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Abstract— In this paper we present a structure theory for
generalized linear dynamic factor models (GDFM’s). Emphasis
is laid on the so-called zeroless case. GDFM’s provide a way of
overcoming the “curse of dimensionality” plaguing multivariate
time series modelling, provided that the single time series are
similar. They are used in modelling and forecasting for financial
and macroeconomic time series.

I. INTRODUCTION

Factor analysis has been developed by psychologists for
measurement of intelligence in the beginning of the twentieth
century. In particular Burt and Spearman [1], observing that
in tests of mental ability of a person, the scores on different
items tended to be correlated, developed the hypothesis of a
common latent factor, called general intelligence.

The “classical” static factor model is of the form

yt = `0zt + ut, `0 ∈ RN×r (1)

where yt is the N -dimensional vector of observations, zt
is the r < N dimensional vector of (in general unobserved)
factors and ut is the strictly idiosyncratic noise, meaning that
Eutu

′
t is diagonal. In the classical case the factors and the

noise are independently and identically distributed in t and
factors and noise are uncorrelated. The variable ŷt = `0zt is
called the vector of latent variables.

The basic idea of factor models is to split the observations
into two parts; in the first part the comovement between
the components of the observations is compressed into a
small number of factors and in the second part the individual
movements in the observations are described by uncorrelated
noise components.

In a number of cases, the assumption of uncorrelatedness
of the noise components is too restrictive. Generalized linear
static factor models, where a certain form of “weak” corre-
lation beween the noise components is allowed, have been
introduced in [2], [3]. Here, “weak” means that the noise
components can be averaged out, or, in other words, since
the concept was motivated by applications in finance, that
noise is the component of the observations which can be
completely diversified.

In linear dynamic factor models, the latent variables can
be expressed as a linear dynamic transformation of factors.

Generalized linear dynamic factor models (GDFM’s) have
been introduced in [4], [5], and, in a slightly different form,
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in [6], [7]. The idea is to generalize and combine linear
dynamic factor models with strictly idiosyncratic noise (in
the sense that the noise components are uncorrelated at any
lead and lag) as analyzed in [8] and [9] and generalized
linear static factor models. Factor models in a time series
setting may be used to compress information contained in
the data in both the cross-sectional dimension N and in the
time dimension T . In this way it is possible to overcome the
“curse of dimensionality” plaguing traditional multivariate
time series modeling, where e.g. in the (unrestricted) au-
toregressive case, the dimension of the parameter space is
proportional to N2, whereas the number of data points is
linear in N . The price to be paid for overcoming this curse
of dimensionality is to require a certain kind of similarity
between the component processes. An important idea in this
context is to collect further information not only by adding
data in the time dimension, but also by adding similar time
series. The situation is not symmetric in the time and the
cross-sectional dimension. For the time dimension we impose
stationarity, for the cross-sectional dimension similarity or
comovement of the single time series, in the sense that they
are driven by a small number of common factors, has to be
assumed.

Dynamic factor models are used for forecasting (see, e.g.
[10], [11]); their advantage is that (in a certain setting)
the problem can be reduced to forecasting low dimensional
factors. Of course, factor models are also used for analysis
(see, e.g. [12]), one aspect being that the factors may be
interpreted e.g. as certain shocks to the economy or in
financial applications as “market forces”, whereas noise
represents individual influences.

The basic idea of GDFM’s is that the N -dimensional
observation at time t, yNt say, can be represented as

yNt = ŷNt + uNt (2)

where (ŷNt ) is the process of latent variables, which are
strongly dependent in the cross-sectional dimension, and
where (uNt ) is the wide sense idiosyncratic noise, i.e. (uNt )
is weakly dependent in the cross-sectional dimension. The
precise meaning of these terms is given in Assumptions 4
and 5 below. For reasons which will be made clear below,
we have added the superscript N . Throughout we assume

EŷNt = EuNt = 0 ∀t (3)

EŷNt u
N
s

′
= 0 ∀s, t (4)

and that (ŷNt ) and (uNt ) are wide sense stationary with
absolutely summable covariances. Thus, using an obvious
notation for the spectral densities corresponding to (2), we



obtain
fNy (λ) = fNŷ (λ) + fNu (λ). (5)

For dynamic factor models, the latent variables are obtained
from

ŷNt = `N (z)ft (6)

where ft are q-dimensional factors (with, normally, N much
larger than q) and

`N (z) =
∞∑

j=−∞
`Nj z

j ; `Nj ∈ RN×q (7)

are the factor loadings. Throughout, z is used for a complex
variable as well as for the backward shift on Z.

