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Abstract

Linearity in a causal relationship between a dependent variable and a set of regressors is

a common assumption throughout economics. In this paper we consider the case when

the coefficients in this relationship are random and distributed independently from the

regressors. Our aim is to identify and estimate the distribution of the coefficients non-

parametrically. We propose a kernel based estimator for the joint probability density of

the coefficients. Although this estimator shares certain features with standard nonpara-

metric kernel density estimators, it also differs in some important characteristics which

are due to the very different setup we are considering. Most importantly, the kernel is

nonstandard, and derives from the theory of Radon transforms. Consequently, we call our

estimator the Radon Transform Estimator (RTE). We establish the large sample behavior

of this estimator, in particular rate optimality and asymptotic distribution. In addition,

we extend the basic model to cover extensions including endogenous regressors and addi-

tional controls. Finally, we analyze the properties of the estimator in finite samples by a

simulation study, as well as an application to consumer demand using British household

data.
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1 Introduction

Heterogeneity of individual agents, in particular consumers or firms, is a prevalent notion

throughout economics. In addition, it is often the case that the individuals are, at least ap-

proximately, characterized by a linear relationship between a d-vector of explanatory variables,

and a dependent variable. Combining these two notions yields in a natural fashion to the

random coefficient model (RCM),

Yi = βT
i Xi, (1)

where Yi is an observed continuously distributed random scalar, Xi denotes an observed random

d- vector of individual specific regressors and βi is an unobserved random d-vector of individual

coefficients. In this model, the subscript i denotes individual observation, and we may include an

intercept, i.e. Xi,1 ≡ 1, so that we may rewrite model (1) as Yi = βi,2Xi,2+...+βi,dXi,d + εi with

an error term εi = βi,1. The RCM is arguably the oldest and most important way of expressing

the notion of unobserved heterogeneity in econometrics through allowing the marginal effects

(summarized in β) to vary across individuals.

Traditionally, the random coefficient model has been investigated under mean indepen-

dence, i.e. E [βi|Xi] = β, and homoscedasticity, i.e. Cov [βi|Xi] = Σβ, see the classic references

of Hildreth and Huock (1968) and Swamy (1970), any standard econometrics textbook, e.g.,

Wooldridge (2002) or the recent survey in Hsiao and Pesaran (2004). While this allows to iden-

tify the average marginal effect and the variance, important features of the joint distribution

of marginal effects are left unidentified (unless one is willing to assume, e.g., joint normality).

These includes the quantiles of the marginals, as well as skewness, kurtosis or symmetry of

the distribution or dependence structure of various components of β. Moreover, the question

of multimodality, or the related question whether the population consists of a mixture of sub-

populations are left unanswered. Finally, there are many instances where it is interesting to

evaluate whether the probability density of the parameter is significantly different from zero

on a specified set, which corresponds to the notion of whether a restriction on the parameters

holds across a heterogeneous population.

We study the random coefficient model (1) under the stronger independence assumption

that β is independent from X, or from instruments Z. It is the aim of this paper to show that

under this assumption the joint distribution of marginal effects is identified nonparametrically

and to propose a sample counterpart estimator which allows to analyze the joint distribution

of marginal effects. To give an example how our method works in practice and how it may

reveal interesting features of the distribution of marginal effects across the population, consider

Figure 1. This figure displays an estimate of the joint distribution of the income and uncom-
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pensated own price elasticities of food consumption1, controlling for household observables.

The graph is a contour plot with the solid lines equal to the level lines, akin to lines of similar

altitude on a map. It shows a clearly unimodal distribution, which is slightly skewed towards

the southwestern corner.
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Figure 1: Application of the RT Estimator to Demand for Food – Contour plot of Joint Density

of Elasticities

There seems to be little association between the two marginal effects, indicating that indi-

viduals with low income elasticities are equally likely to have high and low own price elasticities.

More importantly, almost all the income elasticities are between 0 and 1, indicating that food

is a normal good, but not a luxury good across the entire population. Quite interestingly,

1To be precise, the income elasticities are actually total expenditure elasticities. However, we use the more

common terminology.
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a small but potentially significant area of the population shows positive uncompensated own

price elasticities. While this fact alone could also be interpreted as food being a Giffen good

for these individuals, the fact that for all of these individuals food is normal (i.e., the income

elasticities are positive) rules out this explanation. Hence, if we are willing to accept both the

linearity in model (1) and the independence assumption, we conclude that there is an indication

that standard consumer theory may be an invalid description for a fraction of the population2.

However, for a more careful analysis we have to make sure that the density in this area is

significantly positive, which requires an asymptotic distribution theory for our estimator in the

first place.

The structure of our RT estimator is simple, and very much resembles a standard kernel

density estimator. More precisely, the estimator for the joint density of random coefficients at

a fixed position, fβ(b) is given by

f̂β(b) =
1

n

n∑
i=1

Kh

(
ST

i b− Ui

) (
f̂S(Si)

)−1

, b ∈ Rd,

where Ui and Si are suitable transformations of Yi and Xi, see (2), Kh is an appropriate kernel,

and f̂S denotes an estimator for the density of the transformed regressors. The differences to

standard kernel density estimation are the nonstandard kernel, as well as the normalization by

the density of transformed regressors.

The details of identification and estimation of fβ(b) will occupy much of the first part of

this paper. Specifically, for identification we apply the theory of Radon transforms that has

been used in computer tomography. Nonparametric estimation in random coefficient models has

been considered in Beran and Hall (1992), Beran, Feuerverger and Hall (1996), and Feuerverger

and Vardi (2000). The first paper extends the familiar strategy to estimate the first moments

and then to make use of the independence assumption, by estimating higher order moments.

The other two papers propose to estimate the characteristic function of the response variable

and then transform this estimator back. The latter paper also discusses numerical aspects and

links random coefficient models to tomography.

Like Beran, Feuerverger and Hall (1996) and Feuerverger and Vardi (2000), our estimator is

build upon the Radon transform. However, in contrast to their work, our approach utilizes the

Radon transform directly to construct a simple estimator which employs a one-step procedure.

Because our approach is direct, it is also much better suited for use as building block in more

complicated models appearing in econometrics, e.g., endogenous regressors, or for hypothesis

testing (see also Heckman and Vytlacil (1998) for an alternative approach to deal with en-

dogeneity). In particular, it allows us to consider additional covariates in a semiparametric

2Related work in consumption includes in particular Foster and Hahn (2000).
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fashion, which neither of the approaches mentioned can. Also, we are the first to derive rate

optimality. Technically, there are also some parallels between our approach and Korostelev and

Tsybakov (1993). However, they estimate a Radon transformed regression function, which is

conceptually different. Other approaches in statistics that treat empirical Radon transforms

are based on singular value decompositions of the Radon operator (Johnstone and Silverman,

1990) or on wavelet-vaguelette decompositions (Donoho, 1995 and Abramovich and Silverman,

1998). For a discussion of estimators in inverse problems including empirical Radon transforms

based on empirical risk minimization, see Klemelä and Mammen (2008). See also Natterer

(2001) or Helgason (1999) for an overview on the mathematics of Radon transforms.

The random coefficient model (1) is a mixing model. The distribution of β is the mixing

distribution. There exist classical approaches in the statistical literature for the identification

of mixing distributions. Mixing models have been used in econometrics to capture heterogene-

ity. Recent work in econometrics includes Matzkin (2007), Briesch, Chintagunta and Matzkin

(2007), Fox and Gandhi (2008) and Bajari, Fox, Kim and Ryan (2007) where also other refer-

ences can be found. These papers contain results on the identification of mixture distributions

in random choice models. An early reference for nonparametric identification in binary choice

is Ichimura and Thompson (1998). For this model, Gautier and Kitamura (2008) contains a

detailed asymptotic theory for a nonparametric estimator that is based on a singular value de-

composition. An alternative route to heterogeneity is to dispense with identifiability of mixing

distributions and to check for identification of local average marginal effects, see e.g. Hoderlein

(2007) and Hoderlein and Mammen (2007, 2008).

Our estimator of the density of β achieves optimal rates of convergence in Sobolev classes.

