
FROM DISTRIBUTION-FREENESS TO SEMIPARAMETRIC

EFFICIENCY: SIXTY(-THREE) YEARS OF RANK-BASED INFERENCE

Marc Hallin

ECARES – Université Libre de Bruxelles
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HAPPY BIRTHDAY TO YOU

MR WILCOXON!

1945-2005 : 60th anniversary of

Wilcoxon (1945). Individual Comparisons by Ranking Methods,

Biometrics Bulletin 1, 80-83
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Wilcoxon 1945

• is only 3 pages, one line and 5 references long, with two pages

developing numerical applications

• introduces Wilcoxon’s rank sum and signed rank tests

• as rank-based alternatives to the traditional one- and

two-sample Student tests for location

... and can be considered as the starting point of the modern

history of rank-based inference
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before Wilcoxon ...

Of course, there had been rank-based methods before 1945,

some of which had a decisive influence upon Wilcoxon:
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before Wilcoxon ...

• John Arbuthnot in 1710 has proposed the first sign test, which is also, probably

the first hypothesis testing procedure ever

• Spearman as early as 1904 had introduced what is known as the Spearman

rank correlation coefficient ρ

• Hotelling and Pabst (1936), revisiting Spearman’s idea, had established the

asymptotic normality of ρ (they even provide what we would call its ARE with

respect to “parametric correlation” under the normal), whereas

• Friedman, in an ingenious 1937 work had shown how the comparison of several

rankings (one in each block) allowed for testing the absence of treatment in

two-way analysis of variance

• this line of research was pursued further by Kendall (1938), with his coefficient of

correlation τ

• Wald and Wolfowitz (1943) extended the idea to a serial (time-series) context,

also providing conditions for asymptotic normality, and
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... and Stigler’s law of eponymy ...

moreover, Stigler (1980)’s unyielding Law of Eponymy once again

is strikingly confirmed :

• Spearman’s ρ apparently is already present in Binet and

Henry (1898)

• Kendall’s tau similarly is a rediscovery of Lipps (1906), and it

seems that

• Wilcoxon’s two-sample test itself could have been found in

Deuchler (1914) ...

... but these early contributions were largely ignored and had

not the slightest impact on subsequent developments ...
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...

• all results previous to Wilcoxon however are dealing, essentially,

with comparing two or several rankings (the so-called m-rankings

problem; cfr Spearman or Kendall)

which, albeit almost by accident also allows for testing against

correlation, hence against autocorrelation (Wald and Wolfowitz),

or against treatment effect in two-way ANOVA (Friedman)

• it is quite significant, in that respect, that the ANOVA(2)

problem was solved well before the much simpler ANOVA(1) or

two-sample location ones, and that autocorrelation problems

before the location ones ...
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... the storming of the Gaussian Bastille?

Wilcoxon 1945 is breaking with that spirit

• is not comparing two or several rankings anymore, as it only

involves one global ranking

• addresses the most basic problems of classical statistical

inference: one- and two-sample testing of location

• challenges no less than the most sacred cows of Gaussian

inference: the one- and two-sample t tests

• in this respect, Wilcoxon (1945) can be considered as the

Bastille Day of the nonparametric Revolution!
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... after Wilcoxon ...

Mathematically, Wilcoxon’s contribution was not particularly deep; and he

certainly was not aware of having stormed any Bastille, but he clearly triggered

an explosive development of nonparametrics:

• 58 titles in Scheffé (1943)’s early review of the subject (Wilcoxon - 2)

• 999 references in Savage’s 1953 bibliography (Wilcoxon + 8)

• 3,000 references in the 1962 update (Wilcoxon + 17)

• countless ones [scholar.Google provides no less than 435,000 entries for “ranks”]

nowadays (Wilcoxon + 61)

The objective of this talk is a fast and unavoidably biased guided tour of that

development :
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3. Ranks: reconciling the irreconcilable?
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1.1 Ranks

• Observations: X := (X1, X2, . . . , Xn)

• Ordered observations (order statistic):