Parametric models have a number of advantages. We
assume:

Assumption 1: fNŷ is a rational spectral density with con-
stant rank q < N on [−π, π].
Since we are considering high dimensional time series, for
asymptotic analysis, not only sample size T , but also the
cross-sectional dimension N is tending to infinity; thus
we consider a doubly indexed stochastic process (yit | i ∈
N, t ∈ Z), where i is the cross-sectional index and t denotes
time. Therefore we consider a sequence of GDFM’s (2). We
assume:

Assumption 2: The double sequence (yit | i ∈ N, t ∈ Z)
corresponds to a nested sequence of models, in the sense that
ŷit and uit do not depend on N for i ≤ N .

Assumption 3: The rank q and the McMillan degree, 2n
say, of fNŷ are independent of N (from a certain N onwards).

The first part of assumption 3 is achieved by assuming
that the factors in (6) do not depend on N .

Next, we define weak and strong dependence as in [5].
We use e.g. ωNu,r for the r-th largest eigenvalue of fNu .

Assumption 4 (Weak dependence): ωNu,1(λ) is uniformly
bounded in λ and N .

Assumption 5 (Strong dependence): The first q eigenval-
ues of fNŷ diverge to infinity for all frequencies, as N →∞.

Contrary to the strict idiosyncratic case, generalized factor
models are not generically identifiable for any fixed N , no
matter how large. However, as has been shown in [5], the
elements of ŷNt (and thus of uNt ) are uniquely determined
from (yNt ) for N →∞. Moreover, consider the sequence of
dynamic principal component decompositions (PCAs)

fNy (λ) = ON1 (e−iλ)ΩN1 (λ)ON1 (e−iλ)∗ (8)

+ON2 (e−iλ)ΩN2 (λ)ON2 (e−iλ)∗

where ΩN1 is the q × q diagonal matrix consisting of the
q largest eigenvalues of fNy ordered according to size on
its diagonal and ON1 is the matrix whose columns are the
corresponding eigenvectors and where the second part on the
right hand side of the above equation is defined analogously
for the smallest eigenvalues. Here, e.g. ON1 (z)∗ denotes
ON1 (z−1)′. As has been shown in [5], such a sequence of
PCAs for N →∞ converges to the corresponding GDFM’s
in the sense that e.g. the scalar components of the latent PCA
variables ŷNPCA,t = O1(z)O∗1(z)yt converge to the respective

scalar components of ŷNt . From now on, for the sake of
simplicity of notation, we will omit the superscript N , unless
the contrary is stated explicitly.

In general terms, in this paper we are concerned with
the structure of GDFM’s where the latent variables have a
singular rational spectral density, using and further develop-
ing results from system theory. This structure is useful for
gaining insight and, even more, for subsequent estimation.
Our ultimate goal is to obtain a model for the latent variables
ŷt from the observations yt, without estimating the noise
parameters.

In a first step we consider an idealized problem; we
commence from the rational and singular population spectral
density of the latent variables, rather than from observed data
or the corresponding sample second moments. A state space
realization for a spectral factor of such a spectral density is
given and the notions of minimal static factors and minimal
dynamic factors and their relation to the state are clarified.