The estimator depends on the unknown smoothness parameter of the Sobolev class and on the

bandwidth of a kernel. We state formulas for the asymptotic variance and the asymptotic bias.

For the case of twice differentiable functions we have an asymptotic bias expression that depends

on second order partial derivatives in a similar way as in classical kernel smoothing. Thus one

can use plug-in estimates of the bandwidth as in classical nonparametric kernel smoothing. We

do, however, not give a theoretical discussion of bandwidth choice here. Our estimator makes

use of a kernel estimator of the density of the covariates (scaled to the unit sphere). The choice

of the kernel and of the bandwidth of the spherical kernel estimator of the design density only

affects second order properties of the estimator (as long as the order of the bandwidth lies in

a certain range). Further theoretical work is needed to construct methods for the automatic

choice of the two smoothing parameters of the estimator.

This paper is organized as follows: In section two, we establish nonparametric identification,

and use this result in sections three and four to construct a sample counterpart estimator, and

analyze its asymptotic properties. In section five, we discuss extensions towards endogeneity
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and the inclusion of additional control variables. The small sample and real world performance

of our estimator is in the focus in sections six and seven, where we consider simulation and

application to consumer demand. Finally, we conclude with an outlook.

2 Nonparametric Identification of the Joint Density of

Random Coefficients

Let us first state the model and the setup: throughout this paper, we will always assume to have

i.i.d. random vectors (Yi, Xi, βi), i = 1, . . . , n, with Yi ∈ R and Xi, βi ∈ Rd with the following

structural relationship between the variables:

Yi = βT
i Xi, i = 1, . . . , n.

Our goal is to estimate the density of the vector βi, which we denote by fβ : Rd → R. The

key identification assumption is that Xi and βi are independent. Note that we require at this

point full independence, which may seem a strong assumption. However, the entire model

specification is in principle testable, if one splits the support of Xi into two regions, and then

derives the estimator of the density in each region separately. A simple nonparametric density

comparison test would then be sufficient to check the specification. But one should be aware

that the illposedness of the Radon transform may also cause problems in case of small deviations

from independence.

In order to derive our estimator, we use the following transformation (Yi, Xi) 7→ (Ui, Si),

i = 1, . . . , n, where

Si = ‖Xi‖−1Xi ∈ Sd−1, Ui = ‖Xi‖−1Yi ∈ R. (2)

By ‖ · ‖ we denote the Euclidean norm in Rd. Moreover, the unit sphere in Rd is denoted by

Sd−1 = {z ∈ Rd : ‖z‖ = 1}. Then our model becomes:

Ui = βT
i Si, i = 1, . . . , n

with Si independent of βi.

A key concept in the following will be that of a Radon transform, which is defined as

the integral of a function over lower dimensional hyper-planes. We parametrize the d − 1-

dimensional hyperplanes in the d-dimensional Euclidean space by a direction vector s ∈ Sd−1

and a distance from the origin u ∈ R:

Ps,u = {z ∈ Rd : zT s = u}.
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Figure 2: Parametrization of hyperplanes: line Ps,u is parametrized with direction vector s and

distance u. The lines are parametrized by the length u of the perpendicular from the origin to

the line and by the orientation s of this perpendicular.

See Figure 2 for an illustration of the parametrization. The Radon transform of a function

f : Rd → R is then formally defined as

(Rf)(s, u) =

∫

Ps,u

f,

where the integration is with respect to the d− 1-dimensional Lebesgue measure on the hyper-

plane Ps,u, for any function f : Rd → R integrable on each hyperplane. Radon observed that

a function is completely determined by all its integrals (over lower dimensional hyperplanes).

This fact was rediscovered and utilized in computer tomography, see Natterer (2001) or Helga-

son (1999). The basic observation in our model is that the conditional density of U given S is

given by the Radon transform of the density fβ:

fU |S(u|s) = Rfβ(s, u). (3)

Indeed, this conditional density is obtained by integrating fβ for each u, over the plane per-

pendicular to s. Intuitively, we would now like to invert the operator R to obtain the unknown

density of interest fβ from the observable conditional density of the transformed variables, fU |S.

This, however, is an ill-posed inverse problem. The inverse operator is not smooth, i.e. small

changes in the argument may result in big changes in the value. To solve this problem, one has

to use a regularized inverse Ah of the Radon transform. A regularized inverse is given by the

operator Ah : {g : Sd−1 ×R → R} → {f : Rd → R}, defined by

(Ahg)(z) =

∫

Sd−1

∫ ∞

−∞
Kr,h(s

T z − u)g(s, u) dudµ(s), z ∈ Rd, (4)

where µ is the Lebesgue measure on the unit sphere Sd−1. The definition of Kr,h is slightly in-

volved, however, its properties will turn out to make it similar to a smoothing kernel. Formally,
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it is defined by its Fourier transform3

K̃r,h(t) =
1

2
(2π)−d+1|t|d−1Lr(h|t|), t ∈ R, (5)

where h > 0 is a smoothing parameter, and Lr : [0,∞) → R is a function

Lr(t) =

{
(1− tr)I[0,1](t), 0 < r < ∞
I[0,1](t), r = ∞,

t ∈ R (6)

depending on the parameter 0 < r ≤ ∞. From now on, we suppress the dependence of K and

L on r and write

Kr,h = Kh, Lr = L.

The choice of the parameters h and r will be discussed below. It can be checked that the kernel

Kh has the following explicit representation:

Kh(u) = (2π)−d

∫ ∞

0

cos(tu)td−1L(ht) dt, u ∈ R.

The kernel Kh depends on the bandwidth h and on the dimension d and the order parameter

r which both appear in the definition of the function L, see (6). Figure 2 shows this kernel

function Kh for smoothing parameter values h = 0.3, 0.5, 0.6. Frame a) shows the case when

d = 2 and r = 2, frame b) shows the case when d = 2 and r = ∞, and frame c) shows the

case when d = 4 and r = 2. By definition of L, the frequency of the oscillations increases with

increasing smoothing parameter h.

In the appendix we show that ‖(AhRf) − f‖2 is of order hs if f has square integrable

derivatives of order s, see Lemma 64. The result shows that the operator Ah is a regularized

inverse, i.e. that

lim
h→0

‖(AhRf)− f‖2 = 0.

This suggests to construct the estimator for fβ at a fixed position b as sample counterpart to

fβ(b) = (AhfU |S)(b) =

∫

Sd−1

∫ ∞

−∞
Kh(s

T b− u)fU |S(u|s) dudµ(s), (7)

where all quantities are as defined above.

3The Fourier transform of an integrable function g : Rd → R is defined by

g̃(ω) =
∫

Rd

exp{izT ω}g(z) dz, ω ∈ Rd,

while the inverse Fourier transform of an integrable function g̃ is given by

g(z) = (2π)−d

∫

Rd

exp{−izT ω}g̃(ω) dω, z ∈ Rd.

Note that for f, g ∈ L1(Rd) ∩ L2(Rd),
∫
Rd fg = (2π)−d

∫
Rd f̃ g̃ holds.

4Here, ‖g‖22 =
∫
Rd g2(x)dx denotes the L2-norm.
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Figure 3: The kernel function Kh when h = 0.3, 0.5, 0.6; a) d = 2 and r = 2; b) d = 2 and

r = ∞; c) d = 4 and r = 2. The case h = 0.3 is shown as a solid line, h = 0.5 is shown as a

dashed line, and h = 0.6 is shown as a dotted line.