X( ) := Xmin := X(1) ≤ X(2),≤ . . . ≤ X(n) =: Xmax

• Ranks: Ri such that X(Ri) = Xi

or Ri := #{j | Xj ≤ Xi}

• Vector of ranks: R
(n) := (R1, R2, . . . , Rn)

provided that X is continuous, with probability one, a (random)

permutation of (1, 2, . . . , n)
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If moreover the Xi ’s are i.i.d., with some unspecified density over

R: then, the distribution of R
(n) is uniform over the n!

permutations of (1, ..., n)

• Advantage of R
(n) over X

(n): unlike X
(n), the distribution of

which is unknown, the distribution of R
(n) is known ,

allowing for exact inference, robust to misspecification of f

(e.g., Gaussian assumptions)

• Disadvantage of R
(n) with respect to X

(n): loss of

information = loss of efficiency! (?)

• How large is that loss of information?

• The price for robustness? Conflicting objectives: robustness

and efficiency
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the two-sample Wilcoxon test

a closer look at, e.g., Wilcoxon’s two sample (rank sum) test

• null hypothesis H0: X1, . . . , Xm, Xm+1, . . . , Xn iid, with

unspecified density

• alternative H1: X1, . . . , Xm, Xm+1 − θ, . . . , Xn − θ iid,

unspecified density, for some θ > 0

• test statistic: S
(n)
W :=

∑n
i=m+1 Ri distribution-free under H0

• Reject H0 for “large values” of S
(n)
W

• unlike the Student test, does not require Gaussian f
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A golden age?

Wilcoxon (1945) soon was followed by an explosion of

rank-based methods :

• van der Waerden (1952, 1953); Fraser (1957): Location • Mood (1950); Brown

and Mood (1950); Kruskal (1951); Kruskal and Wallis (1952): One-way analysis of

variance • Mood (1950); Brown and Mood (1950); Benard and van Elteren (1953);

Terpstra (1955-56) : Random blocks • Hoeffding (1950), Terry (1952): Regression •

Savage (1956); Ansari and Bradley (1960); Capon (1961); Klotz (1962): Scale •

Wald and Wolfowitz (1944); Hoeffding (1948, 1951); Noether (1949); Dwass (1953,

1955); Fraser (1956); Motoo (1957), and many others on asymptotic normality • ...

These methods were aiming mainly at robustness against

departures of the Gaussian assumption and computational

simplicity—they were heuristic, ad hoc, and piecemeal

procedures, not expected to be particularly powerful
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Pitman and Noether, ...

... empirical evidence of the power of all these methods soon

emerged from practice, and, much to general amazement,

could be confirmed by the newly introduced concept of

Asymptotic Relative Efficiency (ARE) introduced by Pitman

(1948, unpublished) and popularized by Noether (1950, 1955) ...
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Hodges-Lehmann
... but the amazement culminated in 1956 (Wilcoxon + 11), with

a most striking result by Hodges and Lehmann

Hodges and Lehmann (1956). The efficiency of some

nonparametric competitors of the t-test, Annals of

Mathematical Statistics 27, 324-335
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Hodges-Lehmann (continued)

inffAREf (Wilcoxon / Student) = .864

In the worst case, Wilcoxon thus only requires 13.6% more

observations than Student in order to achieve comparable

performances! But,

supf AREf (Wilcoxon / Student) = ∞,

and the benefits of unrestricted validity are invaluable ...
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van der Waerden tests

Since the Normal distribution is playing

such a central role, the idea of

considering, for the same location

problem, a statistic of the form

S
(n)
vdW :=

n∑

i=m+1

Φ−1

(
Ri

n + 1

)
,

where u 7→ Φ−1(u) denotes the standard

normal quantile function, was proposed

by several authors among which the eminent Dutch algebraist

B.L. van der Waerden (1952) (for simplicity, we call them van der

Waerden statistics)
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van der Waerden

indeed,

• S
(n)
vdW is still distribution-free (being a function of ranks)

• if the actual underlying density is normal, then

S
(n)
vdW ≈ Student statistic

• hence, at the normal, same performances (asymptotically)

as Student, which is optimal at the Gaussian

Then, even more surprising perhaps than Hodges and Lehmann,

...
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Chernoff-Savage

Chernoff, H., and I.R. Savage (1958). Asymptotic normality and

efficiency of certain nonparametric tests, Annals of

Mathematical Statistics 29, 972-994.

inff AREf (van der Waerden / Student) = 1.00

an infimum which is attained at Gaussian f only!! Hence,

• van der Waerden is always strictly better than Student,

except at the normal where they are equally good ...

