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Abstract

I present a generalization of the standard (full-information) model of state-
dependent pricing in which decisions about when to review a firm’s existing
price must be made on the basis of imprecise awareness of current market con-
ditions. The imperfect information is endogenized using a variant of the theory
of “rational inattention” proposed by Sims (1998, 2003, 2006). This results in
a one-parameter family of models, indexed by the cost of information, which
nests both the standard state-dependent pricing model and the Calvo model
of price adjustment as limiting cases (corresponding to a zero information cost
and an unboundedly large information cost respectively). For intermediate lev-
els of the information cost, the model is equivalent to a “generalized Ss model”
with a continuous “adjustment hazard” of the kind proposed by Caballero and
Engel (1993a, 1993b), but provides an economic motivation for the hazard
function and very specific predictions about its form. For moderate levels of
the information cost, the Calvo model of price-setting is found to be a fairly
accurate approximation to the exact equilibrium dynamics, except in the case
of (infrequent) large shocks.
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Models of state-dependent pricing [SDP], in which not only the size of price
changes but also their timing is modeled as a profit-maximizing decision on the part

! For the most part, the

of firms, have been the subject of an extensive literature.
literature dealing with empirical models of inflation dynamics and the evaluation of
alternative monetary policies have been based on models of a simpler sort, in which
the size of price changes is modeled as an outcome of optimization, but the timing
of price changes is taken as given, and hence neither explained nor assumed to be
affected by policy. The popularity of models with exogenous timing [ET] for such pur-
poses stems from their greater tractability, allowing greater realism and complexity
on other dimensions. But there has always been general agreement that an analysis in
which the timing of price changes is also endogenized would be superior in principle.

This raises an obvious question: how much is endogeneity of the timing of price
changes likely to change the conclusions that one obtains about aggregate dynamics?
Results available in special cases have suggested that it may matter a great deal. In a
dramatic early result, Caplin and Spulber (1987) constructed a tractable example of
aggregate dynamics under SDP in which nominal disturbances have no effect what-
soever on aggregate output, despite the fact that individual prices remain constant
for substantial intervals of time; and this result depends crucially on variation in the
number of firms that change their prices in response to a shock, depending on the size
of the shock. The Caplin-Spulber example is obviously extremely special; but Golosov
and Lucas (2007) find, in numerical analysis of an SDP model calibrated to account
for various facts about the probability distribution of individual price changes in U.S.
data, that the predicted aggregate real effects of nominal disturbances are quite small,
relative to what one might expect based on the average interval of time between price
changes. And more recently, Caballero and Engel (2007) consider the real effects of
variation in aggregate nominal expenditure in a fairly general class of “generalized
Ss models,” and show that quite generally, variation in the “extensive margin” of
price adjustment (i.e., variation in the number of prices that adjust, as opposed to
variation in the amount by which each of these prices changes) implies a smaller real
effect of nominal disturbances than would be predicted in an ET model (and hence
variation only on the “intensive margin”); they argue that the degree of immediate

adjustment of the overall level of prices can easily be several times as large as would

1See, for example, Burstein and Hellwig (2007), Dotsey and King (2005), Gertler and Leahy
(2007), Golosov and Lucas (2007), Midrigan (2006), and Nakamura and Steinsson (2006) for some

recent additions.



be predicted by an ET model.?

