
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2008–39 

 
  

A COMPARISON OF TWO AVERAGING TECHNIQUES WITH 
AN APPLICATION TO GROWTH EMPIRICS 

 

 

By Jan R. Magnus, Owen Powell, Patricia Prüfer 
 
 
 

April 2008 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 



A comparison of two averaging techniques

with an application to growth empirics∗

This version: April 3, 2008

Jan R. Magnus
CentER and Department of Econometrics & Operations Research,

Tilburg University

Owen Powell
CentER, Tilburg University

Patricia Prüfer
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1 Introduction

This paper has two purposes. First, it introduces a new model averaging
technique, called weighted-average least squares (hereafter WALS), which
we claim to be theoretically and practically superior to standard Bayesian
model averaging (BMA). It is theoretically superior because it treats our
ignorance about the priors in a different manner, thereby obtaining a better
risk profile and, in particular, avoiding unbounded risk. It is practically
superior because the space over which we need to perform model selection
increases linearly rather than exponentially in size. Thus, if we have sixty
regressors to search over (which is not unusual in the growth literature), then
computing time of standard BMA is of the order 260, while computing time
of WALS is of the order 60. This means that what WALS can do in one
second, BMA can only do in six hundred million years.

The second purpose is to contribute to the debate on growth empirics.
Since the seminal studies of Kormendi and Meguire (1985) and Barro (1991),
empirical research on the determinants of economic growth has identified nu-
merous variables as being robustly (partially) correlated with productivity
growth in an economy. Durlauf, Johnson, and Temple (2005) list 145 po-
tential right-hand side variables for growth regressions and cluster them into
more than forty areas (or theories), such as human capital, finance, govern-
ment, and trade. Taking into account the limited number of observations
available at a national level, growth empirics has been heavily criticized be-
cause of the inherent model uncertainty; see Durlauf, Johnson, and Temple
(2005) for a recent in-depth survey. Sometimes growth theory can support
choices of specific variables, but the inclusion or exclusion of most variables
is typically arbitrary, a phenomenon labeled the ‘open-endedness’ of growth
theory (Brock and Durlauf, 2001). In addition, while theory may provide
general qualitative variables (such as human capital), it does not tell us how
these variables are to be specified or measured. We are thus faced with (at
least) two types of uncertainty, each of which brings about model uncer-
tainty. Since there exist a wide set of possible model specifications, we often
obtain contradictory conclusions. To make matters worse, estimation results
are often not robust to small changes in model specification, making cred-
ible interpretations of the results hazardous. A proper treatment of model
uncertainty is clearly important.

One such treatment is model averaging, where the aim of the investigator
is not to find the best possible model, but rather to find the best possible
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estimates. Each model contributes information about the parameters of in-
terest, and all these pieces of information are combined taking into account
the trust we have in each model, based on our prior beliefs and on the data.

In a sense, all estimation procedures are model averaging algorithms,
although possibly extreme or limiting cases. Our framework is the linear
regression model

y = X1β1 + X2β2 + ε = Xβ + ε, ε ∼ N(0, σ2), (1)

where y (n × 1) is the vector of observations, X1 (n × k1) and X2 (n × k2)
are matrices of nonrandom regressors, ε is a random vector of unobservable
disturbances, and β1 and β2 are unknown parameter vectors. We assume
that k1 ≥ 1, k2 ≥ 0, k := k1 + k2 ≤ n − 1, that X := (X1 : X2) has full
column-rank, and that the disturbances (ε1, . . . , εn) are i.i.d. N(0, σ2).

The reason for distinguishing between X1 and X2 is that X1 contains
explanatory variables which we want in the model on theoretical or other
grounds (irrespective of the found t-ratios of the β1-parameters), while X2

contains additional explanatory variables of which we are less certain. The
columns of X1 are called ‘focus’ regressors, and the columns of X2 ‘auxiliary’
regressors.

There are k2 components of β2, and a different model arises whenever a
different subset of the β2’s is set equal to zero. If k2 = 0, then no model
selection takes place. If k2 = 1, then there are two models to consider: the
unrestricted and the restricted model. If k2 = 2, there are four models: the
unrestricted, two partially restricted (where one of the two β2’s is zero), and
the restricted model. In general, there are 2k2 models to consider. We denote
the i-th model by Mi, which we write as

y = X1β1 + X2iβ2i + ε,

where X2i denotes an n × k2i matrix containing a subset of k2i columns of
X2, and β2i denotes the corresponding k2i × 1 subvector of β2. We have of
course 0 ≤ k2i ≤ k2.

Model averaging estimation proceeds in two steps. In the first step we
ask how to estimate the parameters, conditional upon a selected model. In
the second step we compute the estimator as a weighted average of these
conditional estimators. There exist both Bayesian and non-Bayesian ideas
about how to estimate and how to find the weights. Our emphasis will be on
the Bayesian framework; for the non-Bayesian approach, see Claeskens and
Hjort (2003), Hjort and Claeskens (2003), Hansen (2007), and Liang, Zou,
Wan, and Zhang (2008).
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The unrestricted estimator simply sets the weight for the unrestricted
model (no restrictions on β1 or β2) to one and performs a single estima-
tion. Similarly, the restricted estimator sets β2 to zero and estimates the
resulting restricted model. Both estimators are, admittedly trivial, exam-
ples of a model averaging procedure. More interesting, and more common,
is the general-to-specific (GtS) estimator which does involve a model selec-
tion procedure, typically based on the ‘significance’ of parameters through
their t-ratios. There are many problems with this procedure (see e.g. Mag-
nus, 1999), but the most important is that the model selection procedure
is completely separated from the estimation procedure. What is reported
are therefore conditional estimates, but the researcher acts as if they are
unconditional estimates. This problem is known as pretesting.

In order to combine model selection and estimation, the Bayesian method
offers a natural framework. The basic equations of BMA were first presented
by Leamer (1978, Sections 4.4–4.6), who proposed Bayesian averaging of
Bayesian estimates. In the context of growth econometrics, BMA was first
applied by Fernández, Ley, and Steel (2001a) and Brock and Durlauf (2001).
BMA is flexible with respect to the size and exact specification of a model
and it does not require the a priori selection of any model. Inference is based
on a weighted average over all models. The idea of Bayesian averaging of
classical estimates was first proposed in Raftery (1995) and later by Sala-i-
Martin, Doppelhofer, and Miller (2004). In growth econometrics, BMA has
proved useful, and recent applications include León-González and Montolio
(2004), Sala-i-Martin, Doppelhofer, and Miller (2004), and Masanjala and
Papageorgiou (2007). Recently, interest is growing in different aspects of
growth empirics, such as nonlinearities, parameter heterogeneity, and endo-
geneity. BMA is also applied in other areas of economics; see for example
Tsangarides, Ghura, and Leite (2004), Cuaresma and Doppelhofer (2007),
Eicher, Papageorgiou, and Roehn (2007), Eicher, Henn, and Papageorgiou
(2007), Masanjala and Papageorgiou (2008), and Prüfer and Tondl (2008).
In short, BMA has become an important technique.

There are, however, two problems with BMA. First, the computational
burden is very substantial. In fact, it is usually impossible to get exact BMA
estimates, in which case some Markov chain Monte Carlo (MCMC) method
must be applied, of which the Metropolis-Hastings algorithm is the most
common. Second, Bayesian techniques work well when prior information is
available, in which case they guide us as to how this information should be
combined with information from the data. But when no prior information is
available and nevertheless informative priors need to be specified (as is the
case with BMA), then we need to reflect on the meaning and impact of these
priors.
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Our proposed WALS method deals with both problems. The computa-
tional burden is trivial, and the proposed prior is optimal in the sense that it
is both ‘neutral’ (mimicking ignorance) and minimizes some risk or regret cri-
terion. It is based on the equivalence theorem of Magnus and Durbin (1999)
and Danilov and Magnus (2004), and was originally developed to understand
pretesting.

The concept and treatment of ignorance is essential in both BMA and
WALS. Suppose for simplicity that k2 = 1 in Model 1, so that there is only
one auxiliary regressor x2 and only one auxiliary parameter β2, and we have
y = X1β1 + β2x2 + ε with ε ∼ N(0, σ2). It is well-known that if we delete
the auxiliary variable x2 from our regression equation, then R2 will always
decrease, but R̄2 (the adjusted R2) will decrease if, and only if, the t-ratio
of the auxiliary parameter is smaller than one in absolute value. It is also
well-known (Magnus and Durbin, 1999, Theorem 1) that if we define the
‘theoretical’ t-ratio

η :=
β2

σ/
√

x′

2M1x2

, M1 := In − X1(X
′

1X1)
−1X ′

1,

then MSE(β̂1r) ≤ MSE(β̂1u) if, and only if, |η| ≤ 1, where β̂1r and β̂1u denote
the restricted (with β2 = 0) and unrestricted estimator of β1 respectively.
Thus it makes sense to take an absolute t-ratio (empirical or theoretical)
of one as an indication of maximum ignorance. This is why Masanjala and
Papageorgiou (2008) state that a posterior inclusion probability of 0.50 cor-
responds approximately to an absolute t-ratio of one. And this is also why
we choose the prior distribution in WALS such that the prior median of η
is zero and the prior median of η2 is one. The proposed priors for WALS
are taken from the Laplace distribution and thus generate bounded risk, in
contrast to the normal prior adopted by BMA which generates unbounded
risk. Figure 1 in Section 3.4 illustrates this essential difference.

