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1 Introduction

This paper explores the role that the imperfect knowledge of the structure of the economy plays in

the uncertainty surrounding the e¤ects of rule-based monetary policy on unemployment dynamics

in the euro area and the US.

An extended (empirical and theoretical) literature focuses on the relationship between monetary

policy and labour market dynamics (e.g. Brash 1995; and Blanchard 2003). Explanations of why

monetary policy shocks seem to have heterogeneous e¤ects on the unemployment performance of

di¤erent countries have mainly focused on the presence of (i) nominal rigidities (e.g. Jonsson 1997;

and Lockwood et al. 1998), (ii) wrong estimates of the NAIRU (e.g. Staiger et al. 1997; and

Estrella and Mishkin 1999); and (iii) changes in labour market institutions or on the interactions

between shocks and institutions (e.g. Nickell 1997; Blanchard and Wolfers 2000).

The heterogeneous results of these studies, as well as of the various economic and econometric

models employed, suggests that the size and the timing of the e¤ect that a monetary policy action

might have on labour market variables in general and on unemployment in particular is highly

uncertain.

Since Brainard�s (1967) seminal paper, a great deal of literature has described how central banks

should take uncertainty into account in their decision-making process. Three types of uncertainty

are usually identi�ed: data, parameter, and model uncertainty. Authors usually take into account

only one source of uncertainty at a time. Orphanides (2001) and Aoki (2003), for instance, focus on

whether data uncertainty, re�ected in a substantial di¤erence between real-time and �nal estimates

of in�ation and the output gap, might produce misleading policy recommendations. Others, such

as Sack (1999), Söderström (2002), Orphanides and Williams (2005), and Wieland (2000) analyse

the e¤ect that parameter uncertainty might have on the formulation of monetary policy. Finally,

Levin et al. (2003), Onatski and Williams (2003), Brock et al. (2004), and Svensson and Williams

(2007) concentrate on model uncertainty.

Although with notable di¤erences, overall these studies lead to the conclusion that the e¤ects

of a given policy measure on the real activity or on unemployment might largely depend on the

three sources of uncertainty a central bank must cope with when formulating its policy. Most

of this literature, however, focuses only on how should monetary policy systematically react to

changes in unemployment and in�ation, and not so much on the e¤ects that the choice of the rule

under uncertainty eventually brings about in terms of, say, responses of (and uncertainty around)

unemployment to the policy shock.

For instance, a common result when analysing the optimal behaviour that a central bank should
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follow in response to developments in the economy consists of a considerable di¤erence between

the reaction coe¢ cients implied by the optimal policy rules and those implied by the historical

evidence. Precisely, the historical behaviour of central banks is usually less aggressive than the

one implied by optimal rules. Some authors, such as Rudebusch (2001), and Tetlow and von zur

Muehlen (2001), relate this attenuated monetary policy to the uncertainty the policymakers face

when setting interest rates.

Our paper aims at bridging the gap between the literature on the e¤ects of monetary policy

shocks on unemployment on one side, and the literature on the choice of the policy rule under

uncertainty on the other. Concretely, we analyse the e¤ect of a policy action on unemployment by

(i) estimating the policy rules, (ii) measuring the impact that a monetary policy based on these

rules has on unemployment, and (iii) quantifying the uncertainty surrounding both (i) and (ii). The

joined study of the systematic portion (i.e. the reaction function) and the stochastic component (i.e.

the monetary shock) of policy behaviour exhaustively explains the causes of the policy-instrument

variability.

We also aspire at providing some reference values for the reaction coe¢ cients in a policy rule

and for the responses of unemployment to a monetary policy shock. Our results can therefore be

taken as a benchmark for future references, for we explicitly deal with model, parameter and (to

some extent) data uncertainty. Our strategy is easily illustrated. We assume that the monetary

authority determines the interest rate which minimizes expected losses of a social objective function

that depends on the deviations between in�ation and unemployment from their target values, and

possibly on other contemporaneous and lagged variables, including lags of the policy variables. The

economy is alternatively summarised by a range of multivariate models that di¤er in the way the

in�ation process is modelled, in terms of the variables entering in the model, and in the lag structure.

The structure of the economy is therefore uncertain in the double sense that parameter uncertainty

arises from the imprecise estimation of the dynamics of the economy and model uncertainty is

de�ned relative to a certain baseline model as introduced and largely discussed, for instance, by

Brock et al (2007), or Onatski and Williams (2003).

The approach we take is Bayesian, and a complete model involving unobservables (e.g. paramet-

ers), observables (e.g. data), and variables of interest (e.g. policy rule, impulse response functions)

is identi�ed by a joint distribution of these elements. Concretely, ifM denotes a model, �M denotes

unobservables parameters, D denotes the observables, and ! is a vector of interest, then the model

M speci�es the joint distribution

p (�M ; D; ! jM) = p (�M jM) p (D j �M ;M) p (! j D; �M ;M) (1)
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The objective of inference, then, is expressed as the posterior density of !:

p (! j D;M) =
Z
p (! j D; �M ;M) p (�M j D;M) d�M (2)

which is the relevant density for the decisionmakers. In this framework, model uncertainty is

accounted for with the incorporation of several competing models M1;M2; :::;MJ ; parameter un-

certainty is re�ected in a series of informative priors on the unobservables p
�
�Mj jMj

�
; and data

uncertainty might be relevant, for the data we rely on are subject to measurement error and can

be subject to considerable revision.