These results suggest that it is of some urgency to incorporate variation in the
extensive margin of price adjustment into models of the real effects of monetary policy,
if one hopes to obtain results of any quantitative realism. Yet there is one respect
in which one may doubt that the results of standard SDP models are themselves
realistic. Such models commonly assume that at each point in time, each supplier
has completely precise information about current demand and cost conditions relating
to its product, and constantly re-calculates the currently optimal price and the precise
gains that would be obtained by changing its price, in order to compare these to the
“menu cost” that must be paid to actually change the price. Most of the time no price
change is justified; but on the first occasion on which the benefit of changing price
becomes as large as the menu cost, a price change will occur. Such an account assumes
that it is only costs associated with actually changing one’s price that are economized
on by firms that change prices only infrequently. Instead, studies such as Zbaracki
et al. (2004) indicate that there are substantial costs associated with information
gathering and decisionmaking that are also reduced by a policy of reviewing prices
only infrequently. If this is true, the canonical SDP model (or “Ss model”), according
to which a price adjustment occurs in any period if and only if a certain adjustment
threshold has been reached, should not yield realistic conclusions. In fact, a model
that takes account of the costs of gathering and processing information is likely to
behave in at least some respects like ET models.> The question is to what extent
a more realistic model of this kind would yield conclusions about aggregate price
adjustment and the real effects of nominal disturbances that are similar to those of
ET models, similar to those of canonical SDP models, or different from both.

The present paper addresses this question by considering a model in which the
timing of price reviews is determined by optimization subject to an information con-

straint. The model generalizes the canonical SDP model (which appears as a limiting

2An earlier draft of their paper (Caballero and Engel, 2006) proposed as a reasonable “bench-
mark” that the degree of flexibility of the aggregate price level should be expected to be about three
times as great as would be predicted by an ET model calibrated to match the observed average

frequency of price changes.
3Phelps (1990, pp. 61-63) suggests that ET models may be more realistic than SDP models on this

ground. Caballero (1989) presents an early analysis of a way in which costs of information acquisition
can justify “time-dependent” behavior, which is further developed by Bonomo and Carvalho (2004)
and Reis (2006).



case of the more general model, the case of zero information cost) to allow for costs
of obtaining and/or processing more precise information about the current state of
the economy, between the intermittent occasions on which full reviews of pricing pol-
icy are undertaken. For the sake of simplicity, and to increase the continuity of the
present contribution with prior literature, it is assumed that when a firm decides to
pay the discrete cost required for a full review of its pricing policy, it obtains full
information about the economy’s state at that moment; hence when price changes
occur, they are based on full information, as in canonical SDP models (as well as
canonical ET models).* However, between the occasions on which such reviews oc-
cur, the firm’s information about current economic conditions is assumed to be much
fuzzier; and in particular, the decision whether to conduct a full review must be made
on the basis of much less precise information than will be available after the review
is conducted. As a consequence, prices do not necessarily adjust at precisely the
moment at which they first become far enough out of line for the profit increase from
a review of pricing policy to justify the cost of such a review.

There are obviously many ways in which one might assume that information is
incomplete, each of which would yield somewhat different conclusions. Here I adopt
a parsimonious specification based on the concept of “rational inattention” proposed
by Sims (1998, 2003, 2006). It is assumed that all information about the state of
the world is equally available to the decisionmaker — one does not assume that
some facts are more easily or more precisely observable than others — but that
there is a limit on the decisionmaker’s ability to process information of any kind, so
that the decision is made on the basis of rather little information. The information
that the decisionmaker obtains and uses in the decision is, however, assumed to
be the information that is most valuable to her, given the decision problem that
she faces, and subject to a constraint on the overall rate of information flow to the
decisionmaker. This requires a quantitative measure of the information content of
any given indicator that the decisionmaker may observe; the one that I use (following

Sims) is based on the information-theoretic measure (entropy measure) proposed by

4The assumption that full information about current conditions can be obtained by paying a
fixed cost also follows the previous contributions of Caballero (1989), Bonomo and Carvalho (2004),
and Reis (2006); T depart from these authors in assuming that partial information about current
conditions is also available between the occasions when the fixed cost is paid. The analysis here also

differs from theirs in assuming that access to memory is costly, as discussed further in section 2.1.



Claude Shannon (1948).5 The degree of information constraint in the model is then
indexed by a single parameter, the cost per unit of information (or alternatively, the
shadow price associated with the constraint on the rate of information flow). I can
consider the optimal scheduling of price reviews under tighter and looser information
constraints, obtaining both a canonical SDP model and a canonical ET model as
limiting cases; but the more general model treated here introduces only a single
additional free parameter (the information cost) relative to a canonical SDP model,
allowing relatively sharp predictions.