• ... but van der Waerden is also uniformly valid, which is not

the case of Student
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• ... should put Student and much of everyday practice

out of business!

• ... above all, raises several very fundamental questions ...
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questions (in the 1960’s)

• WHAT IS IT THAT MAKES RANKS THAT EFFICIENT?

• ARE RANKS THE ONLY STATISTICAL “OBJECTS” ENJOYING SUCH

ATTRACTIVE DISTRIBUTION-FREENESS/EFFICIENCY PROPERTIES?

answers (today, after a long history)

• maximal invariance

• ... and its relation to semiparametric efficiency

Too early (in the 1960’s) for the idea of semiparametric efficiency;

but the idea of invariance and invariant tests is present from the

beginning (e.g. in Hotelling and Pabst 1936)
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1.3. Group invariance

Assume that X := (X1, X2, . . . , Xn) are iid, with unspecified

nonvanishing density f in the class F of all nonvanishing densities

over R (independent white noise) . Let P(n) =
{

P
(n)
f | f ∈ F

}
.

Next consider the group (acting on R
n) of transformations

G = {Gh | h monotone ↑, continuous, h(±∞) = ±∞}

mapping (x1, . . . , xn) ∈ R onto Gh(x1, . . . , xn) :=(h(x1), . . . , h(xn))∈R

Then,

• G is a generating group for P(n), in the sense that for all P
(n)
f1

,

P
(n)
f2

in P(n), there exists Gh ∈ G such that (X1, . . . , Xn) ∼ P
(n)
f1

iff Gh(X1, . . . , Xn) ∼ P
(n)
f2

• the vector of ranks R
(n) is maximal invariant for G, that is,

T (x1, . . . , xn) = T (Gh(x1, . . . , xn)) for all Gh ∈ G iff T is

R
(n)-measurable.
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Other “ranks”

• X := (X1, X2, . . . , Xn) iid, with unspecified nonvanishing

symmetric (w. r. t. 0) density f in the class F+ of all

nonvanishing densities over R (independent symmetric

white noise). Let P(n) =
{

P
(n)
f | f ∈ F+

}
: maximal invariant

= the signs and the ranks of absolute values (“signed

ranks”)

• X := (X1, X2, . . . , Xn) iid, with unspecified nonvanishing

median-centered density f in the class F0 of all

nonvanishing zero-median densities over R (independent

median-centered white noise). Let P(n) =
{

P
(n)
f | f ∈ F0

}
:

maximal invariant = the signs and the ranks (Hallin,

Vermandele, and Werker, Annals of Statistics 2006)
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Other “ranks”

• X := (X1, X2, . . . , Xn) independent, with unspecified

nonvanishing median-centered densities f1, . . . , fn in the

class F0 of all nonvanishing zero-median densities over R

(independent, heterogeneous median-centered white

noise). Let P(n) =
{

P
(n)
f | f ∈ F0

}
: maximal invariant = the

signs
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(Elliptical models)

• X := (X1, X2, . . . , Xn) iid, with elliptical density

1

σk(detV)1/2
f1

(
1

σ

√
(x −µµµ)′V−1(x −µµµ)

)
.

over R
k (independent elliptical white noise with location µµµ,

shape V, scale σ, and standardized radial density f1).

Write X ∼ P
(n)
θθθ;f1

, θθθ = (µµµ, σ,V) and P(n) =
{

P
(n)
θθθ;f1

| f1 ∈ F+
}

,

where F+ is the class of all standardized nonvanishing

densities over R
+:

maximal invariant = the unit vectors

Ui := V
−1/2(Xi −µµµ) / ‖(Xi −µµµ)′V−1(Xi −µµµ)‖ and the ranks

Ri of the “distances” ‖(Xi −µµµ)′V−1(Xi −µµµ)‖

Multivariate signs Ui and ranks Ri (Hallin and Paindaveine,

Annals of Statistics 2002)
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(Independent Component Analysis)

• X := (X1, X2, . . . , Xn) iid, where

Xi = MZi Zi1, . . . Zik independent,

with median 0 and otherwise unspecified distinct densities:

Generating group: marginal continuous order- and

origin-preserving transformations

Maximal invariant = the marginal ranks and signs of the Zi’s

(Hallin, Oja, and Paindaveine, 2006)
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It is easy to show that maximal invariants (hence, invariants) are

distribution-free

As we shall see, they also have a strong connection to

(semi-parametric) efficiency

...