The objective is to evaluate the degree of dispersion of p (! j D;Mj) between models. The use

of di¤erent data vintages �as represented, for instance, by the latest available series as opposed

to the preliminary or real time estimates � can then provide an illustration of the need to take

seriously the issue of data revision.

As said, the policymaker minimizes a loss function - subject to the economy as represented by

one of the models - and sets up a policy rule (reaction function) which we choose to be of two

types: (i) a linear optimal feedback rule (OFR), where the nominal interest rate depends on all

observable variables included in the model, and which appear to have a closed-form solution; and

(ii) an optimized Taylor rule (TR), where the interest rate is only a function of the current value

of the unemployment gap and the in�ation rate, similar to the original work of Taylor (1993), and

the weights attached to both variables are obtained with a grid search procedure.

In light of uncertainty about the correct model of in�ation, we then report the probability

distribution of the response of the unemployment rate to a monetary policy shock, and provide

various measures of dispersion to quantify the uncertainty surrounding the e¤ects of policy across

the model space. In particular, we are interested in checking (i) how the responses vary across

models, (ii) how sensitive are the policy rules to model selection; and (iii) how much dispersion

in loss occurs when di¤erent models are considered to evaluate the responses. The paper can be

considered as an extended application of the methodological approach suggested, for instance, by

Brock et al (2007). Like in their work all models are equally likely a priori; unlike their assumption

we specify informative priors and compare models on the basis of their marginal likelihoods.

Using data for the US and the euro area, we show that simple linear autoregressive models that

di¤er in several dimensions may give rise to a signi�cant degree of uncertainty in the distribution

of optimal policy parameters, expected losses and impulse responses. Simple or weighted averages

across models help dampen this uncertainty and provide a more consistent representation of the

policy rules and of the e¤ects that policy actions based on such rules have on unemployment than

the one given by the �best�model. Although by choosing the best model the policy maker can

4



not be seriously misled about the policy parameters, (s)he might nonetheless incur in a higher

associated cost. Results would also recommend choosing a relatively parsimonious representation

of the economy, regardless of the country and the policy rules. Finally, even though both the US

and the euro area data have a clear preference for a reduced set of models, the di¤erences between

the best and the average models may be remarkable. For instance, averaging across models seem to

provide impulse responses which are more in line with sound theoretical arguments as, for instance,

in the case of the well known �price puzzle�.

The remainder of the paper is structured as follows. Section 2 describes the general framework

with the model space and the solution to the central bank�s problem. Section 3 reports the empirical

�ndings in terms of expected loss, policy parameters, and e¤ects of a monetary policy shock on

the unemployment gap in the designed uncertainty environment. Section 4 summarizes the paper�s

main �ndings and concludes.

2 Model uncertainty and optimal monetary policy: the macroe-
conometric framework

In this section we illustrate the empirical framework to answer our questions of interest. The

standard elements of the analysis comprise: (i) a set of monetary policy rules; (ii) a monetary

policymaker who choose the parameters of the rules minimizing a loss function; (iii) a set of models

which summarise the constraints faced by the policymaker in his minimization problem.

The context is quite standard and can be summarised along the following lines.

The set of models account for the uncertainty surrounding the representation of the economy.

As described in Brock et al. (2007) model uncertainty can be stemming from sources as di¤erent

as economic theory, speci�cation conditional on theory, and heterogeneity regarding the data gen-

erating process, among others. In our framework we will generate the model space by limiting the

analysis to multivariate dynamic linear models (VARs) which entail policy and non-policy variables,

with di¤erent prior assumptions on both sets of variables, as well as on the lag structure.

The structural behavior of the non-policy variables is assumed to be given by the estimates of

the model. Using this estimated structure, the solution to the minimization problem yields the

values of the loss function under alternative policy parameters. A given set of these parameters

will then minimize the expected loss for each model. The interest rate policy that results from

this optimization problem can be a function of all current and lagged variables in the economy

(Optimal Feedback Rule), or simply a function of in�ation and unemployment gap similarly to the

original work by Taylor (1993) (Optimized Taylor Rule), in a way that takes into consideration the

dynamic behavior of these variables.
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Finally the optimal or optimized rules become part of the interest rate equation in a structural

VAR, and its disturbance is used to quantify the uncertainty surrounding the e¤ect of a monetary

policy shock on the unemployment gap using a standard Impulse Response Function (IRF) analysis

as, e.g., in Stock and Watson (2001).

Next, we detail these elements backwards, starting from the model and then turning to the

policymakers and the rules.

2.1 The model space

We start by specifying a range of multivariate linear dynamic models which span the model space.

The class of simultaneous equation models considered here takes the following general VAR form:

Zt =

pX
j=1

AjZt�j +

pX
j=1

bjit�j + "
z
t

it =

pX
j=1

c0jZt�j +

pX
j=1

djit�j + "
i
t (3)

where Zt is a vector of non-policy variables; it is the policy variable; A;b; c; d are comformable

matrices and vectors; "Zt and "
i
t are vectors of serially uncorrelated structural disturbances.

1

The characteristics of the model space are easily described.

The non-policy block Zt contains at least the in�ation rate (�t) and the (negative) unemploy-

ment gap (~ut), calculated as the di¤erence between the natural rate of unemployment (u�t ) and its

actual value (ut).

