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Abstract

The paper examines the econometric implications of the decision
problem faced by a profit- or utility maximizing lender operating in a
simple “double-binary” environment, where there are only two actions
available (approve or reject) and there are only two possible states of
the world (pay back fully or default). In practice, an approval decision
is often arrived at by applying a fixed cutoff to credit scores obtained
by estimating a logit model of the conditional probability of default.
Following Elliott and Lieli (2005), we argue that this practice may
well contradict the goal of profit-maximization and propose the use
of “context-specific” cutoffs and an estimation method that explicitly
relies on the economic objective of the lender. We also show how the
proposed framework can help the lender avoid “legal risks” emanating
from the prohibition of disparate treatment and disparate impact. The
econometric method is illustrated by an application to German credit
data.

1 Introduction

In this paper we examine some econometric implications of the decision prob-
lem faced by a profit- or utility-maximizing lender. We make the simplifying
assumption that the lending decision is essentially a binary decision—the
terms of the contract are exogenously determined from the decision maker’s
point of view. The potential profit the lender can make by granting the loan
is nevertheless a function of these terms. A similar, and equally important,

∗The authors thank Nicholas Kiefer, John Relman and two anonymous referees for their
advice. All errors are our responsibility. The paper was part of Robert Lieli’s dissertation
at the University of California, San Diego.
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assumption is that there are essentially two possible consequences of grant-
ing the loan. In one state of the world the borrower complies fully with the
terms of the contract (i.e. pays the loan back on schedule); in the other the
borrower defaults. Again, the loss incurred by the lender in case of default
is a function of the terms of the contract.

A lender’s ability to generate profits depends fundamentally on how suc-
cessful they are in predicting default based on observed socio-economic char-
acteristics of the borrower and the terms of the contract. A formal (and
widely used) method of relating these variables to the conditional probabil-
ity of default is known as credit scoring. The method entails assigning a
predetermined number of “points” to the possible values of each covariate.
Credit is then granted to applicants with total scores over a fixed cutoff
value and denied to those below the cutoff. Such a decision rule is of course
intended to ensure that credit is extended to those with a high probability
of paying it back. (In fact, credit scores can be regarded as transformed
default or compliance probabilities.) For a review of credit scoring methods
see, e.g., Hand and Henley (1997) and the references therein.

Hence, there are two aspects to constructing a “good” credit score-based
approval rule. First, a “good” estimate of the probability of default must
be obtained conditional on the observed covariates. Second, the cutoff must
be drawn at an “appropriate” level. But what do “good” and “appropriate”
mean? The ultimate goal of the lender is to maximize (expected) profit
or utility, and the construction of an optimal approval rule should reflect
this goal. We draw on the methodology in Elliott and Lieli (2005) to ar-
gue that (1) the optimal (profit- or utility maximizing) cutoff is in general
“context-specific”, i.e. it varies from contract to contract or borrower to
borrower; and (2) the objective (or “loss”) function used to estimate the
conditional probability of compliance should be derived from the lender’s
economic optimization problem.

In constructing a scoring rule, one must also take into account numer-
ous laws and regulations concerning lending activity. In particular, there
is extensive legislation aimed at preventing disparate treatment of certain
“protected” or minority groups. The prohibition of disparate treatment has
various implications for our framework. Certainly, lenders cannot exhibit or
exercise preferences that are disadvantageous for these groups. Moreover,
lenders are prohibited from using minority status as a variable in estimating
the conditional probability of default/compliance. Nevertheless, even if a
score-based approval rule is carefully designed to avoid disparate treatment,
it may still have an unintended disparate impact on a protected group, and
lenders have been held responsible for this effect under the law (see Barefoot
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1997, Cocheco 1997). We show how our framework can be used to design
approval rules that mitigate or eliminate disparate impact.

The plan of the paper is as follows. First (in Sections 2 and 3), we will
derive the optimal approval rule under a general formulation of the lender’s
objective function, where in addition to profits, the lender may care about
some characteristics of the borrower and the laws regulating the lending
process. We will show that the optimal decision rule is of the form

“extend the loan if and only if the conditional probability of
compliance is greater than a cutoff”,

where the the cutoff is determined by the lender’s objective function and may
vary from person to person or with the characteristics of the loan. This is in
contrast to existing practice where it is customary to use a uniform cutoff,
which is often chosen according to a simple rule of thumb (e.g. one half
or some quantile of the estimated default probabilities; see, e.g., Fortowsky
and LaCour-Little 2001).

Second, following Elliott and Lieli (2005), we will argue in Section 4
that the modeling and estimation of the conditional probability of compli-
ance should be based on the lender’s economic optimization problem. In
particular, we will show that one does not need a fully correctly specified
model of this conditional probability in order to consistently estimate the
optimal approval rule. Nevertheless, to take advantage of this flexibility,
the misspecified model must be estimated by solving the sample analog
of the lender’s optimization problem, which is not necessarily the same as
the maximum likelihood problem. Hence, maximum likelihood-based proce-
dures such as (potentially misspecified) logit or probit regressions may lead
to suboptimal decision rules.

Third, in Section 5 we illustrate the proposed methodology by applying
it to a data set consisting of records of 1000 customers of a German com-
mercial bank. The results show that the proposed econometric method is
indeed capable of producing approval rules in practice that lead to more
profitable lending decisions than simple logit regressions. The added gain
from the methodology may be enough to compensate for the costlier numer-
ical procedures needed to implement it.

2 A simple view of the lending process

We follow Feelders (2002) in viewing the creditor’s problem as consisting
of two parts: (i) the selection or decision mechanism; (ii) the outcome
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mechanism. The former refers to a decision rule by which the lender decides
whether to accept or reject a loan application. The focus of the paper is on
this binary decision: the terms of the loan contract (the interest rate, the
size and duration of the loan, etc) are assumed to be exogenously given.1

That is, we view the lender as offering one fixed loan contract or a number
of different ones. The prospective borrower then applies for the contract of
his choice and the lender merely accepts or rejects the application.

We will assume that each loan contract offered by the lender requires
equal monthly installments over the duration of the loan. A loan contract
is then completely characterized by the triple Ẍ = (L,D, r), where L is
the size of the loan, D is the duration of the loan in months and r is the
(monthly) interest rate on the loan. The size of the monthly installment I
can be determined from the identity

L =
D∑

i=1

I

(1 + r)i
= d(r, D)I, (1)

where d(r, D) ≡
∑D

i=1(1 + r)−i.
The outcome mechanism, on the other hand, determines whether a bor-

rower with a vector of observed characteristics X̃ repays the loan in accor-
dance with the terms of the contract. We assume that there are only two
possible outcomes in this regard: the borrower either complies fully with the
conditions of the contract or the borrower defaults on the loan in which case
only a given percentage of the principal can be recovered at the end of the
loan’s maturity. If Y is the indicator of default (i.e. Y = −1 is a “bad loan”
and Y = 1 is a “good loan”) and X = (Ẍ, X̃), then the outcome mechanism
can be represented as the mapping

x 7→ p(x) = P (Y = 1 | X = x).