The generalization of the canonical SDP model obtained here has many similar-
ities with the “generalized Ss model” of pricing proposed by Caballero and Engel
(1993a, 2007) and the SDP model with random menu costs of Dotsey, King and
Wolman (1999). Caballero and Engel generalize a canonical Ss model of pricing by
assuming that the probability of price change is a continuous function of the signed
gap between the current log price and the current optimal log price (i.e., the one
that would maximize profits in the absence of any costs of price adjustment), and
estimate the “adjustment hazard function” that best fits US inflation dynamics with
few a priori assumptions about what the function may be like. The model of price-
adjustment dynamics presented in section 2 below is of exactly the form that they
assume. However, the “hazard function” is given an economic interpretation here:
the randomness of the decision whether to review one’s price in a given period is a
property of the optimal information-constrained policy. Moreover, the model here
makes quite specific predictions about the form of the optimal hazard function: given
the specification of preferences, technology and the cost of a review of pricing policy,
there is only a one-parameter family of possible optimal hazard functions, correspond-
ing to alternative values of the information cost. For example, Caballero and Engel
assume that the hazard function may or may not be symmetric and might equally
well be asymmetric in either direction; this is treated as a matter to be determined
empirically. In the model developed here, the hazard function is predicted to be
asymmetric in a particular way, for any assumed value of the information cost.

Caballero and Engel (1999) propose a structural interpretation of generalized Ss

°See, e.g., Cover and Thomas (2006) for further discussion. The appendix of Sims (1998) argues
for the appropriateness of the Shannon entropy measure as a way of modeling limited attention.
As is discussed further in section 2, the informational constraint assumed here differs from the one

proposed by Sims in the way that memory is treated.



adjustment dynamics (in the context of a model of discrete adjustment of firms’ capi-
tal stocks), in which the cost of adjustment by any given firm is drawn independently
(both across firms and over time) from a continuous distribution of possible costs;
Dotsey, King and Wolman (1999) [DKW] consider the implications for aggregate
price adjustment and the real effects of nominal disturbances of embedding random
menu costs of this kind in a DSGE model with monopolistically competitive pricing.
The predicted dynamics of price adjustment in the model developed here are essen-
tially the same as in a particular case of the DKW model; there exists a particular
distribution for the menu cost under which the DKW model would imply the same
hazard function for price changes as is derived here from optimization subject to an
information constraint.

However, the present model supplies an alternative interpretation of the random-
ness of adjustment at the microeconomic level that some may find more appealing
than the idea of random menu costs. Moreover, the present model makes much
sharper predictions than the DKW model; there is only a very specific one-parameter
family of menu-cost distributions under which the DKW model makes predictions
consistent with the information-constrained model. Assumptions that appear com-
pletely arbitrary under the random-menu-cost interpretation (why is it natural to
assume that the menu cost should be i.i.d.?) are here derived as a consequence of
optimization. At the same time, assumptions that might appear natural under the
random-menu-cost interpretation (a positive lower bound on menu costs, or a dis-
tribution with no atoms) can here be theoretically excluded: the optimal hazard
function in this model necessarily corresponds to a distribution of menu costs with
an atom at zero. This has important implications: contrary to the typical predic-
tion of parametric versions of the Caballero-Engel or DKW model, the present model
implies that there is always (except in the limit of zero information cost) a positive
adjustment hazard even when a firm’s current price is exactly optimal. This makes
the predicted dynamics of price adjustment under the present model more similar

to those of the Calvo (1983) model than is true of these other well-known gener-

6Like the DKW model, the present model implies in general that the adjustment hazard should
be a monotonic function of the amount by which the firm can increase the value of its continuation
problem by changing its price. Only in special cases will this allow one to express the hazard as
a function of the signed gap between the current log price and the optimal log price, as in the
“generalized Ss” framework of Caballero and Engel (1993a, 1993b). Section 3, however, offers an

example of explicit microfoundations for such a case.



alizations of the canonical SDP model. It also helps to explain the observation in
microeconomic data sets of a large number of very small price changes, as stressed
by Midrigan (2006),” and increases the predicted real effects of nominal disturbances
(for a given overall frequency of price change), for reasons explained by Caballero and
Engel (2006).