... what do we mean exactly with efficiency and semiparametric

efficiency?

Let us start with (parametric) efficiency ...
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2.1. Parametric optimality

Throughout, we consider semiparametric models, namely,

models under which the distribution of some observation

X := (X1, X2, . . . , Xn) belongs to a family of the form

P(n) =
{

P
(n)
f ;θθθ | θθθ ∈ ΘΘΘ, f ∈ F

}

where θθθ ∈ ΘΘΘ ⊆ R
m is some m-dimensional parameter of interest,

and f ∈ F is a nonparametric (infinite-dimensional) nuisance.

Assume that

• the fixed-f parametric submodels P
(n)
f :=

{
P

(n)
f ;θθθ | θθθ ∈ ΘΘΘ

}
are

LAN (see below)

• the fixed-θθθ nonparametric submodels

P
(n)
θθθ :=

{
P

(n)
f ;θθθ | f ∈ F

}
are generated by some group G

(n)
θθθ

with maximal invariant R
(n)(θθθ)
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LAN w.r.t. θθθ (at given f)

Some mathematics ...

Lucien Le Cam’s LAN

[“It is easy once you know ...”]

Under P
(n)
θθθ;f , as n → ∞,

Λ
(n)

θθθ+n−1/2τττ/θθθ;f
:= log


dP

(n)

θθθ+n−1/2τττ ;f

dP
(n)
θθθ;f


 = τττ ′∆∆∆

(n)
θθθ;f −

1

2
τττ ′ΓΓΓθθθ;fτττ + oP(1)

∆∆∆
(n)
θθθ;f

L
−→ N (0,ΓΓΓθθθ;f )

• the random vector ∆∆∆
(n)
θθθ;f is called the central sequence

(localized at θθθ)

• the deterministic matrix ΓΓΓθθθ;f is called the information matrix

(at θθθ)
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parametric efficiency (at given f)

Skipping technicalities,

• under P
(n)

θθθ+n−1/2τττ ;f
, τττ ∈ R

m, the central sequence

∆∆∆
(n)
θθθ;f

is asymptotically N
(
ΓΓΓθθθ;fτττ ,ΓΓΓθθθ;f

)

• parametric efficiency (local, at θθθ, and asymptotic) in the initial (fixed-f)

model has the same characteristics as parametric efficiency (exact) in the

Gaussian shift model ∆∆∆ ∼ N
(
ΓΓΓθθθ;fτττ ,ΓΓΓθθθ;f

)
, τττ ∈ R

m

• that is, for instance, optimal α-level tests of θθθ = θθθ0 achieving at

P
(n)

θθθ0+n−1/2τττ ;f
power 1 − F

m;τττ ′ΓΓΓ−1
θθθ0;f

τττ
(χ2

m;1−α), where Fm;λ stands for the

noncentral chi square distribution function with m degrees of freedom

and noncentrality parameter λ

• or optimal estimators θ̂θθ
(n)

of θθθ such that

n1/2(θ̂θθ
(n)

− θθθ)
L
→ ΓΓΓ−1

θθθ;f
∆∆∆ ∼ N

(
0,ΓΓΓ−1

θθθ;f

)
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parametric efficiency (at given f)

• Moreover, optimality is achieved by treating the central

sequence ∆∆∆
(n)
θθθ;f exactly as one would the observation ∆∆∆ in

the limit Gaussian shift model

• that is, for instance, by means of optimal tests statistics for

θθθ = θθθ0 of the form QF := (∆∆∆
(n)
θθθ0;f

)′ΓΓΓ−1
θθθ0;f

∆∆∆
(n)
θθθ0;f

≈ χ2
m

• or optimal estimators θ̂θθ
(n)