This is the conditional probability of compliance given the observed charac-
teristics of the borrower and the loan contract.

We make a number of additional simplifying assumptions about the lend-
ing process. First, even though we allow for loan contracts of varying lengths,
time plays a limited role in the setup. The decision problem under exami-
nation involves a one-shot static decision—we do not consider the dynamic
consequences of the approval decision for the decision environment. Future

1One way to think about this is that the terms of the contract are determined by a
competitive market. Another is that the terms of the contract are reviewed at discrete
time periods and we focus on optimal decisions in between these periods.
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decisions are not contingent on the decision today. Second, no application
is rejected because of the lack of loanable funds. Finally, if an application is
rejected, we assume that the lender will instead have the option to invest in
a risk-free government bond matching the size and the duration of the loan
applied for, but paying a lower interest rate.

While the proposed setup may not be realistic in many aspects, it will
enable us to formulate an objective function for the lender, defined over
the two-by-two matrix of possible actions (approve/reject) and outcomes
(default/compliance). We will show that full knowledge of the outcome
mechanism p(x) combined with the given objective function of the lender
is sufficient to derive an optimal selection mechanism. Nevertheless, the
function p(x) is unknown; one must learn about it from historical loan data
using statistical methods. We will argue that, in contrast to standard meth-
ods, statistical inference about p(x) (or, more precisely, the optimal decision
rule) should be guided by the objective function of the lender.

Finally, we caution that statistical inference about p(x) is complicated by
the fact that the data available on credit history is generally contaminated
by the selection mechanism used by other lenders. In other words, one
can observe the outcome Y only for individuals who were able to pass the
selection process of a lender in the past. Therefore, one must either model
this selection process or at least recognize that inference will be conditional
on being in the formerly selected group.2 Because the current task at hand
is sufficiently challenging without also treating the reject inference problem,
we shall abstract from this issue in what follows. Suitable modifications of
the approach developed here that accommodate the reject inference problem
are the subject of future research.

3 The lender’s objective

3.1 Profit-maximizing lender

In this section we consider profit-maximizing lenders, who care only about
earning a profit on the loans extended. The profitability of a loan can be
measured by its net present value (NPV, also denoted by π), defined as the
revenue stream from the loan, discounted at an appropriate rate, minus the
amount of the loan. By the assumptions made in the previous section, the
lender’s alternative to accepting a loan application is to invest the amount in
a (risk-free) government bond of the same maturity; therefore, the applicable

2See Feelders (2002) for a review of “reject inference” methods.
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Table 1: The lender’s profit (NPV) in four contingencies

no default (Y = 1) default (Y = −1)
approve (A) πA,1(ẍ) > 0 πA,−1(ẍ) < 0

reject (R) πR,1(ẍ) = 0 πR,−1(ẍ) = 0

discount rate is fD, the interest rate on the D-month government bond.
The revenue stream from the loan is of course uncertain; it depends on

whether the borrower will default on the loan (Y = −1) or not (Y = 1). We
assume r > fD for each contract (L,D, r), which means that the net present
value of each contract is positive in the absence of default (i.e when Y = 1).
In particular, the NPV associated with the (approve, Y = 1) contingency is
given by

πA,1(L,D, r) = d(fD, D)I − L = d(fD, D)
L

d(r, D)
− L > 0, (2)

where use is made of equation (1) and the definition following it. By as-
sumption, the NPV the lender incurs when the loan application is rejected is
zero, regardless of the hypothetical Y outcome (πR,1 = πR,−1 = 0). There-
fore, if the lender knew with certainty that the borrower was going to honor
the contract (Y = 1), the loan would be approved.

On the other hand, if Y = −1, the assumption is that only a certain
fraction q ∈ (0, 1) of the principal can be recovered at the end of the ma-
turity of the loan. Hence, the NPV associated with the (approve, Y = −1)
contingency is given by

πA,−1(L,D, r) =
qL

(1 + fD)D
− L < 0. (3)

Again, the NPV of denying the loan is zero, so if the lender knew with
certainty that the borrower was going to default on the loan, the loan ap-
plication would be rejected. The payoffs associated with the four possible
contingencies are summarized in Table 1.

Of course, the lender cannot observe the outcome Y at the time the
approval decision has to be made. Economic theory postulates that the
lender will instead seek a decision rule that maximizes expected net present
value conditional on the observable characteristics of the loan contract (Ẍ)
and the borrower (X̃):

max
d∈{A,R}

E[πd, Y (Ẍ) | X̃ = x̃, Ẍ = ẍ]

= max
d∈{A,R}

{
p(x̃, ẍ)πd,1(ẍ) + [1− p(x̃, ẍ)]πd,−1(ẍ)

}
. (4)
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That is, a loan application will be approved (d = A) if and only if3

p(x̃, ẍ)πA,1(ẍ) + [1− p(x̃, ẍ)]πA,−1(ẍ) > 0,

or

p(x̃, ẍ) >
1

1 + πA,1(ẍ)/[−πA,−1(ẍ)]
≡ c(ẍ) ∈ (0, 1). (5)

Using equations (2) and (3), the cutoff function c(ẍ) can be written as

c(ẍ) =
[
1− d(fD, D)d(r, D)−1 − 1

(1 + fD)−Dq − 1

]−1

. (6)

Form (5) of the cutoff function c(ẍ) has an intuitive interpretation. The
quantity −πA,−1(ẍ) > 0 is the magnitude of the loss resulting from an
approved loan “gone bad”, while πA,1(ẍ) is the payoff from an approved
loan that is in compliance. The cutoff c(ẍ) depends on the relative size
of these quantities. A lower value of πA,1(ẍ)/[−πA,−1(ẍ)] means that the
relative cost of a “wrong” approval is higher, resulting in a higher cutoff.
That is, it becomes “harder” for any particular applicant to get approved.

A noteworthy implication of (5) is that it is not optimal to use a uniform
cutoff in making approval decisions. In the current setup, the expected
profit maximizing cutoff is a rather complicated nonlinear function of the
conditions of the underlying loan contract. Thus, the covariates contained
in Ẍ play a double role: First, they might provide information about the
likelihood of default. Second, they determine the optimal cutoff, i.e. the
manner in which the information provided by the conditional probability
p(Ẍ, X̃) should be evaluated by a profit maximizing lender.

In the following section we will discuss conditions under which the vector
X̃, the personal characteristics of the applicant related to the probability of
default, may also play a similar double role.