In this paper we confront BMA with WALS, and apply both techniques
to shed further light on the determinants of economic growth. In our growth
estimations we use a set-up which allows us to distinguish between standard
Solow growth determinants and determinants that have been suggested in
so-called ‘new growth’ theories. Based on these analyses, we can not only
draw conclusions on the most appropriate model averaging technique but
also provide insights on the impacts of frequently used growth determinants.

The paper is organized as follows. The two main model averaging tech-
niques are described in Sections 2 (BMA) and 3 (WALS). In Section 2 we
extend the standard BMA theory to allow for the case where model selection
takes place over a subset of the regressors. In Section 3 we extend the the-
ory of WALS (developed to better understand pretesting), so that it can be
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used as a general model averaging technique. Sections 4 and 5 present the
growth estimation set-up and results, and Section 6 concludes. An appendix
contains a description and justification of our data and selected variables.

2 Bayesian model averaging (BMA)

The usual set-up for Bayesian model averaging is the special case of (1) where
k1 = 1 and X1 = ı (the vector of ones), so that the constant term is present
in all models and model selection takes place over all regressors except the
constant term. Our treatment is more general and allows model selection
to take place over a subset (X2) of the regressors, while the focus regressors
(the columns of X1) are forced to be present in every model.

A very large literature exists on BMA, some of which is mentioned in the
introduction. Useful literature summaries can be found in Raftery, Madigan,
and Hoeting (1997) and Hoeting, Madigan, Raftery, and Volinsky (1999).

2.1 Prior, likelihood, and posterior in model Mi

Assuming that Mi is the true model, the likelihood is given by

p(y | β1, β2i, σ
2,Mi) ∝ (σ2)−n/2 exp−

Si

2σ2
, (2)

where Si := (y − X1β1 − X2iβ2i)
′(y − X1β1 − X2iβ2i). Following standard

Bayesian theory of the normal linear model (O’Hagan, 1994, Chapter 9),
we impose the conventional improper prior distribution p(σ2|Mi) ∝ σ−2

together with a partially proper prior on β1, β2i|σ
2,Mi:

p(β1 | σ
2,Mi) ∝ 1, β2i | β1, σ

2,Mi ∼ N(0, σ2V0i),

where V0i is a positive definite k2i×k2i matrix to be specified later. The joint
prior distribution is then

p(β1, β2i, σ
2 |Mi) ∝ (σ2)−(k2i+2)/2 exp−

β ′

2iV
−1
0i β2i

2σ2
. (3)

We shall think of this improper distribution as a special case of the following
proper prior distribution:

p(β1, β2i, σ
2 |Mi) ∝ (σ2)−(d0+k1+k2i+2)/2 exp−

h0β
′

1β1 + β ′

2iV
−1
0i β2i + a0

2σ2
, (4)

where the special case (3) occurs when h0 = 0, a0 = 0, and d0 = −k1.
Whenever priors are used the question of sensitivity of the posterior moments
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to the priors is important. We do not examine this issue here. Recent
examples of such prior robustness checks for BMA include Ley and Steel
(2007b) and Eicher, Papageorgiou, and Raftery (2007).

Combining the prior (4) with the likelihood (2) gives the posterior

p(β1, β2i, σ
2 | y,Mi) ∝ (σ2)−(d+k1+k2i+2)/2 exp−

Ri + ai

2σ2
, (5)

where d = d0 + n,

Ri :=

(

β1 − b1i

β2i − b2i

)

′

V −1
i

(

β1 − b1i

β2i − b2i

)

,

V −1
i :=

(

X ′

1X1 + h0Ik1
X ′

1X2i

X ′

2iX1 X ′

2iX2i + V −1
0i

)

,

(

b1i

b2i

)

:= Vi(X1 : X2i)
′y,

and
ai := a0 + y′y − y′(X1 : X2i)Vi(X1 : X2i)

′y.

Hence the posterior density of β1, β2i, and σ2 — given the data y and model
Mi — is the familiar normal-inverse-gamma distribution with parameters ai,
d, (b1i, b2i), and Vi.

A little algebra gives

Vi =

(

(X ′

1X1 + h0Ik1
)−1 + QiV2iQ

′

i −QiV2i

−V2iQ
′

i V2i

)

, (6)

where

V −1
2i = V −1

0i + X ′

2iM
∗

1 X2i, M∗

1 = In − X1(X
′

1X1 + h0Ik1
)−1X ′

1,

and
Qi = (X ′

1X1 + h0Ik1
)−1X ′

1X2i.

From (6) we find

(X1 : X2i)Vi(X1 : X2i)
′ = I − M∗

1 + M∗

1 X2iV2iX
′

2iM
∗

1 ,

so that we can rewrite ai as

ai = a0 + y′y − y′(X1 : X2i)Vi(X1 : X2i)
′y

= a0 + y′(M∗

1 − M∗

1 X2iV2iX
′

2iM
∗

1 )y.

8



We now specialize to the improper prior given in (3) by setting h0 = 0,
a0 = 0, and d0 = −k1. The matrix M∗

1 then specializes to the idempotent
matrix M1 := In −X1(X

′

1X1)
−1X ′

1, and we have ai = (M1y)′Ai(M1y), where
Ai := M1−M1X2iV2iX

′

2iM1. We notice that ai is a function of M1y only and
does not depend on X ′

1y. It follows that

E(β1 | y,Mi) = b1i = (X ′

1X1)
−1X ′

1(y − X2ib2i), (7)

E(β2i | y,Mi) = b2i = (V −1
0i + X ′

2iM1X2i)
−1X ′

2iM1y, (8)

and, when n > k1 + 2,

var(β1 | y,Mi) =
ai

n − k1 − 2
((X ′

1X1)
−1 + QiV2iQ

′

i), (9)

var(β2i | y,Mi) =
ai

n − k1 − 2
V2i. (10)

2.2 Marginal likelihood of model Mi

In order to find the marginal likelihood we return to the proper prior (4).
Since |Vi| = |X ′

1X1 + h0Ik1
|−1 · |V2i|, we obtain the marginal density of y in

model Mi as

p(y |Mi) =

∫ ∫ ∫

p(y | β1, β2i, σ
2,Mi) p(β1, β2i, σ

2 |Mi) dβ1 dβ2i dσ2

=
π−n/2h

k1/2
0 a

d0/2
0 Γ (d/2)

|X ′

1X1 + h0Ik1
|1/2 Γ (d0/2)

·
|V −1

0i |1/2

|V −1
2i |1/2

· a
−d/2
i

= c · |V −1
2i |−1/2|V −1

0i |1/2a
−d/2
i ,

where c is a normalizing constant which does not depend on i or y.
Now specializing to the improper prior (3) by setting h0 = 0, a0 = 0, and

d0 = −k1, we find

p(y |Mi) = c ·
|V −1

0i |1/2

|V −1
0i + X ′

2iM1X2i|1/2
· (y′M1AiM1y)−(n−k1)/2, (11)

where
Ai := M1 − M1X2i

(

V −1
0i + X ′

2iM1X2i

)

−1
X ′

2iM1

and M1 = In −X1(X
′

1X1)
−1X ′

1. If we let p(Mi) denote the prior probability
that Mi is the true model, and λi := p(Mi|y) the posterior probability for
model Mi, then

λi =
p(Mi)p(y |Mi)

∑

j p(Mj)p(y |Mj)
(i = 1, . . . , 2k2),
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We shall assign equal prior probability to each model under consideration.
This seems to be in line with the standard literature on BMA, although it is
not without criticism and alternative choices for p(Mi) have been proposed.
Many researchers feel that simpler models should be preferred to more com-
plex ones, all else being equal. Durlauf, Johnson, and Temple (2005), on
the other hand, find the idea of promoting parsimonious models through
the priors unappealing. Brock and Durlauf (2001) raise objections against
uniform priors on the model space because of the implicit assumption that
the probability that one regressor appears in the model is independent of the
inclusion of others, whereas, in fact, regressors are typically correlated. They
suggest a hierarchical structure for the model prior. This, however, requires
agreement on which regressors are proxies for the same theories. As stated
in Eicher, Papageorgiou, and Raftery (2007), such an agreement is usually
not within reach and, therefore, independent model priors seem a reasonable
compromise. Thus motivated we write

p(Mi) = 2−k2.

Then λi = p(y |Mi), where the normalizing constant c is chosen such that
∑

i λi = 1.

2.3 Model averaging

So far we have conditioned on one model, namely model Mi. In the Bayesian
framework it is now easy to consider all models in our assumed model space
M := {Mi, i = 1, . . . , 2k2}, by writing the posterior distribution of our
parameters β1, β2, and σ2 given the data y as

p(β1, β2, σ
2 | y) =

2k2
∑

i=1

λi p(β1, β2i, σ
2 | y,Mi). (12)

This is a weighted average of the posterior distributions under each model,
weighted by the corresponding posterior model probabilities.