(of the one-step form) such that

n1/2(θ̂θθ
(n)

− θθθ) = ΓΓΓ−1
θθθ;f∆∆∆(θθθ; f) + oP(1) ≈ N

(
0,ΓΓΓ−1

θθθ;f

)
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parametric efficiency (at given f and θθθ) is characterized by the

Gaussian shift model

∆∆∆ ∼ N (ΓΓΓθθθ;fτττ ,ΓΓΓθθθ;f ) , τττ ∈ R
m

hence by the information matrix ΓΓΓθθθ;f
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then came Jaroslav Hájek ...

It was high time, in the mid-sixties, for some unification of what

remained a scattered and unstructured collection of heuristic

methods. An invaluable step in that direction was accomplished

by a Czech mathematician: Jaroslav Hájek
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Hájek projections

Hájek mainly considers linear models (regression models).

Although he does not state it under that form (as the Le Cam

theory at that time was not fully available), what he proposes is

the construction of rank-based central sequences resulting from

projecting the “parametric” ∆∆∆
(n)
θθθ;f (associated with some

reference density f) onto the ranks R
(n)(θθθ) of residuals:

∆∆∆
˜

(n)
θθθ;f := E

[
∆∆∆

(n)
θθθ;f | R(n)(θθθ)

]

and, under very general conditions, he actually shows (a

corollary to his asymptotic representation theorem) that, under

P
(n)
θθθ;f , in the linear model with i.i.d. errors,

∆∆∆
˜

(n)
θθθ;f = ∆∆∆

(n)
θθθ;f + oP(1)

[this, however, is a modern, ex-post account of Hájek’s

approach]
FROM DISTRIBUTION-FREENESS TO SEMIPARAMETRIC EFFICIENCY: SIXTY(-THREE) YEARS OF RANK-BASED INFERENCE – p.42/75



the Hájek era (1967-1985)

• Hájek’s ideas were summarized in a remarkable 1967

monograph : Hájek and Šidák (1967), Theory of Rank Tests

• these ideas (after Hájek’s untimely death) were

systematized in several subsequent monographs, of which

Puri and Sen (1985), Nonparametric Methods in General

Linear Models is perhaps the most representative

FROM DISTRIBUTION-FREENESS TO SEMIPARAMETRIC EFFICIENCY: SIXTY(-THREE) YEARS OF RANK-BASED INFERENCE – p.43/75



the twilight of ranks?

In 1985, the theory of rank-based inference seemed pretty

complete and, everybody felt that, due to its permutational

nature, it was inherently limited to linear models with

independent errors

Under its “conditioning of central sequences” form, however, the

Hájek methodology potentially applies in the much more general

context of LAN models
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2.2. Hájek projections

2.3. Ranks in time series models

2.4. Parametric efficiency in the presence of nuisance

2.5. Semiparametric efficiency

3. Ranks: reconciling the irreconcilable?

4. Conclusions

FROM DISTRIBUTION-FREENESS TO SEMIPARAMETRIC EFFICIENCY: SIXTY(-THREE) YEARS OF RANK-BASED INFERENCE – p.45/75



ranks and time series: a catalytic effect

• although attention had been focused on applications of

ranks in linear models, some of the earliest rank-based

methods actually were time-series methods: tests based

on runs, the turning point test, Wald and Wolfowitz (1943) ...

actually are dealing with problems of serial dependence

• taking advantage of recent LAN results for ARMA models

and extending to a serial context the Hájek projection

idea, Hallin, Ingenbleek and Puri (Annals of Statistics 1985,

1988) obtain parametrically efficient rank-based methods

for ARMA time series based on a new class of linear serial

rank statistics

• with a new asymptotic representation theorem involving an

additional term
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the irruption of nonadaptivity

• in the ARMA case, that additional term disappears, and

∆∆∆
˜

(n)
θθθ;f = ∆∆∆

(n)
θθθ;f + oP(1) as in linear models with iid errors: a

rank-based reconstruction of ∆∆∆
(n)
θθθ;f is thus possible, and ranks

achieve parametric efficiency

• later on, exploiting a similar methodology, Benghabrit and

Hallin (1992, 1996), and Akharif and Hallin (Annals of

Statistics 2003) derive some rank-based methods for

problems involving nonlinear time series (bilinear, random

coefficient AR, ... )

• it appears however that, contrary to the case of linear

models with independent errors, and contrary to ARMA

models, the additional term in the asymptotic

representation result does not disappear: a rank-based

reconstruction of ∆∆∆
(n)
θθθ;f is thus impossible, and ranks do not

achieve parametric efficiency anymore
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a “nasty, ugly little fact”?