3 A Sample Counterpart Estimator

Using the analogy principle, our estimator is defined as sample counterpart to (7), i.e.

f̂β(b) =
1

n

n∑
i=1

1

f̂S(Si)
Kh

(
ST

i b− Ui

)
, b ∈ Rd. (8)

We call our estimator the Radon transform estimator (RTE). In contrast to a standard kernel

density estimator which is just a sum of kernels, we require also an estimator f̂S of the density

fS. At this point it is obvious that trimming will be needed if Si has density near zero. However,

we first consider the non trimming case as the deviations and the intuition are easier. For the

estimation of fS we need an estimator for densities on the unit sphere. In the simulations and in

the application we will use a kernel density estimator. A standard kernel smoothing approach

for spherical data is given by

f̂S(s) =
c(g)

n

n∑
i=1

G
(
g−2(1− sT Si)

)
, s ∈ Sd−1, (9)

where G : [0,∞) → R is a kernel function, g > 0 is the smoothing parameter, and c(g) is the

normalization constant:

c(g)−1 =

∫

Sd−1

G
(
g−2(1− sT e)

)
dµ(s),

for any e ∈ Sd−1, see e.g. Klemelä (2000). Here, µ is the Lebesgue measure on Sd−1. Note

that ‖s − e‖2 = 2(1 − sT e) for s, e ∈ Sd−1, so that the estimator is a kernel estimator with

a spherically symmetric kernel. Reasonable choices for the kernel function are for example

G(t) = e−tI[0,∞)(t), G(t) = (1− t)I[0,1](t), and G(t) = I[0,1](t).
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4 Large Sample Behavior of the Radon Transform Esti-

mator

4.1 Rate Optimality

We start the section on asymptotic behavior with a result on rate-optimality of our estimator

under Sobolev smoothness conditions. Sobolev smoothness of order s > 0 is defined by use of

the Sobolev semi-norm ρs(f), defined by

ρ2
s(f) = (2π)−d

∫

Rd

‖ω‖2s
∣∣∣f̃(ω)

∣∣∣
2

dω,

for functions f : Rd → R with Fourier transform f̃ . A function f fulfills Sobolev smoothness

of order s if ρ2
s(f) < ∞. For integer s this holds if all partial weak derivatives of f of order s

are square integrable. Thus Sobolev smoothness naturally generalizes ordinary smoothness of

integer orders to the case of fractional orders. Throughout this section we shall make use of

the following assumptions:

(A1) The vectors Xi and βi are independent i.i.d. sequences.

We make the following assumptions on the densities fβ and fS.

(A2) fβ satisfies the following Sobolev smoothness condition. For some s > 0,

ρ2
s(fβ) < ∞.

Moreover, the density fβ is bounded with bounded support and
∫ |f̃β(ω)|dω < ∞ .

(A3) The density fS is bounded and the estimator f̂S achieves the following rate

sup
ξ∈Sd−1

∣∣∣f̂S(ξ)− fS(ξ)
∣∣∣ = oP

(
n−s/(2s+2d−1)

)
. (10)

(A4) fS is bounded away from zero: there exists 0 < CS < ∞ with

inf
ξ∈Sd−1

fS(ξ) ≥ C−1
S . (11)

Assumption (A1) is our basic model assumption. Assumption (A2) contains the basic

smoothness condition on the density of β. According to (A2) the density fβ has s derivatives.

Because of our general notion of smoothness fractional values of s are allowed. The standard

example is s = 2, which will be discussed in Remark 6. The assumption that the Fourier

transform of fβ is integrable is done for technical reasons. It implies that fβ is continuous.

10



But there exist no mild and tractable conditions that imply this assumption. In Remark 3 we

show that this assumption can be avoided at the cost of assuming higher rates of convergence

for the design density estimator f̂S. Assumption (A3) can be easily verified for kernel density

estimators f̂S, as defined in (9). If fS has bounded partial derivatives of order two and if the

bandwidth g is chosen of order n−1/(3+d), then it holds that

sup
ξ∈Sd−1

∣∣∣f̂S(ξ)− fS(ξ)
∣∣∣ = OP

(√
log nn−2/(3+d)

)
.

This can be checked by using classical smoothing theory, see Appendix A. Thus for the estima-

tor (9) assumption (A3) holds if s < (4d− 2)/(d− 1). If fS is σ-times differentiable the kernel

G in the definition of f̂S could be replaced by a higher order kernel. Then f̂S fulfills (A3) (if

the bandwidth g is chosen of order n−1/(2σ+d−1)) as long as σ/(2σ + d − 1) > s/(2s + 2d− 1).

Here, for (A3) it is not necessary that σ ≥ s, i.e. less smoothness is required for fS compared

with fβ. For more details, see Appendix A. Assumption (A4) will be discussed below.

The following theorem gives the rate of convergence of the estimator f̂β defined in (8).

Theorem 1 Let assumptions (A1)-(A4) hold, let the kernel L be defined in (6) with s ≤ r ≤
+∞ and let the smoothing parameter h of f̂β satisfy

h = hn ³ n−1/(2s+2d−1).

Then for any bounded subset B of Rd,
∫

B

∣∣∣f̂β(b)− fβ(b)
∣∣∣
2

db = OP

(
n−2s/(2s+2d−1)

)
.

A proof of Theorem 1 is given in Section 8.

Remark 1 A proof that the rate given in Theorem 1 is the minimax rate can be given similarly

as in Theorem 9.5.3 of Korostelev and Tsybakov (1993). It is intuitive to compare the rate

with optimal rates for the estimation of a k-order derivative of a density f on Rd. If f has

s derivatives the optimal rate is n−(s−k)/(d+2s). Formally, this is equal to the rate in Theorem

1 for k = s(d − 1)/(2s + 2d − 1). Thus, estimation of the density of coefficients in a random

coefficients model is asymptotically as hard as the estimation of a derivative of a density of this

order. For s = 2 we get (2d− 2)/(2d + 3) which is always smaller than 1.

4.2 The Asymptotic Distribution of the Radon Transform Estimator

In the next theorem we show that our estimator f̂β(b) is asymptotically normal. More precisely,

11



Theorem 2 Under the assumptions of Theorem 1,

√
nh2d−1σ−1

n (b)
[
f̂β(b)− fβ(b)− hsbiasn(b)

]

converges in distribution to a standard normal limit. Here

σ2
n(b) =

∫

Sd−1

1

fS(s)
h2d−1

∫ ∞

−∞
K2

h(sT b− u)Rfβ(s, u) dudµ(s),

biasn(b) = h−s(2π)−d

∫

Rd

[L(h‖ω‖)− 1] f̃β(ω) exp{−ibT ω} dω,

and it holds that

σ2
n(b) ≤ h2d−1CSCβµ(Sd−1)

∫ ∞

−∞
K2

h(u) du

= h2d−1CSCβµ(Sd−1)(2π)−d 1

4
(2π)−2d+2

∫ ∞

−∞
|t|2(d−1)L2(h|t|) dt

= CSCβµ(Sd−1)(2π)−3d+2 1

2

[
1

2d− 1
− 2

1

2d− 1 + r
+

1

2d− 1 + 2r

]
,

where C−1
S = infs fS(s) and where Cβ = sups,u Rfβ(s, u). Finally,

|biasn(b)| ≤ ρs(fβ).

A proof of Theorem 2 is given in Section 8.

Remark 2 A consistent estimator of σ2
n(b) is given by

σ̂2
n(b) =

h2d−1

n

n∑
i=1

1

f̂S(Si)2
K2

h(ST
i b− Ui).

Remark 3 As remarked after the statement of the assumptions there exist no mild and

tractable conditions that imply that the Fourier transform of fβ is integrable. This was assumed

in (A2). We now argue that this assumption can be avoided at the cost of assuming higher

rates of convergence for the design density estimator f̂S. It can be shown that Theorems 1

and 2 still hold without assuming that |f̃β| is integrable if one makes the following additional

assumption. In (A3) instead of (10) one has to assume that

sup
ξ∈Sd−1

∣∣∣f̂S(ξ)− fS(ξ)
∣∣∣ = oP

(
n−(s+ d

2
)/(2s+2d−1)

)
.

For a proof of the modified versions of Theorems 1 and 2 one uses the Cauchy-Schwarz inequality

in the last inequality of the proof of Lemma 4. This gives a bound O(h−d/2) instead of O(1) in

this inequality. The statement of Lemma 4 has to be adjusted accordingly.

If one uses a spherical kernel density estimator f̂S and if one makes the assumptions on fS

specified in the appendix then one needs that σ > s + d/2, i.e. one needs d/2 more derivatives

for the function fS as for the density fβ.
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Remark 4 The parameter r determines the order of the kernel Kh. This can be seen from the

expansion for the bias in Theorem 2. The term [L(h‖ω‖)− 1] can be absolutely bounded by

‖hω‖s for ‖hω‖ ≤ 1. This directly leads to the bound for the bias at the end of Theorem 2.