In fact, the results obtained here suggest that the predictions of ET models may
be more reliable, for many purposes, than results from the study of SDP models
have often suggested. The Calvo (1983) model of staggered price-setting is derived
as a limiting case of the present model (the limit of an unboundedly large informa-
tion cost); hence this model, often regarded as analytically convenient but lacking in
any appealing behavioral foundations, can be given a fully explicit decision-theoretic
justification — the quantitative realism of which, relative to other possible specifica-
tions, then becomes an empirical matter. Moreover, even in the more realistic case
of a positive but finite information cost, the model’s prediction about the effects of
typical disturbances can be quite similar to those of the Calvo model, as is illustrated
numerically below. The present model predicts that the Calvo model will be quite
inaccurate in the case of large enough shocks — large shocks should trigger immedi-
ate adjustment by almost all firms, because even firms that allocate little attention
to monitoring current market conditions between full-scale reviews of pricing policy
should notice when something dramatic occurs — and in this respect it is surely more
realistic than the simple Calvo model. Yet the shocks for which this correction is im-
portant may be so large as to occur only infrequently, in which case the predictions
of the Calvo model can be quite accurate much of the time.

Section 1 analyzes the optimal price-review policy under an information con-
straint. I begin by characterizing optimal policy for a single-period problem, to
show how the information constraint gives rise to a continuous hazard function in
the simplest possible setting. In section 2, this problem is then embedded in an
infinite-horizon dynamic setting. Section 3 illustrates the application of the general
framework to a specific model of monopolistically competitive price-setting. Section

4 concludes.

"Midrigan (2006) proposes an alternative explanation to the one given here for a positive hazard
function when the current price is nearly optimal. The present model achieves a similar effect,

without the complication of assuming interdependence between price changes for different goods.



1 Rational Inattention and the Optimal Adjust-

ment Hazard

In this section, I consider the decision problem of a firm that chooses when to review
its pricing policy, subject to both a fixed cost of conducting such a review and a unit
cost of information about market conditions during the intervals between full reviews.
In order to show how “rational inattention” of the sort hypothesized by Sims (1998,
2003, 2006) gives rise to a continuous “adjustment hazard” of the kind postulated
by Caballero and Engel (1993a, 1993b), it is useful to first consider the information-
constrained price-review decision in a simple static context. The characterization
given here of the optimal adjustment hazard will then apply directly to the dynamic
setting considered in section 2 as well; in the eventual infinite-horizon model, the firm

has a decision of this kind to make in each period.

1.1 Formulation of the Problem

Let the “normalized price” of a firm i be defined as ¢(i) = log(p(i)/PY"), where p(i)
is the price charged by firm ¢ for its product, P is an aggregate price index, and Y
is an index of aggregate output (or aggregate real expenditure), and suppose that
the expected payoff® to the firm of charging normalized price ¢ is given by a function

V(q), which achieves its maximum value at the optimal normalized price
¢* = argmax V' (q).
q

[ shall assume that V(q) is a smooth, strictly quasi-concave function. By strict
quasi-concavity, I mean that not only are the sets {q|V(¢) > v} convex for all v,
but in addition the sets {¢q|V'(¢) = v} are of (Lebesgue) measure zero. Strict quasi-
concavity implies that there exists a smooth, monotonic transformation ¢ = ¢(§)
such that the function V(§) = V(¢(¢)) is not only a concave function, but a strictly
concave function of ¢. In this case, under the further assumption that V'(¢) achieves

a maximum, the maximum ¢* must be unique. Moreover, ¢* is the unique point at

81 need not be specific at this stage about the nature of this payoff. In the eventual dynamic
problem considered below, it includes not only profits in the current period (when the price p(i) is
charged), but also the implications for expected discounted profits in later periods of having chosen

a price p(i) in the current period.



which V’(¢*) = 0; and one must have V'(¢) > 0 for all ¢ < ¢*, while V'(¢q) < 0 for all
q>q-.