3.2 Utility-maximizing lender

Given equal profits, a lender may strictly prefer to give the loan to applicants
who possess a certain characteristic of interest. In fact, the lender may even
be willing to forego (expected) profits in order to ensure that applicants in
the target group have an easy access to loans (e.g. in case of certain govern-
ment loan programs). In a similar vein, taste-based negative discrimination,

3If (4) has the same value for d = A and d = R, the decision is taken to be “reject”.

7



Table 2: The lender’s utility in four contingencies
no default (Y = 1) default (Y = −1)

approve (A) uA,1[πA,1(ẍ), x̃] uA,−1[πA,−1(ẍ), x̃]
reject (R) uR,1[πR,1(ẍ), x̃] uR,−1[πR,−1(ẍ), x̃]

as defined by Becker (1971), “requires that the discriminator pay or forfeit
income for the privilege of exercising prejudicial tastes” (Ladd 1998, p. 42).

We can formally capture this idea by replacing the objective function
given in Table 1 by the more general one shown in Table 2. The utility
functions uA,1(πA,1, x̃), uR,1(πR,1, x̃), etc. determine the rate at which the
lender is willing to trade off profits for the “privilege of exercising his pref-
erences”. It is reasonable to assume that these functions satisfy

uA,1[πA,1(ẍ), x̃] > uR,1[πR,1(ẍ), x̃] and (7)
uR,−1[πR,−1(ẍ), x̃] > uA,−1[πA,−1(ẍ), x̃] (8)

for each possible value (ẍ, x̃) of (Ẍ, X̃). These assumptions mean that profit
(or the outcome Y ) is still the primary factor in the lender’s objective: if
it were known with certainty that a given borrower was going to honor the
contract, then the lender would approve the loan, regardless of the charac-
teristics of the borrower. Conversely, if default were a certainty, the loan
would always be denied.

The lender’s optimization problem can now be written as

max
d∈{A,R}

E
[
ud,Y

(
πd,Y (Ẍ), X̃

)∣∣∣ X̃ = x̃, Ẍ = ẍ
]
. (9)

Repeating the argument in the previous section leads to a cutoff rule of the
same form as in (5). However, the optimal cutoff is now a function of X̃
(the personal characteristics of the borrower) as well as Ẍ (the terms of the
contract):

c(ẍ, x̃) =
{

1 +
uA,1[πA,1(ẍ), x̃]− uR,1[πR,1(ẍ), x̃]

uR,−1[πR,−1(ẍ), x̃]− uA,−1[πA,−1(ẍ), x̃]

}−1

. (10)

The basic interpretation of c(ẍ, x̃) is retained. The net cost of a “wrong”
approval is now given by the denominator term

uR,−1[πR,−1(ẍ), x̃]− uA,−1[πA,−1(ẍ), x̃] > 0.

Similarly, the numerator term

uA,1[πA,1(ẍ), x̃]− uR,1[πR,1(ẍ), x̃] > 0

8



can be interpreted as a the net benefit of a “correct” approval. Once again,
the optimal cutoff (10) is determined by the relative magnitudes of these
two costs.

As can be seen, in this simple “double-binary” framework there is no es-
sential difference between risk neutral decision makers (maximizing expected
profit) and risk averse ones (maximizing expected utility). The optimal deci-
sion rule displays the same type of dichotomy in both cases: the conditional
probability of default (an unknown object of “nature”) is compared with a
cutoff completely determined by the decision maker’s preferences. Given the
cutoff function c(·), the econometric analysis will proceed exactly the same
way in both cases (see Section 4).

3.3 Legal restrictions on the lender’s objectives

We motivated the generalization of the lender’s objective function by al-
luding to the possibility of positive or negative discrimination in lending.
Of course, there is extensive legislation aimed at regulating the former and
eliminating the latter. These laws put additional restrictions on the lender’s
objective function as given in Table 2. In the United States, the Equal
Credit Opportunity Act (15 U.S.C. §1691) explicitly prohibits discrimina-
tion “against any applicant, with respect to any aspect of a credit transac-
tion... on the basis of race, color, religion, national origin, sex or marital
status, or age...”.

As usual, the letter of the law is open to a number of interpretations.
One intention of the law is to rule out disparate treatment, in which the loan
approval process purposely involves the consideration of the “protected char-
acteristics” cited above. Nevertheless, allowance is made for special purpose
credit programs, administered by the government or non-profit organiza-
tions, “for the benefit of an economically disadvantaged class of persons”.
In this case protected variables can be used to identify this group. For-
profit organizations are also allowed to run such programs as long as the
“program is established... to extend credit to a class of persons who, un-
der the organization’s customary standards of credit-worthiness, would not
receive such credit...”(Regulation B, 12 C.F.R. Section 202.8).4 Thus, the
lender is allowed to trade off profit for exercising certain preferences, but
not others. This means that protected characteristics can enter X̃, but the
law has restrictions on how X̃ can enter the objective function in Table 2.

The prohibition of disparate treatment has another interpretation, which
4We thank John Relman for guiding us to the appropriate section of the law.
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does not have to do with the lender’s preferences. This interpretation rules
out behavior called “statistical discrimination” (see Arrow (1973) and Phelps
(1972)). This means that the lender is prohibited from using the protected
characteristics in estimating the conditional probability of default or, more
generally, in judging an applicant’s credit-worthiness. The prohibition is
necessary because the protected characteristics are cheaply observable and
are often statistically related to the probability of default, especially in the
absence of other relevant conditioning variables that may be costlier to ob-
serve. Ladd (1998, p. 43) concludes that “[i]n essence, the law requires that
lenders make decisions about... loans as if they had no information about
the applicant’s race, regardless of whether race is or is not a good proxy for
risk factors not easily observed by the lender.” Based on this interpretation,
protected characteristics are not allowed to enter models of p(ẍ, x̃).

Under a strict interpretation of anti-discriminatory laws, lenders can
be held liable not only for disparate treatment of applicants, but also for
the (possibly unintended) disparate impact of the approval process. That
is, protected characteristics may be completely missing from X̃, yet the
resulting decision rule may produce a higher than average rejection rate
among protected groups. (This typically happens because “unprotected”
socio-economic variables on which the approval decision is based can be
correlated with minority status.) Under a strict interpretation of the law,
such an approval process can only be justified only by a significant “business
necessity” (see Fortowsky and LaCour-Little 2001). This interpretation of
the law can make lenders fairly vulnerable to legal and political attacks. We
will now show how the present framework can be used to devise a formal
approval rule with reduced or no disparate impact.