Remark 5 The statement of Theorem 2 also holds for choices of the bandwidth h that are not

of the order specified in the statement of Theorem 1.

Remark 6 In this remark we treat the case of two times differentiable functions and kernels

Kh with r = 2, i.e. kernels that correspond to the usual second order kernels in classical kernel

smoothing problems. Assume that the Assumptions (A1)-(A4) hold with s = 2 and that∫ ‖ω‖2|f̃(ω)|dω < ∞. Let the kernel L be defined in (6) with r = 2 and let the smoothing

parameter h of f̂β satisfy

h = hn ³ n−1/(2s+2d−1).

Then for a fixed point b,

√
nh2d−1σ−1

n (b)
[
f̂β(b)− fβ(b)− h2biasn(b)

]

converges in distribution to a standard normal limit where σ2
n(b) is defined as in Theorem 2

and where

biasn(b) =
d∑

j=1

∂2

(∂bj)2
fβ(b).

A proof of this remark is given in Section 8. This result is very similar to classical results

on kernel smoothing for two times differentiable densities. The bias is of order h2, depends

only on second derivatives, and is hence estimable given an estimator of the second derivatives.

Note also that the bias depends only on the local shape of the function, which shows that our

estimation approach indeed localizes.

4.3 Discussion of Condition (A4)

For models where Xi has full dimensional support Assumption (A4) is very mild. There are

a number of interesting models that fall into this class, e.g. fixed effects panel data after

differencing, i.e. 4Yi = β′i4Xi, i = 1, . . . , n, or structural models where there is a lower number

of underlying parameters, and the model is linear in underlying parameters, e.g., Yi = β′i(γ+Xi),

i = 1, . . . , n.

However, this assumption is restrictive for the case where the design includes an intercept,

i.e. Xi,1 ≡ 1. To see why this is the case, consider d = 2, so that Xi = (1, Xi,2)
T . Let the density

of Xi,2 be denoted as f2,X . Then, assumption (A4) requires that lim infu→±∞ u2f2,X(u) > 0,

which means in particular that the second moment of Xi,2 is infinite.
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To circumvent this shortcoming, we propose a modification of f̂β that uses trimming to

avoid estimation of fS at regions where this density is too small. One version of a trimming

estimator for the density of β is given by

f̂ τ
β (b) =

1

n

n∑
i=1

1

f̂S(Si)
Kh

(
ST

i b− Ui

)
ISd−1\Cτ (Si), b ∈ Rd, (12)

where Cτ is the following band on the unit sphere

Cτ = {s ∈ Sd−1 : |s1| ≤ τ}, 0 < τ < 1. (13)

Here τ is a trimming parameter that may depend on n.

We discuss the modified estimator for the case s = 2 and with f̂S defined as in (9). The

discussion can be easily generalized to other values of s. For s = 2 we get the following result.

Theorem 3 Assume that Xi,1 ≡ 1 and make the assumptions (A1)-(A2) with s = 2. Let the

kernel L be defined in (6) with 2 ≤ r ≤ +∞. Let the smoothing parameter h of f̂ τ
β satisfy h → 0

and nh2d−1 → ∞ and let the estimator f̂S be defined as in (9) with smoothing parameter g of

order

g = gn ³ n−1/(3+d).

Assume that fS has bounded partial derivatives of order 2 and that d−1
τ (log n)−1/2n−2/(3+d) → 0

for dτ = infξ∈Cτ fs(ξ). Then for any bounded subset B of Rd,

∫

B

∣∣∣f̂ τ
β (b)− fβ(b)

∣∣∣
2

db ≤ C

(
h4 +

∫

B

νh,τ (b)
2db

)
+ OP

(
n−1h−2d+1 + d−2

τ (log n)n−4/(3+d)
)
,

where C is a constant,

νh,τ (b) = (2π)−d

∫

Rd

IDτ (ω)L(h‖ω‖)f̃β(ω) exp{−ibT ω} dω

and where

Dτ =
{
z ∈ Rd : z = ts, t ∈ [0,∞), s ∈ Cτ

}
.

A proof of Theorem 3 is given in Section 8.

Remark 7 Our trimming estimator has the same order of variance as the estimator without

trimming but its bias is much more involved. Indeed, the bias expression is too complicated for

an intuitive understanding and is not helpful for the practical implementation of the estimator.

In our simulations the estimator without trimming worked quite well even for data sampled

from a model with intercept.
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Remark 8 For the additional bias term, one can use the following crude bound:

‖νh,τ‖2
2 ³

∫
IDτ (ω)L2(h‖ω‖)

∣∣∣f̃β(ω)
∣∣∣
2

dω

≤
∫

Sd−1

dµ(s)

∫ ∞

0

dr rd−1IDτ (rs)L
2(hr)

≤
∫

Sd−1

dµ(s)

∫ h−1

0

dr rd−1ICτ (s)

³ τ

∫ h−1

0

rd−1 dr

³ τh−d.

5 Extensions

5.1 Endogeneity

Frequently in econometrics there are reasons to believe that the independence assumption

between regressors and unobservables is violated. In consumer demand for instance, we may

think of the distribution of coefficients as being generated by heterogeneity in preferences across

the population. However, the assumption of independence of preferences and regressors like

household characteristics or total expenditures may be rightfully questioned. Hence some way

of dealing with endogeneity may also be desirable in our setup.

The standard concept for handling this type of endogeneity are instruments. In the textbook

linear model these are variables that are uncorrelated with the unobservables but correlated

with the endogenous regressors. In our setup, we devise a similar solution. More precisely, one

possible specification that retains the linear structure and blends in nicely with the textbook

models is the following:

Yi = XT
i βi

Xi = ΓZi + Vi,

where the notation is as above, but Zi denotes a random L-vector of instruments, Γ is a

nonrandom d× L matrix of coefficients, and Vi denotes a random d-vector of residuals. Under

standard conditions, there exists a root n consistent estimator of Γ, denoted by Γ̂.

For identification of fβ(b) we require that Zi be (jointly) independent of (βi, Vi), as is easily

seen by simply plugging in the second equation into the first and rearranging terms. This is a

straightforward, but interesting finding: In Hoderlein (2007), Hoderlein and Mammen (2007,

2008) the case was considered where Yi is a nonseparable function of regressors and Borel space

valued unobservables, e.g., preferences, without assuming monotonicity in unobservables. In
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this scenario, if regressors are endogenous, it was argued that joint independence of unobserv-

ables in both equations, i.e. (βi, Vi) above, from the instruments is sufficient to identify the

average structural derivatives, but not the individuals marginal effect. Here, however, we are

able to identify every individuals’ marginal effect due to the assumption of linearity across the

population.

With respect to estimation, we would apply the theory of the previous section to

Yi = δ0i + ZT
i δ1i.

This can be easily done as long as δ1i = ΓT β has not a degenerate distribution and it needs

some additional theoretical work otherwise. The density fδ gives the joint density fβ, by using

βi =
[
ΓT

]−
δ1i where [A]− denotes the Moore Penrose inverse of a matrix A. More precisely,

let Ĥ =

([
Γ̂T

]−
, B

)T

with B = (0L−d×d, IL−d) and Γ̂ is a root n consistent estimator for Γ.

Then,

f̂β(b) =

∫
det

∣∣∣Ĥ−1
∣∣∣
−1

f̂δ

(
Ĥ−1 (b, δ)T

)
dδ.

It is straightforward to show that f̂β(b) = f̄β(b) + Op

(
n−1/2

)
, where f̄β(b) = det |H−1|−1

f̂δ

(
H−1 (b, δ)T

)
.

5.2 Controlling for the Influence of other Variables and for Nonlin-

earities

Another frequent event in econometrics is that some variables are of greater relevance for the

researcher than others. In particular, it is often the case that a set of variables play only the role

of controls. In regression analysis, this fact has lead to semiparametric models like the popular

partially linear model, i.e. Yi = m(X1i)+XT
2iδ +Vi, where Xi =

(
XT

1i, X
T
2i

)T
, Vi denotes a mean

independent error, m is a smooth function, and δ a vector of fixed coefficients.

