linking directly the degree of fat-tailness of the

distribution of input-supply links with the strength of the propagation mechanism in a multisector

economy. Taking the estimates obtained from input-use data as a guide to parameterize this class

of matrices, I argue that the structure of intermediate input trade o¤ers enough conductance of

sectoral shocks to render the diversi�cation argument of second order. In other words, in multisector

economies, the presence of sectoral hubs facilitates the propagation of technological shocks and

postpones the applicability of law of large numbers arguments.

The paper is closest in spirit to the contributions of Bak et al.(1993) and Scheinkman and Wood-

ford (1994) by stressing the importance of the structure of input-supply chains in the transmission

of shocks across sectors and, as a consequence, to aggregates. In comparison with these papers, by

placing sectors on a network of input �ows - rather than on a lattice - I allow for more general, and

arguably more realistic, patterns of connections between sectors. Regarding the characterization of

the decay behavior in the volatility of aggregates as a function of heterogeneity in the underlying

production units, this paper is closely related to the recent analysis in Gabaix (2005). In comparison

to the latter, I use a di¤erent model, a di¤erent aggregate statistic and di¤erent tools to approach the

same problem. More importantly, in contrast to Gabaix (2005), the explanation here rests explicitly

on the dynamic propagation of shocks through a network of technologies, rather than on careful total

factor productivity accounting when some �rms are large.

The idea of characterizing input-use relationships through graph-theoretical tools is not new,

albeit it has merited only limited attention3. In the context of traditional input-output analysis

Solow (1952) is, to the best of my knowledge, the �rst reference recognizing that an input-output

matrix can be mapped into a network. These tools have resurfaced only sporadically in the analysis

of static and dynamic input-output systems; see Rosenblatt (1957), Simon and Ando (1961) or Szydl

2To ensure comparability of results with Horvath (1998) and Dupor (1999) this paper preserves the model and the

aggregate statistic considered therein and focuses on generalizing the set of admissible input-output matrices under

consideration. The model is closely related to the original multisector real business cycle model of Long and Plosser

(1983) and the myriad of extensions and applications since developed in the literature. Other setups have been explored:

Cooper and Haltiwanger (1990), Bak et al (1993) and Scheinkman and Woodford (1994) all stress the role of inventories.

Jovanovic (1987) instead focuses on the role of complementarities among sectors, as does the recent contribution of

Nirei (2005), where this is coupled with indivisibilities in investment. Murphy et al. (1989) focus on aggregate demand

spillovers.
3This stands in sharp contrast to the recent but burgeoning use of network tools in microeconomics; see Jackson

(2005) for a comprehensive review or Vega-Redondo (2007) for a book length introduction.

4



(1985). Fisher and Vega-Redondo (2007) o¤er the only recent treatment of input-trade relations as

a network and focus on identifying what are the "central sectors" in the US economy. However they

do not address the implications of this notion for the business cycle literature4.

In terms of tools this paper borrows heavily from recent work on networks and in particular,

random graphs. Newman (2003) and Li et al (2006) o¤er good reviews mapping out recent theoretical

advances and link them to a growing number of applications. Durrett (2006) and Chung and Lu

(2006) provide book-length treatments of the tools used here. In particular, a model of random

graphs with given expected degree sequences, set out in Chung and Lu (2006), forms the basis for

my data-generating process for input-use matrices.

2. Overview in a Static Multisector Economy

Consider the following static multisector economy, a simpli�ed version of the setup presented in

Shea (2002). There is a representative household whose utility is a¤ected by the levels of consumption

of M goods, fCjgMj=1; and total hours of work (L): Assume log preferences over M di¤erent goods,

with weights given by f�jgMj=1, and specify a time endowment of L, to be shared among the M
production activities.

U(fCj ; LjgMj=1) =

MX
j=1

�j log(Cj)� L; (1)

with
P
j
�j = 1 and �j > 0;8j ; (2)

and
P
j
Lj � L (3)

The M productive units, or sectors, each produce a di¤erent good that can either be allocated

to �nal consumption (by the household) or as intermediate goods to be used in the production of

other goods. This is just a static version of the production technologies introduced in Long Plosser

(1983). In particular, assume production functions are of the Cobb-Douglas, decreasing returns to

scale variety:

Yj = ZjL
�j
j

Y
i2 �Sj

M
ij
ij (4)

1 > �j +
X
i2 �Sj

ij (5)

Zj = exp("j); "j s N(0; �2j ) (6)

4Rauch (1999) is another recent exception in the macroeconomics literature. He adopts a network view to disag-

gregated world trade �ows.
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whereMij is the amount of good i used as an intermediate input in the production of sector j. Zj
is a Hicks-neutral, log-normal, productivity shock to good j technology, to be drawn independently

across sectors. The �supply-to�set �Sj completes the description of technology in this simple economy.

It gives, for every sector j; the list of goods that are necessary as inputs in the production of good

i. Finally, market clearing implies that:

Yj = Cj +
X
i:j2 �Si

Mji, 8j = 1; :::;M (7)

It is a standard exercise to solve for the competitive equilibrium of this economy; see Shea

(2002). Substituting the equilibrium input choices into the production function, simplifying and

taking logarithms yields, in vector notation:

y = �+(I � �)�10" (8)

where � is an M-dimensional vector of constants dependent on model parameters only. The pair

of vectors M-dimensional vectors (y; ") give, respectively, the log of equilibrium output and the log

of the productivity shock for every sector in the economy.

� is a key object for the analysis of this paper. It is an M �M (non-negative) input-use matrix

with typical element ij where (I � �)�1
0
is well de�ned. Note that an entry ij in this matrix will

be zero whenever sector i�s output is not a necessary input for the production of good j, that is

whenever i =2 �Sj : This simply means that there are no substitution possibilities between the inputs

used in sector j�s production and the ith good. Notice also that j =
P
i
ij , the j

th column sum of

�; gives the degree of returns to scale to intermediate inputs for sector j.

Independent technological shocks at the sectoral level propagate through the input-use matrix

downstream5, a¤ecting the costs of input-using sectors and potentially in�uencing aggregate activity.

The analysis of this paper focuses on the interplay between the structure of intermediate input use

- the structure of the input output matrix, �- and the strength of this propagation mechanism as

evaluated by the volatility of aggregate output. For analyzing the latter, and keeping in line with

the literature (see Horvath, 1998, or Dupor, 1999), I will consider the following aggregate statistic:

�2Y (�) � E
"PM

i=1(yi � �i)
M

#2
(9)

Note that
PM
i=1(yi��i) is the sum of log sectoral output (demeaned), or the log of the geometric

sum of sectoral output. Dividing this by the number of sectors gives a log-linear approximation to

the more obvious aggregate statistic, the log of total output. The di¢ culty with this latter statistic

5 In general, technology shocks also have e¤ects on upstream demand, by changing the demand of inputs necessary

to produce output and changing sectoral output level. In the current setting, due to the Cobb-Douglas assumption on

preferences and technology, these two e¤ects cancel out exactly; see Shea (2002).
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is that it involves a nonlinear function of the vector of shocks. The average of log sectoral output

can therefore be taken as the log-linearization of this function6. Using this aggregate statistic will

allow me to compare my results directly with those in Horvath (1998) and Dupor (1999).

We are now left with choosing a speci�cation for the pattern of zeros in the input-output matrix

�, or equivalently, announcing the necessary inputs for each of the M production activities (the
�Sj lists). Consider the two following abstract, and rather extreme, cases. Fix an M and contrast

an economy where only one sector is a material input supplier to all the other sectors with an

economy where every sector supplies to all the other sectors in the economy. These two polar cases

for the pattern of input-use relationships in an economy map exactly into very standard network

representations, where the vertex set is given by the set of sectors in the economy and a directed arc

from vertex (sector) i to vertex j represents a intermediate input supply link.

1

2

3

4

5

Pajek

5

1

2 3

4

Pajek

Figure 1: Complete (l.h.s.) and Star (r.h.s.) input-supply structures for a 5 sector economy.

Thus an economy where each sector is an input supplier to every other sector in the economy

can be represented by a complete network, where for any two pair of vertices there is a directed arc

from one to the other. Likewise, an economy where there is only one material input supplier maps

directly into a star network, where one vertex acts as a hub with directed arcs from this vertex to all

other vertices. An intermediate case is given by a N�star network, where N out ofM , sectors in the

economy act as material input suppliers to every sector and the remaining ones are solely devoted to

�nal goods production. Figure 1 depicts intersectoral input relations under these two extreme cases

- complete and star - for a �ve sector economy.

Notice also that I can map this connectivity structure thus: specify an M �M binary matrix

A where Aij = 1 if sector i supplies to sector j and Aij = 0 otherwise. In this way the matrix A

corresponding to a complete network will be given by a matrix of all ones (for every pair of sectors,

6This approximation is valid whenever the variances of the "0js are small and the mean of sectoral output does not

di¤er much across sectors (Dupor, 1999).
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i; j; Aij = 1) and the one corresponding to an N -star network will have N rows of ones and M �N
rows of zeros.

The �nal step is going from the binary nature of network links to the input-output matrix �;

giving elasticities of substitution for material inputs. The simplest working assumption is that every

sector, regardless of what its particular input list is, uses its inputs in equal proportions. In short, all

necessary inputs are assumed equally necessary for any given sector. In terms of model parameters

this translates to:

Assumption 2.1. For all sectors j = 1; :::;M; ij = kj for all inputs i and k necessary to the
production of output in sector j; that is for all pairs ij ; kj 6= 0.

This assumption will be used throughout the paper. It simpli�es considerably the analysis by

imposing homogeneity along the intensive margin of intersectoral trade - necessary inputs for any

given sector have a symmetric role- while allowing for substantial heterogeneity along the extensive

margin - sector can di¤er in the number of sectors they supply to. Under this assumption the analysis

in Section 4 below, shows that the input-output matrix � conveniently factors into the product of

two square M -dimensional matrices:.

� = A:D (10)

where D is a diagonal matrix with the ith diagonal element given by
i
dini
where dini is the number

of inputs sector i uses (i.e. the cardinality of the �Si list or the number of inlinks). A is the binary

connectivity matrix with a typical element aij equal to one if sector i supplies to sector j and zero

otherwise.

With this assumption and the resulting factorization of � in hand, I can derive an analytical

expression for the aggregate volatility statistic, �Y ; and compare the properties resulting from dif-

ferent, hypothetical, intersectoral trade structures. Proposition 1 below gives an expression for this

statistic in complete network structure settings, �2Y (�C); and that resulting of N�star structures,
�2Y (�N�star)

Proposition 2.2. Assume that the share of material inputs, j is the same across sectors,

j = ; j = 1; ::;M; and that sectoral volatility �
2
j = �

2 for all sectors j = 1; :::;M: Then, for any

M; a static M�sector economy aggregate volatility of equilibrium output, �2Y is given by:

�2Y (�C) =

�
1

1� 

�2 �2
M

(11)

for any complete intersectoral trade structure on M sectors; and

�2Y (�N�Star) =

�
N

M
+

2

1� 

�
�2

M
+

�


1� 

�2 �2
N

(12)

for any N star intersectoral trade structure on M sectors.
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Notice that with the additional assumptions imposed in the proposition, sectoral technologies in

these economies are symmetrical in all respects except, possibly, that some supply to more sectors

than others. This is borne out in the expressions for aggregate volatility: they depend only on the

share of material inputs, ; sectoral volatility,�2, and the number of e¤ective input suppliers in each

case, M or N . The �rst two e¤ects are standard. Thus, the higher the share of material inputs

in production the more aggregate volatility will be a¤ected by disturbances working through the

input-output network7. Similarly, greater sectoral volatility translates mechanically into heightened

volatility in aggregates.

Of interest to this paper is the dependence of aggregate volatility on the number of sectors. Thus,

the expression for complete intersectoral structures of input trade is a particular case of the results

in Dupor (1999). It echoes Lucas�(1981) law of large numbers argument: aggregate volatility scales

with 1=M . To understand how e¤ective the shock diversi�cation argument is in this case notice the

following: holding sectoral productivity variance �xed as I move from a �ve sector economy to a

�ve hundred sector economy, aggregate volatility will be a hundred times smaller. Conversely, to

recover an aggregate �2Y of the order of two percent in a �ve hundred sector economy, would require

stipulating sectoral volatilities, �2; to be �ve hundred times larger, an unreasonable magnitude at

any time scale. From this, Dupor (1999) concludes that the input-output matrix provides a poor

propagation mechanism for independent sectoral shocks.