We can then define a “price gap” z(i) = ¢(i) — ¢*, as in Caballero and Engel,
indicating the signed discrepancy between a firm’s actual price and the price that
it would be optimal for it to charge.” Under full information and in the absence of
any cost of changing its price, a firm should choose to set ¢(i) = ¢*. Let us suppose,
though, that the firm must pay a fixed cost x > 0 in order to conduct a review of
its pricing policy. I shall suppose, as in canonical menu-cost models, that a firm
that conducts such a review learns the precise value of the current optimal price, and
therefore adjusts its price so that ¢(i) = ¢*. A firm that chooses not to review its
existing policy instead continues to charge the price that it chose on the occasion of
its last review of its pricing policy. The loss from failing to review the policy (or

alternatively, the gain from reviewing it, net of the fixed cost) is then given by
L(z) =V(¢) = V(¢" +x) — &, (1.1)

as a function of the price gap x that exists prior to the review.

If V(q) is a smooth, strictly quasi-concave function, then L(x) is a smooth, strictly
quasi-convex function, with a unique minimum at z = 0. Then in the case of full
information, the optimal price-review policy is to review the price if and only if the
value of x prior to the review is in the range such that L(z) > 0.1° The values of
x such that a price review occurs will consist of all x outside a certain interval, the
“zone of inaction,” which necessarily includes a neighborhood of the point x = 0. The
boundaries of this interval (one negative and one positive, in the case that the interval
is bounded) constitute the two “Ss triggers” of an “Ss model” of price adjustment.

I wish now to consider instead the case in which the firm does not know the value

of x prior to conducting the review of its policy. I shall suppose that the firm does

9Tt might appear simpler to directly define the normalized price as the price relative to the optimal
price, rather than relative to aggregate nominal expenditure, so that the optimal normalized price
would be zero, by definition. But the optimal value ¢* is something that we need to determine,
rather than something that we know at the time of introducing our notation. (Eventually, the

function V(g) must be endogenously determined, as discussed in section 2 below.)
0The way in which we break ties in the case that L(z) = 0 exactly is arbitrary; here I suppose

that in the case of indifference the firm reviews its price. In the equilibrium eventually characterized
below for the full-information case, values of  for which L(z) = 0 exactly occur with probability

zero, so this arbitrary choice is of no consequence.



know its existing price, so that it is possible for it to continue to charge that price in
the absence of a review; but it does not know the current value of aggregate nominal
expenditure PY, and so does not know its normalized price, or the gap between its
existing price and the currently optimal price. I shall furthermore allow the firm to
have partial information about the current value of x prior to conducting a review;
this is what I wish to motivate as optimal subject to limits on the attention that the
firm can afford to pay to market conditions between the occasions when the fixed
cost k is paid for a full review. It is on the basis of this partial information that the
decision whether to conduct a review must be made.

Following Sims, I shall suppose that absolutely any information about current
(or past) market conditions can be available to the firm, as long as the quantity of
information obtained by the firm outside of a full review is within a certain finite
limit, representing the scarcity of attention, or information-processing capacity, that
is deployed for this purpose. The quantity of information obtained by the firm in
a given period is defined as in the information theory of Claude Shannon (1948),
used extensively by communications engineers. In this theory, the quantity of in-
formation contained in a given signal is measured by the reduction in entropy of
the decisionmaker’s posterior over the state space, relative to the prior distribution.
Let us suppose that we are interested simply in information about the current value
of the unknown (random) state x, and that the firm’s prior is given by a density
function f(z) defined on the real line.! Let f(x|s) instead be the firm’s posterior,
conditional upon observing a particular signal s. The entropy associated with a given

density function (a measure of the degree of uncertainty with a number of attractive