The posterior mean and variance of β1 are

b1 := E(β1 | y) =
∑

i

λib1i, (13)

and
var(β1 | y) =

∑

i

λi (V
∗

1i + b1ib
′

1i) − b1b
′

1, (14)

where b1i := E(β1 | y,Mi) and V ∗

1i := var(β1 | y,Mi); see Raftery (1993) and
Draper (1995).
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To obtain the corresponding results for β2 we introduce the k2×k2i selec-
tion matrices Ti with full column-rank, so that T ′

i = (Ik2i
: 0) or a column-

permutation thereof, and Tiβ2i is the k2×1 vector obtained from β2 by setting
the components not included in Mi to zero. The posterior mean and variance
of β2 are then

b2 := E(β2 | y) =
∑

i

λiTib2i, (15)

and
var(β2 | y) =

∑

i

λiTi (V
∗

2i + b2ib
′

2i)T ′

i − b2b
′

2, (16)

where b2i := E(β2i | y,Mi) and V ∗

2i := var(β2i | y,Mi).

2.4 Implementation using g-priors

Following Zellner (1986) we assume that the prior variance V0i is given by

V −1
0i = giX

′

2iM1X2i (gi > 0).

This gives

λi = c ·

(

gi

1 + gi

)k2i/2

(y′M1AiM1y)−(n−k1)/2,

where

Ai =
gi

1 + gi
M1 +

1

1 + gi
(M1 − M1X2i(X

′

2iM1X2i)
−1X ′

2iM1).

We have
b1i = (X ′

1X1)
−1X ′

1(y − X2ib2i),

b2i =
1

1 + gi
(X ′

2iM1X2i)
−1X ′

2iM1y.

Also, when n > k1 + 2 and defining s2
i := y′M1AiM1y/(n − k1 − 2), we find

V ∗

1i = s2
i (X

′

1X1)
−1 + (X ′

1X1)
−1X ′

1X2iV
∗

2iX
′

2iX1(X
′

1X1)
−1,

V ∗

2i =
s2

i

1 + gi
(X ′

2iM1X2i)
−1.

Our final ingredient is the specification of gi. We follow Fernández, Ley, and
Steel (2001b) and choose

gi :=
1

max(n, k2
2)

,

11



where we note that gi is the same for all i. One alternative would have been
gi := 1/n, the so-called ‘unit information prior’ (Raftery, 1995), recently
advocated by Eicher, Papageorgiou, and Raftery (2007), and Masanjala and
Papageorgiou (2008). In our case with n = 74 and k2 = 4, 9, or 12, the
difference between the two priors is negligible.

The above results now allow us to calculate the BMA estimates and pre-
cisions of β1 and β2 from (13)–(16). Special cases arise and some care is
required when k2 = 0 (no model selection) or k1 = 0 (model selection takes
place over all regressors). Our Matlab program, downloadable from

http://center.uvt.nl/staff/magnus/wals,

allows for these special cases.

3 Weighted-average least squares (WALS)

3.1 Orthogonalization

Weighted-average least squares estimation starts with the realization that we
can ‘orthogonalize’ the columns of X2 such that X ′

2M1X2 = Ik2
, where we

recall that M1 := In − X1(X
′

1X1)
−1X ′

1. More precisely, if we let P be an
orthogonal k2 × k2 matrix such that P ′X ′

2M1X2P = Λ (diagonal), and de-
fine new auxiliary regressors X∗

2 := X2PΛ−1/2 and new auxiliary parameters
β∗

2 = Λ1/2P ′β2, then X∗

2β
∗

2 = X2β2 and X∗

2
′M1X

∗

2 = Ik2
. There are major

advantages in working with X∗

2 and β∗

2 instead of X2 and β2, as will become
clear shortly. Hence, we shall initially assume that this orthogonalization
has taken place.

Assumption 1: X ′

2M1X2 = Ik2
.

Assumption 1 thus requires that the columns x21, . . . , x2k2
of X2 (the auxiliary

regressors) are ‘orthogonal’ in the sense that M1x2i and M1x2j are orthogonal
for every i 6= j. This will not affect the interpretation of the β1-coefficients,
but it will change the interpretation of the β2-coefficients. However, we can
always recover β2 from β2 = PΛ−1/2β∗

2 .

3.2 Restricted least squares

Given Assumption 1, the least-squares (LS) estimators of β1 and β2 in the
unrestricted model (1) are

β̂1 = β̂1r − Qβ̂2, β̂2 = X ′

2M1y,
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where β̂1r := (X ′

1X1)
−1X ′

1y and Q := (X ′

1X1)
−1X ′

1X2. The subscript ‘r’
denotes ‘restricted’ (with β2 = 0). We see that β̂2 ∼ N(β2, σ

2Ik2
).

Let Si be an k2 × (k2 −k2i) selection matrix with full column-rank, where
0 ≤ k2i ≤ k2, so that S ′

i = (Ik2−k2i
: 0) or a column-permutation thereof. We

are interested in the restricted LS estimators of β1 and β2, the restriction
being S ′

iβ2 = 0. Let Mi denote the linear model (1) under the restriction
S ′

iβ2 = 0, and denote the LS estimators of β1 and β2 in model Mi by β̂1i and
β̂2i. Following Danilov and Magnus (2004, Lemmas A1 an A2), the restricted
LS estimators of β1 and β2 are given by

β̂1i = β̂1r − QWiβ̂2, β̂2i = Wiβ̂2, (17)

where Wi := Ik2
−SiS

′

i is a diagonal k2×k2 matrix with k2i ones and (k2−k2i)
zeros on the diagonal, such that the j-th diagonal element of Wi is zero if β2j

is restricted to be zero, and one otherwise. (If k2i = k2 then Wi := Ik2
.) The

joint distribution of β̂1i and β̂2i is then
(

β̂1i

β̂2i

)

∼ Nk

((

β1 + QSiS
′

iβ2

Wiβ2

)

, σ2

(

(X ′

1X1)
−1 + QWiQ

′ −QWi

−WiQ
′ Wi

))

,

the residual vector ei := y−X1β̂1i −X2β̂2i is given by ei = Diy, where Di :=
M1 −M1X2WiX

′

2M1 is a symmetric idempotent matrix of rank n− k1 − k2i,
and the distribution of s2

i := e′iei/(n − k1 − k2i) is

(n − k1 − k2i)s
2
i

σ2
∼ χ2(n − k1 − k2i,

β ′

2SiS
′

iβ2

σ2
).

It follows that:

• all models which include x2j as a regressor will have the same estimator

of β2j , namely β̂2j, irrespective which other β2’s are estimated;

• the estimators β̂21, β̂22, . . . , β̂2k2
are independent;

• if σ2 is known or is estimated by s2 (the LS estimator in the unrestricted
model), then all models which include x2j as a regressor yield the same
t-ratio of β2j .

3.3 The equivalence theorem

We now define the WALS estimator of β1 as

b1 =

2k2
∑

i=1

λiβ̂1i, (18)
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where the sum is taken over all 2k2 different models obtained by setting a
subset of the β2’s equal to zero, and the λi are weight-functions satisfying
certain minimal regularity conditions, namely

λi ≥ 0,
∑

i

λi = 1, λi = λi(M1y). (19)

The WALS estimator can then be written as b1 = β̂1r −QWβ̂2, where W :=
∑

i λiWi. Notice that, while the Wi are nonrandom, W is random. For
example, when k2 = 2, we have four models to compare: the restricted M0

(β21 = β22 = 0), the partially restricted M1 (β22 = 0) and M2 (β21 = 0),
and the unrestricted M12. The corresponding Wi are

W0 =

(

0 0
0 0

)

, W1 =

(

1 0
0 0

)

, W2 =

(

0 0
0 1

)

, W12 =

(

1 0
0 1

)

,

and hence

W =

(

λ1 + λ12 0
0 λ2 + λ12

)

,

which is diagonal because of Assumption 1.
A few words about the regularity conditions are in order. If σ2 is known,

then most or all diagnostics will use statistics (such as t- and F -statistics)
which depend on β̂2 only. If σ2 is not known and estimated by s2, then
all t- and F -statistics will depend on (β̂2, s

2). Now, it is a basic result in
least-squares theory that s2 is independent of (β̂1, β̂2). It follows that β̂1r is
independent of s2. Hence, β̂1r will be independent of (β̂2, s

2). Finally, if σ2 is
not known and estimated by s2

i (the estimator of σ2 in model Mi), then it is
no longer true that all t- and F -statistics depend only on (β̂2, s

2). However,
they still depend only on M1y, because we have seen that both β̂2i and the
residuals ei from model Mi are linear functions of M1y. We conclude that
the regularity conditions on λi are reasonable and mild.

The equivalence theorem proved in Danilov and Magnus (2004, Theo-
rem 1), generalizing an earlier result in Magnus and Durbin (1999), states
that if Assumption 1 holds and the regularity conditions (19) on λi are sat-
isfied, then

E(b1) = β1 − Q E(Wβ̂2 − β2), var(b1) = σ2(X ′

1X1)
−1 + Q var(Wβ̂2)Q

′,

and hence
MSE(b1) = σ2(X ′

1X1)
−1 + QMSE(Wβ̂2)Q

′. (20)

The importance of the equivalence theorem lies in the fact that the properties
of the complicated WALS estimator b1 of β1 depend critically on the proper-
ties of the less complicated estimator Wβ̂2 of β2. We notice that neither the

14



bias, nor the variance or the mean squared error of b1 depend on β1. They
do, however, depend on β2.