The result for N�star sectoral networks o¤ers a di¤erent, if somewhat predictable view. If there
are only N sectors acting as intermediate input suppliers, the diversi�cation of shocks argument

underlying law of large number arguments only applies to those sectors8. Thus, in an economy

where the e¤ective number of input suppliers is small, the law of large numbers will be postponed

relative to that of Dupor (1999): aggregate volatility now scales with N , the slowest decaying term in

expression (12). This is Horvath�s (1998) argument: limited sectoral interaction - of a very particular

form - will give rise to greater aggregate volatility from sector speci�c shocks. The di¢ culty with this

result is that the modeller is now left to specify, for each M; what is the number of input suppliers

in an economy; N . From input-output data, Horvath (1998) argues that N - the number sectors

with full rows in input-output matrices - grows slowly with M : Horvath argues for an N of orderp
M , which would slow down the rate of convergence. This would now yield a ten fold decrease in

aggregate variability as we move from �ve to �ve hundred sectors.

In this way, two very particular assumptions on the connectivity structure of intersectoral trade

generate predictions on the variability of aggregates that di¤er by an order of magnitude. This means

that �nding a better way to model networks of input trade can not only help solve this controversy

but also has the potential of o¤ering a theory where reasonable magnitudes of sectoral volatility yield

7This multiplier e¤ect of (1=1 � ) on aggregates is a standard feature of multisector economies; see for example
the discussion in Jones (2007a, 2007b)

8Notice that for any N < M the second term in the expression for N�Star networks dominates the rate of
convergence (the �rst term converges to zero faster). As it should be, the two expressions in Proposition 2.2. will be

equal for N =M . Finally, if N is �xed for any M the law of large numbers breaks down completely.
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non-trivial aggregate volatility. Mechanically, we need only a theory of intersectoral connectivity that

yields aggregate volatility decaying with M�; where � is close to zero. The remainder of this paper

does just this by going beyond these two extreme cases and building a model of sectoral interactions

on a network. Figure 2 depicts the starting point of the analysis. It shows a considerably more

intricate network of intersectoral input �ows: that of the U.S. economy in 1997.
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Figure 2: Intermediate input �ows between sectors in the U.S. economy in 1997. Each vertex
corresponds to a sector in the 1997 benchmark detailed input-use matrix published by the BEA. For

every input transaction above 5% of the total input purchases of the destination sector, a link

between two vertices is drawn.

Each dot - or vertex - corresponds to a sector de�ned at the NAICS 4-6 digit level of disaggregation

in the BEA detailed input use tables, for a total of 471 sectors. Each link in the �gure represents an

input transaction between sector i to sector j, provided sector i supplies more than 5% of sector j

total intermediate input purchases9.

From this vantage point, Section 3 in the paper o¤ers a two-pronged characterization of the

structure of input �ows by taking into consideration the direction in each of these links. Thus from

by considering links from the perspective of the destination vertex I can analyze sectors in their

role as input-demanders. I �nd that sectors are homogeneous along this dimension: the average of

sectoral production technologies relies on a relatively small number of key inputs and sectors do not
9 I exclude loops from the network for presentation purposes. Loops correspond to intrasectoral trade and are a well

documented feature of detailed input use-matrices (see for example Jones, 2007b).
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di¤er much in this respect. This is the upshot of specialization occurring at the level of narrowly

de�ned production technologies.

However, looking at the source vertices of these links, another feature emerges. In their role as

input-suppliers, I �nd sectors di¤ering widely. Indeed, a �rst order feature of data is the presence

of both hub-like sectors, supplying general purpose inputs to the rest of the economy and peripheral

sectors, supplying specialized inputs to a limited number of sectors. In section 3 of this paper I

strengthen this characterization by looking into every detailed input-use matrix available since 1972

and �nding the same homogeneous-demand, heterogeneous-supply connectivity patterns.

In section 4 of the paper I build theoretical counterparts to detailed input-use matrices. This

is achieved by approaching the problem of modelling input-use matrices in the same fashion as in

the present section: splitting � into the product of a connectivity matrix - giving input supply

relations between sectors - and a diagonal matrix setting the value of the corresponding elasticities

of substitution. In particular, I o¤er a way if designing intersectoral connectivity structures that

incorporate the two �rst order-features of the data: sparse and homogeneous input demand and

strongly heterogenous input supply technologies.

The remainder of the paper (Sections 4.3 and 5) is devoted to incorporating these models of

input-demand relations in standard multisector setups. Thus in Section 4.3. I return to the simple

static model presented in this section and show how the aggregate volatility statistic decays when I

use my model of input-use matrices. The results generalize the characterization given in Proposition

2.2. and have a tight link with the recent contribution of Gabaix (2005). Namely, I derive analytical

results showing that as we disaggregate the economy into many sectors, aggregate volatility decay

is a function of how diversi�ed the structure of input trade is. In Section 5, I show that exactly

the same decay behavior obtains when I move to the dynamic multisectoral models considered in

Horvath (1998) and Dupor (1999). In particular, I show that the decay characterization extends

both to the variance and persistence of aggregate variables. Section 6 concludes.

3. Network Properties of Input Flows.

In this section I introduce some basic graph terminology and show how input-use matrices can

be usefully described by these concepts. In particular, I introduce the notion of a degree sequence of

a graph10 and exploit it to characterize connectivity in inter-sectoral trade. Throughout I map these

concepts to data from US input-use matrices. Namely I use benchmark detailed input-use tables

available through the B.E.A.. The Figure below depicts the 1997 input-use matrix. It follows the

1997 NAICS de�nitions and yields a �ne disaggregation of inter-sectoral trade at the 4-6 digit NAICS

10Following much of the literature I use the terms graph and network interchangibly.
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de�nition level11. The use table gives the 1997 value (in millions of dollars), at producers�prices,

of each commodity used as an intermediate input in the production each industry. I drop import,

scrap, government industry and government demand, household and inventory valuation data. With

this I get a detailed input-use matrix of dimension 471� 471 sectors12.

Real Estate Subgraph

(NAICS 531000)

Figure 3: On the l.h.s. is the detailed input-use matrix for the US economy in 1997 (Source:
BEA). Each dot corresponds to an input transaction from row (supplying) sector i to column

(demanding) sector j. Only transactions above 1% of the total input purchases of a sector are

displayed. On the r.h.s is a graph centered around the row sector Real estate (NAICS code 531000)

where for each dot on the corresponding row of the l.h.s. matrix I draw a directed arc.

On the left hand side of Figure 3 is a snapshot of the 1997 input-use matrix, dots corresponding to

input-supply relations from row-sector i to column-sector j, provided sector i supplies 1% or more of

the total input purchases of sector j. This is a sparse matrix in that the number of non-zero elements

is small relative to the number of possible entries in the input-use matrix (under one tenth). This is

as expected: at very �ne disaggregation levels, most sectoral production processes are highly speci�c

with respect to the intermediate inputs used. Thus, these limited substitution possibilities translate

into sparse columns.

11To strengthen my analysis I also characterize the connectivity structure of every detailed input-use matrix available

from 1972 to 1992. These are available on a 5 year interval and are based on a SIC classi�cation, in contrast to the

NAICS system adopted since 1997. While individual sectors are not immediately comparable between the two systems,

the structure of zeros in these matrices - the object of analysis here - will be shown to be remarkably stable.
12 I equate commodities with sectors as in the theoretical model where good i is produced exclusively by sector i.

I am thus implicitly assuming that the make table in the input-output is diagonal. The same assumption is made in

Horvath (1998) and Conley and Dupor (2003).
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However, there are some full rows corresponding to sectors supplying inputs to many other sectors

in the US economy. The right hand side of Figure 3, displays a graph corresponding to one of these

sectoral-hubs: real estate. Indeed, one can ask what are the sectoral labels corresponding to the full

rows in the input-use matrix above. For 1997, ranking rows by the number of non-zero elements

gives, in descending order: wholesale trade, management of companies, truck transportation, electric

power generation and distribution, real estate, advertising, iron and steel mills, paperboard and

container manufacturing, plastic plumbing and �xtures, petroleum re�ning, telecommunications,

semiconductors and architectural and engineering services. These can be termed general purpose

sectors in that their output serves as a necessary input to production in almost all of the sectors of

a modern economy13. Recalling the discussion in Section 2, the existence of these star-like sectors

will be key in that it opens the possibility of a non-trivial propagation mechanism working through

the hubs of an economy.

I now map this data on inter-sectoral input trade into standard graph theoretical notation. First,

let the set of M sectors in an economy give the set of �xed labels for the vertex set V :
= fv1; :::; vMg.

Let E be a subset of the collection of all ordered pairs of vertices fvi; vjg; with vi; vj 2 V . De�ne E
by:

f fvi; vjg 2 V 2 : fvi; vjg 2 E if Sector i supplies Sector jg

That is, the edge set E; is given by an adjacency relation, vi ! vj between elements of the set of

all sectors where I allow re�exivity (a sector can be an input supplier of itself). With the collection

V of sectors and input supply relations E; I de�ne sectoral trade linkages as a directed graph G :

De�nition 3.1. G = (V;E). G is a directed graph (digraph for short) with vertex set V and

edge set E where each element of E is a directed arc from element i to j .

A useful representation of a graph is its adjacency matrix, indicating which of the vertices are

linked (adjacent). This will be a key object in the sections below and is de�ned by:

De�nition 3.2. For a digraph G(V;E) de�ne the adjacency matrix A(G) to be an M � M
matrix. If G is a directed graph de�ne the aij element of A(G) to be 1 if there is a directed edge

from sector i to sector j (i.e. if sector i is a material input supplier of j).

Thus, Figure 3 can be simply taken as the adjacency matrix representation of the 1997 intersec-

toral trade network where vertices are given by sectors and edges are given by input supply relations,

the dots in the matrix; blank cells are the zero entries of the adjacency matrix. Notice that the actual

input use tables provide more information than the directed arc structure. In a graph context the

value of individual sector to sector transactions also provide the weights associated with each edge.

Throughout this paper I will not exploit this information.

13See also the recent work in Jones (2007b) for a similar link between full rows of input-use matrices and general

purpose sectors.
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I focus instead on the extent of heterogeneity across sectors as given by two simple count measures:

the number of di¤erent inputs a sector demands in order to produce- as measured by the columns

sums of the adjacency matrix A(G) - and the number of di¤erent sectors a sector supplies inputs

to - as measured by the row sums of A(G): These count measures can be mapped directly in two

graphical objects, namely the indegree and outdegree sequences of an intersectoral graph G:

De�nition 3.3. The in-degree dini of a vertex vi 2 V is given by the cardinality of the set

fvj : vi ! vjg: The in-degree sequence of a graph G(V;E) is given by fdin1 ; :::; d
in
M
g:.

Figure 4 below, displays the empirical density of sectoral indegrees for every detailed input-use

matrix available since 1972. I de�ne the indegree of a sector i as the number of distinct input-

demand transactions that exceed 1% of the total input purchases of that sector. Though arbitrary,

this counting convention seems necessary as there is no way of distinguishing between, say, an input

transaction from sector i to j in the order 10 million dollars and an input transaction from sector

k to j two orders of magnitude above. Both get counted as one demand link of sector j. By only

counting as links input transactions above 1% of a sector�s total purchases, I am discarding very small

transactions between sectors and focusing on the main components of the bill of goods necessary to

the production of any given sector. Indeed, following this threshold rule, I account for 80% of the

total value of intermediate input trade in the US economy in 1997. A similar number obtains for all

the other years considered.
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Figure 4: Empirical density of sectoral indegrees. Only input demand transactions above 1% of the

demanding sector�s total input purchases are counted. On the l.h.s. is the indegree density for the

1997 detailed input-use matrix; on the r.h.s. are the empirical densities for the detailed input-use

matrices from 1972 to 1992. Source: B.E.A..
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The demand side picture that emerges from Figure 4 is the following: the average sector in the US

economy procures a non-trivial amount of inputs from only a small number of sectors (' 20) when
producing its good and sectors do not di¤er much along this demand margin. In other words, the

average indegree is small relative to the total number of sectors and most sectors have an indegree

that is close to the average indegree. Henceforth I�ll dub this feature as homogeneity along the

extensive margin of sectoral demand. This is to be contrasted with the extreme heterogeneity found

along the supply side to which I now turn.

De�nition 3.4. The out-degree dout
i

of a vertex vi 2 V is given by the cardinality of the set

fvi : vi ! vjg: The out-degree sequence of a graph G(V;E) is given by fdout1 ; :::; doutM g.