Our emphasis is on the zeroless case, which in our setting
is generic. In this case the latent variables as well as the
minimal static factors are autoregressive processes. However,
if the dimension of the minimal static factors exceeds the
dimension of the minimal dynamic factors, the autoregressive
processes are non standard, since their driving white noise
has a singular variance matrix. Since the relation between
latent variables and static factors is static and straightforward
to determine, we may restrict ourselves to modeling of the
static factors. An algorithm based on Yule-Walker equations
is proposed. In our setting the solution of the Yule-Walker
equations is not necessarily unique. In any case, only a finite
number of population covariances of the latent variables are
needed for realizing the system.

In section IV we discuss the relevance for actual esti-
mation, of the results obtained for the idealized setting. By
letting the cross sectional dimension N and the sample size
T diverge to infinity, the effects of the weakly idiosyncratic
noise on the latent variables can be filtered out and the
sample second moments of the observations converge to
the population second moments of the latent variables. One
way to show this is to use PCA for estimating the minimal
static factors and their second moments. To the best of our
knowledge this approach is novel.

II. SPECTRAL FACTORIZATION OF SINGULAR
RATIONAL SPECTRAL DENSITIES AND

REALIZATION OF TALL TRANSFER FUNCTIONS

As has been stated above, here, dealing with an idealized
setting, we commence from the rational, singular population
spectral density of the latent variables, rather than directly
from the data or their sample second moments, in order
to find the underlying system generating the latent vari-
ables. The special feature here is that the spectral density
is singular, thus we can find a tall spectral factor. The
stable and minimum phase factor considered is the transfer
function corresponding to Wold decomposition. In this Wold
decomposition the white noise inputs are at the same time
dynamic factors.



After having obtained such a transfer function, we discuss
its realization as an ARMA or state space system. The
particular form of the state space representation used in this
paper provides valuable insights. We show how static factors
and the state can be obtained using the so-called Hankel
matrix of the transfer function.

Theorem 1: Every rational spectral density fŷ of constant
rank q for all λ ∈ [−π, π] can be factorized as

fŷ(λ) =
1

2π
w(e−iλ)w(e−iλ)∗ (9)

where w(z) is a N × q real rational matrix which has no
poles and no zeros for |z| ≤ 1.
In addition, it is easy to show that w(z) is unique up to
postmultiplication by orthogonal matrices.

The spectral factors

w(z) =
∞∑
j=0

wjz
j , wj ∈ RN×q (10)

correspond to a causal linear finite dimensional system

ŷt =
∞∑
j=0

wjεt−j (11)

where the inputs (εt) are white noise with Eεtε
′
t = 2πIq .

Let us repeat, our particular focus will be on the case where
w is tall, i.e. N > q holds.

The Smith-McMillan form of w(z) is given by

w = udv (12)

where u and v are unimodular (i.e. polynomial with constant
nonzero determinant) and d is an N×q rational matrix whose
top q×q block is diagonal with diagonal elements ni

di
where

di and ni are coprime, monic polynomials and di+1 divides
di and ni divides ni+1. All other elements of d are zero.
The matrix d is unique for given w and the zeros of w are
the zeros of the ni and the poles of w are the zeros of the
di.

For N > q, w has no unique left inverse, not even a unique
causal left inverse. We define a particular left inverse by

w− = v−1(d′d)−1d′u−1 (13)

As is easily seen, w− has no poles and no zeros for |z| ≤ 1.
As is also easily seen, for given w, the input εt in (11) is
uniquely determined, independently of the particular choice
of the causal inverse from ŷt, ŷt−1, . . . ; thus (11) corresponds
to Wold decomposition (see, e.g. [13]).

Every rational causal transfer function can be realized by
an ARMA system, by a right MFD or by a state space
system. Let us start with ARMA systems:

a(z)ŷt = b(z)εt. (14)

We assume that (a, b) are left coprime (see e.g. [13]), then
the set of all observationally equivalent left coprime ARMA
systems is obtained as (ua, ub) where u is an arbitrary
unimodular matrix.

The conditions on the poles and zeros of the transfer
function w = a−1b are, for left coprime a, b, equivalent to

det a(z) 6= 0, |z| ≤ 1 (15)

and
b(z) has full rank q, |z| ≤ 1. (16)

A right matrix fraction description (MFD)

w = dc−1 (17)

where d and c are polynomial matrices of appropriate di-
mension, corresponds to an AR process applied to a finite
impulse response and has been used in [5].