Why is that so? how does that come ? is this “the tragedy of a

beautiful theory, killed by a nasty, ugly little fact a”?

Not quite so! Actually, that nasty additional term is nothing but

the consequence of non-adaptivity in the semiparametric sense

...

a Thomas H. Huxley, cited in Stigler (2006), “The tragic story

of maximum likelihood”
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2.2. Parametric efficiency in the presence of a nuisance: a parenthesis

Assume that θθθ = (θ1, θ2), and that inference is to be made about θ1, while θ2 is a

nuisance; the central sequence ∆∆∆
(n)
θθθ;f

similarly decomposes into (∆
(n)
θθθ;f ;1

, ∆
(n)
θθθ;f ;2

),

and the information matrix into

ΓΓΓθθθ;f =

(
Γθθθ;f ;11 Γθθθ;f ;12
Γθθθ;f ;12 Γθθθ;f ;22

)

Referring to the limit Gaussian shift, it is easy to understand that such inference on

θ1 should be based on

∆
(n)
θθθ;f ;1

− Γθθθ;f ;12Γ−1
θθθ;f ;22

∆
(n)
θθθ;f ;2

,

the residual of the regression of ∆
(n)
θθθ;f ;1

on ∆
(n)
θθθ;f ;2

in the covariance ΓΓΓθθθ;f , or the

ΓΓΓθθθ;f -projection of the θ1-central sequence orthogonal to the space of the

θ2-central sequence
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• indeed, a local perturbation n−1/2τ2 of θ2 induces (via Le

Cam’s Third Lemma) on the asymptotic distribution of

(∆
(n)
θθθ;f ;1, ∆

(n)
θθθ;f ;2) a shift (ΓΓΓθθθ;f ;12 τ2,ΓΓΓθθθ;f ;22 τ2);

the resulting shift for the residual ∆
(n)
θθθ;f ;1 −ΓΓΓθθθ;f ;12ΓΓΓ

−1
θθθ;f ;22∆

(n)
θθθ;f ;2, is

thus ΓΓΓθθθ;f ;12 τ2 −ΓΓΓθθθ;f ;12ΓΓΓ
−1
θθθ;f ;22ΓΓΓθθθ;f ;22 τ2 = 0 :

• this residual therefore is insensitive to local perturbations

of θ2
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parametric efficiency (at given f and θθθ) for θ1 when θ2 is a

nuisance is characterized by the Gaussian shift model

∆∆∆ ∼ N
((

Γθθθ;f ;11 − Γθθθ;f ;12Γ
−1
θθθ;f ;22Γ

′
θθθ;f ;12

)
τ, Γθθθ;f ;11 − Γθθθ;f ;12Γ

−1
θθθ;f ;22Γ

′
θθθ;f ;12

)
, τ ∈ R

hence by the information matrix Γθθθ;f ;11 − Γθθθ;f ;12Γ
−1
θθθ;f ;22Γ

′
θθθ;f ;12
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2.5. Semiparametric efficiency

Previous conclusions on parametric efficiency are valid under

correctly specified density f only!!