An easy way to construct an approval rule that alleviates disparate im-
pact is to attach some conceptual monetary premium to the approval of
minority applicants. Let X̃1 = 1 if an applicant belongs to a certain minor-
ity and zero otherwise. Then one can, for example, write

uA,1[πA,1(ẍ), x̃] = πA,1(ẍ) + λA,1x̃1

uR,1[πR,1(ẍ), x̃] = πR,1(ẍ) = 0
uA,−1[πA,−1(ẍ), x̃] = πA,−1(ẍ) + λA,−1x̃1

uR,−1[πR,−1(ẍ), x̃] = πR,−1(ẍ) = 0,

where λA,1 > 0 and λA,−1 > 0 give the extra value associated with the
approval of “good” and “bad” minority applicants. Formula (10) shows
that the result of this specification is a lower compliance probability cutoff
for minority applicants. The usage of the minority status indicator X̃1 in

10



the lender’s preferences is legal, because it amounts to the implementation
of a special loan program.5 In particular, the resulting lower cutoff for the
protected group makes credit more accessible for them, without excluding
anybody who would have been approved previously.

How one determines the size of the parameters λA,1 and λA,−1 is, how-
ever, an open question. In theory, these values should be related to the
expected cost of a “disparate impact” violation, e.g. the cost of a trial,
fine, restitution, etc. times the probability that such a payment has to be
made. In practice, it is probably reasonable to specify these parameters as
a fraction of πA,1(ẍ) and πA,−1(ẍ).

4 The econometric implications of the optimal ap-
proval rule

An important implication of decision rule (5) is that the lender does not need
to know the exact value of the function p(ẍ, x̃) to make optimal approval
decisions. For any given value x = (ẍ, x̃) of the covariates, all the decision
maker needs to know is whether the conditional probability p(x) is below or
above the known cutoff function c(x). In other words, the optimal decision
is determined by the sign of the function p(x) − c(x). Formally, one can
rewrite the optimal cutoff rule as

approve the loan iff sgn[p(X)− c(X)] = 1, (11)

where the sign function sgn(·) is defined as sgn(z) = 1 for z > 0 and sgn(z) =
−1 for z ≤ 0. Thus, if m∗(x) is any other function such that

sgn[m∗(x)− c(x)] = sgn[p(x)− c(x)] ∀x ∈ support(X), (12)

then relying on m∗(x) instead of p(x) in decision rule (11) will also lead to
optimal loan approval decisions.6 See Figure 1 for an illustration of condition
(12).

This seemingly trivial observation is the basis of the econometric method-
ology proposed by Elliott and Lieli (2005) for modeling and estimating the
unknown conditional probability function p(x), when the primary objective

5Nevertheless, X̃1 cannot be a conditioning variable in estimating compliance proba-
bilities due to the prohibition of statistical discrimination.

6Intuitively, one can think of m∗(x) as a credit score constructed for lenders with cutoff
functions c(x). It is not required that m∗(x) coincide with p(x) at every point (in fact, m∗

can even be negative or larger than unity), but it has to lead to the same approval/rejection
decisions as p(x).
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Figure 1: The multiplicity of the representations of the optimal decision rule

is to ensure that the resulting estimate leads to “good” (i.e. approximately
utility- or profit-maximizing) approval decisions. The following two subsec-
tions introduce the main elements of this methodology.

4.1 Model specification for p(x)

Condition (12) clarifies the extent to which models of p(x) need to be cor-
rectly specified if the modeler’s objective is to estimate the optimal deci-
sion rule (11). In particular, consider the parametric class of functions (i.e.
model)

MΘ = {m(·, θ) : θ ∈ Θ},

where Θ is a given subset of Rp, and for any θ ∈ Θ, m(·, θ) is a real valued
function that maps the covariates x into a real number.

For MΘ to be a “good” model of p(·), it is not necessary that it be fully
correctly specified for p(·), i.e. there need not exist θ◦ ∈ Θ such that

m(x, θ◦) = p(x) ∀x ∈ support(X).

Rather, the model is “good” from the decision maker’s point of view if
m(·, θ)− c(·) is correctly specified for the sign of p(·)− c(·), i.e.

∃θ∗ ∈ Θ : sgn[m(x, θ∗)− c(x)]
= sgn[p(x)− c(x)] ∀x ∈ support(X). (13)

Obviously, this requirement is much weaker than fully correct specification.
Hence, we observe that misspecified models of p(·) can potentially re-

produce the optimal decision rule (11). The key to specifying the class MΘ

is to allow for a functional form “flexible” enough so that hopefully all sign
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changes in p(·) − c(·) can be captured. Suppose, for example, that c(x) is
constant in the first component of x, but economic theory predicts that p(x)
is U-shaped in that variable. In this case the modeler should ensure that
m(x, θ), as a function of the first component of x, is capable of crossing
the constant cutoff at least twice. For example, if m(x, θ) is specified as a
polynomial, it should be at least quadratic in the first component of x. We
will briefly return to the issue of model specification at the end of Section
4.3, after introducing the maximum-utility (MU) estimator and establishing
its basic properties.

4.2 Utility maximization-based estimation

Specifying a parametric model MΘ for p(x) means that the decision maker
faces a restricted set of possible decision rules d(X, θ) indexed by the pa-
rameter θ:

d(X, θ) = “approve the loan iff sgn[m(X, θ)− c(X)] = 1”, θ ∈ Θ. (14)

The economic objective of the lender is unchanged: the goal is to choose
the value of the parameter θ so as to maximize expected profits or expected
utility—now also subject to the additional constraint imposed on the form of
the decision rule. The optimal decision rule within the class (14) is obtained
by solving

max
θ∈Θ

EX,Y

{
ud(X,θ), Y

[
πd(X,θ), Y (Ẍ), X̃

]}
, (15)

subject to

d(X, θ) =

{
A if m(X, θ) > c(X)
R if m(X, θ) ≤ c(X).

If condition (13) is satisfied, then solving the constrained optimization
problem (15) will produce a decision rule d(x, θ∗) equivalent to the “first-
best” optimal decision rule (11). Furthermore, even if MΘ is misspecified
for p(·) to an extent that condition (13) is not satisfied, the optimization
problem above still delivers the “second best” optimum for the lender, i.e.
the best decision rule given the specification MΘ.

The maximization problem (15) can be rewritten in a form that better
highlights the role of the specification MΘ and is more suitable for theoret-
ical study as well as for practical use. In particular, Elliott and Lieli (2005)
show that the following maximization problem is equivalent to (15):

max
θ∈Θ

S(θ) ≡ max
θ∈Θ

E
{

b(X)[Y − 2c(X) + 1]sgn[m(X, θ)− c(X)]
}

, (16)
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where b(x) is given by

b(x) ≡ uR,−1[πR,−1(ẍ), x̃]− uA,−1[πA,−1(ẍ), x̃]
+uA,1[πA,1(ẍ), x̃]− uR,1[πR,1(ẍ), x̃] > 0.