Figure 5 documents the heterogeneity in sectoral supply linkages by plotting the empirical out-

degree distribution in the input-use data where again I use the 1% threshold to de�ne a link. It gives

a log-log rank-size plot constructed as follows: �rst, rank all sectors according to the total number

of sectors they supply inputs to. Now plot the log of the out-degree of each sector (in the x-axis)

against its log rank (in the y-axis). To interpret the plot it is useful to notice the following: if I

rank sectors then, by de�nition, there are i sectors that supply inputs to a number of sectors that

is greater or equal than that of the ith�largest sector. Thus dividing the sector�s rank i by the total
number of sectors (M) gives the fraction of sectors larger than i. Figure 5 gives just this: a log-log

plot of the empirical counter-cumulative distribution of the outdegrees, or the probability, P (k); that

a randomly selected sector supplies inputs to k or more sectors.
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Figure 5: Counter-cumulative outdegree distribution from input-use detailed tables. Only input

demand transactions above 1% of the demanding sector�s total input purchases are counted. On

l.h.s is the 1997 data. The r.h.s. displays 1972, 1977, 1982 and 1992 data where I normalize the

sectoral outdegree douti by the total number of sectors in each year. Source: BEA.
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Given that every input-use matrix, from 1972 through 1992 di¤ers slightly in its dimension (i.e.

in the number of sectors considered), for each sector and for every year through 1992, I normalize

sectoral outdegrees by the total number of sectors in the input-use matrix. This enables me to

compare features of the distributions across di¤erent input-use matrices by standardizing the x-axis

in the r.h.s of Figure 5.

The apparent linearity in the tail of the outdegree distribution in log scales is usually associated

with a power law distribution. To see this formally, let P (k) =
PM
k0=k pk0 be the countercumulative

distribution of outdegrees, i.e. the probability that a sector selected at random from the population

supplies to k or more sectors. We say that the number of sectors supplied (i.e. the outdegree),

k, follows a power law distribution if, the p.d.f. pk (giving the frequency of sectors that supply to

exactly k sectors in the economy) is given by:

pk = ck
�� for � > 1, and k integer, k � 1

where c is a positive constant (from normalization) and � is the tail index: Well-known properties

of this distribution are that for 2 � � < 3; k has diverging second (and above) moments14 while

for 1 < � < 2; k will have diverging mean as well (see Newman, 2003 and 2005 and Li et. al.,

2006 for useful reviews and references therein). Given this expression for p(k) and taking M to be

large enough so that we can approximate the sum by an integral, the out-degree distribution yields

P (k) = c0k��+1, where c0 is another constant. Now taking logs on both sides gives:

logP (k) = log c0 � (� � 1) log k (13)

yielding a linear relation between the log of the counter-cumulative distribution and the log of a

sector�s out-degree. Further, an estimate on the value of the tail parameter, �, can be obtained by

running a simple least squares regression of the empirical log-CCDF on the log-outdegree sequence

(or its normalized counterpart). Table 1 below shows the OLS estimates b� for the right tail of the
distribution (i.e. using all observations on or above the average degree) obtained for every year

alongside with standard errors and the corresponding R2:

1972 1977 1982 1987 1992 1997b� 2.073 2.118 2.092 2.056 2.110 2.104

s.e. 0.041 0.073 0.039 0.043 0.035 0.049

R2 0.936 0.907 0.947 0.940 0.958 0.931

Table 1: Least squares estimates of b� in equation (13).Only the right tail of the
counter-cumulative distribution of outdegrees in Figure 5 is used for estimation.

14Though in any �nite sample a �nite variance can be computed, what this means is that the variance diverges to

+1 as the total number of sectors grows larger.
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The straight lines in Figure 5 show the OLS �t implied by b� = 2:1. While the usual caveats and
pitfalls associated to OLS tail estimates apply15, the evidence points to an average value of b� ' 2:1
that is remarkably stable across years. Notice that from the discussion above, this value of the tail

parameter implies a strong fat tailed behavior where the variance is diverging with the number of

sectors. This can be taken as a parametric characterization of a feature of input-use matrices already

remarked in Horvath (1998) and discussed at the beginning of this section: as we disaggregate into

�ner de�nition of sectoral technologies, large input-supplying sectors do not vanish. In other words,

at the most disaggregated level of sectoral input trade, the distribution of input-suppy links is fat

tailed. The power law case reported for the 1% count rule can be seen as one particularly convenient

parameterization of this heterogeneity16.

4. Representing Intersectoral Input Flows as Networks

According to the analysis of the previous section one can begin to characterize the observed

intersectoral input-trade pattern as a network. This subsection shows how to incorporate these

network features in a model with Cobb-Douglas sectoral production functions. The analysis proceeds

by �rst �nding a way to incorporate the zeros usefully and then, following the characterization data,

imposing homogeneity across sectors while input demanders and focusing on the implications of

heterogeneity of sectors in their role as input suppliers.

4.1. Input-Output Matrices as Networks. In a multi-sector context, explicitly accounting
for �ows of inputs from one sector to another entails specifying both a list of intermediate inputs

needed for the production of any given sector and the intensity of use of each particular intermediate

input in that list. For the modeller this means not only specifying elasticity of substitution across

intermediate inputs for a sectoral production function, but also setting to zero these parameters

when a particular input is not required for the production that good. This is summarized by the

input-use matrix de�ned as:

De�nition 4.1.1. The input-use matrix, �, is an M �M matrix with typical element ij � 0.
The jth column sum of � gives the degree of returns to scale in material inputs for sector j:

j =
MX
i=1

ij

where j < 1, such that the M �M matrix (I � �)�1 is well de�ned.
15See, for example, the discussion in Gabaix and Ioannides (2004) or in Embrechts et al (1997). Brock (1999),

Mitzenmacher (2003) and Durlauf (2005) provide further discussion on the di¢ culty of identifying power laws in data.
16Sensitivity results for other count rules to be added.
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This de�nition simply states that the class of multisector models under consideration in this

paper - and in most of the literature - imposes weak restrictions on the class of admissible input use-

matrices. The only restriction is to insist that any sector in a M -sector economy exhibits decreasing

returns to scale in material inputs, which translates to a strict unit bound on the column sums of

the input-use matrix, �. This in turn ensures existence of (I ��)�1, the Leontie¤ inverse17. Notice,
in particular, that the modeller can introduce sparseness in � - zeros in a matrix of elasticities of

substitution - at will as long as this column-sum condition is met.

The next Lemma is key to the paper in that it introduces a simple factorization of the input-use

matrix � that will be used throughout.

Lemma 4.1.2. De�ne a family of input-use matrices �(G) given by:

�(G) = A(G)D

where A(G) is a binary adjacency matrix representation of the intersectoral trade digraph, G,

and D is a diagonal matrix with a typical element Dkk =
k
dink
, where k < 1 and d

in
k is the number

of sectors from which sector i purchases inputs. Then, for any M and any G; the columns sums of

�(G) are given by k < 1:

The proof of the last statement in the Lemma follows immediately by construction of �(G).

This Lemma o¤ers a decomposition of the input-use matrix � into the product of two square

M�dimensional: a binary matrix A(G), giving the structure of connectivity in the economy by
de�ning who trades with whom and a diagonal matrix D setting the scale of input transactions

between two sectors by de�ning the level of the elasticities of substitution for the non-zero elements

of �(G). Notice that Lemma 4.1.2. introduces a restriction on the class of admissible matrices: all

non-zero elements of a given column of the input-use matrix are the same, as announced in Assump-

tion 2.2..This is tantamount to imposing a symmetrical role for all the necessary inputs for a given

sector, as the individual input elasticities will be the same.

For what follows, this simpli�es considerably the description of a sectoral technology. I need

only to specify two objects: a binary matrix announcing who supplies whom and a vector giving

the returns to scale in material inputs for each sector. The individual elasticities of substitution

are then given immediately by Lemma 4.1.2..I now focus on the problem of generating connectivity

structures; A(G); that approximate the homogeneous demand, heterogeneous supply of section 3.

4.2. Designing Families of Inter-Sectoral Trade. In this subsection I will be interested in
generating connectivity structures that can encode the description of large-scale input-use matrices

put forth in Section 3. To achieve this, I derive a sampling scheme for adjacency matrices A(G)

17 (I � �)�1 exists if every eigenvalue of � is less than one in absolute value. From the Frobenius theory of non-

negative matrices, the maximal eigenvalue of � is bounded above by the largest column sum of �, maxkfkgMk=1; which
is less than one.
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that will then be used to construct input-use matrices �(A) according to Lemma 4.1.2 above. The

object of analysis is to construct families of random matrices, A; from which individual members -

intersectoral connectivity matrices, A - are drawn. These families of matrices should therefore be

seen as a data generating process for the lists of intermediate inputs necessary for each sector or,

put simply, families of intersectoral trade structures.

Below, I show how to specify these families of intersectoral trade according to three parameters:

a parameter controlling the dimension of the problem - given by the number of sectors M ; a demand

side parameter e; controlling the average connectivity in the economy - given by the number of

inputs an average sector demands - and a supply side parameter �, controlling the heterogeneity

across sectors in their role of input-suppliers.

To construct these families A(M; e; �) I use elements from the theory of random graphs. A

random directed graph consists of family of directed graphs G, indexed by the cardinality of the
vertex set (M) and a probability distribution over G. These constructions allow for statements,

under some carefully chosen probability measure, about the probability of some particular property

for anyM�vertex digraph18. In particular, I�ll make use of a particularly simple and useful construct
recently introduced in the theory of random graphs. What follows is a simple digraph extension

of Chung and Lu�s (2002, 2006) model of undirected random graphs with given expected degree

sequences.

Intuitively, I will be considering realizations of input-supply links (edge sets) in the following way:

for a given number of sectors M; associate to the collection of all ordered pairs of sectors/vertices

fvi; vjg; vi; vj 2 V an array of independent, Bernoulli random variables, Xij ; taking values 1 or 0 with
probability pij and 1� pij respectively. Finally, de�ne a realization of the connectivity structure of
intersectoral trade as an edge set E such that fvi; vjg is an element of the edge set E, if Xij = 1. In
this way, one can compute the expected outdegree of any sector as E(douti ) = E(

P
j Xij): =

P
j pij ,

given independent realizations of each supply-to link. Similarly the expected in-degree of a sector

can be computed as E(dini ) = E(
P
iXij): =

P
i pij :

For this, for every M; associate a weight sequence e := fe1; :::; eMg to the collection of sectoral
labels, such that ei 2 [0;M ] and let the average weight be denoted by e =

PM
k=1 ek
M : Now, for each

possible ordered pair of sectors fvi; vjg 2 V 2 de�ne the probability of having a directed arc from
vi �! vj as

pij
:
=
ei
M
, 8j 2 V (14)

This encodes: i) a sector with higher weight, ei; will have a higher probability to supply every

sector in the economy and ii) for any given j; the probability of sector i being its input supplier

depends only on the label of sector i and is thus not responsive to the label of j19. These are a

18The classical binomial model of Erdos and Renyi (see Bollobas (2001) for a texbook treatment) is the most

commonly used construction for random graphs but there are many alternatives to this (see Durret, 2006, Newman,

2003, Bollobas and Riordan, 2003, or Chung and Lu, 2006 ).
19Chung and Lu�s (2002, 2006) original model for undirected graphs gives pij =

eiejPM
k=1

ek
so that pij = pji for all i; j.
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strong assumptions in that describing whether an input trade relationship exists or not, both the

identity of the supplying and that of demanding sector -label j� should matter. E¤ectively this is

reducing the problem of how to build theoretical counterparts to input-output matrices to a simpler

problem of distinguishing sectors by how likely they are to be general purpose suppliers (i.e. sectors

that have an ei close to M). This is achieved at the cost of shutting down (at least in expectation)

heterogeneity in the number of links along the demand side. The following Lemma elucidates further

this construction and its implications:

Lemma 4.2.1. For every M sector economy, associate a weight sequence e := fe1; :::; eMg to the
collection of sectoral labels, such that ei 2 [0;M ] and de�ne a realization of the intersectoral trade
graph G as the realization of independent binary random variables Xij 2 f0; 1g, i; j = 1; :::M where

Pr(Xij = 1) = pij given by [14]. Then,

i) for any M , the expected out-degree of a sector will be given by:

E (douti ) =
X
j

pij= ei, i = 1 ; :::;M (15)

ii) for any realization of the intersectoral trade graph G and for any sector i;

if ei > logM , then its actual out-degree douti will almost surely satisfy��douti � ei
�� � 2 logM

otherwise if ei � logM , then douti almost surely satis�es

��douti � ei
�� � 2pei logM

iii) for any sector i; its E(dini ) expected indegree is given by:

E(dini ) =
X
i

pij =

P
i ei
M

� e;8i (16)

Lemma 4.2.1 states that intersectoral connectivity structures drawn from the sampling scheme

above will yield, on average, as much heterogeneity in sectors along their supply dimension as the

modeller feeds it through the weights feigMi=1. Conversely it will generate homogeneity in terms of the
number of sectors a randomly chosen sector buys inputs from, i.e. it yields sectors that will be alike

in terms of the number of inputs they demand. Part ii) of the Lemma states that actual (sampled)

sequences of sectoral outdegrees will concentrate around its expected value and o¤ers bounds that

are tight for the larger sectors (in term of outdegrees).