We consider state space realizations of w of the form

xt+1 = Fxt +Gεt+1 (18)
ŷt = Hxt (19)

where xt is the n-dimensional state and F ∈ Rn×n, G ∈
Rn×q , H ∈ RN×n. Note that the state space form (18)–
(19) is different from the form considered in [13]; we have
chosen this form because of its convenience for our purposes.
The basic ideas and concepts are completely analogous to the
usual form. We assume that the system is minimal and stable,
the latter meaning that

|λmax(F )| < 1 (20)

(where λmax(F ) denotes an eigenvalue of maximum modu-
lus). The transfer function for (18)–(19) is given by

w(z) = HG+
∞∑
j=1

HF jGzj . (21)

Note that rk(HG) = q implies rkG = q. If (F,G,H) is
minimal, then the transfer function w has a zero for some
z0 if and only if the matrix

M(z) =
(
I − Fz −G
H 0

)
(22)

has rank less than n + q at z0 [14]. The form (18)–(19) is
obtained by the “Akaike-Kalman procedure” [15] from the
equation

ŷt
ŷt+1|t
ŷt+2|t

...


︸ ︷︷ ︸

Ŷt

=


w0 w1 · · ·
w1 w2 · · ·
w2 w3 · · ·
...

...
. . .


︸ ︷︷ ︸

H

 εt
εt−1

...

 (23)

where ŷt+r|t denotes the (best linear least squares) predictor
of ŷt+r given the infinite past ŷt, ŷt−1, . . . . The matrix H is
called the Hankel matrix of the transfer function. As is well
known, every basis for the (finite dimensional) space spanned
by the (one-dimensional) components of Ŷt in the Hilbert
space of all square integrable random variables, defines a
minimal state. Let S ∈ Rn×∞ denote the matrix selecting



the first basis in terms of the components of Ŷt from Ŷt.
Then the equations

xt = SŶt (24)

S

 w1 w2 · · ·
w2 w3 · · ·
...

...
. . .

 = FSH (25)

G = S (w′0, w
′
1, . . . )

′ (26)
(w0, w1, . . . ) = HSH (27)

(compare [16]) define a (minimal) state space system (18)–
(19) in echelon form. From now on, we mainly consider
echelon forms. Every other minimal state is obtained by
premultiplying the echelon state by a constant nonsingular
matrix.

From (19) we see that xt is a static factor. Note that the
variance matrix of a minimal state is always nonsingular.
The state xt is not necessarily a minimal static factor, i.e. a
static factor of minimal dimension. The state xt is a minimal
static factor if and only if rkH = n holds, otherwise (in case
that xt is not an echelon state, after premultiplying xt with
a suitable matrix) we obtain

ŷt = (H1, 0)xt = H1zt (28)

where zt is a, r-dimensional say, minimal static factor and
rkH1 = r holds.

The system

H =



1 0 0
0 0 1
1 0 0
0 0 1
...

...
...

1 0 0
0 0 1


, F =

 0 1 0
0 0 1
0 0 0

 , G =

 0
0
1



(29)
is an example of a minimal system where q = 1, n = 3 and
the dimension of a minimal static factor is r = 2 < 3.

In general we always have n ≥ r ≥ q. From what was said
above, a minimal static factor can be obtained by selecting
the first linear independent components from ŷt and n = r
holds if and only if ŷt+1|t, ŷt+2|t, . . . do not contain further
linearly independent components. Thus, in general, we may
write

S =
(
S1

S2

)
, S1 ∈ Rr×∞, S2 ∈ R(n−r)×∞ (30)

where
zt = S1Ŷt. (31)

(in other words xt is a minimal static factor if and only if
all Kronecker indices of H (see [13], chapter 2) are equal
to zero or one and the Kronecker indices equal to one define
the static factor.)