It follows from the equivalence theorem (from (20) in particular) that the
WALS estimator b1 will be a ‘good’ estimator of β1 (in the mean squared
error sense) if and only if Wβ̂2 is a ‘good’ estimator of β2. Now, under As-
sumption 1, the matrix W is diagonal, say W = diag(w1, . . . , wk2

). Suppose
that σ2 is known (we discuss the unknown σ2 case later), and that we choose
wj = wj(β̂2j). Then, since the {β̂2j} are independent, so are the {wjβ̂2j},
and our k2-dimensional problem reduces to k2 (identical) one-dimensional
problems: only using the information that β̂2j ∼ N(β2j , σ

2) and assuming
that σ2 is known, find the best (in the mean squared error sense) estimator
of β2j . The Laplace estimator discussed below solves this problem.

Suppose β̃2j is the desired optimal estimator of β2j . Then, letting β̃2 :=
(β̃21, . . . , β̃2k2

)′, the equivalence theorem directly gives us the optimal WALS
estimator

b1 = β̂1r − Qβ̃2,

with

E(b1) = β1 − Q E(β̃2 − β2), var(b1) = σ2(X ′

1X1)
−1 + Q var(β̃2)Q

′.

From a computational point of view, it is important to note that the number
of required calculations is of order k2, even though there are 2k2 models to
consider. This is so because we do not need all 2k2 individual λ’s; only k2

linear combinations are required, namely the diagonal elements of W .

3.4 The Laplace estimator

Thus motivated, let x be a single observation from a univariate normal distri-
bution with mean η and variance one, that is, x ∼ N(η, 1). How to estimate
η? This seemingly trivial question was addressed in Magnus (2002). We
consider five candidates (there are more):

• the ‘usual’ estimator: t(x) = x

• the ‘silly’ estimator: t(x) = 0

• the pretest estimator:

t(x) =

{

0 if |x| ≤ c

x if |x| > c

• the ‘normal’ estimator: t(x) = x/(1 + c)
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• the Laplace estimator defined below in (21),

where c is a nonnegative constant. The five estimators are graphed in Fig-
ure 1. The usual estimator is unbiased, admissible, and minimax. Its risk

Figure 1: Five estimators t(x) of η when x ∼ N(η, 1).
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R(η) := E(t(x) − η)2 = 1 has good properties when |η| is large, but not
when η is close to zero. The silly estimator has excellent properties when
η is close to zero, but its risk R(η) = η2 increases without bound when |η|
becomes large. The pretest estimator has bounded risk, but it has a discon-
tinuity and is therefore inadmissable. Also, its risk is higher than either the
usual or the silly estimator when |η| is around one. (In Figure 1 we take
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c = 1.96.) The ‘normal’ estimator is a Bayesian estimator, combining the
likelihood x|η ∼ N(η, 1) with a normal prior π(η) ∼ N(0, 1/c). (In Figure 1
we take 1/c = 2.1981, so that Pr(|η| < 1) = 1/2.) This is — in essence —
the BMA estimator. The risk of the ‘normal’ estimator is also unbounded.
The Laplace estimator was developed as an estimator which is admissible,
has bounded risk, has good properties around |η| = 1, and is near-optimal
in terms of minimax regret. It is a Bayesian estimator, based on the Laplace
prior

π(η) =
c

2
exp(−c|η|).

The hyperparameter c is chosen c = log 2, because this implies that the prior
median of η is zero and the prior median of η2 is one, which comes closest to
our prior idea of ignorance as discussed in the Introduction.

The moments of the posterior distribution of η|x are given in Theorem 1,
which extends Pericchi and Smith (1992) and Magnus (2002).

Theorem 1: Consider the likelihood and prior

x|η ∼ N(η, 1), π(η) =
c

2
exp(−c|η|),

where c is a positive hyperparameter. Let Q(x, η) := (x − η)2 + 2c|η|. Then
the posterior distribution of η given x is given by

p(η | x) =
exp(−Q(x, η)/2)

∫

exp(−Q(x, η)/2) dη
.

The mean and variance of the posterior distribution are given by

E(η | x) =
1 + h(x)

2
(x − c) +

1 − h(x)

2
(x + c) (21)

and

var(η | x) = 1 + c2(1 − h2) −
c(1 + h)φ(x − c)

Φ(x − c)
,

where

h(x) :=
e−cxΦ(x − c) − ecxΦ(−x − c)

e−cxΦ(x − c) + ecxΦ(−x − c)
,

and φ(x) and Φ(x) denote the density and cumulative distribution function
of the standard-normal distribution, respectively.

Proof: Writing

Q(x, η) =

{

(η − (x + c))2 − 2cx − c2 if η ≤ 0,

(η − (x − c))2 + 2cx − c2 if η > 0,
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and realizing that
∫ x

−∞

tφ(t) dt = −φ(x),

∫ x

−∞

t2φ(t) dt = Φ(x) − xφ(x),

the proof follows easily. ‖

The moments are easy to compute. Note that the function h is monoton-
ically increasing with h(−∞) = −1, h(0) = 0, and h(∞) = 1, and that
h(−x) = −h(x).

3.5 Implementation using Laplace priors

The WALS estimation procedure can be summarized as follows.

• In the unrestricted model y = X1β1 + X2β2 + ε, determine which are
the focus regressors X1 and which are the auxiliary regressors X2.

• Compute M1 := In − X1(X
′

1X1)
−1X ′

1, and then P (orthogonal) and Λ
(diagonal) such that P ′X ′

2M1X2P = Λ. Compute X∗

2 := X2PΛ−1/2, so
that X∗

2
′M1X

∗

2 = Ik2
. Letting β∗

2 := Λ1/2P ′β2, note that X∗

2β
∗

2 = X2β2.

• Compute β̂2

∗

= X∗

2
′M1y.

• Let η := β∗

2/σ. Assuming that σ2 is known, compute η̂ := β̂2

∗

/σ.
Notice that the components η̂1, . . . , η̂k2

of η̂ are independent and that
η̂j ∼ N(ηj, 1).

• For j = 1, . . . , k2 compute the Laplace estimator η̃j := E(ηj|η̂j) and
its variance ω2

j := var(ηj |η̂j). Define η̃ := (η̃1, . . . , η̃k2
)′ and Ω :=

diag(ω2
1, . . . , ω

2
k2

).

• Since η = β∗

2/σ = Λ1/2P ′β2/σ, we obtain β2 = σPΛ−1/2η, and hence
we compute the WALS estimators for β2 and β1 as

b2 = σPΛ−1/2η̃, b1 = (X ′

1X1)
−1X ′

1(y − X2b2).

• Letting Q := (X ′

1X1)
−1X ′

1X2, the variance of b2 and b1 is

var(b2) = σ2PΛ−1/2ΩΛ−1/2P ′,

and
var(b1) = σ2(X ′

1X1)
−1 + Q var(b2)Q

′.

We also have cov(b1, b2) = −Q var(b2). In standard applications one is
primarily interested in the diagonal elements of the variance matrices.
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Finally, we note that we have assumed that σ2 is known, whereas in fact it
is of course not known. Our solution to this problem is to replace σ2 by s2,
the estimate in the unrestricted model. This is an approximation, but a very
accurate one, as demonstrated and exemplified by Danilov (2005).

3.6 BMA and WALS compared

It may seem at first glance that the two estimation procedures BMA and
WALS are quite different, but in fact they are quite close. Of course, there
is a huge difference in computing time, because WALS computing time is
linear in the number of auxiliary parameters, while BMA computing time is
exponential. Here, however, we are concerned with the conceptual differences
between the two procedures.

Both procedures are model averaging algorithms. The assumption that
the data are normally distributed is the same, and the treatment of the focus
parameters β1 and the error variance σ2 as noninformative priors is essentially
the same. The difference between BMA and WALS lies in the prior treatment
of the auxiliary parameters β2. In BMA we assume normality of the priors
with

E(β2i |Mi) = 0, var(β2i |Mi) =
σ2

g
(X ′

2iM1X2i)
−1,

where g := 1/ max(n, k2
2). Since β2i = T ′

iβ2, X2i = X2Ti, and T ′

iTi = Ik2i
, we

can write these moments as

E(β2 |Mi) = 0, var(β2 |Mi) =
σ2

g
Ti(T

′

iX
′

2M1X2Ti)
−1)T ′

i . (22)

In contrast, in WALS we write β2 in terms of η as β2 = σPΛ−1/2η. The k2

components of η are i.i.d. according to a Laplace distribution

π(ηi) =
c

2
exp(−c|ηi|), c = log 2.

This implies that each ηi is symmetrically distributed around zero, that the
median of η2

i is one, and that the variance of ηi is σ2
η = 2/c2. This choice

of prior moments is based on our idea of ignorance as a situation where we
don’t know whether the theoretical t-ratio is larger or smaller than one in
absolute value. The prior moments of β2 are then given by

E(β2) = 0, var(β2) = σ2σ2
ηPΛ−1P ′ =

σ2

c2/2
(X ′

2M1X2)
−1. (23)

Comparing (22) and (23) shows that these prior moments are in fact closely
related, and suggests in addition a new value for g in BMA applications,
namely g = c2/2 = 0.24.
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The conceptual differences are thus the distribution (Laplace versus nor-
mal), where Laplace has the advantage of leading to finite risk; and the choice
of g as a scaling parameter for the prior variance.