When studying inter-sectoral supply links this symmetry is uncalled for: the fact that sector i has a high probability

of supplying to j should not imply the converse.
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What is left is to understand is how to specify the weight sequence feigMi=1. From the discussion

above notice that I am more likely to link vertices with a high expected degree, i.e. with a higher

relative weight. In the remainder of this subsection, following Chung, Lu and Vu (2003) and Chung

and Lu (2006) I construct weights ei such that the expected outdegree sequence follows an exact

power law sequence, this in order to capture the heterogeneity in sectoral supply linkages documented

in Section 3.

De�nition 4.2.2. For every M sector economy de�ne a realization of the intersectoral trade

graph G as the realization of independent binary random variables Xij 2 f0; 1g, i; j = 1; :::M where

Pr(Xij = 1) = pij given by [14] and the weight sequence is given by

ei = ci
� 1
��1 for 1 � i �M and � > 2 (17)

and

c =
� � 2
� � 1eM

1
��1 (18)

To see how this parameterization for link probabilities implies a power law sequence for expected

out-degrees, notice that I can use expression (17) to solve for i and get:

i _ E(douti )
��+1

(19)

Now suppose I rank sectors according to the expected number of sectors they supply inputs to

E(douti ). The expression in (17) implies that they will be ranked according to i: i = 1 giving the

largest sector, i = 2 the second largest and so forth. Notice also that, by de�nition there are i sectors

that, in expectation, supply to at least the same number of sectors supplied by the ith�largest sector.
Thus a sector�s rank i is proportional to the fraction of sectors larger than i. What expression (19)

is stating is that the log of this fraction will scale linearly with the log expected out-degree of sector

i; with parameter � controlling the scaling behavior. Thus, the expected outdegree sequence is an

exact power law sequence20. Combined with result ii) in Lemma 4.2.1., this implies that sampling

intersectoral trade structures with link probabilities formed according to (14), (17) and (18) will

generate actual sectoral out-degrees sequences that concentrate around a power law sequence where

� is the tail parameter21.

I now summarize the sampling procedure of intersectoral trade structures constructed in this

section by de�ning the following family of binary matrices:

20This is a deterministic sequence with power-law like (or scaling) behavior in that it gives a �nite sequence of real

numbers, E(dout1 ) � E(dout2 ) � ::: � E(doutM ), such that i = c
�
E(douti )

��'
where c is a constant and ' is called the

scaling index. See Li et al (2006) for a useful discussion on scaling sequences vs. power law distributions.
21Notice that the tail parameter � only controls the shape of the outdegree distribution - how skewed the distribution

will be - but not the average degree, which is a free parameter. The presence of e in the weigth de�nition 4.2.2. is thus

necessary in order to �x the average degree.
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De�nition 4.2.3. Fix a triplet of parameters (M; e; �). Let A(M; e; �) de�ne a family of
intersectoral trade matrices, elements of which are M �M binary matrices A, with entries Aij equal

to 1 with probability pij given by (14), (17) and (18) and zero otherwise.

This is simply the adjacency matrix representation of the intersectoral trade graphs generated

by the sampling scheme of Lemma 4.2.2. To understand what these matrices imply in terms of the

discussion on connectivity properties of Section 3, Figure 6 below plots the model-based equivalent

of Figures 4 and 5, the indegree density and the outdegree counter-cumulative distribution for a 500

sector economy.
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Figure 6: Empirical indegree density (l.h.s.) and outdegree counter-cumulative distribution (r.h.s.)
for 30 intersectoral trade structures drawn at random from A(M; e; �) with parameters M = 500,

e = 20 and � = 2:1:

More speci�cally, Figure 6 presents the sectoral demand-supply side breakdown for thirty A

matrices drawn at random from a family of intersectoral digraphs, A(M; e; �) where I have picked
the following parametrization: M is given by a 500 sector economy, where the average number of

inputs needed per sector, e; is set at 20; and the parameter controlling heterogeneity of sectors

along the supply side, �, is set at 2:1. This parameterization is based on the corresponding objects

computed from the B.E.A. detailed input-use matrices in Section 3.

While individual realizations of A are random objects, thus di¤ering in the exact placement of

zeros, the indegree and outdegree sequences implied by each intersectoral trade structure yield similar

patterns. In other words, row and column sums will not di¤er much across realizations. By design,

and as predicted theoretically by Lemma 4.2.1., each element of the family A(M; e; �); retains the
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features noted in Section 3: homogeneity along the demand side - for any member of a family A,
sectoral indegrees concentrate along the speci�ed average degree, e - and heterogeneity along the

supply side, where the number of sectors any given sector supplies can di¤er by orders of magnitude.

Namely, the outdegree sequences implied by realizations of A display fat-tails in the form of a power

law- as instructed by De�nition 4.2.2.

Notice also that according to De�nition 4.2.3. I can model formally the following thought ex-

periment. Fix a number of sectors, M; and de�ne a typical production technology by setting the

average number of inputs (e) a sector needs in order to produce its output. Now, entertain two

di¤erent values of the tail parameter governing heterogeneity across sectors in their role as input

suppliers, �1 and �2 such that �1 < �2. What this yields is two economies where sectoral production

technologies di¤er in their degree of diversi�cation. Thus �1 economies will be less diversi�ed in that

more mass at the tail implies that a greater number of sectors rely on the same general purpose

inputs. Conversely, �2 economies, by having more mass at the center of the distribution of input

supply links, will be more diversi�ed: there will be a smaller number of hub-like sectors connecting

all sectors in the economy and a greater number of specialized input suppliers, each supplying inputs

to a smaller fraction of sectors. This intuition will be key to interpret the results in the rest of the

paper.

Finally, I de�ne a key matrix for the results that follow: the expected adjacency matrix, E(A)

for a family of random connectivity matrices A(M; e; �).

De�nition 4.2.4. The expected value of the adjacency matrix of a family of intersectoral trade
structures A(M; e; �), denoted E[A(G)], is an M�M matrix whose ij entry is given by E[Aij(G)] =

pij with pij given by (14), (17) and (18):

I now plug these tools to work in the context of the static multisector model of Section 2.

4.3. Key Results. This subsection uses the objects constructed in the previous two subsections
to characterize the key object for the class of multi-sectoral models under consideration: the Leontie¤

inverse (IM � �)�1. Once this is derived I show, analytically, how the aggregate volatility statistic
can be expressed as a function of , the degree of returns to scale in material inputs, M , the number

of sectors and �, the tail parameter controlling the heterogeneity of the distribution of input-supply

links for any member of the family connectivity matrices A(M; e; �).
I �rst focus on a simpler exercise: assume A is deterministic and given by the expected adjacency

matrix of a family of intersectoral trade structures E(A). I will then show how the characterization

of the Leontie¤ inverse matrix and the resulting aggregate volatility statistic generalizes to any A

sampled from a family A(M; e; �). Thus, to begin, the next Lemma shows how one can go from this

expected adjacency matrix to an input-use matrix � that meets the column sum requirements of

De�nition 4.1.1..
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Lemma 4.3.1. Recall the expected adjacency matrix of a intersectoral digraph on M sectors as

E(A(G)) and let the degree of returns to scale in material inputs be equal across sectors, j =  < 1;

8j = 1; :::;M . Then the M �M matrix

�(A) � E[(A(G))D ] =


e
E(A(G))

satis�es the column sums requirement for admissible input-use matrices in De�nition 4.1.1.

The Lemma is trivially proven by noticing that the column sums of E(A(G)) are given by
MP
i=1
ei=M;

which is the de�nition of e, the expected average degree. Thus D reduced to

e :IM . Further � has

all column sums equal to : < 1 and, by the same reasoning of Lemma 4.1.2.,
�
IM � �

��1
is well

de�ned.

Henceforth I will refer to this matrix �, as the expected input-use matrix of a multisector economy.

As the Lemma states it can be seen as an expectation over the families of input-use matrices de�ned

by the decomposition in Lemma 4.1.2. and the construction in Lemma 4.2.3..The attractiveness of

this, admittedly, very particular case resides in the fact that a matrix � thus constructed is a rank

one matrix- all columns are equal. Thus we can decompose it into the product of two vectors. In

particular let � be an M � 1 vector with typical element eiPM
i=1 ei

; and let 1M is the unit vector of

dimension M � 1. It then follows that:
� = �10M

This fact is useful in that we can derive a simple expression for the key object in multi-sectoral

models:.

Proposition 4.3.2. The Leontie¤ inverse of the expected input use matrix,
�
IM � �

��1
is given

by �
IM � �

��1
= IM +



1� �1
0
M

where IM is the M �M identity matrix, � is a M � 1 vector with typical element eiPM
i=1 ei

and 1M
is the unit vector of dimension M � 1.

The idea of representing the Leontie¤ inverses as an identity plus a rank one matrix is already

present in Horvath (1998) and Dupor (1999). In fact, the class of input-use matrices considered in

Dupor (1999) is given by b�10M and restricting b� =
�
M
M2 ; :::;

M
M2

�
and the alternative provided by

Horvath (1998) is simply e�10 where e� is an M�dimensional vector where N elements are given

by M
MN and the remaining M �N entries are �xed to zero22.Thus, following the discussion in Section

2, Horvath, and Dupor�s settings can be seen as particular subclasses of a general class of input-use

matrices given by �; where the vector � is �xed at ratio of the outdegree of each sector to the volume

22Recall that in Horvath (1998) N is the number of sectors supplying inputs to all M sectors and M � N is the

number of sectors dedicated solely to �nal good production. See the proof of Proposition 2.1. for further details.

24



of input-supply links in the economy: b� and e� are exactly that object for a very particular bi-regular
digraph in Horvath (1998) and for a complete digraph in Dupor (1998).

The following proposition describes what changes when instead of these simple structures for

intersectoral trade, I posit � to be given by the expected input-use matrix of A(M; e; �).

Proposition 4.3.3. Fix a triplet of parameters (M; e; �): Assume that the input-use matrix is
given by the expected input-use matrix � and that sectoral volatility �2j = �

2 for all sectors j. Then,

for a static M�sector economy (8) the aggregate volatility of equilibrium output, �2Y (�) is given by:

�2Y (�) =

8<: �1(�)
�


1�

�2
�2

M + 1
M �

2 if � > 3

�2(�)
�


1�

�2 �
1
M

� 2��4
��1 �2 + 1

M �
2 if � 2 (2; 3)

where the terms �1(�) =
(��2)2

(��1)(��3) and �2(�) =
(��2)2

(��1)(3��) are positive constants given a �:

In both regions of the tail parameter space; the �rst two terms of the expressions can be taken as

constants given �xed parameters  and �. However, the scaling of the aggregate volatility statistic

with M is dependent which region of the parameter space � is set. In particular, Proposition 4.3.3.

states that for an average input-use matrix,�, aggregate volatility will depend on the tail of the size

distribution of input supply links.

Thus, for thin tailed distributions of sectoral outdegrees � > 3, aggregate volatility scales with

the usual term of order O(1=M). This means that the discussion in Section 2 regarding the decay

rate in the special case of complete network structures assumed by Dupor, applies also to the current

context. Intuitively, in economies with a large number of sectors that do not di¤er much in their

role as input suppliers, aggregate volatility will be negligible.

However, once we consider the fat-tailed region for � 2 (2; 3) the decay behavior is altered: the
aggregate volatility statistic now decays with M at a rate that is lowered signi�cantly as we consider

average input use matrices from more heterogeneous outdegree economies:Namely, Proposition 4.3.3.

yields an analytical expression where the rate of decay in the volatility of aggregate output depends

negatively on the degree of fat-tailness in the distribution of sectoral input-supply links. To see this

notice that for � 2 (2; 3); the �rst term in the expression decays with M� where � � 2��4
��1 2 (0; 1) :

This implies that the �rst term of the expression dictates the rate of convergence to zero. Namely, as

� approaches its lower bound of 2; aggregate volatility, �2Y (�) will converge to zero arbitrarily slower.

Taking, for example, the value of � of 2.1. estimated in Section 3, yields a much slower decay of

order 6
p
M or �2Y (�) _ �2

6pM
. To have an idea of the magnitudes involved, this means that as I move

from, say, a �ve sector economy to a �ve hundred sector economy I expect to �nd only a two-fold

decrease in aggregate volatility. Thus, strong heterogeneity across input-supplying sectors opens

the possibility of generating non-negligible aggregate �uctuations even in large scale multi-sectoral

contexts23.
23Notice also that Horvath (1998) conjecture of a

p
M decay in aggregate volatility is obtained by �xing � at a very

particular point: � = 2:333:
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However, the result in Proposition 4.3.4. is special in that it depends on a very particular input-

use matrix: I am �xing the input-use matrix to be the expected input use matrix generated by a

family A. I now show that it is possible to generalize these �ndings to any matrix �(A) drawn

from A. First, I show that for any such matrix, the basic result concerning the Leontie¤ inverse

(Proposition 4.3.2) remains true, up to a random matrix with zero column sums. Then, using this

result, I bound the e¤ects that this extra random term might induce on aggregate volatility.