For given (ŷt), the minimal static factors are unique up
to premultiplication by a constant nonsingular matrix and a
static factor may be obtained from

Eŷtŷ
′
t = MM ′,M ∈ RN×r, rkM = r (32)

by
zt = (M ′M)−1M ′ŷt. (33)

Thus the static factors zt are obtained by a simple static linear
transformation of the latent variables ŷt (and vice versa). We
have

zt = (M ′M)−1M ′w(z)εt = k(z)εt (34)

where k(z) is the transfer function corresponding to the static
factors.

III. ZEROLESS TRANSFER FUNCTIONS AND
AUTOREGRESSIVE SYSTEMS

Of particular interest for us are zeroless transfer functions.
In this case the latent variables may be represented by an AR
system. However, these AR systems differ from the usual
ones, since they may be singular in the sense that their
driving white noise may have a singular variance matrix.

In this case, the static factors may be represented by an
autoregression, again the variance matix of the driving white
noise may be singular. Since the latent variables can be
obtained from the static factors in a straightforward way
by a linear static transformation, we propose to use an AR
model for the static factors in order to avoid “redundant”
dimensions. Such an AR model is obtained by solving the
Yule-Walker equations. These equations commence from a
finite number of second moments of the static factors (and of
the latent variables) and they give the correct spectral factors.
As opposed to the usual case, for singular AR systems, the
solutions of the Yule-Walker equations may not be unique.

Definition 1: An N × q transfer function w(z) is called
zeroless if w(z) has full column rank q for all z ∈ C.

For N = q, the zeroless case is nongeneric; in the tall
case however, the zeroless case is generic. We have ([17]):

Theorem 2: Consider a rational transfer function w with a
minimal state space realization (F,G,H) with state dimen-
sion n. If N > q holds, then for generic values of (F,G,H),
the transfer function w is zeroless.

This can be seen from the fact that the zeros of w are the
intersection of the sets of zeros of the determinants of all
q × q submatrices of w. A more precise proof is given in
[17]. In the zeroless case, the numerator polynomials ni of
d in (12) are all equal to one and thus w− given by (13)
is polynomial. Then the input εt is determined from a finite
number of outputs ŷt, ŷt−1, . . . , ŷt−L, for some L.

Note that rkH = n implies that w is zeroless. This is
easily seen from (22) since always rkG = q holds. However,
as the example in the previous section shows, for zeroless
transfer functions rkH < n may hold; in other words,
assuming that w(z) is zeroless is more general than assuming
rkH = n. The case where w is not necessarily zeroless has
been treated in [18], [19], [20].

Theorem 3: Let (ŷt) satisfy Assumptions 1 through 5,
then the following statements are equivalent:
(i) The spectral factors w satisfying the properties listed in

Theorem 1 are zeroless
(ii) There exists a polynomial left inverse w− for w



(iii) (ŷt) is a stable AR process, i.e.

ŷt = a1ŷt−1 + · · ·+ apŷt−p + νt, (35)

aj ∈ RN×N , Eνt = 0, Eνsνt = δstΣν

where

det(I − a1z − · · · − apzp) 6= 0, |z| ≤ 1

and rk Σν = q.
Proof: (i) ⇒ (ii) has been shown above. For showing

(i) ⇒ (iii), we commence from (14); since w is zeroless,
the same holds for b. Now, as easily seen, every tall zeroless
matrix can be completed by a suitable choice of a polynomial
matrix c to a unimodular matrix u = (b, c). Then

a(z)ŷt = u(z)
(
εt
0

)
and

u−1(z)a(z)ŷt =
(
εt
0

)
= νt (36)

gives an autoregressive representation.
That (ii) implies (i) is straightforward and that (iii) implies

(ii) can be seen as follows: Write

Σν = NN ′, N ∈ RN×q, rkN = q (37)

then premultiplying (35) by (N ′N)−1N ′ yields a w− of the
desired form.