Three sets of prior beliefs shape the dimensions of model uncertainty that characterize the

model space. The �rst one has to do with the way in�ation is modelled. Concretely, four general

prior assumptions are made according to whether in�ation is left unrestricted (UN), or whether

it is treated in the system as a random walk (RW), an AR(p) process, or a white noise (WN). In

all cases we take a Bayesian perspective and place the needed exclusion restrictions through the

allocation of probability distributions to the model�s coe¢ cients. The starting point is always a

Minnesota-type of prior: in the �rst case (UN) we complement the autoregressive representation

with the speci�cation of a vague prior distribution and a loose tightness on all coe¢ cients; in the

other three setups, instead, we assume that in�ation follows one of the three processes by setting

accordingly the mean of own-lag coe¢ cients, and allow for a much tighter precision placed on all

coe¢ cients of the in�ation equation as compared to the precision placed on the coe¢ cients of other

equations. In other words, priors are always informative and di¤er in the relative tightness placed

on the coe¢ cients in the equation for �t.

1The set up is similar the one used e.g. by Sack (2000) in a related context.
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While the RW and the AR hypotheses are relatively standard in the VAR literature (see e.g.

Doan et al. 1984; Stock and Watson 2007), the WN assumption has been recently validated in

studies on in�ation persistence that cover especially the last 10-15 years of sample observations.

Benati (2008), for instance, shows that on recent samples the WN assumption might have become

a reasonable one in several countries, including UK and the euro area, the latter especially after

the creation of EMU.

In the second set of priors, we enlarge the model space by changing the model speci�cation in

the non-policy block, and considering all combinations of three additional endogenous variables:

the labour force participation rate (prt); the exchange rate (et); and a commodity price in�ation

rate (cpt).

The inclusion of the participation rate is motivated by the possibility of embracing a more

comprehensive dynamics of the labour market, as a negative impact on output of an increase in

the nominal interest rate may have diverse e¤ects on the non-working labour force and ultimately

on the unemployment rate.2 The inclusion of the participation rate would account for these a¤ects

and provide a cleaner picture of the transmission mechanism.

While the inclusion of an exchange rate might not be suitable for the US to have a desirable

equilibrium outcome (e.g. Taylor 2001), it might nonetheless be appropriate for the Euro area (e.g.

Peersman and Smets 2003; Altavilla 2003). In any case, its inclusion is intended to re�ect the

external environment, as well as its conditionality role for monetary policy, as it is an important

part of the monetary transmission mechanism in an open economy. The monetary policy rule used

here, therefore, will react to the exchange rate dynamics as this may help stabilize the economy,

for if the central bank responds to exchange rate �uctuations, it might enforce faster convergence

of macro variables in response to shocks (see also Svennsson 2000, on this point).

Finally, we include a commodity price in�ation rate which should control for the expected future

in�ation, as it has become customarily in recent applied works on the transmission mechanism of

monetary policy shocks (see e.g Sack 2000.).

In the last set of prior assumptions di¤erent lag structures model alternative ways of captur-

ing the dynamics of the system. The Wold theorem implies that VAR residuals must be white

noise. Sometimes this feature happens to be veri�ed with a parsimonious representation of the lag

structure, perhaps with a rich number of endogenous variables. The VAR however easily becomes

overparametrised, as the number of coe¢ cients grows as a quadratic function of the number of vari-

2 In fact, after a recessive shock, non-employed labour force of a given area can (i) remain unemployed, (ii) migrate
to another area, or (iii) stop looking for a job and become �discouraged workers�. For detailed analysis of these
hypothesis and of the concept of discouraged workers see e.g. Long (1953), Benati (2001); Darby et al. (2001);
Blundell et al. (1998); Clark and Summers (1982).
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ables and proportionately to the number of lags. To trade-o¤ between parsimonious and realistic

assumptions, we combine dogmatic with �exible priors and consider models where we progressively

�x the lag length p, so that we have models with one, two, three, or four lags. Then, for models

where p > 1, a tight Minnesota prior on coe¢ cients di¤erent from the own lag is used.

Summing up, then, the models space is composed of 128 = 4 � 23 � 4 models, i.e. 4 models
based on the assumptions on the in�ation dynamics; 23 combinations of models with a �xed block

[~u; �; i] and three additional non-policy variables; and 4 lag assumptions, from p = 1 to p = 4 for

each model. Each model is seen as a particular representation of the economy that the central bank

may assume when solving its dynamic control problem to appropriately set the interest rate.

2.2 The Central Bank�s Problem

The central bank minimizes an intertemporal loss function that has a positive relationship with the

deviation between target variables and the target levels for these variables:

Lt = Et

( 1X
�=0

��
h
#~u2t+� + ��

2
t+� +  (it+� � it+��1)

2
i)

(4)

where Et denotes the expectations conditional upon the available information set at time t, while

� is a given discount factor, with 0 < � < 1. Moreover #, �, and  are non-negative weights the

central bank attaches to in�ation stabilization, unemployment gap and interest rate smoothing,

respectively.

We assume an in�ation target of zero percent. As a benchmark for our analysis, we also assume

# = 4, � = 1, and  = 0:5. Based on an Okun�s gap type of relationship, the variance of the

unemployment gap is about 1/4 of the variance of the output gap, so this choice of # corresponds

to equal weights on in�ation and output gap variability.3

As shown in Rudebush and Svensson (1999), for � = 1, we can rewrite the optimization problem

interpreting the intertemporal loss function as the unconditional mean of the period loss function.