When estimating the joint density of the random coefficients, we face again the same problem

of curse of dimensionality that is inherent to the nonparametric literature. Hence we may

translate the same semiparametric solution to our model, i.e., we assume that

Yi = XT
1iβi + XT

2iδ, (14)

where δ does not vary across individuals. Note that under our assumptions,

E [Yi|Xi] = XT
1iµβ + XT

2iδ,

where µβ = E [βi] , and hence

Yi − L (Yi|Xi) = XT
1i (βi − µβ) ,
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where L (Yi|Xi) denotes the linear projection of Yi on Xi. This suggests to use the residuals of

an OLS regression of Yi on all Xi as new dependent variable, say Ỹi, and use the data
(
Ỹi, X1i

)

to obtain an estimator of fβ−µβ
as above. Plugging in an estimator for µβ yields an estimator

for fβ. By similar arguments as in the previous subsection, it follows that the asymptotic

distribution of this estimator for fβ does not differ from that of f̂β as detailed above, since both

Ỹi and the OLS estimator for µβ are root n consistent.

There are two alternative ways to deal with the control variables. The first is related to

the famous Frisch-Waugh partitioned regression principle and still uses the model as defined in

equation (14): Let Ỹi = Yi−L (Yi|X2i), and X̃1i = X1i−L (X1i|X2i). Then, apply our estimator

using the data
(
Ỹi, X̃1i

)
to obtain an estimator for fβ. This approach is related to the estimation

idea in Christopeit and Hoderlein (2006), and works only if the mean regressions of Yi and Xi are

truly linear, and X̃1i is fully independent from X2i, and not just mean independent. Moreover,

with this procedure the distribution of the original intercept α is not identified.

The second alternative way to treat additional control variables does not assume that model

(14) holds, but assumes that βi depends in a nonparametric fashion on covariates, i.e. βi =

β (X2i, Ai), where β is smooth in x2 and Ai denotes unobservables. In this case, an estimator

for the conditional density of βi given X2i can be obtained by carrying X2i = x2 through all

arguments. Consequently, an estimator has the form

f̂β|X2(b, x) =
1

n

n∑
i=1

1

f̂SX2(Si, x2)
Kh

(
ST

i b− Ui

)Kη(X2i − x2), b ∈ Rd.

where Kη is a standard multivariate kernel with bandwidth vector η. The large sample behavior

of such an estimator is straightforward using the tools introduced.

The following modification of our model takes care of nonlinearities:

Yi =
d∑

j=1

βi,jmj(Xi,j). (15)

Here mj are functions that are purely nonparametric or that are parametrically specified. For

j with E[βi,j] 6= 0 the functions mj can be estimated by using

E[Yi|Xi] =
d∑

j=1

E[βi,j]mj(Xi,j). (16)

For the estimation of other components one can use estimates of E[Y 2
i |Xi]. Equation (16)

constitutes a nonparametric additive model. This model can be fitted e.g. by the smooth

backfitting approach of Mammen, Linton and Nielsen (1999). Smooth backfitting has been

used in Borak, Härdle, Mammen and Park (2007), Mammen, Støve and Tjøstheim (2008) and

Connor, Hagmann and Linton (2008) for models related to (15) to identify temporary and

individual effects, respectively, not captured by explanatory variables.
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6 Simulation

It is one of the particularly interesting features of our estimator that it allows to identify different

subpopulations within the overall population. Whereas our application will turn out to reveal

an unimodal population, in our simulation study we will consider a bimodal example and we

will focus on the estimators ability to recover and display a population generated by a mixture

of normals in a small sample. The details of our simulation study are as follows. For j = 1, 2,

we choose ξj to be bivariate normal, i.e., ξj v N (µj, Σ) , where µ1 = (−3,−3)′, µ2 = (3, 3)′, and

Σ =

[
2 1

1 2

]
. The overall population is composed to equal parts out of the two subpopulations,

i.e., β = I {θ ≥ 0} ξ1 + I {θ < 0} ξ2, and P {θ ≥ 0} = 0.5. The marginal distribution of the

bivariate β is as shown in figure 3.

beta1

be
ta

2

D
ensity

Figure 4: True Joint Density of β

We assume that α v N (0, 2) , and α ⊥ β. Moreover, the regressors X are N (0, 2.5Σ) , and
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(α, β) ⊥ X. The model is given by

Y = α + β1X1 + β2X2.

For n = 500, 1000, 2500 observations we calculate the average L2-error (ALE) of our estimator:

ALE =

{∫
[f̂β(b)− fβ(b)]2fβ(b) db

}1/2

.

This integral is calculated by Monte Carlo integration. The calculation is repeated 500 times.

The average of the values for the ALE gives an approximation for the mean average L2-error

(MALE):

MALE = E[ALE] = E

[{∫
[f̂β(b)− fβ(b)]2fβ(b) db

}1/2
]

.

We select the optimal bandwidths beforehand by doing a grid search with respect to finding the

vector of bandwidths that minimizes the MALE in 100 replications. Figure 4 shows contour

plots of the estimator f̂β for two quantiles of the distribution of ALE. More specifically, in

figure 4 we show the true DGP , i.e. fβ, as solid lines, while to give a feeling for a “good” and

a “poor” realization of the estimator, we display the realization whose ALE are at the 0.8 and

0.2 quantiles of the distribution of ALE, respectively.

To provide a comparison, we also analyze the behavior of an infeasible (“oracle”) estimator.

The oracle estimator makes direct use of the unobserved random coefficients βi and is given as

the kernel density estimator of fβ, i.e.

f̄β(b) = n−1

n∑
i=1

Kh(βi − b),

where Kh denotes a two dimensional product kernel, i.e. Kh(βs − b) = h−2K(h−1 (β1,s − b1))

K(h−1 (β2,s − b2)), and K denotes the Epanechnikov kernel. For both the RTE and the oracle

estimator, no higher order bias reduction (e.g., by higher order kernels or higher order local

polynomials) was employed so that the result are comparable from this perspective. For n =

1000 figure 5 shows the density of ALE of both, oracle and RT estimators.

As expected, the density of the ALE of the oracle estimator has most of its mass to the

left of the one of the RTE, and consequently the infeasible oracle estimator outperforms the

RT. However, the extend of the outperformance is tolerable: Both the median and the mean,

as well as many quantiles of the ALE distribution are approximately twice as large, while the

spread in the ALE is roughly comparable. To summarize how our results change with changing
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Figure 5: The RT Estimator with n = 1000 Observations. Realizations at 0.2 and 0.8 Quantile

(light grey) vs. True Model (solid)

sample size, consider the following table which contains the MALE at n = 500, 1000 and 2500.

Data Size n = 500 n = 1000 n = 2500

(I) Mean ALE Radon Transform Estimator 1.3431 0.8825 0.5769

(II) Mean ALE Oracle Estimator 0.6314 0.4420 0.3337

Ratio (I)/(II) 2.1272 1.9966 1.7288

Table 6.1: Comparison of MALE of

RTE and Oracle for different data size n.

Obviously, both estimators improve as n becomes larger, as can be seen from the first two rows.

But note that the relative inefficiency of the RTE compared to the Oracle increases implying

that as the data size increases, the behavior of our RTE estimator resembles more and more
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Figure 6: Densities of ALE for RT estimator and oracle estimator

that of an infeasible benchmark estimator.

Is this relative inefficiency compared with an infeasible optimum really severe in an applica-

tion? To assess this question and find possible explanations, consider the following figure (fig.

6) which shows a comparison of RTE and oracle estimator at the respective median ALE (in a

sense, a “typical” realization of the DGP).