The function S(θ) is a generalized version of Manski’s (1985, 1986) “pop-
ulation score” and is an affine transformation of the objective function in
(15). Hence, S(θ) can be regarded as a rescaled and recentered measure of
expected profit or expected utility.

The exact form of the function S(θ) is unknown to the decision maker
as the expectation in (16) is taken with respect to the unknown joint distri-
bution of the vector (Y, X ′). However, if a random sample of observations
{(Yi, X

′
i)}n

i=1 is available from this distribution7, then an estimated decision
rule can be obtained by solving the sample analog problem

max
θ∈Θ

Ŝn(θ)

≡ max
θ∈Θ

n−1
n∑

i=1

b(Xi)[Yi − 2c(Xi) + 1]sgn[m(Xi, θ)− c(Xi)]. (17)

Let θMU denote a solution of (16) and θ̂MU
n a solution of (17). (The

superscript MU connotes maximum utility.) If the lender were able to use
the decision rule

sgn[m(X, θMU)− c(X)], (18)

the resulting expected utility (profit) would be measured by S(θMU). How-
ever, the lender can only use the estimated decision rule

sgn[m(X, θ̂MU
n )− c(X)], (19)

implying an expected utility (profit) value equal to S(θ̂MU
n ). A relevant

statistical question to ask is the following: Is the lender asymptotically as
well off relying on the estimated decision rule (19) as if (18) were known?
In other words, when can we conclude

S(θ̂MU
n ) →a.s. S(θMU) as n →∞? (20)

7This is where the reject inference problem is assumed away. If banks use selection
rules in granting loans, then the data available from previous loans is not a random sample
from the full distribution of (Y, X ′); rather, it is a random sample from some truncation
of this distribution.
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This condition is of course weaker than requiring θ̂MU
n →a.s. θMU, the

traditional question of interest in econometrics. In fact, (20) can easily
occur without θ̂MU

n converging at all. We do not attribute any economic
meaning to θMU and so we are not particularly interested in its value; we
regard the parameterization MΘ as arbitrary to begin with. Instead, the
focus is on the welfare of the decision maker.

Elliott and Lieli (2005) give regularity conditions on the distribution of
X and on the form of the model MΘ under which (20) holds (essentially,
m(x, θ) needs to be a continuous function of θ, and X needs to have an
absolutely continuous component). Stronger versions of these conditions
ensure a convergence rate of at least8 n1/2.

4.3 Utility maximization-based estimation vs. maximum like-
lihood

The parametric model MΘ was introduced as a specification for the con-
ditional probability function p(x). Thus, given a random sample of ob-
servations from the distribution of (Y, X ′), one could write down the (log)
likelihood function for the parameter θ and then maximize it to obtain the
maximum likelihood estimate θ̂ML

n :

θ̂ML
n = arg max

θ
n−1

n∑
i=1

(1 + Yi) log[m(Xi, θ)] + (1−Yi) log[1−m(Xi, θ)].

Here we consider the question: how “good” is the decision rule

sgn[m(X, θ̂ML
n )− c(X)] (21)

in terms of fulfilling the lender’s objective? How does the expected utility
(profit) associated with decision rule (21) compare with that associated with
sgn[m(X, θ̂MU

n )− c(X)]?
These questions are hard to answer for a finite sample size n. Neverthe-

less, we can show that given a sufficiently large sample, the lender is always
at least as well off relying on θ̂MU

n as he would be if he instead relied on θ̂ML
n .

Moreover, θ̂MU
n generally does strictly better (asymptotically) than θ̂ML

n .
The two estimation methods (decision rules) are asymptotically equiv-

alent if the model MΘ is fully correctly specified for p(·). In this case
8Indeed, using a stochastic equicontinuity argument, Elliott and Lieli (2005) show

n1/2[S(θ̂MU
n ) − S(θMU)] = op(1). For this result to obtain in an i.i.d. data context,

θ 7→ m(x, θ) needs to be a smooth function of θ, and, loosely speaking, m(X, θ) has to be
an absolutely continuous random variable for each θ ∈ Θ. See ibid. for details.
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Figure 2: The comparison of utility maximization based estimation and ML

the maximum likelihood estimator (or any other consistent estimator) will
asymptotically reproduce the first best optimal decision rule (11). The same
is true for the utility maximization based estimator. Nevertheless, in this
case the maximum likelihood estimator has optimality properties other es-
timators cannot in general claim.

Further, we must recognize that MΘ will generally be misspecified for
p(·), as economic theory is rarely strong enough to provide detailed knowl-
edge about p(·). The behavior of the two estimators in this case is best
understood through an example. Suppose there is only one covariate x and
the true conditional probability function p(x) is given by the solid line in
Figure 2. For simplicity, also assume that the decision maker’s objective
function is such that the optimal cutoff c(x) is constant. Next suppose that
the proposed model of p(x) is a probit specification based on a linear in-
dex: m(x, θ) = Φ(θ1 + θ2x). Clearly, this model is misspecified, as p(x) has
more than one inflection point, and m(x, θ) has only one as a function of x.
However, as p(x) and the cutoff c(x) have only one intersection point, there
exists a value of θ that reproduces the first-best optimal decision rule.

Imagine generating a large sample of X values from the uniform distribu-
tion on the interval (-3,6) (see the histogram in Figure 2). The corresponding
Y outcomes (not shown) are then generated according to the given condi-
tional probability function p(x). Using the sample obtained, we can estimate
both θ̂ML

n and θ̂MU
n . The fitted model Φ(θ̂ML

1n + θ̂ML
2n x) is shown in Figure 2

by the dash-dot line, while Φ(θ̂MU
1n + θ̂MU

2n x) is depicted by the dashed line.
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The utility-maximization based method produces a fitted model that
intersects the cutoff almost exactly at the same point as p(x); furthermore,
the fitted model is always on the same side of the cutoff as p(x). Thus, the
fitted model succeeds in reproducing the first best decision rule (11) in large
samples, despite the fact that the fit is “poor” away from the point where
c(x) and p(x) intersect. However, the vertical distance between the fitted
model and p(x) is inconsequential from the decision maker’s point of view
as long as the fitted model is on the “correct” side of the cutoff.

On the other hand, if the probit model is estimated by maximum like-
lihood, the estimator will, asymptotically, try to produce a globally good
approximation to the function p(·). Because of misspecification, however,
the probit model cannot perfectly reproduce p(·) even as the sample size
goes to infinity. Maximum likelihood will nevertheless try its best to opti-
mize the fit of the model even away from the intersection point of p(x) and
c(x), where the decision maker does not care about the magnitude (only
the sign) of estimation errors. As a result, the fitted model will miss the
intersection point between p(x) and c(x) and will lead to a suboptimal de-
cision for a range of x values (from approx. x = 0.75 to 2.5). The result
is a reduction in expected utility or profit. Intuitively speaking, the objec-
tive implicit in maximum likelihood estimation is in general not consistent
with the objectives of the utility- or profit-maximizing lender facing a binary
approval decision.