Speci�cally, the loss function can be written as the weighted sum of the unconditional variances of

the goal variables:

E [Lt] = #V ar [~ut] + �V ar [�t] + V ar [it � it�1] (5)

The aim is to minimize this loss subject to

Xt+1 = �Xt +	it + �t+1 (6)

3We also checked how sensitive are results to alternative settings. In particular we were able to con�rm the
previous �ndings of the literature that the posterior distribution of the policy reaction to both unemployment and
interest rate shifts monotonically with the values of these parameters in a reasonable range. These changes in the
policy rules, however, do not seem to have a signi�cant e¤ect on the shape or the magnitude of the impulse response
functions.
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which is the State space representation of the VAR (3). The dynamic of the state is governed by the

matrix � and the vector 	 whose values are given by the point estimates of the corresponding VAR

coe¢ cients, and depend on the particular model considered in the estimation. As a consequences,

we have 128 state-space representations for each country. For example, in a model with 4 non-policy

variables with two lags under the unrestricted prior for in�ation, the state space has the following

representation:

Xt =

26666666666664

~ut
~ut�1
prt
prt�1
et
et�1
�t
�t�1
it�1

37777777777775
;� =

26666666666664

a111 a211 a112 a212 a113 a213 a114 a214 b215
1 0 0 0 0 0 0 0 0
a121 a221 a122 a222 a123 a223 a124 a224 b225
0 0 1 0 0 0 0 0 0
a131 a231 a132 a232 a133 a233 a134 a234 b235
0 0 0 0 1 0 0 0 0
a141 a231 a142 a242 a143 a243 a144 a244 b245
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

37777777777775
;	 =

26666666666664

b115
0
b125
0
b135
0
b145
0
1

37777777777775
; �t =

26666666666664

�ut
0
�PRt
0
�et
0
��t
0
0

37777777777775
Writing the target variables as a function of the state variable Xt we have:

Yt =

24 ~ut
�t

it � it�1

35 = CXXt + Cii
with

CX =

24 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 �1

35 ; and Ci =
24 00
1

35
The loss function can therefore be expressed as:

E (Lt) = E
h
Y
0
tKYt

i
= trace (K�yy)

where

K =

24 # 0 0
0 � 0
0 0 

35
and �yy is the unconditional variance matrix of the goal variables.

2.3 The policy rules

Following Rudebush and Svennsson (1999), we consider a general feedback instrument rule which

has the following linear form:

i = fXt (7)
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where f is a conformable row vector.

The problem of minimizing in each period the loss function in (4) subject to (6) is standard,4

and results in an optimal linear feedback rule which, under the limit assumption of � = 1, converges

to a vector f that ful�lls:5

f = �
�
R+	

0
�	
��1 �

U 0 +	
0
��
�

(8)

The optimal value of (5) is given by

E (Lt) = trace (����) : (9)

This rule is less restrictive than a classical Taylor rule, as in this case the interest rate is

a function of all current and lagged values of the non-policy variables and lagged values of the

interest rate.

We also compare results to those obtained under an optimized classical Taylor rule that allows

the interest rate to react only to unemployment gap and in�ation, that is:

it = f �
�
~ut
�t

�
f = [f~u (�;	) f� (�;	)] (10)

where we have made explicit that the parameters of the rule depend on the VAR coe¢ cients in an

open form, and need to be recovered with an optimization routine.6 Note that if we set to 3 the

coe¢ cient in the Okun�s law, the values of the coe¢ cients corresponding to the ones suggested by

Taylor (1993) would be f~u = f� = 1:5 with r�t = �
�
t = 2.

7

In our empirical exercise we also allow for the presence of a lagged interest rate, as most previous

estimates of the same rule �nd that the latter has a signi�cant e¤ect, possibly capturing an interest

rate smoothing (e.g. Clarida et al. 2000), or other relevant but omitted macroeconomic variables

(e.g. Sack 2000).

4See Rudebush and Svensson (1999) for the derivation of the unconditional variance of the goal variables.
5Where the matrix � satis�es the Riccati equation: � = Q+Uf + f 0U 0 + f 0Rf +M 0�M and M = �+	f; C =

CX + Cif , Q = C0XKCX ; U = C
0
XKCi; R = C

0
iKCi:

6The policy rules considered in the analysis are alternative speci�cations of the classic rule proposed by Taylor
(1993). When considering the unemployment gap (instead of the output gap), the Taylor rule (TR) has the following
generic form: it = r�t +�

�
t +f� (�t � ��t )+fu (u�t � ut), where the interest rate ( it) depends on the �natural�interest

rate ( r�t ), the deviation of actual in�ation ( �t) from a constant given in�ation target ( ��t ) and the di¤erence between
the natural rate of unemployment ( u�t ) and its actual value ( ut).

7Stock and Watson (2001) use a coe¢ cient of 2.5 in the Okun�s law, implying fu = 1:25; Orphanides and Williams
(2005) use a coe¢ cient of 2 in the Okun�s law, which implies fu = 1. This range of values is approximately taken as
a benchmark in our empirical examination.
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3 From the models to the data

In this section, we apply the framework illustrated above to US and euro area data, describe

carefully the estimation technique and present the results in terms of properties of the model and

impulse response dispersion.

3.1 Data and transformations

The data are quarterly values of in�ation, interest rate, unemployment rate, exchange rate, labour

force participation rate, and a commodity price index for the euro area and the US, covering 1970:1

to 2006:4. Sources are Datstream and the Area Wide Model (AWM) database (Fagan et al., 2005).