Proposition 4.3.5. Fix a triplet of parameters (M; e; �) and assume that
X
i2 �Sj

ij =  and that

�2j = �2 for all sectors j = 1; :::;M . For any A(G) sampled from the family of input-use graphs

A(M; e; �); construct the input-use matrix according to Lemma 4.1.2. Then i) for any A(G)

[IM � �(A)]�1= IM+


1� �1
0
M+�

where � is an M �M random matrix with zero column sums. Further, ii) for any A(G) of the

family of input-use graphs A; and � 2 (2; 3) the following is a lower bound for aggregate volatility,
�2Y (�); in a static M�sector economy (8) is given by:

�2Y (�) >

8>><>>:
��


1�

�2
� {

�
�1(�)

�2

M + 1
M �

2 if � > 3��

1�

�2
� {

�
�2(�)

�
1
M

� 2��4
��1 �2 + 1

M �
2 if � 2 (2; 3)

where { is a constant strictly smaller than
�


1�

�2
and �1(�) and �2(�) are positive constants

given a �.

Part i) of the proposition follows from the observation that one can always decompose any matrix

�(A) as the sum of � + (�(A) � �): The proof of part i) then follows along the same lines as that
of Proposition 4.3.2., by using results on the inverse of the sum of two matrices. The only obstacle

introduced by the random matrix � is that it induces the presence of a term in the expression for

aggregate volatility that can be potentially be negative and dominate the rate of convergence. Part

ii) of the Proposition states that this scenario can be ruled out. At worse the level of volatility in

aggregates will be smaller than that derived in Proposition 4.3.4. but the rate of decay with M will

be preserved. Hence the discussion following Proposition 4.3.4. applies in its entirety for any matrix

A sampled from a family A(M; e; �).
This characterization of the decay in the volatility of aggregates with the number of sectors is

closely related to results in Gabaix (2005, Proposition 2). As in Gabaix (2005), the fact that shocks

do not average out according to standard law of large numbers arguments is due to heterogeneity at

the level of the underlying production units. In contrast to Gabaix however, this is not the result of

some �rms accounting for a non-trivial share of aggregate output and thus, for a non-trivial share

of aggregate volatility. Rather the argument here is based on the shock conductance implied by the
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interlocking of technologies in an economy. In other words, the emphasis here is on propagation

rather than aggregation. These two approaches should therefore be seen as a complementary.

In short, and recalling the discussion at the end of the previous subsection, the results in Propo-

sitions 4.3.4. and 4.3.5. can be interpreted as follows. As � approaches its lower bound, sectors in

an M sector economy will increasingly rely on the same general purpose inputs. Thus, considering

economies with less diversi�ed sectoral technologies corresponds to considering draws from connec-

tivity structures with a lower value of �. Conversely, connectivity structures generated by higher

values of � will yield greater technological diversi�cation: sectoral technologies are relatively more

reliant on specialized input-suppliers and less so on common, general purpose, inputs. Therefore,

greater diversi�cation in the form of less reliance on common inputs will yield only loosely coupled

technologies and, as a result, lower aggregate volatility. Less diversi�cation induces strongly coupled

technologies and thus a stronger propagation mechanism24. The next section will show that this

intuition carries through when we move to dynamic settings.

5. Dynamic Multi-Sector Economies

This section recalls a basic multi-sectoral production model, as introduced in Horvath (1998)

and Dupor (1999). This is essentially a multi-sector version of a one-sector Brock-Mirman stochastic

economy, where I make the necessary (and strong) assumptions to solve for the planner�s solution

analytically. More general, competitive equilibrium setups exist, such as Horvath (2000) or the closely

related forerunner, Long and Plosser (1983). These are surely necessary for a careful quanti�cation

exercise. However, for the present purposes of analyzing how di¤erent structures of input-use imply

distinct aggregate behavior, the simplicity of this setup is an asset and will allow me to extend the

results of Section 4 while still addressing the results in Horvath (1998) and Dupor (1999).

5.1. Setup. A representative agent maximizes her expected discounted log utility from in�nite

vector valued sequences of M distinct goods.

E0

1X
t=0

�t

24 MX
j=1

log(Cjt)

35 (20)

where � is a time discount parameter in the (0; 1) interval. Expectation is taken at time zero with

respect to the in�nite sequences of productivity levels in each sector, the only source of uncertainty

in the economy. The production technology for each good/sector j = 1; :::;M uses sector-speci�c

capital and intermediate goods, i.e. production inputs bought from other sectors:

Yjt = ZjtK
�j
jt

MY
i=1

M
ij
ijt (21)

24See Simon and Ando (1961) for a distant forerunner in analyzing the implications of loose vs. strong coupling

across units.
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where Kjt and Zjt are the, time t; sector j; value of sector speci�c capital stock and its (neutral)

productivity level. Mijt gives the amount of good i used in sector j in period t. Further, de�ne

j =
MX
i=1

ij

with ij denoting the cost-share of input from sector i in the total expenditure on intermediate

inputs for sector j (allowed to take the value of zero). Again I can arrange the elasticities of

substitution in a M �M input-use matrix, �.

I will assume productivity levels for sector j evolving stochastically according to an i.i.d. process,

across sectors and across time, that is

ln(Zjt) = "jt s N(0; 1) (22)

Finally, assume that each sector exhibits decreasing returns to scale:

�j + j < 1; 8j and (23)

�j ; j � 0; 8i;j

and that sector speci�c capital depreciates fully in one period. The last two assumptions are

necessary in order to derive an analytical solution to the Planner�s problem in this economy25.

5.2. The Social Planner�s problem: The de�nition of the social planner�s problem is given

by

De�nition 5.2.1. The Social Planner�s problem is to choose sequences of sector speci�c capi-

tal fKjt+1gj;t, intermediate input fMijtgi;j;t and consumption allocationsfCjtgj;t such that, given a
vector of time zero capital stocks fKj0gj and a sequence of sectoral productivity levels fZjtgt, the
following hold true:

i)fCjtgj;t maximizes the representative consumer expected lifetime utility given by (20)
ii) the sectoral resource constraint

Yjt = Cjt +Kjt+1 +
MX
i=1

Mijt (24)

is satis�ed, sector by sector, for all time periods and where Yjt is given by (21).

Horvath and Dupor show that, under the assumption on technologies and preferences made above,

an analytical solution to the Social Planner�s problem is given by a �rst order vector autoregression:

25Assuming constant returns to scale would imply a stationary solution in growth rates. The characterization below

then applies to the variance of growth rates rather than levels.
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Proposition 5.2.2 (Horvath, 1998) Given an M � 1 vector of initial capital stocks, k0, the
vector sequence of sectoral capital given by:

kt+1= h+ (I��)�10�dkt+(I��)�10"t+1 (25)

solves the Social Planner�s problem, where h is a M � 1 vector of constants (function of time-
invariant model parameters), �d is a M �M diagonal matrix with the vector � on its diagonal and

I is the M �M identity matrix.

For a proof, see Horvath�s (1998) appendix where Howard�s policy improvement algorithm is

used to solve the recursive version of the Planner�s Problem above. It is also easy to show that

the Planner�solution implies a vector sequence of sectoral output di¤ering from expression (25) for

capital only by a constant. Hence all results below for sectoral and aggregate capital apply for output

as well.

As in the simple static economy of Section 2, it is the Leontie¤ inverse (I��)�1 that mediates the
propagation of independent technology shocks at the sectoral level. In this dynamic multisectoral

model it rules not only the levels of capital and output but also the dynamics of these variables

and hence of their aggregates. Now, in order to characterize the second moment properties of this

economy I study the spectral density function for sectoral capital induced by expression (25) above.

This is possible since, under the assumptions for technology made above, the fktgt sequence (25)
is stationary and thus admits an in�nite moving average representation which, in turn, implies a

frequency domain representation.

Proposition 5.2.3. (Horvath, 1998) Under the assumptions above the population spectrum
for sectoral output, ki; for every sector i = 1; :::;M , at frequency ! is given by

Sk(!)
:
= (2�)�1(I � �de�i! � �0)�1(I � �dei! � �)�1 (26)

Furthermore, given an M �1 vector w, of aggregation weights for log-aggregate capital stock, the
spectrum for aggregate capital at frequency ! is given by

S(!)
:
=w�Sk(!)w (27)

The spectral density function is a useful object in that it provides a complete characterization

of the autocovariance function for the average log of sectoral capital. Notice that by setting the

elements of w to be equal and given by 1=M , S(!) is gives the dynamic counterpart to the aggregate

statistic of the static model of Section 2; expression (9). In the next subsection I characterize the

decay of the univariate spectral density expression (27) as I increase the level of disaggregation in

these multisector models.
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5.3. Characterizing the Decay of the Spectral Density. This subsection o¤ers the dynamic
counterpart to the results obtained in Section 4.3. I use the expression for the aggregate spectral

density given in (26) and (27). The steps involved are the same as before: �rst I characterize the

decay behavior of the aggregate spectral density with M for the particular case where � = � and

then show that the resulting characterization extends for any �(A) where A is drawn from the family

of matrices A(M; e; �) and �(A) is formed according to Lemma 4.1.2.:
Thus, letting � be given by the expected input-use matrix, � expression [27] yields:

Proposition 5.3.1. For �xed � and ; aggregation weights w= (1=M)1M and � = �, the

spectral density for aggregate capital at frequency ! is given by:

S(!;�) = S(!;�) =
1

2�

a(!)

b(!)

�
1

M
(b(!)� 2) + 2�1(�)

1

M

�
if � > 3

and

S(!;�) =
1

2�

a(!)

b(!)

"
1

M
(b(!)� 2) + 2�2(�)

�
1

M

� 2��4
��1
#
if � 2 (2; 3)

with a(!) = 1
(1��ei!�)(1��e�i!�) , b(!) = (1��e

i!)(1��e�i!)., �1(�) = (��2)2
(��1)(��3) and �2(�) =

(��2)2
(��1)(3��) .

As in Proposition 4.3.3. the expression for the volatility of aggregates di¤ers according to the

tail parameter governing heterogeneity across sectors in their role as input suppliers. Thus for

� > 3, i.e. thin tail distributions, or diversi�ed economies, the expression again recovers the strong

diversi�cation of shocks argument given in Dupor. Volatility in aggregate variables decays at rateM

as we expand the number of sectors, yielding negligible aggregate volatility for any moderate level of

disaggregation. Conversely, for economies where large input-supplying hubs form the basis for input

trade �ows, this decay rate is slowed down arbitrarily as � approaches its lower bound. The more

every sectoral technology in an economy relies on the same few key technologies the slower the law

of large numbers applies.

More precisely, what the expression in the fat-tailed case is stating is the following. Let f�Mg1M=1

be the sequence of expected input-use matrices given by the construction of Lemma 4.3.1. with

� 2 (2; 3). Then S(!;�) ! 0 at rate M� for all !, where � � 2��4
��1 2 (0; 1_). In this way for a � close

to its lower bound, the law of large numbers is postponed.

This generalizes the results in Horvath (1998) and Dupor (1999). It is an easy exercise to show

that results concerning the scaling of the variance withM , the number of sectors, are the same of the

static model presented in section 2. However as the Proposition makes clear, this scaling now extends

to the autocovariance function. Thus exactly the same decay description applies for persistence of

aggregates in dynamic economies.

As in Section 4, I now extend this characterization for any �(A) where A is drawn from the

family of matrices A(M; e; �) and �(A) is formed according to Lemma 4.1.2.
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Proposition 5.3.2. For �xed � and ; aggregation weights w = (1=M)1M and for any

�(A) where A is drawn from the family of matrices A(M; e; �) and �(A) is formed according to
Lemma 4.1.2., the spectral density for aggregate capital is bounded below by :

S(!;�(A)) >
1

2�

a(!)

b(!)

�
(b(!)� 2) 1

M
+ �1(�)(

2 � {) 1
M

�
if � > 3

and

S(!;�(A)) >
1

2�

a(!)

b(!)

"
(b(!)� 2) 1

M
+
�
2 � {

�
�2(�)

�
1

M

� 2��4
��1
#
if � 2 (2; 3)

with { < 2, a(!) = 1
(1��ei!�)(1��e�i!�) , b(!) = (1 � �ei!)(1 � �e�i!)., �1(�) = (��2)2

(��1)(��3)

and �2(�) =
(��2)2

(��1)(3��) .

