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1 Introduction

Coinsider the sample X1, . . . , Xn with continuous df F.

Two classical problems of Statistics are:

A. Goodness-of-fit problem.

We should test the hypothesis H0 : F = F0 against

some alternative A0 : F 6= F0. More general is the

testing problem F ∈ F , where F is some parametric

family of distributions, say, normal or exponential family.

The alternative is A : F /∈ F or more narrow hypothesis.

B. Symmetry hypothesis.

We test the hypothesis H1 : F ∈ F, where F is the

set of all symmetric continuous df’s,

F = {F : 1− F (x)− F (−x) = 0, ∀x.}

We can take as alternative the hypothesis A1 that F is

non-symmetric (shift, skew, contamination, etc.)
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There are numerous tests for these problems: the sign

test (1702), the Pearson’s χ2−test (1900), the Kolmogorov-

Smirnov test (1933), the Cramér - von Mises - Smirnov

test (1937), the Wilcoxon test (1945), the Anderson-

Darling test (1952), the Watson test (1961), the Bickel-

Rosenblatt test (1973), etc., if we mention only most

famous tests.

Observe that all these tests were proposed from certain

empirical point of view, all of them are based on some

"heuristic" idea, and only later came their deeper analysis

and study.

However, no one of these tests dominate the others in

sense of power, and the ordering of tests can be different

when changing the alternative. For large samples the

notion of asymptotic efficiency is often used.

It is generally recognized that any test should be

analyzed from the point of view of its power and efficiency
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in order to give the recommendations for practitioners.

We shall present in this talk some tests mainly based

on the idea of characterization of distributions by the

property of "equidistribution"of statistics. The idea ascends

to the paper of famous Russian mathematician Yu.V.Linnik

"Linear forms and statistical tests", published in 1953.

It seems that mathematical technique, especially connec-

ted with U−statistics and their large deviations, was

developed not enough at this time. That’s why the realization

of Linnik ideas became possible only recently.

Characterization of distributions began in 1923 by

celebrated Polya’s theorem.
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Polya’s Theorem. Let X and Y be two independent

and identically distributed rv’s with zero mean. Then

two rv’s (statistics) (X + Y )/
√

2 and X have the same

distribution if and only if the distribution of X and Y

is normal.

We cite another simple result of this kind which belongs

to Desu (1973).

Desu’s Theorem. Let X and Y be independent non-

negative rv’s with common df F. Then two rv’s (statistics)

2 min(X1, X2) and X1 are equidistributed iff F (x) =

1− exp(−λx), x ≥ 0 for some λ > 0.

Later many other results were obtained, mainly in

1960-70-s, some of them will be used later.

How to use these results for testing?
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Consider the sample X1, . . . , Xn with unknown df

F (t) = P(X1 < t). The classical and well-known estimate

of F is the empirical distribution function (Cramér,

1928)

Fn(t) = n−1
n∑

j=1

1{Xj < t}, t ∈ R1.

Now suppose we have a function of observations

h(X1, . . . , Xk) where k is not large and we want to

estimate its df

H(t) = P(h(X1, . . . , Xk) < t).

The natural estimator of G(t) is the U−statistical df

Hn(t) =

(
n

k

)−1 ∑
1≤i1<...<ik≤n

1{h(Xi1, ..., Xik) < t}.

Sometimes we can use the similar V−statistical edf:

Gn(t) = n−k
n∑

i1,...,ik=1

1{h(Xi1, ..., Xik) < t}.
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Due to the versions of Glivenko-Cantelli theorem obtained

around 1980 both empirical df’s converge uniformly to

H(t) = P(h(X1, . . . , Xk) < t).

Now return to the Polya characterization. Under condition

of normality we have

P(X1 < t) = P((X1 + X2 < t
√

2), t ∈ R1.

Hence also the empirical df Fn(t) and U−statistical

edf

Hn(t) =

(
n

2

)−1 ∑
1≤i<j≤n

1{Xi + Xj < t}

should be close for all t. The significance test can be

based on some functional of the difference Fn(t)−Hn(t),

for instance on

T1n =
∫

R1[Hn(t)− Fn(t)]dFn(t),

T2n =
∫

R1[Hn(t)− Fn(t)]2dFn(t),

and

T∞n = supR1 |Hn(t)− Fn(t)|.
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Large values of these statistics are critical.