The in�ation rate is calculated as the four-quarter percentage change of CPI. The US interest

rate is the Federal Funds rate; the euro area interest rate is the short-run rate of the AWM database.

The unemployment gap is calculated as the di¤erence between the natural rate of unemployment

(u�t ) and its actual value (ut). The former in turn is computed with Baxter and King (1999)

detrending approach. Exchange rates and commodity price are used in standardized four-quarter

growth rates. All series are demeaned.

3.2 Estimation algorithm

The reduced form of (3) is estimated using Bayesian techniques and informative priors. Concretely,

if � denotes the vector of all VAR coe¢ cients and � denotes the variance-covariance matrix of

the reduced form disturbances, then �Mj = (�;� jMj). Given the data as summarised by the

likelihood p
�
D j �Mj ;M

�
, and a prior distribution p

�
�Mj jMj

�
, the Bayesian algorithm implies

obtaining the posterior p
�
�Mj j D;Mj

�
. In turn, given the estimated dynamic behavior of the

non-policy variables as summarised by the latter posterior distribution, we solve the minimization

problem and recover the distribution of the parameters of the rule that minimize the loss function.8

If we denote with !1 the vector of such parameters, its posterior distribution p (!1 j D;Mj) is

derived from

p (!1 j D;Mj) =

Z
f � p

�
�Mj j D;Mj

�
d�Mj (11)

where f is given by (8) or (10).9 Finally, given the posterior mean of !1, we compute the distribution

of the unemployment response to a monetary policy shocks. The algorithm is applied for each model

Mj , country and policy rule.

8Following Sack (2000), the reaction function estimated from the VAR is ignored when solving the central bank�s
minimization problem.

9Note that the policy rule is assumed to be deterministic. Therefore its posterior uncertainty fully derives from
the uncertainty of the VAR coe¢ cients.
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The following independent prior assumption is speci�ed for each model (now omitting Mj):

p (�) = p (�) p (�)

p (�) = N
�
�; V�

�
p
�
��1

�
= W

�
S�1; �

�
where W

�
S�1; �

�
denotes a Wishart distribution with scale matrix S�1 and degrees of freedom �;

and N
�
�; V�

�
denotes a Normal distribution with mean � and variance-covariance matrix V�.

The general form of p (�) in all models is the one of a Minnesota-type of assumption, where the

prior mean of coe¢ cients for the �rst own lag is equal to one and the others are set equal to zero;

individual components of � are independent of each other, i.e. V� is a diagonal matrix; and the

diagonal elements of V� have the usual structure:

vij;l =

�
(1=l)

2 if i = j
(12�i=l�j)

2 if i 6= j; (12)

where vij;l is the prior variance of �ij;l (coe¢ cient in equation i relative to variable j at lag l), 1
is the general tightness, 2 is the tightness on �other coe¢ cients�, and l is the lag.

For all models we assume 1 = 0:1 and 2 = 1, and estimate the variances �i and �j from

AR(p) regressions on a training sample (1971:1-1990:4). In all restricted models for in�ation (AR,

RW and WN) the own-lag coe¢ cient of the prior mean � is set accordingly, and the tightness is

set to 10�31. For the AR assumptions the own-lag coe¢ cients of the prior mean � are estimated

on a training sample with univariate AR(p) regressions.

Regarding the prior for �, the prior scale matrix S is set equal to 10�1I, and the degrees of

freedom � equal n+ 3, thus ensuring an informative but relatively vague prior assumption for �.

Given the independent structure of the prior, a closed form solution for the posterior distribution

of the parameters of interest is not available. It is easy to show, however, that a Gibbs sampler

can be employed because the full conditional distributions p (� j �; D) and p (� j �;D) are easily
derived (see Appendix). The sampler is initialised using the ML estimate of � on a training sample.

For each draw of � = (�;�), then, the parameters of the rule are derived from the minimization

problem. This algorithm provides the posterior distribution (11).

In the case of the optimised Taylor Rule, we use a grid search procedure to solve for the values

of f that minimize the criterion function (5). Because the computation with high-order models

becomes immediately cumbersome, we solve the optimisation problem by using the posterior mean

of � and �, instead of grid-search for each draw of them.

In the case of the optimal feedback rule, instead, the computational burden is not so heavy, for

the optimal values of (8) and (9) are straightforward to compute. However, in order to ensure that
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the parameters of the rule have meaningful signs, we restrict the prior to be

q (�) = p (�) � = (!1 2 F)

where = (!1 2 F) is the indicator function that equals 1 if !1 2 F and 0 otherwise, and F is the rel-
evant region. The corresponding posterior distribution is therefore q (� j D) = p (� j D)�= (!1 2 F).
Strictly speaking, an importance sampling algorithm should be used instead of the Gibbs sampling,

and an importance function elicited. It is easy to show, however, that if the importance function

is the unrestricted posterior distribution we can still rely on the Gibbs sampling, drawing from the

unrestricted posterior and discarding draws which violate the restrictions.10

Finally, an equal prior probability p (Mj) = 1=J is assigned to each model, therefore the pos-

terior probability of the models is proportional to their marginal likelihood, i.e.

p (Mj j D) =
p (Mj) p (D jMj)P
j p (Mj) p (D jMj)

=
p (D jMj)P
j p (D jMj)

(13)

where p (D jMj) =
R
p
�
D j �Mj ;M

�
p
�
�Mj jM

�
d�Mj is the marginal likelihood of model Mj .