4 Growth models

In the neoclassical growth model (Solow, 1956), growth around a steady state
is determined by rates of physical capital accumulation, population growth,
and exogenous technological progress. The initial income of an economy is
relevant for its transition path as countries with a lower initial income are
expected to grow faster than richer countries. The ‘new growth’ theories seek
to explain also the previously exogenous components of economic growth,
which is why they are often called ‘endogenous’ growth models. A frequently
used empirical model for growth regressions is the human capital-augmented
neoclassical model (Mankiw, Romer, and Weil, 1992), which regresses the
average growth rate of GDP per capita on investment, the log of initial GDP
per capita, the population growth rate, and a human capital variable.

The ‘Solow’ determinants derived from a neoclassical growth model are
sometimes called ‘proximate’ determinants because they are thought to be
the most established drivers of economic growth. The term ‘proximate’ also
reflects the ease with which these determinants can be influenced by pol-
icy measures, thus emphasizing their importance for empirical research and
policy advice. Recent literature advocates the view that these proximate
determinants in turn depend on slow-moving ‘fundamental’ growth determi-
nants such as a country’s geography, the quality of its institutions, the de-
gree of fractionalization in its society, and its culture or religion; see Durlauf,
Kourtellos, and Tan (2008a), and references therein. Accordingly, one can
distinguish between proximate and fundamental growth theories (Durlauf,
Kourtellos, and Tan, 2008b).

We seek to capture these different types of growth determinants (theories)
in our empirical analysis. Thus we define two different sets of regressors,
labeled X1 and X2, somewhat in the spirit of Brock and Durlauf (2001)
and Masanjala and Papageorgiou (2008). The set X1 contains the regressors
which appear in every regression on theoretical or other grounds (irrespective
of their statistical significance), the so-called ‘focus’ regressors. Typically,
but not necessarily, X1 contains the constant term as one of its regressors.
The additional controls in the regression, the so-called ‘auxiliary’ regressors,
are contained in X2. Their primary role is to improve the estimation of the
focus regressors, although their estimates may be of independent interest.
The distinction between focus and auxiliary regressors is helpful when one
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wants to understand the relationship between neoclassical and other new
growth determinants. While the Solow variables appear in many empirical
studies, thus serving as a baseline for growth analysis, it is not so clear
which variables should be included as auxiliary regressors. The proximate
(Solow) determinants are the variables of major interest in our analysis (X1)
based on their prominent position in growth theory and growth empirics.
The fundamental growth determinants mentioned above are included as an
additional set of regressors (X2) serving as controls of the standard growth
models.

Our set-up is distantly related to the empirical study by Levine and Renelt
(1992) who include (as we do) a set of variables that appear in every regres-
sion. They distinguish, however, between three sets of variables with the aim
of finding the widest range of coefficient estimates on the variables of interest
that standard hypothesis tests do not reject, thus assessing the robustness of
partial correlations between the per capita growth rate and various economic
indicators.

We analyze two different model specifications: Model 1 and Model 2. In
the notion of Durlauf, Kourtellos, and Tan (2008b), we interpret Model 1 as
a direct test of the proximate neoclassical growth theory against the funda-
mental new growth theories of institutions, geography, fractionalization, and
religion. Model 2 deviates from the proximate versus fundamental classifi-
cation, and tests the robustness of the endogenous growth model using the
distinction between focus and auxiliary regressors.

In both models the dependent variable is GROWTH. In our data set,
the average growth rate is 1.99% with a standard error 1.86. The regressors
and their role as either focus or auxiliary are given in Table 1. Model 1
contains six focus regressors (including the constant term) and four auxiliary
regressors. It is motivated by the neoclassical growth model and thus contains
all Solow determinants as focus regressors (X1). These are: The initial capital
stock of an economy (GDP60), measured as the log of GDP per capita in
1960. This represents the so-called convergence term of the Solow growth
model and attempts to analyze whether poorer countries (those having lower
initial income) actually grow faster than richer ones. Next, the 1960-1985
equipment investment share of GDP (EQUIPINV), which serves as a proxy
for the stock of physical capital in the economy and reflects the importance
of capital accumulation for the growth of an economy. Then two variables
which represent human capital. To capture different facets of human capital,
we include a direct measure of human capital, the total gross enrollment
rate in primary schooling in 1960 (SCHOOL60), and also a proxy for non-
educational human capital, the life expectancy at age zero, measured in 1960
(LIFE60). Both human capital variables are widely used proxies for the
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Table 1: Model specifications, focus and auxiliary regressors.
Variable Model 1 Model 2 Mean SE
CONSTANT Focus Focus 1.0000 0.0000
GDP60 Focus Focus 7.5253 0.8612
EQUIPINV Focus Focus 0.0432 0.0344
SCHOOL60 Focus Focus 0.7807 0.2556
LIFE60 Focus Focus 56.0676 1.1566
DPOP Focus Auxiliary 0.0206 0.0100
LAW Auxiliary Focus 0.5518 0.3332
TROPICS Auxiliary Focus 0.5481 0.4709
AVELF Auxiliary Focus 0.2984 0.2797
CONFUC Auxiliary Focus 0.0185 0.0862
MINING — Auxiliary 0.0482 0.0792
PRIGHTS — Auxiliary 3.4551 1.9073
MALARIA — Auxiliary 0.2866 0.4036

initial human capital stock in an economy and are expected to have a positive
effect on productivity growth with life expectancy being the more robust
regressor (Sala-i-Martin, 1997). Whenever possible, we use such initial values
for our variables, reducing also the potential endogeneity problem in our
growth regressions. Finally, the population growth rate between 1960 and
1990 (DPOP), a proxy for the exogenous growth rate of labor assumed to
foster productivity growth in the neoclassical model.

To test this neoclassical model (theory) and its proximate growth de-
terminants we include the suggested fundamental growth determinants as
auxiliary regressors. There is not only theoretical but also empirical sup-
port for these regressors; see Sala-i-Martin (1997), Fernández, Ley, and Steel
(2001a), and Sala-i-Martin, Doppelhofer, and Miller (2004). We specify the
following set of four auxiliary variables in X2. First, a rule of law index
(LAW), a measure of the importance of institutions, supposed to have a pos-
itive effect on economic growth. Next, a country’s fraction of tropical area
(TROPICS), which controls for the effect of geography and is expected to
have a negative effect on productivity growth. Third, an average index of
ethnolinguistic fragmentation in a country (AVELF), which will help to an-
alyze the influence of the degree of fractionalization in society and culture
on economic productivity, typically found to be negative. And finally, the
fraction of Confucian population in a country (CONFUC), used as a (some-
what dubious) proxy for culture or religion, typically identified as having a
positive effect on growth.
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Model 2 contains nine focus regressors and four auxiliary regressors, and
it represents an endogenous growth model trying to identify more specifi-
cally the factors driving growth and technological progress than is possible
in Model 1. All regressors of our first model are included in Model 2 as
focus regressors, except DPOP which is now an auxiliary regressor, because
of its ambiguous role in economic growth. This ambiguity and lack of ro-
bustness was found, for example, by Sala-i-Martin (1997), Fernández, Ley,
and Steel (2001a), and Sala-i-Martin, Doppelhofer, and Miller (2004). Our
results reported in Section 5 confirm this ambiguity.

The three new auxiliary regressors are: the fraction of GDP produced in
mining (MINING), a structural variable supposed to exert a negative effect
on economic growth; an index for political rights (PRIGHTS), serving as
a second institutional variable (the other is LAW), so that we capture not
only the quality of the legal framework in a country but also a notion of
public participation in the political process; and malaria prevalence in 1966
(MALARIA), another geographical variable (next to TROPICS), so that we
account not only for the geographical location of a country, but also for its
disease environment.

For each of Models 1 and 2, we estimate two versions: Set-up 1 as de-
scribed above, and Set-up 2, where only the constant is a focus variable and
all other variables (nine in Model 1 and twelve in Model 2) are auxiliary.
Set-up 2 is the typical model averaging framework and allows us to relate
our results directly to previous studies.

5 Estimation results

We thus have two models and for each model we have two set-ups. We write
the four models as 1(1), 1(2), 2(1), and 2(2), respectively. For each of these
four models we consider five methods of estimation:

• Unrestricted: No model selection takes place. We estimate the model
with all focus and all auxiliary regressors by OLS.

• Restricted: No model selection. We estimate the model with all focus
regressors and none of the auxiliary regressors, also by OLS.

• GtS: General-to-specific model (GtS) selection takes place over the aux-
iliary regressors using Matlab’s stepwisefit routine. The selected model
thus contains all focus regressors and a subset of the auxiliary regres-
sors. This selected model is then estimated by OLS without pretesting
taking into account. The reported OLS estimates and standard errors
are thus conditional on the model selected.
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• WALS: Weighted-average least squares estimation as discussed in Sec-
tion 3.

• BMA: Bayesian model averaging as discussed in Section 2.

We note in passing that the estimates and standard errors reported for WALS
and BMA are not conditional on inclusion. Some authors present the pos-
terior moments conditional on inclusion (Sala-i-Martin, Doppelhofer, and
Miller, 2004) or they present both conditional and unconditional moments
(Ley and Steel, 2007a). The interest in the conditional moments is obscure.
Suppose we have the simplest case yi = α + βxi + εi, where the constant
term is a focus regressor and x is auxiliary, so that there are two models to
consider: one where β = 0 and one where β is to be estimated. Suppose
that x̄ = 0. Then the unrestricted model gives β̂u =

∑

xiyi/
∑

x2
i , while

the restricted model gives β̂r = 0. The estimator for β is a weighted average
of these two: β̂ = λβ̂u + (1 − λ)β̂r = λβ̂u, where λ is determined by priors
and data. The estimator β̂u is the estimator conditional on inclusion, and it
will overestimate the impact of x on y, which is correctly estimated by the
(unconditional) estimator β̂.