Proposition 5.3.2. states that as I consider any realization of �(A) from A(M; e; �) - rather than
its expectation, �; the level of the spectral density for aggregate capital is, at worse, lower at every

frequency, but preserves exactly the same decay behavior with M: What this means is that for any

input-use matrix based on connectivity structures given by A(M; e; �), the link between volatility
and persistence of aggregates and the network structure of the economy remains valid.

From a network perspective, common reliance on a few key input-supplying hubs will induce

greater conductance to shocks in those sectors and this in turn generates less subdued and longer

lived responses in aggregates. The next subsection illustrates this intuition by means of impulse

response analysis.

5.4. Comovement in a Network Laboratory. The analysis above suggests that a shock
to a large input-supplying sector, i.e. to a general purpose technology, will propagate throughout

the economy as a large fraction of other technologies are dependent on it. This means that the

structure of intermediate input trade renders the economy vulnerable to disturbances in particular

sectors. However, one can also proceed to ask a related question: what is the response of the

aggregate economy to an average shock? Here I translate an average shock as a shock to an average

sector in terms of the number of sectors that it supplies inputs to. Intuition would indicate that the

impact of this should be muted by the very fact that the output of an average sector is specialized

and demanded only by a limited number of sectors. This in turn generates limited conductance to

average shocks. This o¤ers an alternative characterization of the structure of the economy as robust

to typical shocks. This subsection illustrates these ideas through a simple impulse response analysis

of the dynamic model of section 5.1.

The simplest way to proceed is to follow Long and Plosser (1983) and Horvath (1998) in assuming

productivity shocks Zj;t follow a multiplicative random walk: Zj;t+1 = Zj;t expf"j;t+1g where "j;t+1
is a standard normal random variable. This renders the solution of the planner�s problem stationary
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in �rst di¤erences and given by:

�yt+1= [I � � (A)]�10 �d�yt+ [I � � (A)]�10 "t+1 (28)

where �yt is the log �rst di¤erence of the vector of sectoral outputs and therefore can be seen as

sectoral output growth rates26. In the simulations that follow, I assume decreasing returns to scale

for all sectors, with  = 0:5 and � = 0:45; thus rendering all shocks transitory. Assuming constant

returns to scale will induce a permanent change in the long run average growth rate following a shock

but otherwise preserves the features described below.

Input-use matrices in these economies will be generated according to the construction in Section

4. Thus, I will be drawing connectivity structures from families of matrices A(M; e; �) and then
constructing input-use matrices according to Lemma 4.1.2. Speci�cally, the simulations below trace

impulse responses for �ve hundred sectors economies (M = 500) where the average sector demands

inputs from twenty other sectors (e = 20). Given the results linking di¤erent volatility and persistence

in aggregates with di¤erent levels of heterogeneity in input-supply links - or diversi�cation of sectoral

technologies - I consider sampling from two di¤erent families: � = 2:1 and � = 3:1.

Having drawn an input-use matrix, I simulate the growth rate response for each of the �ve

hundred sectors to a one-standard deviation shock in the productivity of the largest input-supplying

sector (i.e. the sector corrresponding to the largest row sum of the sampled A matrix). I also track

what this implies for the average growth rate in these economies. I then follow the exact same

procedure but instead give a unit pulse to an average sector. That is, for a sampled A matrix, I

pick a sector that supplies to twenty other sectors. If none is found I pick the next largest sector. If

more than one is found I shock at random one of the average degree sectors. Figures 7 and 8 below

display the outcome of such experiments.

26Recall that the level of sectoral capital and that of sectoral output di¤er only by a constant in expression (25).
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Figure 7: Impulse responses (lhs) and mean growth rate response (rhs) following a shock to the
largest input supplier.
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Figure 8: Impulse responses (lhs) and mean growth rate (rhs) response following a shock to an
average outdegree sector

For a single A matrix, sampled from a family A(500; 20; 2:1), the left panel of Figures 7 and 8
shows �ve hundred growth rate responses following a one-standard deviation shock to the largest

input-supplying sector (Figure 7) and to an average sector (Figure 8)27. The right panel shows the
27The top line in each panel gives the own-response of the sector given the unit pulse.
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implied mean growth rate response averaged over thirty realizations of such A matrices and compares

it to the corresponding object, averaged over thirty alternative A matrices, sampled from the less

heterogeneous family of input-use matrices A(500; 20; 3:1).
What the left panels in Figures 7 and 8 display is precisely the robust yet vulnerable nature of

heterogeneous connectivity economies. A shock to the largest sector induces broad comovement in

the economy as disturbances in the production technology of a general purpose sector propagate to

all sectors in the economy. Notice that this synchronized response induces a cycle-like behavior: as

the shock propagates through the economy and over time as there is a gradual buildup in the growth

rate of every sector followed by a gradual decay across the board. In contrast, a shock to an average

connectivity sector induces responses in a small number of sectors. Its limited number of connections

implies no synchronized movement and as a consequence, propagation is weak and short-lived.

The circle-line in the right panels of Figures 7 and 8, con�rms that this is not the result of the

particular A matrix sampled. The mean growth response averaged over thirty economies drawn from

A(500; 20; 2:1) yields the same type of dynamics: it responds non-monotonically and persists through
time in the case of a shock to the largest sector. In contrast, following a shock to an average sector,

the mean growth rate displays a monotonic response that is two orders of magnitude smaller. The

square-line in the right panels shows what happens when I sample from more diversi�ed economies

(� = 3:1). The upshot of a thiner tail is that the largest sector sampled from a A(500; 20; 3:1) family
will supply to relatively smaller number of sectors: as such propagation is weaker and the mean

growth rate response is smaller by one order of magnitude. Interestingly, no such contrast obtains

when I consider a shock to an average sector. This suggests that the di¤erence between more and

less diversi�ed economies lies in their vulnerability to disturbances in large sectors and not in their

robustness to an average shock.

7. Conclusion

Narrowly de�ned, the starting point of this paper was based on the following insight: setting

to zero elasticities of substitution for particular intermediate inputs is tantamount to assuming par-

ticular network structures for sectoral linkages. From this, I have shown that it is possible to start

characterizing sparseness in large-scale input-use matrices by using a network approach to data. More

importantly, I have built models of input-use matrices that retain �rst-order connectivity character-

istics of data. With this apparatus in hand, the paper employed these tools to solve a controversial

question in the business cycle literature: can large-scale multisector models with independent pro-

ductivity shocks generate non-negligible �uctuations in aggregates?

The answer that emerges from this paper is: yes, provided most sectors resort in large measure

to the same general purpose inputs. In other words, aggregate �uctuations obtain in economies that

are not too diversi�ed in terms of the inputs required by di¤erent technologies. Further, input-use
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data seems to con�rm that this is indeed the case, as most sectors rely on key, basic, technologies:

oil, electricity, iron and steel, real estate, truck transportation and telecommunications. Sectors are

therefore interconnected by their joint reliance on a limited number of general purpose technologies

and di¤er only in the mix of remaining inputs each uses to produce its good.

From a network perspective this means that the linkage structure in the economy is dominated by

a few sectoral hubs, supplying inputs to many di¤erent sectors. In this case, productivity �uctuations

in these hub-like sectors propagate through the economy and a¤ect aggregates, much in the same

way as a shutdown at a major airport has a disruptive impact on all scheduled �ights throughout a

country. In either case, there are no close substitutes and every user is a¤ected by disturbances at

the source.

Once one starts to think about the fabric of input-trade in this way, other questions follow suit:

can one characterize diversi�cation in networks of sectoral technologies over time or across countries?

Take, for example, a problem that has generated recent interest among macroeconomists: the decline

in business cycle volatility over the past half century. The conjecture that follows from this paper

is that reliance on traditional hubs has diminished as more specialized substitutes have developed.

The response of the U.S. economy to past and present oil shocks seems to con�rm this view: as

alternative energy technologies develop and sectors diversify in their most preferred energy source,

the role of oil as a hub to the economy has diminished. As such, oil shocks would likely have a

smaller impact on aggregates. Concurrently, the I.T. revolution can be seen as having provided a

wealth of alternatives to traditional means of communication and points of sale. The same network

perspective can be taken across countries: do less developed economies rely relatively more on a

limited number of key technologies? In this sense, can their technologies be characterized as less

diversi�ed? If so, the arguments in this paper would predict that less developed economies display

more pronounced movements in aggregate output, as indeed seems to be the case in data.

To go beyond these conjectures necessarily implies more careful measurement of the network

properties of input-use data and, most likely, more disaggregated data. Indeed, the particular network

properties chosen in this paper - tail properties of degree sequences - are both hard to measure and

special in that they pertain only to local features of a network. Other measures of connectivity exist

and can be of use in characterizing properties of intersectoral trade �ows.

At the same time, once one recognizes that network structure is linked to macroeconomic out-

comes a more ambitious question emerges: what determines these structures? This requires devel-

oping a causal mechanism, i.e. a theory where the network of input-�ows - or at least some of its

properties - is the endogenous outcome of a well-speci�ed economic model. Such a theory is surely

necessary if one is to think rigourosly about the dynamic evolution of these complex objects and to

make sense of the data patterns suggested in this paper. This paper falls short of this and makes

the easier point that network structure matters. As such, this paper is a necessary starting point

for a larger research agenda linking macroeconomic outcomes to the networked structure of modern

economies.
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A. Appendix

A.1. Some results on the inverse of a sum of two matrices.

Lemma A.1. Let A be a nonsingular M�dimensional matrix and let U , B and V be M �M
matrices. Then,

(A+ UBV )�1 = A�1 � (I +A�1UBV )�1A�1UBV A�1

Proof: See, for example, Henderson and Searle (1981).

A particular case of this is given by the Bartlett inverse

Lemma A.2. (Bartlett Inverse). Let A be a square, invertible, M�dimensional matrix and
u and v be M�dimensional vectors. Then:

(A+ uv0)�1 = A�1 � A
�1uv0A�1

1 + v0A�1u

A.2. Proofs

Proofs of Section 2

Proposition 2.2. Assume that
X
i2 �Sj

ij =  and that �
2
j = �

2 for all sectors j = 1. Then

�2Y (�C) =

�
1

1� 

�2 �2
M

for Complete Intersectoral Networks

�2Y (�Star) =

�
N

M
+ 2



1� 

�
�2

M
+

�


1� 

�2 �2
N
for N star networks

Proof: First construct vectors u and v such that u is anM�1 vector with each entry ui restricted
2 [0;M ] and v an M � 1 vector where each element vi is given by P

i ui
. Now let � = uv0 and apply

Lemma A.1. to get

(I � �)�1 = (I � uv0)�1 = I + uv0

1� 
where the last equality follows from v0u =  (by constuction). Notice that for the static multi-

sector economy deviations of sectoral output from its mean are then given, in vector form, by:

y � � = (I+ uv0

1�  )
0
"

Taking the complete case �rst:
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�C =

�


dGc
A(Gc)

�
where A(Gc) is the adjacency matrix of a complete regular digraph of sectoral supply linkages and

.dGc is its average out-degree
P
i dvi
M :Notice that that the average out-degree of a complete digraph

on M sectors is M . Hence I can rewrite �C as

�C = M1M1
0
M

�
1P
i dvi

�
Now let u be given by M1M (i.e. the degree sequence of Gc) and v0 = 1

0
M

�
P
i dvi

�
. Using this

with the Bartlett inverse result:

MX
i=1

yi � �i =

MX
i=1

(1 +M
ui

(1� )
P
i dvi

)"i

=

MX
i=1

(1 +M
M

(1� )M2
)"i

=
MX
i=1

1

(1� )"i

Finally given the assumption of i.i.d. sectoral disturbances, �2Y � E
hPM

i=1(yi��i)
M

i2
�2Y (�C) =

�
1

1� 

�2 �2
M

Now for the N � Star case the input-use matrix is given by

�star =

�


dGStar
A(GStar)

�
where A(GStar) is the binary matrix de�ned in the text and dGStar is its average out-degreeP

i dvi
M :Without loss of generality, order sectors that the �rst M �N vertices are not input suppliers

and the remaining N sectors supply inputs to every sector in the economy. Then I can write �Star
as

�Star = M

"
0M�N

1N

#
1
0
M

�
1P
i dvi

�
Where 0M�N is anM�N dimensional vector of zeros and 1N be an N dimensional vector of ones.