An analytical evaluation of this integral is not possible given our prior assumptions, therefore we

simulate it from the Gibbs output using the harmonic mean of the likelihood values at each draw

of � (Newton and Raftery, 1994).11

Results (discussed in the next subsections) are based on 10000 iterations of the Gibbs sampling,

after discarding an initial 5000 burn-in replications and using the remaining 5000 for inference.

3.3 Properties of model space and rules

We describe here some properties of the model space focusing on the Marginal Likelihood, the

parameters of the rules, and the expected losses.

Table 1 reports summary statistics on the distribution of the Relative Marginal Likelihood

(RML) across all models, for both the US and the euro area (EA). The RML is de�ned as in (13),

where j goes from 1 to 128. Given the prior assumption that the models are all equally likely,

the RML gives the posterior model probability which measures how likely the data believe a given

model to be the correct one.

10 In particular we assign a zero weigth to negative values of the parameters attached to the negative unemployment
gap, the in�ation gap and the lagged interest rate.
11As it is well known (Kass and Raftery 1995), the harmonic mean converges almost surely to the correct value

but does not generally satisfy a Gaussian central limit theorem. The measure can therefore be unstable, but it has
proven to provide more reliable estimates than, for instance, Chib�s (1995) measure (see Osiewalski and Pipien, 2004;
Canova and Ciccarelli, 2008).

13



The marginal likelihoods turned out to be substantially di¤erent across models, as shown by

the di¤erence between the higher and the lower part of the distribution, and by the fact that only

for 13 percent of the models for the US and 25 percent for the euro area the RML is greater than

the equal weight (EW).

Table 1 about here

The �nding can be better appreciated from Figure 1, where we plot the RML of each model.

Models are ordered according to the number of variables: the �rst 16 models are speci�ed with three

variables; the next 48 models contain four variables, and so on. The exact place of each model is

described in appendix A (Table A1).

The data seem to support relatively parsimonious models, as the �gure shows that the best

models are clustered around speci�cations with 3 and 4 variables. The same speci�cation with 4

variables which includes the participation rate is the preferred one both for the US and for the

euro area data. Interestingly, the models which receive less support by the data always include the

depreciation rate, regardless of the other variables included and of the country.

Figure 1 about here

Table 2 reports the estimates of the loss and of the relevant long run parameters of the Optimal

Feedback Rule (OFR) and the Taylor Rule (TR) relative to the models with the highest and the

lowest marginal likelihood. Note that while there is not much di¤erence in the losses across models

and rules, optimal policy parameter estimates might vary substantially. Interestingly, the OFR

estimates relative to the best model are not only consistent with the literature, but also broadly

in line with the original (1993) Taylor rule. Moreover, losses seem to be smaller for both countries

and rules in the models with the lowest RML. A regression analysis across models, however, does

not seem to con�rm any clear pattern between the posterior probability of a given model � as

summarised by the marginal RML �and the optimal policy parameters or the associated expected

losses (see below).

Table 2 about here
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Standard decision theory arguments imply that it is not desirable to simply rely on results for the

best model, regardless of the selection criterion, as this practice ignores both model and parameter

uncertainty. The distributions of the optimal policy parameters and the associated expected losses

across models therefore are summarised in Figure 2 and 3.

In Figure 2 we report the posterior distributions of the relevant parameters and of the losses

relative to the OFR, for each model. The solid black line that goes through the areas is the posterior

median of each model. The shaded areas comprise the 99 percent of the posterior distribution

around it, as in a fan chart representation: there is an equal number of bands on either side of the

central band. The latter covers the interquartile range and is shaded with the deepest intensity.

The next deepest shade, on both sides of the central band, takes the distribution out to 80%; and

so on, until the 99% of the distribution is covered.

We represent the models on the x-axes organised according to some level of complexity. Models

are ordered �rst according to the prior for in�ation (the �rst 32 models correspond to the UN prior,

the subsequent to the RW, then to the AR, and the last 32 models to the WN), and then, inside

each prior, they are sorted in ascending lag length order.

Figure 2 about here

In Figure 3 we summarise instead the distribution of the optimal policy parameters and expected

losses by only taking the posterior median across models. In this way we can visually compare results

also across the two rules.12 The box plots report therefore the extreme values and the interquartile

ranges computed using the posterior medians across the 128 models in a given class (OFR or TR) of

the relevant policy parameters fu= (1� fi), f�= (1� fi) and fi that yielded the minimum expected

loss. The empty circles in the box plot are the weighted averages of the results, where the weights

are given by the RML. The �lled square represents instead results associated with the best models.

Figure 3 about here

Four sets of considerations emerge from the analysis of these charts.

First, the ranges of results are on average consistent with previous literature, as the bulks of the

distributions are concentrated on values in line both with the theory and with previous empirical

12Recall that due to the complexity of the grid search in the TR, we simulate the posterior distribution of parameters
and losses only for the OFR, whereas for the TR we compute the estimates of f using the posterior mean of � = (�;�).
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�ndings. This is true for both classes of rules, which also deliver very similar results. The dispersion

across models seems to be only marginally larger for the TR than for the OFR in both countries.