The estimation results for the four models and five estimation methods
are given in Tables 2–5. All regressors have the same signs across our estima-
tion methods, model specifications, and set-ups with one exception, namely
DPOP in the restricted estimation method of Model 1(1), which has a nega-
tive sign rather then the positive sign expected from neoclassical theory. We
note that the standard errors are very large for this parameter, and that its
sign (and its value) is therefore statistically not robust. In fact, its standard
error is by far the largest of all regressors in all our estimations. The regressor
PRIGHTS also enters with an unexpected negative sign in all estimations of
Model 2, and does not seem to be a robust regressor either. This resembles
the results of Sala-i-Martin, Doppelhofer, and Miller (2004), and could be
due to the fact that most of the potentially beneficial effects of political sta-
bility on a country’s economic growth performance are already captured by
other variables in the estimation, most notably LAW.

The regressors GDP60, TROPICS, and AVELF in Models 1 and 2, and
the regressors MINING and MALARIA in Model 2 are negatively correlated
with growth, which is reasonable, because a negative effect of initial GDP
reflects (conditional) convergence between countries, and an unfavorable geo-
graphical location in the tropics (highly correlated with high rates of malaria
prevalence) or a higher degree of fractionalization in a country are seen as im-
pediments to economic growth. This is also the case for large endowments of
natural resources which are usually associated with more political instability,
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rent-seeking, and low growth. All other regressors exhibit positive signs indi-
cating that higher shares of physical and human capital, stability in terms of
a sufficient rule of law, and a larger fraction of Confucian population foster
economic growth. Not only the signs, but also the sizes of the estimates are
closely correlated over the four models.

As the general-to-specific (GtS) model selection procedure is commonly
used in practice, closer investigation of the selected models for 1(1), 1(2),
2(1), and 2(2) is appropriate. In Set-up 1 we have four auxiliary regressors,
both in Models 1(1) and 2(1). In Model 1(1) the GtS procedure selects three
of the four auxiliary regressors, while in Model 2(1) only one is selected. One
would expect, perhaps, that in Model 1(1) the GtS estimates are close to the
unrestricted estimates, while in Model 2(1) they are close to the restricted
estimates. This, however, is not the case. In Set-up 2 only the constant term
is forced to be present in all models, while model selection takes place over all
other variables. This is the procedure most commonly used. The GtS method
selects only four of the nine regressors in Model 1(2), and six of the twelve
regressors in Model 2(2). In Model 1(2), GtS drops two of the Solow deter-
minants, namely SCHOOL60, and DPOP. This leads to a highly increased
significance of the two other Solow determinants EQUIPINV and LIFE60.
Also, the fundamental regressor CONFUC becomes much more important
while the effect of GDP60 diminishes statistically and economically. Similar
comments apply to Model 2(2). The statistical properties and conclusions
of GtS must, however, be treated with caution, because — unlike WALS
and BMA — the reported moments are conditional on the selected model,
and the noise generated by the model selection procedure is ignored. This
is the so-called pretesting problem, common to all classical model selection
procedures.

Our main interest is in the comparison of the two averaging methods:
BMA and WALS. The estimated coefficients seem to be somewhat higher (in
absolute value) for WALS than for BMA (with the exception of EQUIPINV
and CONFUC), especially for the auxiliary regressors, while the estimated
standard errors are about the same on average. The economic impact of
all robust and important regressors does not vary much between BMA and
WALS. To shed some light on the relative importance of each regressor we
compute the posterior inclusion probability (pip) and the t-ratio for each of
the BMA estimates, and the t-ratio for each of the WALS estimates (since
pip can not be computed for WALS) for Models 1(1) and 1(2). As a rough
guideline for ‘robustness’ of a regressor, a value pip = 0.5 is sometimes rec-
ommended (Raftery, 1995), corresponding approximately with an absolute
t-ratio of |t| = 1 (Masanjala and Papageorgiou, 2008); see our discussion on
ignorance in the Introduction. We see from Table 6 that pip = 1 for each of
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the focus regressors, because these regressors are in the model with proba-
bility one. The ordering of the four auxiliary regressors according to pip is
the same as the ordering according to the t-ratios, both for BMA and for
WALS. For the six focus regressors the pip-values are uninformative, and the
correlation between the t-ratios of BMA and WALS is very high. Similar
remarks apply to Model 2.

We see that CONFUC is by far the most robust auxiliary regressor with
pip = 0.99 and a WALS t-ratio of 2.72 in Model 1(1). LAW is the second
important auxiliary regressor with pip = 0.68 and a WALS t-ratio of 2.25.
In Model 1(2) the BMA estimates confirm the standard results that GDP60
(pip=0.98) and EQUIPINV (pip = 0.88) are the most important Solow de-
terminants. Surprisingly, also DPOP seems important (pip = 0.85). The
order of importance is essentially the same when we consider WALS t-ratios,
except that GDP60 (|t| = 4.16) has the highest t-ratio followed by LIFE60
(|t| = 2.34), while EQUIPINV (|t| = 1.93) is only third. Among the funda-
mental determinants we find again that CONFUC and LAW are important
variables, both in terms of pip and t-ratio.

The importance comparisons for Model 2 are similar. Among the robust
regressors we find GDP60 (pip = 0.99), CONFUC (pip = 0.97), LAW (pip =
0.85), EQUIPINV (pip = 0.83), and LIFE60 (pip = 0.72). Interestingly,
MALARIA (pip = 0.87) is the third most important regressor, reflecting the
usually poor economic performance of tropical countries and, jointly with
life expectancy, the large effects of health on economic outcomes. Again, the
order of the most robust regressors is essentially the same whether we use
BMA pip-values or WALS t-ratios.

Our model averaging results regarding the identification of the important
regressors are mostly in line with the literature for both models and set-
ups. We find some of the Solow or proximate determinants not among the
robust and important regressors, notably the population growth rate, DPOP,
and primary schooling, SCHOOL60, which is in line with other studies; see
Fernández, Ley, and Steel (2001a), Sala-i-Martin, Doppelhofer, and Miller
(2004), Eicher, Papageorgiou, and Raftery (2007), and Durlauf, Kourtellos,
and Tan (2008b). The fundamental determinant (theory) of fractionalization,
AVELF, is not robust either, a finding confirmed by other model averaging
studies (Fernández, Ley, and Steel, 2001a; Sala-i-Martin, Doppelhofer, and
Miller, 2004; Durlauf, Kourtellos, and Tan, 2008b).

The recent study by Durlauf, Kourtellos, and Tan (2008b) addresses the
issue of theory robustness versus variable robustness in a two-stage least
squares BMA framework with hierarchical priors. They do not find any of the
fundamental theories geography, institutions, or religion to be robustly and
directly correlated with growth, and they conjecture an indirect effect from
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institutions and religion on growth via proximate determinants. Religion is
not robust as a theory, they claim, because, if dummies allowing for regional
heterogeneity are included in the regression, the pip-value of religion drops
sharply. Similarly, institutions are not robust as a theory, because only in
estimations where solely the fundamental theories are present, institutions
have a high pip-value.

While our results regarding religion and geography support the findings of
Durlauf, Kourtellos, and Tan (2008b), this is not the case regarding institu-
tions. Our results provide evidence for a robust direct impact of institutions
on economic growth. The magnitude and robustness of our institutions vari-
able, LAW, is for both models larger in Set-up 1 (which distinguishes between
types of determinants or ‘theories’) than in Set-up 2 (which does not). This
is especially interesting for Model 1 where LAW is ‘only’ included in the set
of auxiliary regressors but nevertheless exerts a direct influence. Since the
effect of institutions on growth is of obvious importance, we investigated this
issue a little further. We added the same regional dummies and macroeco-
nomic variables as in Durlauf, Kourtellos, and Tan (2008b), and found that
our institutions variable, LAW, is unaffected by these changes, irrespective
whether we add the new variables to the set of focus regressors or to the set of
auxiliary regressors. The pip-value is always larger than 0.9 and the absolute
t-ratio always larger than 2.0. If anything, the inclusion of the additional
variables strengthens the effect of LAW on growth.

To gain further insight we also consider a much larger data set, namely
the data analyzed by Sala-i-Martin, Doppelhofer, and Miller (2004), hence-
forth SDM. The SDM data set consists of 88 countries and 68 regressors (67
explanatory variables plus the constant term). Assuming one focus regressor
(the constant term) and 67 auxiliary regressors we estimated the coefficients
using WALS (computing time negligible) and compared our results with those
presented by SDM (Table 2) using their Bayesian averaging of classical esti-
mates (BACE) approach, and the BMA results presented by Ley and Steel
(2007a, Table 6). Table 7 gives posterior means and t-ratios for a subset of
eleven regressors comparable to our variables of interest. (Instead of EQUIP-
INV, SDM employ IPRICE as the variable for domestic investment: the aver-
age investment price level between 1960 and 1994 on purchasing power parity
basis. Source: Heston, Summers, and Aten (2001). A variable proxying for
the rule of law is not included in the SDM data.) We denote the t-ratio by
tc if it is calculated conditional on inclusion, and by tu if it is not. Com-
paring the absolute t-ratios, we see that on average |tc| = 2.36 (BACE) and
|tc| = 2.59 (BMA) for the conditional estimates, and |tu| = 0.67 (WALS) and
|tu| = 0.82 (BMA) for the (correct) unconditional estimates. This clearly
demonstrates the danger of using the conditional estimates: the coefficients
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are overestimated and the standard errors are underestimated. In the case of
Table 7 the tc-ratios are more than three times as large (on average, absolute
values) as the tu-ratios.