Two things are apparent: First and unsurprisingly, the infeasible oracle estimator gives a

more accurate approximation to the true DGP. Second, with respect to the main features the

differences in quality of the fit are rather small. The main features, in particular the location

and height of the two peaks, are almost equally well captured. The only obvious difference

are the wiggles of the RT estimator in the tails of the distribution, which actually account for

a good part of the difference in the ALEs. It is important to note that these wiggles have
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Figure 7: Median ALE Realizations of Estimator of Density of Random Coefficient of RT (light

grey) vs. True Model (solid) and Oracle (light grey) vs. True Model (solid)

been less pronounced in models without intercept (not reported here). Consequently, they may

be understood as the small sample effects of limits in the identifiability of the distribution of

marginal effects.

But note also from both the graphical and the numerical evidence that the behavior of

the RTE is acceptable even for rather moderate data sizes, i.e. n = 500 or 1000. We conclude

that in this experiment the RTE works well with a data size commonly encountered in practice,

provided the researcher limits the analysis to models that do not have heterogeneity of marginal

effects in too many dimensions.
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7 Application to Consumer Demand for Food

In this section we focus on applying our kernel estimator to a real world application, as already

outlined in the introduction. Our motivation comes from consumer demand, and we use British

household data. The section will consist of three subsections: In the first, we give a short

motivation of our approach, and how it compares to similar work in the demand literature.

Then we will provide a data description and will discuss some related issues. Finally, we give

an overview about the results.

7.1 Unobserved Heterogeneity in Consumer Demand

For a long time unobserved heterogeneity has been a major issue in the demand literature.

This importance is driven by the data: For any given level of income and prices the observed

demand (expressed in budget shares) varies enormously across individuals. Correspondingly,

the R2 of cross regressions has been extremely low. As a consequence, the focus in the demand

literature has been on ways of modeling this unobserved heterogeneity.

In an important paper, Lewbel (2001) provides a framework for modeling heterogeneity

in consumer demand, see also related work by Hoderlein (2007). Lewbel (2001) discusses

also a case of importance for this paper, namely that of a heterogeneous linear (in his case,

almost ideal) population, but he does not propose any estimator for the distribution of random

coefficients. Our approach allows now to estimate the distribution of coefficients of a linear

model in a heterogeneous population. More specifically, we consider the model

Wi = αi + γT
i Pi + λi [Yi −H (Pi)] + δT Zi (17)

where Wi is the d-vector of budget shares, Pi is a d-vector of log prices and Yi denotes log

nominal income. H (Pi) is a log price index. For simplicity, we consider one good only, and

we take the standard shortcut and choose the log GDP deflator as H (Pi), so that Yi −H (Pi)

represents log real income. αi, λi and γi in turn are now random parameters that vary across the

population. To mitigate the curse of dimensionality, the coefficient on observable demographic

characteristics Zi have been made invariant across individuals. For these theoretical demand

functions homogeneity requires γi1d = 0.

Following Hoderlein and Lewbel (2006), we replace all prices other than the own price by a

single price index, and use their result that homogeneity still holds in the dimension reduced

regression5. Imposing the specification of Hoderlein and Lewbel, homogeneity of degree zero,

and applying partitioned regression, we obtain

Wi − L (Wi|Zi) = α̃i + βT
i [Xi − L (Xi|Zi)]

5Under certain not very restrictive conditions on the stochastic process of prices which we assume to be true.
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as estimating equation, where Xi = (X1i, X2i)
T = (Yi −H (Pi) , PF,i − PR,i)

T , PF,i denotes food

price, PR,i denotes the price index for the remainder, and α̃i contains remaining factors as

described in section 5.2. From this estimating equation we may determine in particular the

joint distribution of marginal income and uncompensated own price semi-elasticities.

The focus of our analysis is on the income elasticity, and the compensated own price elas-

ticity. These may be obtained by using the fact that εInc,i = βInc,i/Wi + 1, and εPF,i =

βFood,i/Wi− 1. Using the identifying independence assumption between coefficients and regres-

sors, one can obtain the joint density of elasticities by applying a transformation formula to

the estimators of fα̃β and fW .

7.2 The Data

Every year, the FES reports the income, expenditures, demographic composition and other

characteristics of about 7,000 households. The sample surveyed represents about 0.05% of

all households in the United Kingdom. The information is collected partly by interview and

partly by records. Records are kept by each household member, and include an itemized list

of expenditures during 14 consecutive days. The periods of data collection are evenly spread

out over the year. The information is then compiled and provides a repeated series of yearly

cross-sections.

The category of goods we consider is food related, and consists of the subcategories food

bought and catering, which are self explanatory. Together our food category accounts for

28% of expenditures on average. We removed outliers by excluding the upper and lower 2.5%

of the population. Income in demand is total expenditure under the assumption of additive

separability of the preferences. It is roughly defined as all (nominal) expenditures on nondurable

goods excluding some that are known to contain measurement error.

7.3 Results

When estimating our consumer demand model as defined by (17) with random coefficient by ap-

plying the RTE to the FES food data, we find the results as detailed in fig. 1 in the introduction

which shows an estimate of the joint distribution of the log real income and uncompensated own

price elasticities of food consumption. We control for the preference heterogeneity associated

with household observables in the following way: First, we stratify the population to obtain

a relatively homogeneous subpopulation, which is equivalent to controlling for the influence

of discrete controls nonparametrically. Like much of the demand literature we focus on one

subpopulation (namely two person households, both adults, at least one working and the head

of household a white collar worker), to minimize measurement error. For brevity of exposition,
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we do not report results controlling for endogeneity. However, we do control for the influence

of other characteristics by partitioning them out as described above.

The resulting elasticities were computed as detailed in section 5.2 and 7.2. As already

mentioned above, the contour plot displayed in fig. 1 suggests a clearly unimodal distribution,

which is skewed towards the southwestern corner. It is interesting to note that the own price

elasticities are more spread out than the income elasticities. Frequently, in applied demand

analysis price elasticities are only imprecisely estimated, and the results vary a lot according

to data and subpopulation considered. Though this was often attributed to insufficient price

variation, this graph suggests that it might be due to the large heterogeneity in price effects.

As already mentioned, it is impossible to assess whether there is a significant part of the

population showing positive own price elasticities without a formal test, but it appears to be at

least possible. With respect to other outlying low density areas as those at negative income and

own price elasticities, in light of the simulation evidence gathered one should caution against

over-interpreting these areas. Indeed, these areas correspond most likely again to wiggles, and

are not a genuine feature of the data.

What we would like to analyze in this section is the effect of specification on our results.

Even though an approximately linear structure of budget shares in income and prices is fre-

quently postulated, there may be obvious doubts whether the same truly holds in reality for all

individuals. Hence, we consider an alternative regression, namely one were we apply our model

to the relationship between log expenditure for food and the same covariables as in model (17),

and look whether our qualitative findings remain robust to the change in specification.

As a result of the application of our RTE we obtain again real income and uncompensated

own price elasticities of food consumption, see figure 7.

Several things are noteworthy. First, the results by and large agree with the findings of the

budget share specification. The income elasticities indicate again that food is a normal, but not

a luxury good for almost the entire population. Observe that the bulk of the income elasticities

are somewhat lower in this specification, which is more in line with parametric findings. Second,

the own price elasticities are mostly non-positive. However, again a potentially significant

fraction of the population displays non-rational behavior. Third, the price elasticities are

perhaps even more spread out than in the budget share specification, emphasizing our previous

point about very heterogeneous price effects. Fourth, there is again little correlation between

the two marginal effects, but note that there is some evidence of conditional heteroscedasticity,

as the distribution of income effects seems more spread out for individuals with low own price

elasticities.

In summary, both specifications produce qualitatively similar results, although some of

the details vary. Another interesting finding is obtained by comparison with the evidence
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Figure 8: Application of the RT Estimator to Demand for Food – Contour plot of Joint Density

of Elasticities, Dependent Variable log Food Expenditure

in the simulations. In the application, there is no evidence whatsoever of subpopulations.

Indeed, the population displays a lot of heterogeneity, but the coefficients vary smoothly across

the population with a clear maximum, but without much clustering. Though the existence

of “types” is frequently postulated in economic theory, the evidence gathered here suggests

otherwise for the case of food demand.