A closer look shows that the rough interquartile range of the optimal long-run reaction of

unemployment is [1:3� 3:5] for the US and [0:3� 1:8] for the euro area; the long run reaction of
in�ation is in the range [1:2� 2:5] for the US and [1:5� 2:7] for the euro area; and the lagged
interest rate coe¢ cient is in the range [0:1� 0:7] for both countries. The weighted averages and the
results associated with the best models are very much similar to the median values. These �ndings

indicate that in both countries the policies have on average been marginally more aggressive than

the original Taylor rule, and that there seem to be a signi�cant e¤ect of the lagged interest rate,

which indicates that interest rate smoothing is a robust feature of the policy. Very similar results

have been found by Brock et al. (2007), Levin and Williams (2003), and Clarida et al (2000),

among others, for the US; and by Smets and Wouters (2005), and Gerlach and Schnabel (2000),

among others, for the euro area.

Not surprisingly, results are also fairly consistent with the somewhat expected idea that the long

run reaction of the euro area policy rate to in�ation is greater than the one to real activity. The

opposite seems to be true on average for the US policy, which gives slightly less weight to in�ation

than to the unemployment gap. The comparison across countries also shows that on average the

US policy is more reactive to the unemployment gap than the euro area policy, whereas the latter

is more reactive to the in�ation gap than the US policy.

Second, there is a higher posterior uncertainty around the US estimates of the policy parameters

than around the euro area ones, as the more disperse distribution around US values seems to

indicate in Figure 2. This might be the result of di¤erent sampling variability across the two

data sets together with the use of the same model speci�cations and similar informative priors.

Note, however, that this result does not seem to hold when we consider the uncertainty around the

expected losses, which is fairly similar in both countries.

Third, some clear clusters with respect to expected losses seem to emerge across models. Figure

3 shows that the expected losses associated with the US policy parameters are overall lower than

those associated with euro area parameters for both rules. The range of values is again compatible

with the existing literature that uses similar values for the weights in the loss function, and, if

anything, our estimates seem to be on the lower side (see e.g. Brock et al., 2007; and Rudebush

and Svennson, 1999 for a comparison). Another feature we have noticed if we ordered in Figure 2

the losses following an ascending level of complexity as determined �rst by the lag length, is that

speci�cations with one lag display a less volatile expected loss and a lower median level (the latter

is particularly evident in the case of US). This would imply that the more complex is the model
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economy, the higher and more imprecise is the expected loss that the policy maker faces. The result

would then suggest as a strategy for the policy maker to choose parsimonious models, although

they do not necessarily correspond to the ones with the highest RML. As a matter of fact, a clear

connection between the posterior probability of the models and the associated expected losses is

faded, as a scatter plot of both measures would show (Figure 4), although the chart in Figure 3

shows that losses associated with the best models (the �lled square symbols in the box plots) are

always in the upper tail of the distributions.

If instead we look at the order the losses according to the prior assumption for in�ation, there

is an overwhelming evidence that, for the AR prior, losses are systematically higher regardless of

the country and of other rearrangements. Notably, under the AR prior the values of the losses are

on average much closer to those that have been found in similar estimations by previous studies,

as our AR prior resembles more closely their estimation assumptions.

Figure 4 and 5 about here

Finally, there is a clear negative relationship which relates the optimal policy parameters and

the model complexity as represented by the lag length, as in each block of 32 models the median

values are clearly decreasing. This pattern is persistently more evident for the euro area than for

the US, and also con�rms previous results (see e.g. Brock et al. 2007). Moreover, if we scatter

plot the policy parameters against the posterior weights of the model (RML), we �nd a signi�cant

negative relationship, which is particularly evident if we restrict the attention to the models with

the highest posterior probability and to the long run reaction of unemployment and in�ation rate

(Figure 5). This �nding might not be surprising, and somewhat con�rm the prior idea that the

models preferred by the data are associated with policy parameters which are a priori regarded as

more likely by the profession.

In sum, all charts and tables discussed in this section con�rm that simple linear autoregressive

models that di¤er in several dimensions may give rise to a signi�cant degree of uncertainty in the

distribution of optimal policy parameters and expected losses. Simple or weighted averages across

models help dampen this uncertainty and provide a more consistent representation of the policy

rules than the one based on �best�models selected using their posterior probability. Although by

choosing the best model the policy maker can not be seriously misled about the policy parameters,

(s)he might nonetheless incurr in a higher associated cost. Results �that are very much consistent

with previous literature �would also recommend choosing a relatively parsimonious representation

of the economy, regardless of the country and the policy rules.
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3.4 Uncertain e¤ects on unemployment: Impulse response dispersion

In this subsection we report the probability distribution of the unemployment gap response to a

monetary policy shock and measure its dispersion in light of the uncertainty about the correct

model discussed above.

Using the structural VAR in (3), we assume that the central bank sets the policy variables it

according to the two policy rules OFR and TR as estimated in the previous step. The estimated

equation error "it can be interpreted as a monetary policy shock, as also discussed e.g. by Stock

and Watson (2001), or Sack (2000). The shock is identi�ed by (i) replacing the parameters of

the policy equation with the posterior means of the f estimated above, while leaving unrestricted

all the other parameters of the VAR; and (ii) imposing the timing assumption that the central

bank reacts contemporaneously to all variables in the economy, whereas the policy rate does not

contemporaneously a¤ect the rest of the economy. The former restriction is placed in the form of

a normal distribution with a very tight variance. The latter restriction is a pure zero-restriction.

A relatively vague Minnesota prior is assumed on the rest of parameters in the two blocks.