It is important to note that the asymptotic optimality property of the
MU method demonstrated through this example is conditional on the model
specification. A strict improvement over ML can be expected to obtain if
m(x, θ) is misspecified for p(x) as a whole, but m(x, θ)−c(x) can still capture
(most of) the sign changes in p(x) − c(x). Unfortunately, the econometric
theory in Elliott and Lieli (2005) does not presently provide for practically
feasible specification tests for the latter property, and economic theory is
often not specific enough to identify the number of “crossing points”.

A possible strategy for parameterizing the model m(x, θ) is to use stan-
dard likelihood-based specification tests such as a likelihood ratio test or
Lagrange multiplier test; see Davidson and MacKinnon (1984) on how to
implement these tests in the context of a logit regression. If one finds a
parameterization that is not rejected, the model can be re-estimated by the
maximum utility method to obtain a decision rule.

Of course, one possible reason for failing to reject a given specification
is that it is the correct one. In this case, MU is asymptotically equivalent
to ML, but S(θ̂ML

n ) may well exceed S(θ̂MU
n ) with positive probability for

small n. The other, more relevant, possibility is that the model specification
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is incorrect, but it is still not rejected because of a lack of power. Still, the
sample may be large enough for some of the “MU-asymptotics” to apply, so
the MU estimator may well lead to a better (i.e. more profitable) decision
rule out of sample.

5 Application to German data

5.1 The data set and its limitations

We will now apply the econometric methodology described in Section 4 to
German banking data, publicly available at the following URL, maintained
by the Department of Statistics at the University of Munich:

http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit.html

The data set consists of observations on 1000 individuals, customers of a
German commercial bank, with outstanding loans in the early 1980’s.9 The
loans in question are relatively small consumer loans ranging from DM250 to
DM18000 in size.10 One of the variables in the data set is a binary indicator
of whether the loans were repaid or not (of the 1000 observed borrowers 300
defaulted). In addition, observations on a number of covariates are avail-
able, describing the terms of the loan contract as well as the credit history
and socio-economic status of the borrowers. The description of some of the
more important covariates is shown in Table 3 (for more details, see the
URL given above).

In our application we consider the problem of a profit-maximizing lender
described in Section 3.1. The relevant objective function is shown in Table 1
on p. 6. The case of the utility-maximizing lender is not essentially different,
either theoretically or in terms of implementation. We caution, however,
that the empirical exercise presented below is for purposes of illustration
only, for at least three reasons.

First, the lending framework introduced in Sections 2 and 3 is obviously
highly stylized; a “serious” application should be based on somewhat more
realistic assumptions. Nevertheless, if it follows from whatever assumptions

9The Department of Statistics at the University of Munich was not able to provide
more specific information about the period in which the data were collected. The data set
is already used in Fahrmeir and Hamerle (1984).

10Based on the average USD/DM exchange rate at the time, these loans range from
approx. $140 to $10,000 in 1980 US dollars. Exchange rate data were obtained from
Global Financial Data Inc., at http://www.globalfindata.com/.
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Table 3: Variables in the German banking data set

NAME UNITS DESCRIPTION

COMPLY binary The dependent variable. 1: in compliance
with terms; -1 (or 0): in violation of terms

SIZE DM The size of the loan (250-18424).
DURATION months Duration of the loan (4-72).
INSTLRATE categorical (1-4) Installment as a fraction of monthly dis-

posable income. 1: over 35% . . . 4: below
20%

PURPOSE categorical (0-10) Purpose of the loan. E.g. car, furniture,
appliances, education, vacation etc.

SAVINGS categorical (1-5) Balance of savings account or value of
stocks. 1: no savings . . . 5: over DM1000

CHECKING categorical (1-4) Checking account balance. 1: no account;
2: zero balance or debt; 3: between 0 and
DM200; 4: over DM200

SAVINGS categorical (1-5) Value of savings. 1: NA/no savings . . . 5:
over DM1000

ASSETS categorical (1-4) Most valuable fixed asset. 1: no assets . . .
4: house/land owner

HISTORY categorical (0-4) Credit history. Higher numbers indicate
better credit history.

COSIGNER categorical (1-3) 1: no cosigner; 2: co-applicant; 3: guaran-
tor

OLDLOANS categorical (1-4) No. of loans at this bank. 1: only current
one . . . 4: 6 or more

OTHLOANS categorical (1-3) Further running credits. 1: at other bank;
2: commercial credit; 3: none

AGE years Age. (19-75)
SEX–MS categorical (1-4) Sex and marital status. 1: male: divorced

or separated; 2: female: divorced, sepa-
rated or married; or single male; 3: male:
married or widowed; 4: single female (Very
cryptic definition.)

OCCUP categorical (1-4) Type of job. 1: unemployed . . . 4: highly
skilled/self employed

CURREMPL categorical (1-5) Length of current employment. 1: unem-
ployed . . . 5: 7 or more years

CURRADDR categorical (1-4) Number of years at current address. 1: less
than 1 . . . 4: over 7

HOUSING categorical (1-4) 1: rented 2: owner occupied 3: no cost to
borrower

PHONE categorical (1-2) 1: no phone line under customer’s name;
2: yes

FOREIGN binary Foreign worker. 1: yes; 2: no
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Table 4: German government bond yields in 1980

Maturity (months) 3 12 24 36 48 60
Yield (%, annual) 7.85 9.04 8.79 8.67 8.61 8.56

are made that the lender’s decision is binary and there are essentially two
possible states of the world, then a similar analysis applies.

Second, not all variables required by the theory in Section 2 are available
in the data set. In particular, it is not possible to recover the interest
rate r charged on a loan. We attempt to make up for this deficiency by
constructing a proxy for the interest rate. We take the government bond
closest in maturity to the loan and set the loan rate equal to the average
annual yield on the bond in 1980, plus a markup of 10 percentage points.11

(Thus, the interest rate is completely determined by the duration of the
loan.) Of course, this proxy is very crude and likely does not capture the
true variation in the interest rates charged on the loans recorded.

Finally, a full-fledged application may also need to address the reject
inference problem mentioned in Section 2. The essence of the problem is
that the available sample is conditioned on the selection rule that the bank
used when granting loans. New applicants cannot, in principle, be judged
on the basis of an approval rule estimated from samples so obtained.12 Nev-
ertheless, the approach illustrated here is appropriate for deciding whether
to extend a new loan to someone who had previously held one with the bank
(or a bank with similar policies).