In practice, f is the nuisance

• this nonparametric nuisance is treated in the same way as the

parametric nuisance θ2: projection of the central sequence

along the space generated by the shifts induced by the

variations of densities in the “vicinity” of f : the “tangent space”,

characterized by the “least favorable” parametric perturbation

of f

• Classical reference: Bickel, Klaassen, Ritov, and Wellner (1993)
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2.5. Semiparametric efficiency

• this yields a projected central sequence , or

“semiparametrically efficient (at f) central sequence” ∆∆∆
(n)∗
θθθ;f , with

(asymptotic) covariance ΓΓΓ∗
θθθ;f ≤ ΓΓΓθθθ;f—the “semiparametrically

efficient (at f) information matrix”

• whenever ΓΓΓ∗
θθθ;f = ΓΓΓθθθ;f : the model is “adaptive” at f

• in general, ΓΓΓ∗
θθθ;f < ΓΓΓθθθ;f : the cost of not knowing the “true”

density, at f , is strictly positive
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semiparametric efficiency (at given f and θθθ) is characterized by

the Gaussian shift model

∆∆∆∗ ∼ N
(
ΓΓΓ∗

θθθ;fτττ ,ΓΓΓ∗
θθθ;f

)
, τ ∈ R

m

hence by the semiparametrically efficient (at f) information ma-

trix ΓΓΓ∗
θθθ;f
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tangent spaces

• projections along tangent spaces typically are not easily

computed

• ... more serious: the semiparametrically efficient (at f)

central sequence ∆∆∆
(n)∗
θθθ;f is asymptotically N

(
0,ΓΓΓ∗

θθθ;f

)
under

density f only [indeed the projection along the tangent

space at f depends on f ]

hence, inference based on ∆∆∆
(n)∗
θθθ;f is valid under density f only
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... the semiparametrically efficient (at f) central sequence ∆∆∆
(n)∗
θθθ;f

thus looks like a useless tool ...

... unless an estimated density f̂ (n)can be obtained such that

∆∆∆
(n)∗

θθθ;f̂(n)
−∆∆∆

(n)∗
θθθ;f = oP(1) at “all” f :

kernel density estimators, additional regularity assumptions, slow

convergence rates, sample splitting and other niceties ...
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3.1 From tangent space to Hájek projections

The statistical principle behind Hájek’s approach is invariance.

The Invariance Principlestipulates that “when a statistical

problem is invariant under the action of some group of

transformations, one should restrict to invariant statistical

procedures”

it has been assumed that the fixed-θθθ submodels of our

semiparametric models are invariant w.r.t. groups Gθθθ, with

maximal invariant R
(n)(θθθ) (typically, the ranks of some θθθ-residuals)

the invariant statistics (in those models) thus are the functions of

R
(n)(θθθ)
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from tangent space to Hájek projections

a natural idea thus consists in considering the invariant statistics

which are closest to the central sequences by projecting ∆∆∆
(n)
θθθ;f

onto the σ-field generated by R
(n)(θθθ), yielding (up to oP(1)’s)

∆∆∆
˜θθθ;f := E

[
∆∆∆

(n)
θθθ;f | R(n)(θθθ)

]

... which is what Hájek actually is doing (without telling—the

concept of a central sequence was not available to him)
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• being R
(n)(θθθ)-measurable, ∆∆∆

˜
(n)
θθθ;f is a distribution-free

statistic (in the the fixed-θθθ submodel)

• in linear models with i.i.d. errors, or in ARMA models with

i.i.d. innovations, this yields a rank-based version of the

central sequence : ∆∆∆
˜θθθ;f = ∆∆∆

(n)
θθθ;f + oP(1); these models are

adaptive

• this does not hold anymore in nonlinear time series models,

which are NOT adaptive
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Hájek projections and tangent spaces

• in 2002, Hallin and Werker (Bernoulli 2002) under very

general conditions show that, actually, under P
(n)
θθθ;f ,

∆∆∆
˜

(n)
θθθ;f = ∆∆∆

(n)∗
θθθ;f + oP(1)

• It appears that the “nasty additional term” in the 1985

Hallin-Ingenbleek-Puri asymptotic representation, actually,

is (asymptotically) the projection ∆∆∆
(n)
θθθ;f −∆∆∆

(n)∗
θθθ;f of ∆∆∆

(n)
θθθ;f onto

the tangent space associated with unspecified densities
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Hájek projections and tangent spaces

it follows that

• ∆∆∆
˜

(n)
θθθ;f is an invariant (rank-based) distribution-free version of

the semiparametrically efficient (at f) central sequence;