If we consider all 68 regressors, then the average t-ratios (in absolute
value) are uniformly lower: |tc| = 1.27 (BACE) and |tc| = 1.39 (BMA) for
the conditional estimates, and |tu| = 0.40 (WALS) and |tu| = 0.27 (BMA)
for the unconditional estimates, but the tc-ratios are now about four times
as large (on average, absolute values) as the tu-ratios.

This shows two things. First, the difference between WALS and BMA
(unconditional) is not large. Second, the difference between conditional and
unconditional estimates is very large, and the use of the conditional estimates
gives unrealistically precise estimates. Given that SDM use only uniform
priors in BACE, their high precisions (with a small data set and a large
number of regressors) seem astonishing. As argued, the reason lies in the use
of conditional estimates and t-ratios.

6 Conclusions

The presently available myriad of growth determinants exposes growth re-
gressions to a high degree of model uncertainty. Solow’s (1956) neoclassical
growth model provides an important benchmark, but numerous other growth
models have been proposed and estimated since 1956. Since estimates and
policy recommendations based on a model without taking the model selec-
tion procedure explicitly into account can be seriously biased and are likely to
underestimate the variance, it is important to develop estimation techniques
that take model uncertainty explicitly into account in an integrated one-step
procedure. BMA is one such procedure, and so is WALS. Rather than trying
to find the best possible model (step one) and — conditional on the selected
model — the best possible estimates (step two), it is usually more relevant
to find the best possible estimates taking account of all information provided
by all models (one step).

At present, BMA is a standard method in growth econometrics; it is
flexible with respect to the size and exact specification of a model, and it does
not require the a priori selection of any model. In this paper we confront BMA
with WALS, a new method previously not used for (growth) estimations.
WALS has a theoretical advantage over BMA in that it treats ignorance in a
coherent fashion, and a practical advantage in that the required computing
time is linear in the number of regressors rather than exponential.

We apply these two model averaging techniques taking different types of
growth determinants (theories) into account. We define two sets of regres-
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sors: focus regressors which we want in the model on theoretical or other
grounds, and auxiliary regressors which contain additional explanatory vari-
ables of which we are less certain. The distinction between focus and aux-
iliary regressors is helpful when one wants to understand the relationship
between neoclassical and other new growth determinants. While the Solow
variables appear in many empirical studies, thus serving as a baseline for
growth analysis, it is not so clear which variables should be included as aux-
iliary regressors.

Based on this framework we analyze two different model specifications,
labeled Model 1 and Model 2. In the notion of Durlauf, Kourtellos, and Tan
(2008b), we interpret Model 1 as a direct test of the proximate neoclassi-
cal growth theory against the fundamental new growth theories of institu-
tions, geography, fractionalization, and religion. Model 2 deviates from the
proximate versus fundamental classification, and tests the robustness of the
endogenous growth model using the distinction between focus and auxiliary
regressors.

Our model averaging results regarding the magnitude of the robust and
important estimates are mostly in line with the literature for both models and
set-ups, and this is also true for the identification of the important regressors.
Our results do, however, shed some new light on the robustness of growth
determinants and theories. First, we find that robust growth theories should
include not only neoclassical growth variables but also institutions. This is in
contrast to the recent study by Durlauf, Kourtellos, and Tan (2008b) which
addresses the issue of theory robustness versus variable robustness. Their
results seem to imply that none of the new growth theories (fractionaliza-
tion, geography, institutions, religion) is a robust direct growth determinant,
although they may have indirect effects. Our results, on the other hand,
indicate that institutions are robust and of direct importance. Second, we
find that the choice of variable within the theory of institutions matters. We
have two institutions variables: a proxy for the rule of law (LAW) and a
proxy for political rights (PRIGHTS). We find that LAW is important, but
we see from Model 2 that PRIGHTS is not among the robust and impor-
tant determinants, not even indirectly. Thus, inference on the robustness of
institutions as a theory based on PRIGHTS would lead to different results
than inference based on LAW. This is important, because some authors (in
particular, Durlauf, Kourtellos, and Tan, 2008b) claim that the choice of in-
dividual variables proxying the same growth theory is of little interest. Our
results contradict this point of view.

The search for a robust growth theory continues to be a delicate venture.
It seems advisable to address the robustness and the interplay of different
types, such as proximate versus fundamental, at the level of growth regressors
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rather than at the level of growth theories, since model averaging procedures
can produce quite different results with respect to the robustness of growth
theories depending on the specific variables used to proxy them.

From an econometric theory point of view we conclude that WALS should
be considered as a serious new model averaging technique, both theoretically
and computationally. The estimation results reported in this paper do not
provide a clear indication which of WALS and BMA is better in which en-
vironment. Simulation studies (currently in progress) will provide further
insights. Apart from its computational superiority, one of the advantages of
WALS is that it is based on a sound treatment of ignorance, while BMA will
always depend on arbitrary (and possibly sensitive) choices of the hyperpa-
rameters, such as the specification of gi in Section 2.4.

Data Appendix

Our dependent variable (GROWTH) is the growth of per capita GDP be-
tween 1960 and 1996. Note that we wish to explain the growth rate in each
country over a 37-year period, not the annual growth rates. Our data con-
stitute a cross section of 74 countries worldwide, and for each country we
require the observed growth rate over the 37-year period and observations of
the relevant regressors. We confine ourselves to thirteen regressors, including
the constant term.

The data used in this study are taken from the standard literature on
growth regressions. Our primary source is the SDM data set (Sala-i-Martin,
Doppelhofer, and Miller, 2004) for 1960–1996, available on Doppelhofer’s
website:

http://www.econ.cam.ac.uk/faculty/doppelhofer/research/bace.htm.

There are only two variables where we deviate from the SDM data, namely
the equipment investment variable (EQUIPINV), which replaces another in-
vestment variable in SDM, and the rule of law index (LAW), which is not in
the SDM data. Both variables are taken from Sala-i-Martin (1997) (hence-
forth SALA).

The SDM data set is based on a list of 139 countries. Since many of the
regressors are not observed in each country, they selected 88 countries for
their analysis. The SALA data set lists 134 countries (with many missing
observations). The intersection of the two sets and our selected variables
contains 74 countries, as follows:

Africa (18): Algeria, Botswana, Cameroon, Congo, Ethiopia, Ghana, Kenya,
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Madagascar, Malawi, Morocco, Nigeria, Senegal, Somalia, Tunisia, Uganda,
Zaire, Zambia, Zimbabwe;
Latin America & Caribbean (21): Argentina, Bolivia, Brazil, Chile,
Colombia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Guatemala,
Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru,
Trinidad and Tobago, Uruguay, Venezuela;
North America (2): Canada, United States;
Asia (14): Bangladesh, Hong Kong, India, Israel, Japan, Jordan, Korea,
Malaysia, Pakistan, Philippines, Singapore, Sri Lanka, Taiwan, Thailand;
Europe (17): Austria, Belgium, Denmark, Finland, France, West Germany,
Greece, Ireland, Italy, The Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland, Turkey, United Kingdom;
Oceania (2): Australia, Papua New Guinea.

The dependent variable is:

GROWTH: Growth of GDP per capita at purchasing power parity between
1960 and 1996 (base year 1996); calculated by Heston, Summers, and Aten
(2001). Source: SDM.

Apart from the constant term, there are twelve regressors, briefly described
as follows:

GDP60: Logarithm of GDP per capita in 1960; calculated by Heston, Sum-
mers, and Aten (2001). Source: SDM.
EQUIPINV: 1960–1985 real equipment investment share of GDP compris-
ing producer’s investments in electrical and nonelectrical machinery (mea-
sured in relative prices constant across countries); calculated by De Long
and Summers (1991). Source: SALA.
SCHOOL60: Total gross enrollment ratio for primary education in 1960.
Calculated by Barro and Lee (1993) from UNESCO data. Source: SDM.
LIFE60: Life Expectancy at age 0 in 1960. Calculated by Barro and Lee
(1993) from World Development Reports, World Bank, and other national
data sets. Source: SDM.
DPOP: Average growth rate of population between 1960 and 1990. Calcu-
lated by Barro and Lee (1993) from World Bank data. Source: SDM.
LAW: Index for the overall maintenance of the rule of law (also referred to
as ‘law and order tradition’). Calculated by Knack and Keefer (1995) from
the International Country Risk Guide. Source: SALA.
TROPICS: Proportion of a country’s land area within geographical tropics.
Calculated by Gallup, Mellinger, and Sachs (2001) from Arc World Supple-

31



ment Database. Source: SDM.
AVELF: Average of five different indices of ethnolinguistic fragmentation
which is the probability of two random people in a country not coming from
the same ethnolinguistic group; calculated by Easterly and Levine (1997).
Source: SDM.
CONFUC: Fraction of Confucian population in 1970 and 1980. Calculated
by Barro (1999) from World Christian Encyclopedia. Source: SDM.
MINING: Fraction of GDP produced in the Mining and Quarrying sector
(including oil and gas; data are for the year 1988 when possible, or the closest
available year); calculated by Hall and Jones (1999). Source: SDM.
PRIGHTS: Index of political rights comprising rights to vote, compete for
public offices and for elected representatives to have a decisive vote on public
policies (from 1 to 7; 1 = most rights). Calculated by Barro and Lee (1993)
from GASTIL. Source: SDM.
MALARIA: Index of malaria prevalence in 1966, which is the product of
the fraction of land area subject to malaria times the fraction of falciparum
malaria cases. Calculated by Gallup, Mellinger, and Sachs (2001) from World
Health Organization data. Source: SDM.