Let zt = k(z)εt denote a minimal static factor. Then as
a direct consequence of (33), k(z) is zeroless if and only
if w(z) is zeroless. Thus, in the zeroless case, (zt) has an
autoregressive representation as well:

b(z)zt = µt (38)

b(z) = I − b1z − · · · − bpzp, bj ∈ Rr×r

satisfying
b(z) 6= 0, |z| ≤ 1 (39)

and where (µt) is white noise satisfying

rk Σµ = rkEztz′t = q. (40)

To repeat, since the latent variables are obtained by a simple
static linear transformation from the static factors and since
the dimension r of the minimal static factors is in general
much smaller than N , estimation will be performed for (38)
rather than for (35).

As is well known, in the regular case, i.e. when Σµ is
nonsingular, the matrices

Γp =


γ0 · · · · · · γ′p−1
... γ0

...
...

. . .
...

γp−1 · · · · · · γ0

 , (41)

where γj = Ezt+jz
′
t, are nonsingular for all p ∈ N and b(z)

is uniquely defined from the (population) second moments
of (zt). For singular AR systems, things are more subtle.

In the zeroless case, Yule-Walker equations can be used to
obtain an autoregression for (zt) and thus a spectral factor
w from a finite number of covariances of (ŷt):

Equation (38) gives the following Yule-Walker equations:

(b1, . . . , bp)Γ′p = (0, . . . , 0) (42)

Σµ = γ0 − (b1, . . . , bp)(γ′1, . . . , γ
′
p) (43)

Formula (42) may be used to determine (b1, . . . , bp). Note
that in the case q < r, as opposed to the regular case
r = q, the matrix Γ′p+1 will be singular and the matrix
Γp may be singular, i.e. the components of the vectors
(z′t−1, . . . , z

′
t−p−1)′ and (z′t−1, . . . , z

′
t−p)

′ will, or may be,
respectively, linearly dependent and thus the solution may
not be unique. However, by the projection theorem, every
solution determines the same zt|t−1 and µt.

The possible nonuniqueness of the Yule-Walker equations
can be seen from a description of the class of observationally
equivalent systems. The idea is to relate the singular AR case
to the ARMA case (see [13]). We obtain the following result
(by δ(b(z)) we denote the degree of the polynomial matrix
b(z)):

Theorem 4: (i) Every singular AR system with rk Σµ =
q can be written as

b(z)zt = cεt, c ∈ Rr×q (44)

where (εt) is white noise with Eεtε
′
t = Iq and where

b(z) and c are relatively left prime.
(ii) Let (44) be relatively left prime, then the class of all

observationally equivalent (b̄(z), c̄) satisfying the degree
restriction δ(b̄(z)) ≤ p and that c̄ is constant, is given
by (

b̄(z), c̄
)

= u(z)(b(z), c) (45)

where the polynomial matrix u(z) satisfies

detu(z) 6= 0, |z| ≤ 1 (46)
u(0) = I (47)

δ(u(z)b(z)) ≤ p (48)
δ(u(z)c) = 0 (49)

In addition, (b̄(z), c̄) is relatively left prime if and only
if u(z) is unimodular.

(iii) b(z) is unique if and only if rk(bp, c) = r holds.
Proof: For (i) it only remains to show that (b(z), c) can

be chosen as relatively left prime. Assume that (b(z), c) are
not relatively left prime, then we can always find a relatively
left prime observationally equivalent system (b̄(z), c̄(z)),
where the degree of c̄(z) is not necessarily zero. By Theorem
3, c̄(z) must be zeroless and thus can be extended to a
unimodular matrix. Premultiplying (b̄(z), c̄(z)) by the inverse
of this unimodular matrix yields the desired result. (ii) and
(iii) are straightforward.

IV. ESTIMATION

Here we briefly describe how the results from structure
theory can be used for estimation, i.e. how to proceed if we



commence from the observations of (yt), rather than from
the population moments of (ŷt).

A main issue is to remove the effect of the noise uNt by
letting N → ∞. There are several ways to do this ([6],
[11]). The simplest way is to perform a principal component
analysis on

Σ̄Ny = T−1
T∑
t=1

yNt y
N
t
′ (50)

in order to obtain an estimate of zt, which will be consistent
for N →∞, T →∞.