• contrary to the classical version of the latter, its distribution

does not depend on the underlying density, and it thus

allows for valid (and even distribution-free)

semiparametrically efficient-at-f inference on θθθ

• Hájek projections are doing the same job as tangent

space projections, without requiring the (often nontrivial)

computation of the latter: the ranks do it for you!, and with

the (invaluable) additional advantages of distribution-

freeness
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• E
[
∆∆∆

(n)
θθθ;f | R(n)(θθθ)

]
is the “exact score version” of ∆∆∆

˜θθθ;f ;

simpler “approximate score” versions also exist, but their

form depends on the specific central sequence under

study

• uniformly semiparametrically efficient inference is also

possible, by considering ∆∆∆
˜θθθ;f̂(n)

, where f̂ (n) is some

appropriate density estimator

• without the unpleasant technicalities, such as

sample-splitting, associated with the “classical

semiparametric procedures”, based on ∆∆∆
(n)

θθθ;f̂(n)
...
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• but then, we also split the sample, into two mutually

independent parts: the invariant and distribution-free part

on one hand (the ranks), the “order statistic” on the other,

with the ranks containing the “f -free” information about

the parameter θθθ, whereas the “order statistic” contains

information on the nuisance f only
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3.3. Rank-based inference for shape

Writing X ∼ P
(n)
θθθ;f1

, θθθ = (µµµ, σ,V) and P(n) =
{

P
(n)
θθθ;f1

| f1 ∈ F+
}

,

where F+ is the class of all standardized nonvanishing densities

over R
+ when

• X := (X1, X2, . . . , Xn) iid, with elliptical density

1

σk(detV)1/2
f1

(
1

σ

√
(x −µµµ)′V−1(x−µµµ)

)

over R
k (independent elliptical white noise with location µµµ,

shape V, scale σ, and standardized radial density f1),

maximal invariant are

• the ranks Ri of the “radial distances”

di := ‖(Xi −µµµ)′V−1(Xi −µµµ)‖, and

• the unit vectors Ui := (Xi −µµµ)′V−1(Xi −µµµ) / di

• Multivariate signs Ui and

• ranks Ri FROM DISTRIBUTION-FREENESS TO SEMIPARAMETRIC EFFICIENCY: SIXTY(-THREE) YEARS OF RANK-BASED INFERENCE – p.70/75



central sequences for shape (at f): from parametric to

semiparametric and rank-based (Hallin and Paindaveine, Annals

of Statistics, 2006)

• parametric

∆∆∆
(n)
θθθ;f1

:=
1

2
n−1/2

Mk

(
V

⊗2
)−1/2

n∑

i=1

ϕf1

(
di

σ

)
di

σ
vec (UiU

′
i − Ik)

• semiparametrically efficient

∆∆∆
(n)∗
θθθ;f1

=
1

2
n−1/2

Mk

[
Ik2 −

1

k
Jk

] n∑

i=1

ϕf1

(
di

σ

)
di

σ
vec (UiU

′
i)

• rank-based

∆∆∆
˜

(n)
θθθ;f1

:=
1

2
n−1/2

Mk

[
Ik2 −

1

k
Jk

] n∑

i=1

Kf1

(
Ri

n + 1

)
vec (UiU

′
i) ,

with Kf1(u) := (ϕf1 ◦ F1)
−1(u) F1

−1(u)
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4. Conclusions

• rank-based methods (more generally, the “maximal

invariant” ones) are flexible, and apply in a very broad

class of statistical models, much beyond the traditional

context of linear models with independent observations

• rank-based procedures are powerful—often, making

Gaussian or pseudo-Gaussian methods

non-admissible—with the additional benefits of

distribution-freeness

• rank-based procedures (more generally, the “maximal

invariant” ones) are “optimal” (achieving semiparametric

efficiency—the best we can hope for in presence of

unspecified densities) although they are simpler and more

robust (distribution-freeness) than “classical”

semiparametric procedures
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• 63 years after Wilcoxon’s pioneering paper, the “quick and

easy tricks” have grown into a full body of efficient and

modern methods

• the enemy brothers of statistics, efficiency (semiparametric)

and robustness (distribution-freeness = 100% resistance

against misspecified densities), can be reconciled!
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THANK YOU, AND A HAPPY BIRTHDAY,
MR WILCOXON!
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