HTn section 1.2, we consider what this prior should be, if the firm understands the process that
generates the value of x, but has not yet obtained any information about current conditions. For
now, the prior is arbitrarily specified as some pre-existing state of knowledge that does not precisely
identify the state x.



properties) is equal to!?
- [ #a)tog f(ayi

and as a consequence the entropy reduction when signal s is received is given by

I(s) = /f(x\s) log f(as)d — /f(x) log f(z)dx.
The average information revealed by this kind of signal is therefore
I =El(s) (1.2)

where the expected value is taken over the set of possible signals that were possible ex
ante, using the prior probabilities of that each of these signals would be observed.!3
It is this total quantity I that determines the bandwidth (in the case of radio signals,
for example), or the channel capacity more generally (an engineering limit of any
communication system), that must be allocated to the transmission of this signal if
the transmission of a signal with a given average information content is to be pos-
sible.'* Sims correspondingly proposes that the limited attention of decisionmakers
be modeled by assuming a constraint on the possible size of the average information
flow 1.

I shall suppose, then, that the firm arranges to observe a signal s before deciding
whether to pay the cost k and conduct a review of its pricing policy. The theory
of rational inattention posits that both the design of this signal (the set of possible

values of s, and the probability that each will be observed conditional upon any given

12In information theory, it is conventional to define entropy using logarithms with a base of two,
so that the quantity I defined in (1.2) measures information in “bits”, or binary digits. (One bit is
the amount of information that can be transmitted by the answer to one optimally chosen yes/no
question, or by revealing whether a single binary digit is 0 or 1.) T shall instead interpret the
logarithm in this and subsequent formulas as a natural logarithm, to allow the elimination of a
constant in various expressions. This is an equivalent measure of information, but with a different
size of unit: one unit of information under the measure used here (sometimes called a “nat”) is
equivalent to 1.44 bits of information.

13The prior over s is the one implied by the decisionmaker’s prior over possible values of x, together
with the known statistical relationship between the state z and the signal s that will be received.

14Shannon’s theorems pertain to the relation between the properties of a given communication

channel and the average rate at which information can be transmitted over time using that channel,
not the amount of information that will be contained in the signal that is sent over any given short
time interval.
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state z) and the decision about whether to conduct a price review conditional upon

the signal observed will be optimal, in the sense of maximizing

L

E[d(s)L(z)] — 01, (1.3)

where §(s) is a (possibly random) function of s indicating whether a price review is
undertaken (0 = 1 when a price review occurs, and § = 0 otherwise); the expectation
operator integrates over possible states x, possible signals s, and possible price-review
decisions, under the firm’s prior; and 6 > 0 is a cost per unit of information of being
more informed when making the price-review decision. (This design problem is solved
from an ex ante perspective: one must decide how to allocate one’s attention, which
determines what kind of signal one will observe under various circumstances, before
learning anything about the current state.)

I have here written the problem as if a firm can allocate an arbitrary amount of
attention to tracking market conditions between full price reviews, and hence have
an estimate of x of arbitrary precision prior to its decision about whether to conduct
the review, if it is willing to pay for this superior information. One might alterna-
tively consider the problem of choosing a partial information structure to maximize
E[6(s)L(z)] subject to an upper bound on I. This will lead to exactly the same one-
parameter family of informationally-efficient policies, indexed by the value of I rather
than by the value of §. (In the problem with an upper bound on the information
used, there will be a unique value of 6 associated with each informationally-efficient
policy, corresponding to the Lagrange multiplier for the constraint on the value of I;
there will be an inverse one-to-one relationship between the value of 6 and the value
of I.) I prefer to consider the version of the problem in which # rather than [ is given
as part of the specification of the environment. This is because decisionmakers have
much more attention to allocate than the attention allocated to any one task, and
could certainly allocate more attention to aspects of market conditions relevant to the
scheduling of reviews of pricing policy, were this of sufficient importance; it makes
more sense to suppose that there is a given shadow price of additional attention,
determined by the opportunity cost of reducing the attention paid to other matters,
rather than a fixed bound on the attention that can be paid to the problem considered
here, even if there is a global bound on the information-processing capacity of the

decisionmaker.
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1.2 Characterization of the Solution

I turn now to the solution of this problem, taking as given the prior f(x), the loss
function L(x), and the information cost # > 0. A first observation is that an efficient
signal will supply no information other than whether the firm should review its pricing

policy.