Now, take the Bartlett inverse, where u is given by M

"
0M�N

1N

#
(which is simply the out-degree

sequence of the N � star network) and v0 = 10M
�

P
i dvi

�
: Then,
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MX
i=1

yi � �i =
MX

i=M�N+1
(1 +M

ui

(1� )
P
i dvi

)"i

=

MX
i=M�N+1

(1 +
M2

(1� )
P
i dvi

)"i

=
MX

i=M�N+1
(1 +



1� 
M

N
)"i

Then, given the assumption of i.i.d. sectoral disturbances

�2Y (�Star) =

�
N

M
+ 2



1� 

�
�2

M
+

�


1� 

�2 �2
N

As stated in the proposition. �

Proofs of Section 4

Lemma 4.2.1. For every M sector economy, associate a weight sequence e := fe1; :::; eMg to the
collection of sectoral labels, such that ei 2 (0;M) and de�ne a realization of the intersectoral trade
graph G as the realization of independent binary random variables Xij 2 f0; 1g, i; j = 1; :::M where

Pr(Xij = 1) = pij given by [14]. Then,

i) for any M , the expected out-degree of a sector will be given by:

E (douti ) =
X
j

pij= ei, i = 1 ; :::;M (29)

ii) for any realization of the intersectoral trade graph G and for any sector i;

if ei > logM , its actual out-degree douti will almost surely satisfy��douti � ei
�� � 2 logM

otherwise if ei � logM , then douti almost surely satis�es

��douti � ei
�� � 2pei logM

iii) for any sector i; its E(dini ) expected indegree is given by:

E(dini ) =
X
i

pij =

P
i ei
M

� e;8i (30)
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Proof: The proof of parts i) and iii) are given in the Lemma. Part ii) is proven in Chung and Lu

(2006, Lemma 5.7.), resorting to Cherno¤ bounds

Proposition 4.3.3.. The Leontie¤ inverse of the expected input use matrix,
�
IM � �

��1
is given

by �
IM � �

��1
= IM +



1� �1
0
M

where IM is the M �M identity matix, � is a M � 1 vector with typical element eiPM
i=1 ei

and 1M is

the unit vector of dimension M � 1.

Proof: The proof follows along the same lines of the proof in Proposition 2.1., and is simply using

Bartlett�s formula in Lemma A.2. where u = � and v = 1M . and noticing that v0u =  necessarily.

Proposition 4.3.4.. Assume that the input-use matrix is given by the expected input-use matrix
� and that sectoral volatility �j = � for all sectors j. Then, for a static M�sector economy the
aggregate volatility of equilibrium output, �A is given by:

�2Y (�) =

8<:
�


1�

�2
�1(�)

�2

M + 1
M �

2 if � > 3�

1�

�2
�2(�)

�
1
M

� 4�2�
��1 �2 + 1

M �
2 if � 2 (2; 3)

where terms �1(�) =
(��2)2

(��1)(��3) and �2(�) =
(��2)2

(��1)(3��) are positive and constant given a �:

Proof: Use the result in Proposition 4.3.3. to substitute in (I � �)�10 in expression (8) of the
static model presented in section 2.

y � � =
�
I +



1� �1
0
�0
"

Thus with 1M as the M-dimensional unit vector:

MX
i=1

yi � �i = 10
��
I +



1� �1
0
�
+�

�0
"

= 10I"+


1� 1
0(1�)"

=
MP
i=1
"i +



1� M
MP
i=1
�i"i

Thus the aggregate statistic 1
M

PM
i=1 yi � �i

1

M

MX
i=1

yi � �i =
1

M

MP
i=1
"i +



1� 
MP
i=1
�i"i
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which has expectation zero given independent technological disturbances "i. Now we�re interested

in E
��

1
M

PM
i=1 yi � �i

�2�

E

24 1

M

MX
i=1

yi � �i

!235 = 1

M2

MP
i=1
E(("i)

2) +

�


1� 

�2 MP
i=1
�2iE(("i)

2)

Now using the assumption E(("i)2) = �2.

�2Y =

�


1� 

�2
�2

MP
i=1
�2i +

1

M
�2

Finally notice that by de�nition of the vector � given in Proposition 4.3.3.

MP
i=1
�2i �

"
MP
i=1
e2i =

�
MP
i=1
ei

�2#

=
1

M

MP
i=1
e2i =

MP
i=1
ei

MP
i=1
ei=M

=
1

M

ee
e

Where ee � MP
i=1
e2i =

MP
i=1
ei: Chung and Lu (2006, p.109) show that for largeM and under the power

law weight parameterization given in De�nition 4.2.2., ee is given by:
ee =

8<: e (��2)2
(��1)(��3) if � > 3

e��2 (��2)
��1m3��

(��1)��2(3��) if � 2 (2; 3)

where m is the maximum expected outdegree, e1. Thus, according to De�nition 4.2.2. m =
��2
��1eM

1
��1 : Plugging in these expressions in the expression for �2Y above, I get:

�2Y (�) =

8<:
�


1�

�2
(��2)2

(��1)(��3)
�2

M + 1
M �

2 if � > 3�

1�

�2
(��2)2

(��1)(3��)
�
1
M

� 2��4
��1 �2 + 1

M �
2 if � 2 (2; 3)

Letting �1(�) =
(��2)2

(��1)(��3) and �2(�) =
(��2)2

(��1)(3��) gives the claim. �

Proposition 4.3.5. Fix a triplet of parameters (M; e; �) and assume that
X
i2 �Sj

ij =  and that

�j = � for all sectors j = 1. For any A(G) sampled from the family of input-use graphs A(M; e; �);
construct the input-use matrix according to Lemma 4.1.2. Then i) for any A(G)

[IM � �(A)]�1= IM+


1� �1
0
M+�
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where � is an M �M random matrix with zero column sums. Further ii) for any A(G) of the

family of input-use graphs A; and � 2 (2; 3) the following is a lower bound for aggregate volatility

�2A(�(A)) >

8>><>>:
��


1�

�2
� {

�
�1(�)

�2

M if � > 3��

1�

�2
� {

�
�2(�)

�
1
M

� 2��4
��1 �2 if � 2 (2; 3)

where { is a constant strictly smaller than
�


1�

�2
:

Proof of claim i) in the Proposition: First notice that for any realization of the intersectoral trade

digraph A(G) one can always decompose A(G)D as

A(G)D = E(A(G)D) + [A(G)D � E(A(G)D)]

where E is the expectation operator. Therefore the matrix Z; i.e. the Leontie¤ inverse [I �
A(G)D]�1 can be expressed as:

[I � A(G)D]�1 = fI � E(A(G))E(D)� [A(G)D � E(A(G))E(D)]g�1

Now, to apply the formula for the inverse of a sum of matrices in Lemma A.1., let

I � E(A(G))E(D) � C

�[A(G)D � E(A(G))E(D)] � U

to express the problem as an inverse of a sum of matrices:

[I � A(G)D]�1 = [C + IMUIM ]�1

so that the formula for the inverse in A.1. yields

[I � A(G)D]�1 = C�1 � C�1U [I + C�1U ]�1C�1

To calculate C�1 notice that E(A(G))E(D) can be expressed as a rank one matrix:

E(A(G))E(D) = �10M

where � =
h

e1PM
i=1 ei

; :::; eMPM
i=1 ei

i
and 10 � [1; :::; 1]: Thus applying Barttlet formula for C�1 yields

[I � �10]�1 = I + �10

1� 10I�

Since 10�= 1 we get for C�1

[I � �10]�1 = I + 

1� �1
0
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Now to solve for [I + C�1U ]�1 substitute in C�1 to get

[I + C�1U ]�1 =

�
I +

�
I +



1� �1
0
�
U

��1
=

�
I + U +



1� �1
0U

��1
Notice that for any realization of A(G)D;the matrix U = �[A(G)D�E(A(G))E(D)], will have

zero column sums. This is so since, by construction, A(G)D and E(A(G))E(D) have the same

column sums (and equal to 1 for every column). Hence the di¤erence will yield zero column sums.

Thus 10U = 00 where 0 is an M � 1 vector of zeros and �10U is a M �M matrix of zeros. This

implies that:

[I + C�1U ]�1 = [I + U ]�1

Collecting results

[I � A(G)D]�1 =
�
I +



1� �1
0
�
�
�
I +



1� �1
0
�
U [I + U ]�1

�
I +



1� �1
0
�

This expression can be further simpli�ed by again using the fact that �10U is a matrix of zeros.

Thus:

[I � A(G)D]�1 =
�
I +



1� �1
0
�
� U [I + U ]�1

�
I +



1� �1
0
�

or

[I � A(G)D]�1 =
�
I +



1� �1
0
�
+�

with � de�ned as

��[A(G)D � E(A(G)D)][I � [A(G)D � E(A(G)D)]]�1
�
I +



1� �1
0
�

Finally, for the zero column sum claim on � I use the following result (see Golub and van Loan,

Lemma 2.3.3.)

if k�k1 < 1 then
(I � �)�1

1
� 1

1� k�k1
where k�k1 is the maximum absolute column sum of �. Notice that by construction for any A(G);

all column sums of � are positive and given by k�(A)k1 =  < 1 and therefore
(I � �)�1

1
�

1
1� : Now notice that I + 

1��1
0 is a M � M matrix with all columns sums equal to 1

1� and

thus
I + 

1��1
0

1
= 1

1� . This therefore implies that � has all column sums equal to zero.since

otherwise
(I � �)�1

1
would be greater than 1

1� .
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Proof of part ii) of the Proposition. Recall � � �U [I + U ]�1
h
I + 

1��1
0
i
. Then the static

multisectoral model gives:

y � � =
��
I +



1� �1
0
�
+�

�0
"

Thus with 10 � [1; :::; 1]

MX
i=1

yi � �i = 10
��
I +



1� �1
0
�
+�

�0
"

= 10I"+


1� 1
0(1�)"+ 10�0"

=
MP
i=1
"i +



1� M
MP
i=1
�i"i +

MP
j=1

MP
i=1
�ij"i

Thus the aggregate statistic 1
M

PM
i=1 yi � �i

1

M

MX
i=1

yi � �i =
1

M

MP
i=1
"i +



1� 
MP
i=1
�i"i +

1

M

MP
j=1

MP
i=1
�ij"i

which has expectation zero given independent technological disturbances. Now we�re interested

in E
��

1
M

PM
i=1 yi � �i

�2�

E

24 1

M

MX
i=1

yi � �i

!235 =
1

M2

MP
i=1
E(("i)

2) +

�


1� 

�2 MP
i=1
�2iE(("i)

2) +
1

M2

MP
i=1

 
MP
j=1

�ij

!2
E(("i)

2)

+
2

M

�


1� 

�
MP
i=1
�iE(("i)

2) +
2

M

MP
i=1

MP
j=1

�ijE(("i)
2)

+
2

M

�


1� 

�
MP
i=1
�i

 
MP
j=1

�ij

!
E(("i)

2)

Notice that
MP
i=1

MP
j=1

�ij =
MP
j=1

MP
i=1
�ij = 0 (since � is a zero column-sum matrix), that

MP
i=1
�i = 1

and that E(("i)2) = �2. Using these facts I can simplify the expression to:

�2A =

�


1� 

�2
�2

MP
i=1
�2i+

1

M
�2+

2

M
�2
�



1� 

�
+
2

M
�2
�



1� 

�
MP
i=1
�i

 
MP
j=1

�ij

!
+
�2

M2

MP
i=1

 
MP
j=1

�ij

!2
Now the second to last term in the expression can potentially be negative and/or of higher order

than the �rst term. To show that the latter is never the case, group the �rst and the last two terms

in this formula:
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�


1� 

�2
�2

MP
i=1
�2i +

2

M
�2
�



1� 

�
MP
i=1
�i

 
MP
j=1

�ij

!
+
�2

M2

MP
i=1

 
MP
j=1

�ij

!2

= �2
MP
i=1

"


1� �i +
1

M

MP
j=1

�ij

#2
Thus, since the resulting value of this sum in i has to be non-negative it has to be the case that,

for every M :

�


1� 

�2 MP
i=1
�2i �

������ 2M
�



1� 

�
MP
i=1
�i

 
MP
j=1

�ij

!
+

1

M2

MP
i=1

 
MP
j=1

�ij

!2������
Further, since

MP
i=1

MP
j=1

�ij = 0; if for some i
MP
j=1

�ij < 0 then it has to be the case that there

exists at least one index k such that
MP
j=1

�kj > 0. Therefore, the inequality above is strict for all M .

In particular, this implies that the right hand side in the inequality cannot have a slower rate of

convergence to zero than the term on the left hand side. Thus I have shown that
��


1�

�2
� {

�
MP
i=1
�2i

where { is strictly lower than
�


1�

�2
and independent of M , is a worst case bound for the i�sum

of these three terms. Therefore

�2A(A) >

"�


1� 

�2
� {

#
�2

MP
i=1
�2i +

1

M
�2 +

2

M
�2
�



1� 

�

>

"�


1� 

�2
� {

#
�2

MP
i=1
�2i

for any M: Inserting the expression for
MP
i=1
�2i derived in the Proposition 4.3.4. yields,

�2A(A) >

8>><>>:
��


1�

�2
� {

�
(��2)2

(��1)(��3)
�2

M if � > 3��

1�

�2
� {

�
(��2)2

(��1)(3��)
�
1
M

� 2��4
��1 �2 if � 2 (2; 3)

Letting �1(�) =
(��2)2

(��1)(��3) and �2(�) =
(��2)2

(��1)(3��) gives the claimed expression.�

Proofs of Section 5

Proposition 5.3.1. For �xed � and ; aggregation weights w= (1=M)1M and � = � give the

univariate spectral density
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S(!;�) = S(!;�) =
1

2�

a(!)

b(!)