Similar statistics can be introduced for testing of expo-

nentiality using Desu’s characterization, etc. There are

many other characterizations which lead to corresponding

tests. Consider some examples.

1) Baringhaus-Henze characterization of symmetry.

Baringhaus and Henze (1991) proposed the following

characterization of symmetry with respect to zero for

testing.

Let X and Y be i.i.d. rv’s with common continuous

df. Then |X| and |max(X,Y )| are equidistributed iff X

and Y are symmetric.

We can use this characterization in the following way.
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Let introduce the empirical df based on |X1|, ..., |Xn|,

Qn(t) = n−1
n∑

i=1

1{|Xi| < t},

and the U -statistical empirical df

Hn(t) =

(
n

2

)−1 ∑

16j<k6n

1{|max(Xj, Xk)| < t}.

Now we propose the statistics:

Sn,1 =

∫ ∞

0

[Hn(t)−Qn(t)]dQn(t),

Sn,2 =

∫ ∞

0

[Hn(t)−Qn(t)]2dQn(t)

and

Sn,∞ = sup
R+
|Hn(t)−Qn(t)|.

2) Rao-Ramachandran characterization of Cauchy Law.

In 1970 Rao and Ramachandran proved the following

theorem.
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Let X1, ..., Xm – be nondegenerate i.i.d. rv’s, while

constants a1, ..., am satisfy the conditions 0 < |ai| < 1,
∑m

i=1 |ai| = 1, and at least two numbers of − ln |a1|, ...,− ln |am|
are incommensurable. Then two statistics X1 and

∑m
i=1 aiXi

are equidistributed iff Xi have symmetric Cauchy distribution

with arbitrary scale factor.

We can use this characterization to construct goodness-

of-fit tests in the same way as above. The practical

choice is m = 2, a1 = 2
3, a2 = −1

3.

3).Lack of memory (memory-loss) property of the expo-

nential law.

Let F be a df of a non-negative random variable X .

Put F̄ (x) = 1 − F (x), x ≥ 0. Consider the well-known

memory-loss property:

F̄ (x + y) = F̄ (x)F̄ (y), ∀x, y ≥ 0.
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This equation (Cauchy functional equation) characterizes

the exponential distribution.

Replacing F by empirical distribution function, we

arrive to some empirical field

ξn(x, y) = (1− Fn(x + y))− (1− Fn(x)(1− Fn(y)),

and suitable functionals of this field may serve as significance

tests for the exponentiality hypothesis.

There are many other characterizations, for instance,

by independence of two statistics. Most known is possibly

the Geary-Lukacs characterization: independence of x̄

and s2 implies normality.

Another famous theorem of this kind is the Darmois-

Skitovich theorem:independence of non-degenerate linear

forms
∑

i aiXi and
∑

j bjXj also implies normality.

Corresponding goodness-of-fit tests are almost unexplored.
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So we have numerous new test statistics. Natural

questions appear:

I How can we find their limiting distributions?

II Are these tests consistent against common

alternatives?

III How to compare these tests and which is

better?

( Usually the answer to III can be given using the

notion of asymptotic efficiency.)

These questions are difficult and were studied partially

only in last years.

Let return to integral and Kolmogorov-Smirnov-type

statistics we introduced above:
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T1n =
√

n
∫

R1[Hn(t)− Fn(t)]dFn(t),

T2n = n
∫

R1[Hn(t)− Fn(t)]2dFn(t),

and

T∞n =
√

n supR1 |Hn(t)− Fn(t)|.
I Limiting distributions

First of them is in fact the non-degenerate U− or

V−statistic. Hence, by Hoeffding theorem (1948), it is

asymptotically normal.

For instance, in the case of Polya test for normality

we obtain

Ln = n−3
n∑

i,j,k=1

[1{Xi + Xj < Xk

√
2} − 1

2
].