8 Summary and Outlook

The random coefficient model allows for a great deal of heterogeneity in marginal effects of

individual agents. In this paper we consider the linear random coefficient model that allows
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for a nonparametric treatment of this unobserved heterogeneity. We establish a nonparametric

identification relation for the underlying mixing distribution, and propose a structurally simple

sample counterpart estimator, which we call the Radon-Transform (RT) estimator. The large

sample behavior of the RT estimator is also obtained, and can be handled by arguments that

are standard in nonparametric smoothing. Through a simulation study, as well as through

an application to consumer demand, we establish that the RT estimator works well in data

sets commonly encountered in practice. Analyzing other areas of applied economics by the RT

method may also reveal interesting facts about rationality, about the existence of “types” or

about a variety of other potential questions which were not analyzed in this paper. Ultimately,

finding additional areas of application will determine whether this new view on the random

coefficient model will be successful.

Appendix I: Proofs

Preliminary Lemmas

We first compare f̂β with a theoretical estimator f̄β which is defined as f̂β, but with f̂S(Si)

replaced by fS(Si):

f̄β(b) =
1

n

n∑
i=1

1

fS(Si)
Kh

(
ST

i b− Ui

)
, b ∈ Rd. (18)

We now prove that these two estimators are asymptotically equivalent.

Lemma 4 Under the assumptions of Theorem 1 it holds that

f̄β(b)− f̂β(b) = oP

(
n−s/(2s+2d−1)

)
for b ∈ B, (19)∫

B

∣∣∣f̄β(b)− f̂β(b)
∣∣∣ db = oP

(
n−s/(2s+2d−1)

)
(20)

Proof. We only prove (19). Claim (18) follows by similar arguments. We have that

f̄β(b)− f̂β(b) =
1

n

n∑
i=1

∆(Si) Kh

(
ST

i b− Ui

)
.

with

∆(Si) =
1

fS(Si)
− 1

f̂S(Si)
.

We will show that

E
∣∣E [

Kh

(
ST

i b− Ui

) |Si

]∣∣ = O(1), (21)

sup
s∈Sd−1

E
[
Kh

(
ST

i b− Ui

)2 |Si = s
]

= O(h−2d+1). (22)
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The statement of the lemma immediately follows from these two claims. This can be seen by

using the decomposition

f̄β(b)− f̂β(b) =
1

n

n∑
i=1

∆(Si)
{
Kh

(
ST

i b− Ui

)− E [
Kh

(
ST

i b− Ui

) |Si

]}

+
1

n

n∑
i=1

∆(Si)E
[
Kh

(
ST

i b− Ui

) |Si

]
.

The second term can be easily bounded by using (21) and

max
1≤i≤n

|∆(Si)| = oP

(
n−s/(2s+d−1)

)
. (23)

Equation (23) follows from assumptions (A3) and (A4); the convergence of max1≤i≤n(f̂S(Si)−
fS(Si)) with the rate oP (n−s/(2s+d−1)) follows from assumption (A3) and the fact maxi=1,...,n

1

f̂S(Si)
=

OP (1) follows from assumption (A4) and Stute (1984). The first term can be bounded by using

(22) and (23).

We now show claim (21). For fixed s ∈ Sd−1, denote with R̃fβ(s, t) the Fourier transform

of u 7→ Rfβ(s, u) and with f̃U |S(t|s) the Fourier transform of u 7→ fU |S(u|s). We have that

R̃fβ(s, t) = f̃β(ts), t ∈ R, (24)

because of

R̃fβ(s, t) = E[exp(itU)|S = s] = E[exp(itsT β)|S = s] = E[exp(itsT β)] = f̃β(ts).

Equation (24) is also called the projection theorem, see Natterer (2001). For fixed s ∈ Sd−1

and fixed z ∈ Rd the Fourier transform of u 7→ Kh(s
T z − u) is

t 7→ K̃h(t) exp{−itsT z}.

Thus, for fixed s ∈ Sd−1 and fixed z ∈ Rd,

E
[
Kh

(
ST

i z − Ui

) |Si = s
]

(25)

=

∫ ∞

−∞
Kh(s

T z − u)Rfβ(s, u) du

= (2π)−1

∫ ∞

−∞
K̃h(t) exp{−itsT z}R̃fβ(s, t) dt

= (2π)−1 1

2
(2π)−d+1

∫ ∞

−∞
|t|d−1L(h|t|) exp{−itsT z}f̃β(ts) dt.

This implies

E
∣∣E [

Kh

(
ST

i b− Ui

) |Si

]∣∣
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= 2(2π)−1 1

2
(2π)−d+1

∫

Sd−1

fS(s)dµ(s)

∣∣∣∣
∫ ∞

0

td−1L(ht) exp{−itsT b}f̃β(ts) dt

∣∣∣∣

≤
∫

Rd

L(h‖ω‖)
∣∣∣f̃β(ω)

∣∣∣ dω O(1)

≤ (2π)−d

∫

Rd

∣∣∣f̃β(ω)
∣∣∣ dω O(1) = O(1).

This shows claim (21).

For the proof of claim (22) note that uniformly for s ∈ Sd−1, b ∈ B

E
[
Kh

(
ST

i b− Ui

)2 |Si = s
]

=

∫ ∞

−∞
K2

h(u) du O(1) (26)

=

∫ ∞

−∞
|t|2d−2L2(h|t|) dt O(1) = O(h−2d+1).

Here we have used that fU |S is bounded because we assumed in (A2) that the density fβ of β

is bounded with bounded support, and fU |S is written in (3) as a Radon transform of fβ. This

shows claim (22). ¤

Proof of Theorem 1

Because of Lemma 4 it suffices to prove the theorem for the estimator f̄β defined in (18).

Theorem 1 follows from Lemma 5 and Lemma 7 given below. Lemma 5 states a bound for the

bias of f̄β.

Lemma 5 Under the assumptions of Theorem 1 it holds that,

‖Ef̄β − fβ‖2
2 ≤ ρs(fβ)2h2s.

Proof. Using (3) we get for b ∈ Rd,

Ef̄β(b) =
1

n

n∑
i=1

E
(

1

fS(Si)
E

[
Kh

(
ST

i b− Ui

) |Si

])

=
1

n

n∑
i=1

E
(

1

fS(Si)

∫ ∞

−∞
Kh(S

T
i b− u)Rfβ(Si, u) du

)

= AhRfβ(b),

with Ah defined in (4). The lemma follows by application of the following lemma. ¤

Lemma 6 For a function f ∈ L2(R
d) and for the operator Ah defined with s ≤ r ≤ ∞ in (6)

it holds that

‖AhRf − f‖2
2 ≤ h2sρs(f)2.
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Proof. Proceeding as in (25) we get that for fixed s ∈ Sd−1 and fixed b ∈ Rd,
∫ ∞

−∞
Kh(s

T z − u)Rf(s, u) du

= (2π)−1

∫ ∞

−∞
K̃h(t) exp{−itsT z}R̃f(s, t) dt

=
1

2
(2π)−d

∫ ∞

−∞
|t|d−1L(h|t|) exp{−itsT z}f̃(ts) dt.

Thus,

AhRf(b) = (2π)−d

∫

Sd−1

dµ(s)

∫ ∞

0

td−1L(ht) exp{−itsT b}f̃(ts) dt

= (2π)−d

∫

Rd

L(h‖ω‖) exp{−ibT ω}f̃(ω) dω.

This implies:

AhRf(b)− f(b) = (2π)−d

∫

Rd

[L(h‖ω‖)− 1] f̃(ω) exp{−ibT ω} dω. (27)

We have that

|L(‖hω‖)− 1| ≤
{
‖hω‖s, when ‖hω‖ ≤ 1,

1, when ‖hω‖ ≥ 1.

This gives |L(‖hω‖)− 1| ≤ ‖hω‖s and thus,

‖AhRf(b)− f‖2
2 = (2π)−d

∫

Rd

[L(h‖ω‖)− 1]2
∣∣∣f̃(ω)

∣∣∣
2

dω.

≤ (2π)−d

∫

Rd

‖hω‖2s
∣∣∣f̃β(ω)

∣∣∣
2

dω

≤ h2sρs(f)2.

We have proved the lemma. ¤
We now prove a bound for the variance of f̄β.