5.2 Specifications

The first step is to decide on the vector X = (Ẍ, X̃) of covariates to be used
in the exercise. Since the main purpose of the exercise is illustration, we will
keep the dimension of X relatively low so that the numerical optimization
of Ŝn(θ) does not become excessively burdensome.

By the theoretical considerations in Section 2 and 3, the relevant prop-
erties of the loan contract are (1) the size L of the loan; (2) the duration D

11The bond yields used in the construction of the proxy loan rate were obtained from
Global Financial Data Inc., at http://www.globalfindata.com/; see Table 4. Given the
available data set, it is natural to take months as a unit of time. Interest rates must
then be measured as monthly rates. Given an annual interest rate y, the corresponding
monthly rate m is given by the formula m = (1 + y)1/12 − 1.

12Formally, new applicants are a “realization” from the entire distribution of (Y, X),
whereas observations in the sample are a realization from some truncated version of this
distribution.
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Table 5: The recovery rate as a function of the size of the loan

L (1000DM) 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-
qL 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Note: In case of a tie, the higher recovery rate is assigned.

of the loan; (3) the interest rate r of the loan. Given the limitations of the
data set, these characteristics will be measured by the following vector:

Ẍ = (SIZE, DURATION, INTPROXY)′,

where INTPROXY denotes the duration-based interest rate proxy described
in the previous section.

In the framework of Section 3, the vector (L,D, r), along with the
recovery rate q, completely determine the objective function of a profit-
maximizing lender and, consequently, the optimal cutoff for the probability
of compliance. For the reader’s convenience, we restate the formula for the
optimal cutoff:

c(L,D, r) =
[
1− d(fD, D)d(r, D)−1 − 1

(1 + fD)−Dq − 1

]−1

, (22)

where d(·, ·) is defined after equation (1).
The duration of the loan has a direct as well as indirect effect on the

cutoff value; the indirect effect is through the risk free rate fD and the
proxy for r, which is also constructed on the basis of D. The risk free rate
(the opportunity cost of the loan) is measured by the yield on the German
government bond with maturity closest to the duration D (see Table 4).
In order to further emphasize the role of a variable cutoff, we make the
assumption that the recovery rate q is a decreasing function of the size of
the loan L, as shown in Table 5. In this case the size of the loan will also
have an (indirect) effect on the value of the cutoff.

In contrast to the components of Ẍ, the economic theory presented in the
paper does not directly say which personal characteristics of the borrower
should be included in X̃. In order to facilitate the specification of X̃, we
first estimated a simple logit regression of the default indicator on all the
covariates in Tables 3. The results are shown in Table 6. We then selected
covariates that appeared to have a significant statistical relationship with
the probability of compliance/default. In particular, we choose

X̃ = (CONSTANT, HISTORY, CHECKING)′.
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Table 6: A logit regression of COMPLY on all covariates using the full
sample

Name Coeffs Std Error Z-stat Prob

C -4.146285 1.004436 -4.127973 0.0000
SIZE -9.31E-05 4.01E-05 -2.319087 0.0204
DURATION -0.024517 0.008727 -2.809179 0.0050
INSTLRATE -0.294051 0.082533 -3.562813 0.0004
PURPOSE 0.032010 0.030124 1.062613 0.2880
CHECKING 0.581281 0.070012 8.302637 0.0000
SAVINGS 0.237679 0.058205 4.083512 0.0000
ASSETS -0.183424 0.090923 -2.017344 0.0437
HISTORY 0.384779 0.087365 4.404246 0.0000
COSIGNER 0.344954 0.177768 1.940477 0.0523
OLDLOANS -0.253112 0.160457 -1.577440 0.1147
OTHLOANS 0.246270 0.110990 2.218840 0.0265
AGE 0.008420 0.008156 1.032306 0.3019
SEX–MS 0.247071 0.114684 2.154353 0.0312
OCCUP 0.025686 0.136390 0.188325 0.8506
CURREMPL 0.147943 0.070926 2.085871 0.0370
CURRADDR -0.015305 0.077392 -0.197761 0.8432
HOUSING 0.284143 0.167200 1.699421 0.0892
PHONE 0.293644 0.187770 1.563847 0.1179
FOREIGN 1.155757 0.609669 1.895712 0.0580

A number of other variables appear to be relevant as well; most of these were
left out for the sake of parsimony. Some variables were, however, excluded
for specific reasons. For example, we dropped INSTLRATE because it enters
the logit regression with a counterintuitive sign or SEX–MS because of its
cryptic definition. Furthermore, as described in Section 3.3, U.S. law would
prohibit the lender from using covariates such as SEX–MS and FOREIGN
in modeling p(x).

Finally, one must specify a model for p(x). To keep the computational
burden to a minimum and to keep the example simple, we chose a linear
specification:

m(x, θ) = x′θ.

That is, the lender’s decision rule is constrained to be of the form sgn[x′θ−
c(x)]. As far as decisions are concerned, this specification is equivalent to a
logit or probit model with a linear index, since the latter is just a monotone
transformation of the former.
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5.3 Estimation results

As discussed in Section 4.2, the lender can obtain an asymptotically optimal
approval rule—conditional on the linear specification for m(x, θ)—by solving

max
θ

Ŝn(θ) = max
θ

n−1
n∑

i=1

b(Xi)[Yi − 2c(Xi) + 1]sgn[X ′
iθ − c(Xi)]. (23)

For a fixed realization of the sample {Yi, Xi}n
i=1, the function Ŝn(θ) is a

step function of the parameter vector θ with at most 2n distinct values.13

Because of its “coarse” nature, gradient-based algorithms cannot be used to
maximize Ŝn(θ). Instead, a search-based algorithm must be used. Simulated
annealing has been shown to find the global optimum of functions with a
range of unpleasant properties; see Corana et al. (1987) and Goffe et al.
(1994) for description. The choice of the “cooling schedule” is important for
obtaining good convergence, and there are a variety of other computational
nuances that can help the method more easily find the global optimum.

We will now describe the exercise designed to evaluate the performance
of the maximum utility (MU) method using the specifications described in
Sections 5.1 and 5.2. Formally, the decision rule under consideration is given
by

sgn[X ′
iθ̂

MU
n − c(Ẍi)],

where θ̂MU
n solves (23). The maximum utility method is compared against

two benchmarks: (i) a logit model based on a linear index estimated by
maximum likelihood and combined with a constant cutoff; (ii) the same
logit model combined with the optimal cutoff function c(ẍ) derived from the
decision maker’s problem. Formally, the two benchmark decision rules are
given by

(i) sgn[Λ(X ′
iθ̂

ML
n )− c] and (ii) sgn[Λ(X ′

iθ̂
ML
n )− c(Ẍi)],

where Λ denotes the c.d.f. of the logistic distribution. In decision rule (i)
the constant cutoff c is chosen so as to produce roughly the same in-sample
acceptance rate as does decision rule (ii).