There are some difficulties when calculating the asymptotic

variance ∆2. For the Polya test we get after long calculations

∆2 =
117

108
−4

π
(arctan

√
3

5
+

9

2
arctan

1√
7
) ≈ 1.414·10−2 > 0.

( Muliere and Nikitin, Metron, 2002).
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The second statistic is equivalent to the degenerate

U− or V−statistic. Hence the limiting distribution is

the weighted chi-square distribution
∑

k≥1 λkN
2
k with

the standard Gaussian Nk and coefficients λk which are

the eigenvalues of the Fredholm integral equation with

the complicated kernel, depending to the kernel of the

U−statistic.

Such limiting distributions are too complicated to be

computed.

The third statistic converges to the supremum of special

zero-mean Gaussian process U , defined by Silverman

(1976). It has the covariance function

Cov(U(x), U(y)) =

k2Cov[P(h(X1, ..., Xk) < x|X1),P(h(X1, . . . , Xk) < y|X1)].
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Its distribution is hardly computable analytically, but

one can use simulations to get critical values.

Same conclusions are valid for other statistics of these

types.

II Consistency

Consistency means that the power of the test tends

to zero under the alternative when n tends to infinity.

Hence the alternative can be distinguished from the

null-hypothesis with high probability in large samples.

The Kolmogorov-Smirnov statistic and the L2−type

statistic are always consistent for standard alternatives.

Under standard alternatives for the hypothesis of expo-

nentiality we understand, for instance, the following

families of densities:
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the Gamma family with the density

g(x; θ) = (Γ(θ + 1))−1xθ exp(−x), x > 0;

the Weibull family with the density

g(x; θ) = (θ + 1)xθ exp(−x1+θ), x > 0;

the Makeham family with the density

g(x; θ) = (1+θ(1−exp(−x))) exp(−x−θ(exp(−x)−1+x)), x > 0;

the "linear failure rate"density

g(x; θ) = (1 + θx) exp[−x− 1

2
θx2], x > 0.

It is not always the case for the statistic

T1n =
√

n

∫

R1
[Hn(t)− Fn(t)]dFn(t),

but this drawback is compensated by the simplicity of

this statistic and its standard limiting distribution.
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2 Asymptotic efficiency

First let give the synopsis of the notion of asymptotic

efficiency of tests. Its development began in 1948 after

seminal work by Pitman and was continued by Hodges

and Lehmann, Chernoff and Bahadur in 1952 - 1970.

Let {Tn} and {Vn} be two sequences of statistics

based on the sample X1, . . . , Xn with distribution Pθ,

where θ ∈ Θ ⊂ R1, and we are testing the null-hypothesis

H0 : θ ∈ Θ0 ⊂ Θ against the alternative

A : θ ∈ Θ1 = Θ\Θ0.

Let NT (α, β, θ) be the minimal sample size of X1, . . . , Xn,

for which the sequence {Tn} attains the power β < 1

under given significance level α > 0 for the alternative

value of parameter θ ∈ Θ1. In the same way NV (α, β, θ)

is introduced.

17



The relative efficiency of the test based on the statistic

Tn, with respect to the test based on Vn is the quantity

eT, V (α, β, θ) =
NV (α, β, θ)

NT (α, β, θ)
.

This quantity is too complicated and cannot be calculated.

Therefore it is generally agreed to consider the limits:

lim
α→0

eT, V (α, β, θ), lim
β→1

eT, V (α, β, θ), lim
θ→∂Θ0

eT, V (α, β, θ).

In the first case we obtain the Bahadur efficiency, the

second limit corresponds to Hodges-Lehmann efficiency

while the third one leads to Pitman efficiency. Note that

just small levels, large powers and close alternatives are

interested for practice.

In our case many statistics have non-normal limiting

distribution, hence the Bahadur efficiency seems to be

most adequate. The key point for the calculation of

Bahadur efficiency is the large deviation asymptotics

of tests statistics under the null-hypothesis.
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Despite great successes of Large Deviation theory,

large deviations of U− and V−statistics were studied

only recently.

Theorem 1. ( Nikitin and Ponikarov, 1999). Suppose

the kernel h of the U−statistic or of von Mises functional

Vn is bounded,

|h(s1, . . . , sk)| 6 M,

suppose that Eh = 0 and that h has rank 1, that is

∆2 = Eψ2(X1) > 0, where ψ(s) = E(h|X1 = s).