V. SUMMARY AND OUTLOOK

This contribution is concerned with generalized linear
dynamic factor models. We present a structure theory. Based
on the observation that tall transfer functions are generically
zeroless, we propose Yule-Walker equations for estimating an
autoregressive system for the minimal static factor and for
the latent variables. This approach is more general than the
approach used up to now, where the autoregressive system
has been assumed to be of order one. Important issues
not treated in this paper are estimation of integers, namely
estimation of the dimension q of the dynamic factors, the
dimension r of the static factors and the state dimension n.

REFERENCES

[1] C. Burt, “Experimental tests of general intelligence,” British Journal
of Psychology, vol. 3, pp. 94–177, 1909.

[2] G. Chamberlain, “Funds, factors and diversification in arbitrage pricing
models,” Econometrica, vol. 51(5), pp. 1305–1324, 1983.

[3] G. Chamberlain and M. Rothschild, “Arbitrage, factor structure and
meanvariance analysis on large asset markets,” Econometrica, vol.
51(5), pp. 1281–1304, 1983.

[4] M. Forni, M. Hallin, M. Lippi, and L. Reichlin, “The generalized
dynamic factor model: identification and estimation,” The Review of
Economic Studies, vol. 65, pp. 453–473, 2000.

[5] M. Forni and M. Lippi, “The generalized dynamic factor model:
representation theory,” Econometric Theory, vol. 17, pp. 1113–1141,
2001.

[6] J. H. Stock and M. W. Watson, “Forecasting using principal compo-
nents from a large number of predictors,” Journal of the Americal
Statistical Association, vol. 97, pp. 1167–79, 2002.

[7] ——, “Macroeconomic forecasting using diffusion indexes,” Journal
of Business and Economic Statistics, vol. 20, pp. 147–62, 2002.

[8] T. J. Sargent and C. A. Sims, Business cycle modelling without
pretending to have too much a priori economic theory. Minneapolis:
Federal Reserve Bank of Minneapolis, 1977.

[9] W. Scherrer and M. Deistler, “A structure theory for linear dynamic
errors-in-variables models,” SIAM, J. on Control Optim., vol. 36(6),
pp. 2148–2175, 1998.

[10] M. Deistler and E. Hamann, “Identification of factor models for
forecasting returns,” J. of Financial Econometrics, vol. 3, pp. 256–
281, 2005.

[11] M. Forni, M. Hallin, M. Lippi, and L. Reichlin, “The generalized
dynamic factor model: one-sided estimation and forecasting,” J. of the
American Statistical Association, vol. 100, p. 830840, 2005.

[12] M. Forni, D. Giannone, M. Lippi, and L. Reichlin, “Opening the black
box: structural factor models with large cross-sections,” Manuscript,
Universite Libre de Bruxelles, 2008.

[13] E. J. Hannan and M. Deistler, The Statistical Theory of Linear Systems.
New York: Wiley, 1988.

[14] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall,
1980.

[15] H. Akaike, “Stochastic theory of minimal realization,” IEEE Transac-
tions on Automatic Control, vol. 19(6), pp. 667–674, 1974.

[16] M. Deistler, “Linear dynamic multiinput/multioutput systems,” in A
Course in Time Series Analysis, D. Pena, G. Tiao, and R. Tsay, Eds.
Wiley, 2001.

[17] B. D. O. Anderson and M. Deistler, “Properties of zero-free transfer
function matrices,” 2008, mimeo.

[18] C. Zinner, “Modeling of high-dimensional time series by generalized
dynamic factor models,” Ph.D. dissertation, Vienna University of
Technology, 2008.

[19] C. Heaton, “Factor analysis of high dimensional time series,” Ph.D.
dissertation, University of New South Wales, 2008.

[20] C. Heaton and V. Solo, “Identification of causal models for stationary
time series,” The Econometrics Journal, vol. 7, pp. 618–627, 2004.