Lemma 7 Under the assumptions of Theorem 1 it holds that
∫

Rd

Var
(
f̄β

) ≤ Cn−1h−2d+1,

for a positive constant C.

Proof. We have that for b ∈ Rd (see also (26)),

Var
(
f̄β(b)

) ≤ n−2

n∑
i=1

E
(

1

fS(Si)2
E

[
Kh

(
ST

i b− Ui

)2 |Si

])

= n−1

∫

Sd−1

dµ(s)
1

fS(s)

∫ ∞

−∞
K2

h(sT b− u)Rfβ(s, u) du
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≤ n−1CSmes(A)Cβµ(Sd−1)

∫ ∞

−∞
K2

h(u) du

= n−1CSmes(A)Cβµ(Sd−1)

(2π)−d 1

4
(2π)−2d+2

∫ ∞

−∞
|t|2(d−1)L2(h|t|) dt,

where mes(A) is the Lebesgue measure of A: mes(A) =
∫

A
dx, and as above C−1

S = infs fS(s)

and Cβ = sups,u Rfβ(s, u). We have proved the lemma. ¤

Proof of Theorem 2 and Remark 6

Asymptotic normality of f̂β immediately follows from the fact that

ns/(2s+2d−1)n−1 sup
u
|Kh(u)| = O

(
n(−s−d+1)/(2s+2d−1)

)
= o(1).

The variance σn(b)2 can be calculated as in Lemma 7. The bound on σn(b)2 follows by trivial

calculations. The bias term biasn(b) can be calculated by using (27). Its expansion in Remark

6 follows from

(2π)−d

∫

Rd

[L(h‖ω‖)− 1] f̃β(ω) exp{−ibT ω} dω

= (2π)−d

∫

Rd

(h‖ω‖)2f̃β(ω) exp{−ibT ω} dω

−(2π)−d

∫

(h‖ω‖)2≥1

[
1 + (h‖ω‖)2

]
f̃β(ω) exp{−ibT ω} dω.

The first summand is equal to

h2

d∑
j=1

∂2

(∂bj)2
fβ(b).

The second summand can be absolutely bounded by

(2π)−d

∫

(h‖ω‖)2≥1

[
1 + (h‖ω‖)2

] ∣∣∣f̃β(ω)
∣∣∣ dω

≤ h2(2π)−d

∫

‖ω‖2≥h−2

2‖ω‖2
∣∣∣f̃β(ω)

∣∣∣ dω.

This of order o(h2) because we had assumed that ‖ω‖2
∣∣∣f̃β(ω)

∣∣∣ is integrable. ¤

Proof of Theorem 3

We shortly discuss the bias of the modified estimator f̄ τ
β , where

f̄ τ
β (b) =

1

n

n∑
i=1

1

fS(Si)
Kh

(
ST

i b− Ui

)
ISd−1\Cτ (Si), b ∈ Rd.

The variance can be analyzed as in Lemma 7 and for the remaining proof of Theorem 3 one

can proceed as in the proof of Theorem 1.
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Lemma 8 Under the assumptions of Theorem 3 it holds that

∥∥Ef̄ τ
β − fβ

∥∥2

2
≤ 2ρ2(fβ)2h4 + 2‖νh,τ‖2

2,

where Cτ is the band defined in (13) and where Dτ has been defined in the statement of Theo-

rem 3.

Proof. We have that for z ∈ Rd,

Ef̄ τ
β (z)

=
1

n

n∑
i=1

E
(

1

fS(Si)
E

[
Kh

(
ST

i z − Ui

) |Si

]
ISd−1\Cτ (Si)

)

=
1

n

n∑
i=1

E
(

1

fS(Si)

∫ ∞

−∞
Kh(S

T
i z − u)Rfβ(Si, u) du ISd−1\Cτ (Si)

)

= Bh,τRfβ(z),

where

(Bh,τg)(z) =

∫

Sd−1\Cτ

dµ(s)

∫ ∞

−∞
Kh(s

T z − u)g(s, u) du, z ∈ Rd

for functions g : Sd−1 ×R → R. Thus,

Bh,τRfβ(z) = 2(2π)−1 1

2
(2π)−d+1

∫

Sd−1\Cτ

dµ(s)

∫ ∞

0

td−1L(ht) exp{−itsT ω}f̃β(ts) dt

= (2π)−d

∫

Rd\Dτ

L(h‖ω‖) exp{−izT ω}f̃β(ω) dω

= νh,τ (z) + AhRfβ(z),

where Ah is defined as in (4). Proceeding as in the proof of Lemma 5 we get the statement of

the lemma. ¤
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A Convergence rates for the spherical kernel estimator

We derive the rates of convergence in the sup-norm of the spherical kernel density estimator f̂S,

defined in (9). In the Euclidean case corresponding results have been proved by Ibragimov and
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Hasminskii (1981) and Devroye and Györfi (1985). We make the bias-variance decomposition:

sup
ξ∈Sd−1

∣∣∣f̂S(ξ)− fS(ξ)
∣∣∣ ≤ sup

ξ∈Sd−1

∣∣∣Ef̂S(ξ)− fS(ξ)
∣∣∣ + sup

ξ∈Sd−1

∣∣∣f̂S(ξ)− Ef̂S(ξ)
∣∣∣ ,

where fS : Sd−1 → R is the unknown true density of an i.i.d. sample S1, . . . , Sn ∈ Sd−1 on the

sphere Sd−1.

We can write

sup
ξ∈Sd−1

∣∣∣f̂S(ξ)− Ef̂S(ξ)
∣∣∣ = sup

h∈H
|νn(h)|,

where νn(h) is the centered empirical operator

νn(h) =
1

n

n∑
i=1

(h(Si)− Eh(Si))

and

H =
{
h(u) = c(g)G

(
g−2(1− sT u)

)
: s ∈ Sd−1

}
.

Using the same arguments as in the proof of Theorem 3.1 in Stute (1984) we get that

sup
h∈H

|νn(h)| = Op

(√
log g−1

ngd−1

)
. (28)

See also Giné and Guillou (2002) for more recent results. Stute (1984) assumes that the density

is bounded away from zero on its compact support but Giné and Guillou (2002) assume more

generally that H is a VC-class. A sufficient condition for the kernel is continuity and finite

variation.

Turning to the bias term, we can prove that

sup
ξ∈Sd−1

∣∣∣Ef̂S(ξ)− fS(ξ)
∣∣∣ = O(gσ) (29)

where σ ≥ 2 is even. The proof is similar to the proof of Theorem 3.7 in Klemelä (2000).

See also Hall, Watson, and Cabrera (1987), who consider the case σ = 2. Theorem 3.7 in

Klemelä (2000) considers Lp risks for 1 ≤ p < ∞, but the proof is based on a pointwise

expansion of a convolution, and thus it can be applied also for the L∞-norm. The smoothness

assumptions in Theorem 3.7 of Klemelä (2000) are stated in terms of the iterated Laplacian

of fS. In addition, one needs certain assumptions on the kernel G. Specifically, we need to

assume that G is a kernel of order σ. Denote αi(G) =
∫∞

0
t(i+d−2)/2G(t) dt, where i ≥ 0. We

need to choose G : [0,∞) → R in such a way that αi(|G|) < ∞ for i = 0, σ, α0(G) 6= 0, and∫ g−2

0
t(2i+d−2)/2G(t) dt = o(gσ−2i) for i = 1, . . . , σ/2− 1. Note that unlike in the Euclidean case

we do not need to assume that the “odd moments” of the kernel vanishes, because due to the

properties of derivation on the sphere, the derivatives of odd order vanish. Choosing

g = n−1/(2σ+d−1)
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and combining (28) and (29) we get

sup
ξ∈Sd−1

∣∣∣f̂S(ξ)− fS(ξ)
∣∣∣ = OP

(√
log nn−σ/(2σ+d−1)

)
.

In our setting the spherical density fS is the density of S = X/‖X‖, where X ∈ Rd is a

Euclidean random vector. The density fS is obtained by radial integration from the density

fX . Thus, the smoothness of fX implies the smoothness of fS. For example, if X is Gaussian,

then fS has the required smoothness for any even σ.
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