Then it is true that

lim
n→∞

n−1 lnP{Vn > a} =

∞∑
j=2

bja
j,

where the series with numerical coefficients bj converges

for sufficiently small a > 0, and b2 = − 1
2m2∆2 .

The proof uses the large deviation principle for U−statistics

with subsequent minimization of Kullback-Leibler information

on a special set of measures.
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In case the kernel is degenerate, ∆2 = 0, the answer

is more complicated and depends on the spectrum of

the Fredholm integral equation
∫

R1
h∗(s, t)f (s)ds = λf (t)

( Here we set

h∗(s, t) =

∫

Rm−2
h(s1, . . . , sk)dF (s3) . . . dF (sk), if k > 2,

h∗(s, t) = h(s, t), if k = 2.)

In case λ0 is the first eigenvalue, then

lim
n→∞

n−1 lnP{Vn > a} =

∞∑
j=2

bja
j/2, b2 = −λ0/k(k−1).

These results enable to calculate and analyze the

Bahadur efficiency of integral statistics based on Hn(t)−
Fn(t).
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The Kolmogorov-Smirnov statistics are more compli-

cated. Note, that for any t the difference Hn(t)− Fn(t)

is a U−statistic, too, with a different kernel, sayH(·; t).
Here we meet the families of U−statistics {Un(t)}

depending on t, and we must find the asymptotics of

P(supt |Un(t)| > a) when n → ∞. One needs rather

refined methods using variational calculus, nonlinear

analysis and exponential inequalities for the tails of U−
statistics.

Suppose that the kernel H(·; t) is non-degenerate for

any t and define again the variance function

δ2(t) = E(E(H(X1, . . . , Xk; t)|X1)
2) > 0.

Denote µ2
0 := supt δ

2(t).
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Theorem ( Nikitin, 2008). Suppose that the kernels

{H(·; t)} are uniformly bounded, centered and non-degenerate

for any t. Then there exists such continuous function v

that

lim
n→∞

n−1 lnP{Vn > a} = v(a) = −(2k2µ2
0)
−1a2+O(a3), a → 0.

Now take as an example the Baringhaus-Henze statistics

for testing symmetry. Using Theorem 1, we get

lim
n→∞

n−1 lnP{Sn,1 > a} = −10a2 + O(a3), a → 0.

In case of Kolmogorov-Smirnov-type statistic we use

Theorem 2 and obtain

lim
n→∞

n−1 lnP{Sn,∞ > a} = −27

8
a2 + O(a3), a → 0.
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Another example is the Desu statistic. Here we have

lim
n→∞

n−1 lnP{Dn,1 > a} = −210

11
a2 + O(a3), a → 0,

lim
n→∞

n−1 lnP{Dn,∞ > a} = −2a2 + O(a3), a → 0.

Similar results were obtained for other statistics introduced

above.

This enables calculating the Bahadur efficiency for

various local alternatives. We present the typical table

of efficiencies.
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Alternative Distribution

Normal Logistic 8
3π(1+x2)3

location 0.977 0.938 0.905

skew 0.977 0.962 0.925

Lehmann 0.962 0.962 0.962

contamination, r = 1 0.988 0.988 0.988

contamination, r = 5 0.997 0.997 0.997

Table 1: Local Bahadur efficiency for the statistic S1
n.

Similar tables can be obtained for other statistics.
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Let summarize briefly the results.

• The symmetry tests based on Baringhaus-Henze

are very efficient.

• Usually supremum-type tests demonstrate weaker

results than integral tests besides special alternatives.

• The tests of exponentiality based on Desu’s characteri-

zation have medium values of efficiency from 0.5 till 0.8

depending on the alternative.

• Tests of normality based on Polya’s characterization

are very efficient for location, skew and Lehmann alter-

natives, but very poor for contamination alternatives.

• Tests for Cauchy distribution have moderately high

efficiency from 0.6 till 0.9 depending on the alternative.

This shows that the tests based on characteriza-

tions deserve both attention and use in practice.

¤
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