The available sample of 1000 observations is divided into two parts: a
randomly chosen subset consisting of 600 observations is used to estimate

13The function Ŝn(θ) is a sum of n terms, where only the sign of each term is affected
by the value of θ. There are 2n different ways one can conceivably assign signs to these n
terms and, therefore, the sum of the signed terms has at most 2n different values.
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the decision rules in question, while the remaining 400 observations are held
out for out-of-sample evaluation. Given an estimated decision rule d(X, θ̂),
we calculate the net present value associated with each observation, both in
sample and out of sample:

NPVi = πA,1(Ẍi)1{d(Xi,θ̂)=1,Yi=1} + πA,−1(Ẍi)1{d(Xi,θ̂)=1,Yi=−1},

where 1{·} denotes the indicator function. (Recall that πR,1 = πR,−1 = 0.)
Next, four averages (expected values) are calculated: (1) in sample average
NPV per applicant; (2) in-sample average NPV per approved application;
(3) out-of-sample average NPV per applicant; (4) out-of-sample average
NPV per approved application. In addition, for each decision rule we report
in- and out-of-sample approval and rejection rates, and the percentage of
“correct” decisions, broken down as the percentage of good loans among
approved applications, and the percentage of bad loans among rejected ap-
plications.

It turns out that the results of the calculations described above are sen-
sitive to the particular subsamples chosen for estimation vs. evaluation.
Therefore, the entire exercise is repeated 250 times, each time with a dif-
ferent randomly chosen subsample (of size 600) for estimation (and the re-
maining observations for evaluation). In Table 7 we report the averages of
the statistics described above over the 250 repetitions.

The theoretical prediction that, conditional on model specification, the
MU estimator leads to higher average profits is borne out by the results
shown in Table 7. This is, of course, very much expected in the in-sample
exercise: unless the numerical procedure used to maximize the empirical
score breaks down, the MU-based decision rule should, by construction, do
no worse in-sample than either of the logit-based decision rules. In par-
ticular, the MU-based decision rule is expected to outperform logit with
a constant cutoff for two reasons: first, because the optimal cutoff value
varies from contract to contract; and, second, because maximum likelihood
estimation might be inconsistent with the goal of profit maximization.

Indeed, the per applicant in-sample average NPV associated with the
MU procedure in Table 7 is DM 35.19, which is almost four times as large
as the number corresponding to logit with a constant cutoff.14 The logit
model with a variable cutoff has a per applicant in-sample average NPV of

14At first glance, an average NPV of DM 35.19 may seem rather small. To interpret
this number correctly, one must keep three things in mind: (1) This is a per applicant (as
opposed to per loan) average and the rejected applicants carry a value of zero. Per loan
averages are higher. (2) This number measures economic profits, i.e. a value of zero would
mean that the lender did just as well as if he had invested in risk-free government bonds.
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Table 7: The performance of decision rules based on MU vs ML
estimation. Estimation samples=600 obs.; evaluation samples=400 obs.

Reported figures are AVERAGES over 250 repetitions.

Method Cutoff A G|A R B|R ENPV ENPV
per appl. per loan

IN SAMPLE (DM) (DM)

ML, logit 0.835 0.362 0.901 0.638 0.415 9.01 24.64
ML, logit c(ẍ) 0.367 0.898 0.633 0.414 13.11 35.67
MU, linear c(ẍ) 0.424 0.891 0.576 0.440 35.19 82.87

OUT OF SAMPLE (DM) (DM)

ML, logit 0.835 0.361 0.892 0.639 0.409 -3.64 -7.28
ML, logit c(ẍ) 0.367 0.889 0.633 0.411 4.23 14.64
MU, linear c(ẍ) 0.425 0.862 0.575 0.421 9.43 22.49

Note: A: acceptance rate; G|A: proportion of good loans among accepted; R: rejection

rate; B|R: proportion of bad loans among rejected; ENPV per appl.: expected (average)

net present value per applicant in DMs; ENPV per loan: expected (average) net present

value per loan approved in DMs.

DM 13.11, which is an improvement over the logit model with a constant
cutoff, but is still less than 40 percent of the MU value. The comparison of
the two logit models suggests that even if estimation is undertaken by ML,
a profit-maximizing variable cutoff is worth using.

Favorable in-sample figures notwithstanding, the real test of the MU
method is in its out-of-sample performance. Not surprisingly, in the out-of-
sample exercise all decision rules do worse on an absolute scale. Neverthe-
less, when compared with each other, their relative performance is roughly
unchanged. The per applicant out of sample average NPV associated with
the MU-based decision rule is DM 9.43, which is still more than twice the
value of logit with a variable cutoff (DM 4.23). Logit with a constant cutoff
produces a loss of DM 3.64 per applicant; the relative performance of this
method, when compared with the other two, is actually worse out-of-sample
than in-sample.

In sum, the MU-based decision rule apparently continues to outperform
the ML/logit-based decision rules out of sample. This suggests that, given

(3) There is implicit averaging over the duration and size of the loans. A DM 35.19 excess
return on a DM 200 loan over four months would constitute a very good investment.
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the model specifications, the maximum utility estimator succeeds in captur-
ing relevant features of the theoretically optimal decision rule sgn[p(x)−c(ẍ)]
that the maximum likelihood estimator does not.

6 Summary and conclusions

In this paper we have shown how to construct a theoretically optimal loan
approval rule when the lending process is regarded as a binary decision/binary
outcome problem, and described a method, derived directly from the eco-
nomic objective of the lender, that can be used to estimate it.

We have examined the impact of legal regulations on the lender’s de-
cision problem. In addition to taking into consideration the prohibition of
disparate treatment, we have also shown how a simple modification of the
lender’s objective function can reduce or eliminate the unintended disparate
impact of the proposed approval rules.

The analysis implies that it is in general optimal to use a context-specific
cutoff for credit scores or, equivalently, the conditional probability of com-
pliance/default. The optimal cutoff can vary from individual to individual,
because the relative cost of the two types of errors the decision maker can
make in this simple context may not be the same for all individuals or loan
contracts.

The proposed estimator ensures that the credit scoring model is fit well
at those points where the conditional probability of compliance intersects
the optimal cutoff. If a given model is estimated using this method, the
resulting decision rule will generally lead to more profitable lending decisions
than if the model were estimated by a traditional method such as maximum
likelihood. This property was demonstrated using real world data and the
effect held up out of sample. Although the maximization of the objective
function used in the estimation requires a tedious numerical procedure, the
method is feasible in practice.
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