Lemma 1 Consider any signalling mechanism, described by a set of possible signals
S and conditional probabilities 7(s|x) for each of the possible signals s € S in each of
the possible states x in the support of the prior f, and any decision rule, indicating for
each s € S the probability p(s) with which a review occurs when signal s is observed.
Let L be the value of the objective (1.3) implied by this policy on the part of the
firm. Consider as well the alternative policy, under which the set of possible signals

is {0, 1}, the conditional probability of receiving the signal 1 is

m(l|z) = /esp(s)w(s]a:)ds

for each state x in the support of f, and the decision rule is to conduct a review with
probability one if and only if the signal 1 is observed; and let L* be the value of (1.3)
implied by this alternative policy. Then L* > L.

Moreover, the inequality is strict, except if the first policy is one under which
either (i) mw(s|z) is independent of x (almost surely), so that the signals convey no
information about the state x; or (i) p(s) is equal to either zero or one for all signals

that occur with positive probability, and the conditional probabilities are of the form

m(slz) = w(s|p(s)) - 7(p(s)|z),

where the conditional probability 7(s|p(s)) of a given signal s being received, given that
the signal will be one of those for which p(s) takes a certain value, is independent of x
(almost surely). That is, either the original signals are completely uninformative; or
the original decision rule is deterministic (so that the signal includes a definite rec-
ommendation as to whether a price review should be undertaken) and any additional
information contained in the signal, besides the implied recommendation regarding the

price-review decision, is completely uninformative.
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A proof is given in Appendix A. Note that this result implies that we may assume,
without loss of generality, that an optimal policy involves only two possible signals,
{0,1}, and a decision rule under which a review is scheduled if and only if the signal
1 is received. That is, the only signal received is an indication whether it is time to
review the firm’s existing price or not. (If the firm arranges to receive any more infor-
mation than this, it is wasting its scarce information-processing capacity.) A policy
of this form is completely described by specifying the hazard function A(x) = 7(1|z),
indicating the probability that a price review occurs, in the case of any underlying
state = in the support of f.

It follows from Lemma 1 that any randomization that is desired in the price-review
decision should be achieved by arranging for the signal about market conditions to
be random, rather than through any randomization by the firm after receiving the
signal. This does not, however, imply in itself that the signal that determines the
timing of price reviews should be random, as in the Calvo model (or the “generalized
Ss model” of Caballero and Engel). But in fact one can show that it is optimal for
the signal to be random, under extremely weak conditions.

Let us consider the problem of choosing a measurable function A(x), taking values
on the interval [0, 1], so as to maximize (1.3). One must first be able to evaluate (1.3)
in the case of a given hazard function. This is trivial when A(z) is (almost surely)
equal to either 0 or 1 for all x, as in either case the information content of the signal
is zero. Hence L = E[L(x)] if A(z) = 1 (a.s), and L = 0 if A(z) = 0 (a.s.). After
disposing of these trivial cases, we turn to the case in which the prior probability of

a price review
A= /A(a:)f(a:)da: (1.4)

takes an interior value, 0 < A < 1. As there are only two possible signals, there are
two possible posteriors, given by
: f(@)(1 - Az)) ;
0 — — 1 — _

using Bayes’ Law. The information measure [ is then equal to

f(x)A(x)

I = AI(1)+(1—A)I(0)
A / F(xl1) log (x| 1)z + (1 - A) / F(2]0) log f(x/0)dx — / f(2)log f(a)dz

- / p(A@) f(x)dz — (R), (15)
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where

©(A) = Alog A+ (1 —A)log(1—A) (1.6)

in the case of any 0 < A < 1, and we furthermore define!®

We can therefore rewrite the objective (1.3) in this case as

L= [IL@)Aw) - beMe) @) + 09 [ M@ @) (17
Given the observation above about the trivial cases, the same formula applies as well
when A is equal to 0 or 1. Hence (1.7) applies in the case of any measurable function
A(z) taking values in [0, 1], and our problem reduces to the choice of A(x) to maximize
(1.7).