�
1

M
(b(!)� 2) + 2�1(�)

1

M

�
if � > 3

and

S(!;�) =
1

2�

a(!)

b(!)

"
1

M
(b(!)� 2) + 2�2(�)

�
1

M

� 2��4
��1
#
if � 2 (2; 3)

with a(!) = 1
(1��ei!�)(1��e�i!�) , b(!) = (1��e

i!)(1��e�i!)., �1(�) = (��2)2
(��1)(��3) and �2(�) =

(��2)2
(��1)(3��) .

Proof: Let �(ei!) := (1��ei!)I��.. Following the same reasoning as in the proof of Proposition
4.3.2. notice that � = �10M . This

�(ei!) = (1� �ei!)I � �10M

Then using Bartlett formula in Lemma A.2.

�(ei!)�1 = (1� �ei!)�1I + (1� �ei!)�1 �10M
1� 1M (1� �ei!)�1I�

(1� �ei!)�1

= (1� �ei!)�1[I + �10M
(1� �ei!)� 1M�0

]

= (1� �ei!)�1[I + �10M
1� �ei! �  ]

Now, recalling the expression for the spectrum for aggregate capital for a given frequency

S(!)
:
= (2�)�1w��(ei!)�10�(ei!)�1w

and w= (1=M)1M where again, 1M is a M � 1 vector of ones. Thus, letting � = 1=(1��ei!�)

S(!) =
1

(2�)M 21
0
M
�(ei!)�10�(ei!)�11M

=
(1� �ei!)�1(1� �e�i!)�1

(2�)M 2 10
M
(I + �01M�

0)(I + ��10M )1M

=
(1� �ei!)�1(1� �e�i!)�1

(2�)M 2 [M + �10
M
�10M1M + �

010
M
1M�

01M + �
0�10

M
1M�

0�10M1M ]

Now, term by term, on the RHS square brackets:

i)�10M�1
0
M1M = �

MX
i=1

�i
MPM
i=1 �i

= (1� �ei! � )M

ii)�010M1M�
01M = �0

MPM
i=1 �i

MX
i=1

�i = (1� �e�i! � )M
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iii)�0�10M1M�
0�10M1M = �0�M(

MX
i=1

�2i )M

Thus:

S(!) =
(1� �ei!)�1(1� �e�i!)�1

(2�)

 
1

M
+ �



M
+ �0



M
++�0�

2

M2

MX
i=1

�2i

!

=
(1� �ei!)�1(1� �e�i!)�1

(2�)(1� �ei! � )(1� �e�i! � )

"
1

M
[(1� �ei! � )(1� �e�i! � )� 2] + 2

M2

MX
i=1

�2i

#

Thus, de�ning a(!) = (1��ei!)�1(1��e�i!)�1
(1��ei!�)(1��e�i!�) and b(!) = (1� �e

i!)(1� �e�i!)

S(!) =
1

2�

a(!)

b(!)

"
1

M
(b(!)� 2) + 2

M2

MX
i=1

�2i

#
Now for �i =

eiP
i ei

I can rewrite this expression in terms of the expected degree, e; and the

second order expected degree ee:
S(!) =

1

2�

a(!)

b(!)

�
1

M
(b(!)� 2) + 2

M

�ee
e

��
Substitution in for the second order expected degree ee and simplifying gives

S(!;�) =
1

2�

a(!)

b(!)

"
1

M
(b(!)� 2) + 2 (� � 2)2

(� � 1)(3� �)

�
1

M

� 2��4
��1
#
if � 2 (2; 3)

and

S(!;�) =
1

2�

a(!)

b(!)

�
1

M
(b(!)� 2) + 2 (� � 2)2

(� � 1)(� � 3)
1

M

�
if � > 3

Letting �1(�) =
(��2)2

(��1)(��3) and �2(�) =
(��2)2

(��1)(3��) gives the claim:

�

Proposition 5.3.2. For �xed � and ; aggregation weights w = (1=M)1M and for any

�(A) where A is drawn from the family of matrices A(M; e; �) and �(A) is formed according to

Lemma 4.1.2. the spectral density for aggregate capital is bounded below by:

S(!;�(A)) >
1

2�

a(!)

b(!)

�
(b(!)� 2) 1

M
+ �1(�)(

2 � {) 1
M

�
if � > 3

and

S(!;�(A)) >
1

2�

a(!)

b(!)

"
(b(!)� 2) 1

M
+
�
2 � {

�
�2(�)

�
1

M

� 2��4
��1
#
if � 2 (2; 3)
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with { < 2, a(!) = 1
(1��ei!�)(1��e�i!�) , b(!) = (1 � �ei!)(1 � �e�i!)., �1(�) = (��2)2

(��1)(��3)

and �2(�) =
(��2)2

(��1)(3��) .

Proof: Let � = 1��e�i!. By same argument as in Proposition 4.3.5. one can always decompose

[(1� �ei!)I � �]�1 = [�I � A(G)D]�1 = f�I � E(A(G))E(D)� [A(G)D � E(A(G)(D))]g�1

Now let

�I � E(A(G))E(D) � Ca

�[A(G)D � E(A(G))E(D)] � U

and apply the Sherman-Morrison formulas to get:

[�I � A(G)D]�1 = C�1� � C�1� U [I + C�1� U ]�1C�1�

To solve C�1� through the Barttlet inverse formula

C�1� = ��1I +
��1�10��1

1� ��110�

= ��1
�
I +

��1�10

1� ��110�

�
= ��1

�
I +

�10

�� 10�

�
= ��1

�
I +

�10

�� 

�
For [I + C�1� U ]�1 substitute in C�1� to get

[I + C�1� U ]�1 =

�
I + ��1

�
I +



�� �1
0
�
U

��1
=

�
I + ��1U +



�� �1
0U

��1
where again �10U is a M �M matrix of zeros. Thus:

[I + C�1� U ]�1 = I + ��1U

Collecting results

[�I � A(G)D]�1 = C�1� � C�1� U [I + C�1� U ]�1C�1�

= ��1
�
I +



�� �1
0
�
� ��2

�
I +



�� �1
0
�
U [I + ��1U ]�1

�
I +



�� �1
0
�

= ��1
�
I +



�� �1
0
�
� ��2U [I + ��1U ]�1

�
I +



�� �1
0
�
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where the last line uses the fact that �10U is a M �M matrix of zeros.

Again de�ning � de�ning as

��[A(G)D � E(A(G)D)][I � [A(G)D � E(A(G)D)]]�1
�
I +



1� �1
0
�

I can rewrite the expression above as

[�I � A(G)D]�1 = ��1
�
I +



�� �1
0
�
+ ��2�

Also, by the exact same argument as in the proof of Proposition 4.3.5. the column sums of �

have to be zero for any realization of A(G):

Now using the formula for the aggregate spectrum I get:

S(!) =
1

2�

1

M2
10[(1� �ei!)I � �]�10[(1� �ei!)I � �]�11

=
1

2�

1

M2
10
�
��1

�
I +



�� �1
0
�
+ ��2�

�0 �
��1

�
I +



�� �1
0
�
+ ��2�

�
1

=
1

2�

�0�1��1

M2

26666664
10
h
I + 

���1
0
i0 h
I + 

���1
0
i
1

+10��10�0
h
I + 

���1
0
i
1

+10
h
I + 

���1
0
i0
��1�1

+10�0�1��1�0�1

37777775
Now term by term in the expression in square brackets. First,

10
�
I +



�� �1
0
�0 �
I +



�� �1
0
�
1 = 10

�
I +



�0 � 1�
0 +



�� �1
0 +

2

(�� )(�0 � )1�
0�10

�
1

= M +M


�0 � 
MP
i=1
�i +M



�� 
MP
i=1
�i +

2

(�� )(�0 � )M
2
MP
i=1
�2i

where �0 is the complex conjugate of � and is given by 1� �e�i!:
Second

10��10�0
�
I +



�� �1
0
�
1 = ��1010�01+��10



�� 1
0�0�101

= ��10


�� M1
0�0�

= ��10


�� M
P
j

P
i
�ij�i

Where �01 is a M � 1 vector of zeros (since the columns of � sum to zero), so the �rst term

disappears.
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Third, and applying same reasoning,

10
�
I +



�� �1
0
�0
��1�1= 1 0��1�1+��110



�0 � 1�
0�1

= ��1


�0 � M�
0�1

= ��1


�0 � M
P
j

P
i
�ij�i

Finally,

10�0�1��1�0�1 =�0�1��1
P
i

 P
j
�ij

!2
Collecting results:

S(!) =
1

2�

�0�1��1

M2

2664 M +M 
�0� +M


�� +

2

(��)(�0�)M
2
MP
i=1
�2i

+
�
��10 

�� + �
�1 

�0�

�
M
P
j

P
i �ij�i + �

0�1��1
P
i

�P
j �ij

�2
3775

=
1

2�
�0�1��1

2664
�0��2

(��)(�0�)
1
M + 2

(��)(�0�)

MP
i=1
�2i+�

2�(��10+��1)2
(��)(�0�)

�
1
M

P
j

P
i �ij�i +

1
M2�

0�1��1
P
i

�P
j �ij

�2
3775

=
1

2�

�0�1��1

(�� )(�0 � )

2664 [�0�� 2] 1M + 2
MP
i=1
�2i+�

2 � (��10 + ��1)2
�
1
M

P
j

P
i �ij�i +

1
M2�

0�1��1(�� )(�0 � )
P
i

�P
j �ij

�2
3775

To establish the lower bound I follow the same strategy as in the proof of Proposition 4.3.4.

Again the situation I am interested in ruling out is one where 1
M

P
j

P
i �ij�i is negative and has a

decay rate with M that is slower than that of
MP
i=1
�2i . For this not to be the case start by grouping

the last three terms in the expression above thus:

MP
i=1

242�2i + �2 � (��10 + ��1)2� 1M P
j
�ij�i +

1

M2
�0�1��1(�� )(�0 � )

 P
j
�ij

!235
and notice this is simply the i sum of the product of conjugate pairs dexed by i:

MP
i=1

"
�i +

1

M
��1(�� )

P
j
�ij

#"
�i +

1

M
��10(�0 � )

P
j
�ij

#

Now we know that the product of conjugate pairs is always real and nonnegative. Hence it must

be the case for all M and each i
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2�2i �

�������2 � (��10 + ��1)2� 1M P
j
�ij�i +

1

M2
�0�1��1(�� )(�0 � )

 P
j
�ij

!2������
which implies that the term on the r.h.s. of the inequality cannot decay at a slower rate than

2�2i . Since this holds for all i and all M :

MP
i=1
2�2i �

MP
i=1

�������2 � (��10 + ��1)2� 1M P
j
�ij�i +

1

M2
�0�1��1(�� )(�0 � )

 P
j
�ij

!2������
Thus, at worse, the r.h.s is a term that decays at the same rate as 2�2i but is never larger in

absolute value. Further, by the fact that � is always a zero column sum matrix; we know that at

least for some i;
P
j �ij > 0:, which implies that the inequality above is strict. Thus it has to be the

case that there exists a real and positive {, that does not depend on M and is strictly smaller than

2 such that
�
2 � {

� MP
i=1
�2i is a strict lower bound for the sum of these three terms in i.

Using this in the expression for S(!) it as to be the case that for any M and any frequency !

S(!) >
1

2�

�0�1��1

(�� )(�0 � )

�
(�0�� 2) 1

M
+ (2 � {)

MP
i=1
�2i

�

Substituting in for � = 1� �e�i! and
MP
i=1
�2i yields:

S(!;�(A)) >
1

2�

a(!)

b(!)

�
(b(!)� 2) 1

M
+ �1(�)(

2 � {) 1
M

�
if � > 3

and

S(!;�(A)) >
1

2�

a(!)

b(!)

"
(b(!)� 2) 1

M
+
�
2 � {

�
�2(�)

�
1

M

� 2��4
��1
#
if � 2 (2; 3)

where { < 2, a(!) = 1
(1��ei!�)(1��e�i!�) ,b(!) = (1��e

i!)(1��e�i!);.�1(�) = (��2)2
(��1)(��3) and

�2(�) =
(��2)2

(��1)(3��) as claimed �
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