All data used in this study can be downloaded from the project’s website
mentioned at the end of Section 2.
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Table 2: Estimates (β̂) and standard errors (SE), Model 1, Set-up 1.
Unrestricted Restricted GtS WALS BMA

Regressor β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE
Focus regressors

CONSTANT 0.0609 0.0223 0.0587 0.0242 0.0518 0.0214 0.0594 0.0221 0.0492 0.0229
GDP60 −0.0155 0.0033 −0.0160 0.0035 −0.0145 0.0032 −0.0156 0.0033 −0.0139 0.0035
EQUIPINV 0.1366 0.0552 0.2405 0.0583 0.1377 0.0555 0.1555 0.0551 0.1644 0.0615
SCHOOL60 0.0170 0.0098 0.0184 0.0111 0.0191 0.0097 0.0175 0.0097 0.0160 0.0102
LIFE60 0.0008 0.0004 0.0010 0.0004 0.0008 0.0004 0.0009 0.0004 0.0008 0.0004
DPOP 0.3466 0.2503 −0.0341 0.2611 0.3275 0.2513 0.2651 0.2487 0.1654 0.2770

Auxiliary regressors

LAW 0.0174 0.0066 — — 0.0167 0.0066 0.0147 0.0065 0.0109 0.0093
TROPICS −0.0075 0.0040 — — −0.0083 0.0039 −0.0055 0.0037 −0.0035 0.0047
AVELF −0.0077 0.0058 — — — — −0.0053 0.0048 −0.0021 0.0047
CONFUC 0.0562 0.0164 — — 0.0596 0.0163 0.0443 0.0163 0.0612 0.0185
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Table 3: Estimates (β̂) and standard errors (SE), Model 1, Set-up 2.
Unrestricted Restricted GtS WALS BMA

Regressor β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE
Focus regressor

CONSTANT 0.0609 0.0223 0.0199 0.0022 0.0344 0.0146 0.0560 0.0215 0.0488 0.0218

Auxiliary regressors

GDP60 −0.0155 0.0033 — — −0.0120 0.0032 −0.0136 0.0033 −0.0129 0.0040
EQUIPINV 0.1366 0.0552 — — 0.1951 0.0524 0.1037 0.0537 0.1539 0.0797
SCHOOL60 0.0170 0.0098 — — — — 0.0125 0.0094 0.0084 0.0127
LIFE60 0.0008 0.0004 — — 0.0012 0.0003 0.0008 0.0003 0.0009 0.0005
DPOP 0.3466 0.2503 — — — — 0.2236 0.2156 0.0261 0.1252
LAW 0.0174 0.0066 — — — — 0.0137 0.0063 0.0090 0.0092
TROPICS −0.0075 0.0040 — — — — −0.0055 0.0039 −0.0021 0.0038
AVELF −0.0077 0.0058 — — — — −0.0083 0.0057 −0.0024 0.0050
CONFUC 0.0562 0.0164 — — 0.0728 0.0167 0.0451 0.0163 0.0663 0.0180
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Table 4: Estimates (β̂) and standard errors (SE), Model 2, Set-up 1.
Unrestricted Restricted GtS WALS BMA

Regressor β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE
Focus regressors

CONSTANT 0.0931 0.0264 0.0768 0.0193 0.0930 0.0198 0.0879 0.0246 0.0862 0.0239
GDP60 −0.0173 0.0033 −0.0156 0.0033 −0.0166 0.0032 −0.0167 0.0033 −0.0164 0.0033
EQUIPINV 0.1324 0.0579 0.1479 0.0550 0.1448 0.0531 0.1379 0.0562 0.1423 0.0553
CONFUC 0.0538 0.0169 0.0585 0.0165 0.0522 0.0161 0.0550 0.0167 0.0550 0.0169
SCHOOL60 0.0144 0.0096 0.0183 0.0098 0.0151 0.0096 0.0156 0.0096 0.0162 0.0099
LIFE60 0.0006 0.0004 0.0006 0.0003 0.0005 0.0003 0.0006 0.0003 0.0006 0.0003
LAW 0.0200 0.0068 0.0145 0.0063 0.0183 0.0063 0.0183 0.0066 0.0171 0.0067
TROPICS −0.0055 0.0041 −0.0055 0.0037 −0.0029 0.0037 −0.0053 0.0040 −0.0044 0.0041
AVELF −0.0040 0.0060 −0.0073 0.0059 −0.0033 0.0059 −0.0049 0.0059 −0.0050 0.0062

Auxiliary regressors

MINING −0.0090 0.0192 — — — — −0.0056 0.0149 −0.0003 0.0063
DPOP 0.3352 0.2542 — — — — 0.2147 0.2178 0.0650 0.1705
PRIGHTS −0.0013 0.0012 — — — — −0.0008 0.0010 −0.0002 0.0007
MALARIA −0.0104 0.0052 — — −0.0122 0.0051 −0.0075 0.0050 −0.0072 0.0070

39



Table 5: Estimates (β̂) and standard errors (SE), Model 2, Set-up 2.
Unrestricted Restricted GtS WALS BMA

Regressor β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE
Focus regressor

CONSTANT 0.0931 0.0264 0.0199 0.0022 0.0828 0.0183 0.0897 0.0252 0.0796 0.0251

Auxiliary regressors

GDP60 −0.0173 0.0033 — — −0.0163 0.0032 −0.0156 0.0033 −0.0151 0.0039
EQUIPINV 0.1324 0.0579 — — 0.1414 0.0530 0.0962 0.0552 0.1341 0.0805
CONFUC 0.0538 0.0169 — — 0.0558 0.0160 0.0397 0.0161 0.0562 0.0197
SCHOOL60 0.0144 0.0096 — — — — 0.0098 0.0088 0.0079 0.0115
LIFE60 0.0006 0.0004 — — 0.0008 0.0003 0.0006 0.0003 0.0006 0.0005
LAW 0.0200 0.0068 — — 0.0177 0.0062 0.0177 0.0065 0.0169 0.0095
TROPICS −0.0055 0.0041 — — — — −0.0048 0.0039 −0.0006 0.0021
AVELF −0.0040 0.0060 — — — — −0.0054 0.0058 −0.0006 0.0027
MINING −0.0090 0.0192 — — — — −0.0063 0.0182 −0.0002 0.0062
DPOP 0.3352 0.2542 — — — — 0.2146 0.2175 0.0179 0.0990
PRIGHTS −0.0013 0.0012 — — — — −0.0012 0.0010 −0.0002 0.0006
MALARIA −0.0104 0.0052 — — −0.0151 0.0046 −0.0090 0.0048 −0.0129 0.0068

40



Table 6: Comparison of pip-values and t-ratios, Model 1.
Set-up 1 Set-up 2

Regressor WALS BMA WALS BMA
t-ratio pip t-ratio t-ratio pip t-ratio

CONSTANT 2.69 1.00 2.15 2.60 1.00 2.24
GDP60 −4.78 1.00 −3.96 −4.16 0.98 −3.21
EQUIPINV 2.82 1.00 2.67 1.93 0.88 1.93
SCHOOL60 1.80 1.00 1.58 1.33 0.14 0.66
LIFE60 2.44 1.00 2.32 2.34 0.40 1.82
DPOP 1.07 1.00 0.60 1.04 0.85 0.21
LAW 2.25 0.68 1.17 2.18 0.59 0.98
TROPICS −1.49 0.45 −0.75 −1.41 0.32 −0.55
AVELF −1.11 0.25 −0.44 −1.45 0.27 −0.48
CONFUC 2.72 0.99 3.31 2.77 0.99 3.69

Table 7: Comparison of BACE, WALS, and BMA results, SDM data.
BACE WALS BMA

Regressor β̂ tc β̂ tu tu tc
GDP60 −0.0085 −2.96 −0.0067 −0.90 −1.58 −3.17
IPRICE −0.0001 −3.36 −0.0001 −2.19 −1.99 −3.62
SCHOOL60 0.0269 3.37 0.0205 0.12 2.08 3.71
LIFE60 0.0008 2.28 −0.0000 −0.06 0.40 2.30
DPOP 0.0208 0.07 −0.0664 −0.09 0.01 0.10
TROPICS −0.0148 −3.49 −0.0097 −0.62 −1.29 −4.12
AVELF −0.0113 −1.93 −0.0005 −0.04 −0.30 −2.15
CONFUC 0.0544 2.43 0.0241 0.65 0.40 2.57
MINING 0.0388 2.02 0.0342 0.84 0.30 2.06
PRIGHTS −0.0018 −1.54 −0.0007 −0.27 −0.24 −1.94
MALARIA −0.0157 −2.54 0.0054 0.48 −0.46 −2.70
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