This is a problem in the calculus of variations. Suppose that we start with a
function A(x) such that 0 < A < 1, and let us consider the effects of an infinitesimal
variation in this function, replacing A(x) by A(z)+ dA(x), where dA(x) is a bounded,

measurable function indicating the variation. We observe that

5T — / () - 6A(x) f(z)dx

where

O(x) = L(z) — 0¢'(A(x)) + 0" (A).
A first-order condition for (local) optimality of the policy is then at each point x
(almost surely!'®), one of the following conditions holds: either A(z) = 0 and d(x) < 0;
A(z) =1 and 9(z) > 0; or 0 < A(z) < 1 and 9(x) = 0. We can furthermore observe
from the behavior of the function ¢’(A) = log(A/1 — A) near the boundaries of the
domain that

lim 0(z) = +o0, lim 0(z) = —o0,
A(z)—0 A(z)—1

15This definition follows Shannon (1948); our ¢(A) is the negative of his “binary entropy function.”
Note that under this extension of the definition of ¢(A) to the boundaries of its domain, the function
is continuous on the entire interval. Moreover, under this definition, (1.5) is a correct measure of
the information content of the signal (namely, zero) even in the case that one of the signals occurs

with probability zero.
6Note that we can only expect to determine the optimal hazard function A(x) up to arbitrary

changes on a set of values of x that occur with probability zero under the prior, as such changes
have no effect on any of the terms in the objective (1.7).
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so that neither of the first two conditions can ever hold. Hence the first-order condi-

tion requires that
d(z)=0 (1.8)
almost surely.
This condition implies that

A(z) A L(z)
1—A(x):1_[\exp{ 0 } (1.9)

for each z. Condition (1.9) implicitly defines a measurable function A(z) = A*(z; A)
taking values in (0,1).!7 It is worth noting that in this solution, for a fixed value of
A, A(z) is monotonically increasing in the value of L(z)/6, approaching the value 0
for large enough negative values of L(z)/6, and the value 1 for large enough positive
values; and for given x, A*(x;A) is an increasing function of A, approaching 0 for
values of A close enough to 0, and 1 for values of A close enough to 1. We can extend

the definition of this function to extreme values of A by defining
A*(z;0) =0, A (1) =1

for all values of z; when we do so, A*(z; A) remains a function that is continuous in
both arguments.

The above calculation implies that in the case of any (locally) optimal policy for
which 0 < A < 1, the hazard function must be equal (almost surely) to a member
of the one-parameter family of functions A*(z; A). It is also evident (from definition
(1.4) and the bounds that A(x) must satisfy) that if A takes either of the extreme
values 0 or 1, the hazard function must satisfy A(z) = A almost surely; hence the
hazard function would be equal (almost surely) to a member of the one-parameter
family in these cases as well. We can therefore conclude that the optimal hazard
function must belong to this family; it remains only to determine the optimal value
of A.

In this discussion, A has been used both to refer to the value defined in (1.4) and
to index the members of the family of hazard functions defined by (1.9). In fact, the

same numerical value of A must be both things. Hence we must have

J(A) = A, (1.10)

1"We can easily give a closed-form solution for this function: A*(z;A) = R/1+ R, where R is the
right-hand side of (1.9).
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where
J(A) = /A*(x;A)f(:z:)d:z:. (1.11)

Condition (1.10) necessarily holds in the case of a locally optimal policy, but it does
not guarantee that A*(z; A) is even locally optimal. We observe from the definition
that J(0) =0 and J(1) =1, s0 A = 0 and A = 1 are always at least two solutions to
equation (1.10); yet these need not be even local optima.

We can