How do the impulse responses of (negative) unemployment gap to a surprise 100 basis point

increase in the policy rate look like? Before examining the degree of dispersion across models, rules

and countries, and focus only on the reaction of unemployment, we plot in Figure 6 the impulse

responses of unemployment, in�ation and interest rate computed averaging over all models with

the optimal feedback rule and the Taylor rule, for both the US and the euro area. Dashed lines

represent the 68 percent con�dence bands computed for the OFR.

Note that the responses have the expected signs across countries and rules, and, except for the

somewhat uncertain response of in�ation in the euro area, they are also signi�cant. The impacts do

not seem statistically di¤erent across rules in the two countries, as both rules are backward-looking.

There are however some di¤erences across countries in the responses of both unemployment and

in�ation, in the lags and the magnitude. Average responses are somewhat more pronounced in the

euro area. Cumulatively after 36 quarters the e¤ect on the unemployment gap is on average of 0.2

percentage point for the US and between 0.3 (TR) and 0.5 (OFR) for the euro area, whereas the

e¤ect on in�ation is on average of 1.0 percentage point in the US, and between 1.2 (OFR) and 1.6

(TR) percentage points in the euro area. Note �nally that, as in previous studies (see e.g. Stock

and Watson, 2001 for the US and Peersmann and Smets, 2003) the lags of in�ation are quite long

and most of the decline occurs between the third and the fourth year after the monetary contraction

across both countries and rules.

Figure 6
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We turn now to focus on the reaction of the unemployment rate across models. In Figure 7 we

report these responses for both countries and rules. To jointly visualize the dispersion within and

between models we report the posterior distribution of the IRF obtained from the MCMC simulation

by �fan-charting�separately three quantiles of such distributions �the median responses, the 16th

percentile and the 84th percentile �for all models. Therefore, in the charts with the title �median�,

for instance, we plot the �fan-chart�distribution of the median responses across models. In each

chart, the shaded areas represent the dispersion across models. The principle is the same as in a

fan chart representation: There is an equal number of bands on either side of the central band.

The latter covers the interquartile range across models and is shaded with the deepest intensity.

The next deepest shade, on both sides of the central band, takes the distribution out to 80%; and

so on, until the 99% of the distribution is covered. The solid black line that goes through the areas

is the weighted average of each quantile (median, 16th and 84th percentile) across models, where

the weights are given by the RML of each model.

Several comments are in order.

First, the impulse responses look reasonably well behaved and their pattern fairly robust across

models, countries and rules. An important dimension of such robustness is that, although model

responses are dispersed, signi�cance of the average results at the expected horizons appears to be a

robust feature. Given the timing assumption, the initial rate hike results in a null contemporaneous

e¤ect on the economy. On average across models, rules and countries most of the signi�cant

economic slowdown occurs in the �rst two years after the rate hike, when the cumulative impact

on the unemployment gap is between -0.2 and -0.4 percentage points, on average across models,

rules and countries. Some di¤erences between countries have already been highlighted above.

Second, overall the results do not seem to be extremely sensitive to the policy rule used in the

identifying assumption of the structural VAR. The result does not come entirely as a surprise, for

both rules are backword-looking, although the OFR is less restrictive than TR being a function of

all current and lagged values of the non-policy variables and lagged values of the interest rate.

Third, there is a reasonable degree of uncertainty across models, for a given rule or country,

which is a direct consequence of the dispersion of policy parameters. Interestingly, results for the

euro area are in general much more dispersed than those for the US. This is particularly true at all

steps for the OFR and at the longer steps for the TR, as shown also in Figure 8 where we report

the standard deviation at each step of the impulse responses across models. This evidence suggests

that, even if the degree of dispersion in the distribution of policy parameters and expected losses

is broadly similar across country, the conclusion on the e¤ects of a monetary policy shock can be

more uncertain possibly due to a di¤erent sampling variability or a di¤erent interactive dynamics
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of the variables in the two model economies. With the exception of the TR for the euro area, the

uncertainty is also bigger around the peak values of the responses, usually between one and two

years.

Figure 7 and Table 3 about here

Fourth, a complementary inference can be derived from Table 3, where we quantify the inform-

ation contained in Figure 7, and report the cumulative impacts between horizons. These numbers

can provide useful benchmark references for future studies that wish to quantify the e¤ect of a mon-

etary policy shock in the US and the euro area, if such quanti�cation is obtained with a structural

VAR model that uses similar variables over an analogous sample of data. One conclusion is that

the e¤ect is certainly signi�cant between 1 and 8 quarters in both countries. Another conclusion

is that quantitative results, which are relatively similar for di¤erent rules in each country, di¤er

across countries: the cumulative average impact in the euro area after two years is around 0.45,

whereas the same impact for the US is around 0.3.

Figure 8 about here

Finally, given the relatively high degree of uncertainty, it is recommendable that the policy

implications would not be derived conditionally on a single model but rather on a weighted average.

Note from the black line in the charts of Figure 6 and the numbers of Table 3 that the weighted

average across models always provides a lower response than the median model. This implies,

among other things, that the models which receive more support by the data �and therefore are

weighted more in the average �tend to dampen the response of unemployment to a monetary policy

shock relatively to the other models.

A question arises naturally then: Would the policy maker who chooses a single model come to

a very misleading conclusion about the e¤ect of a monetary policy shock? Part of the answer can

be found in Figure 9, where we plot the average responses of the three main variables together with

the responses obtained from the best models. In both cases we focus on results obtained under our

preferred rule (OFR).

Figure 9 about here
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Di¤erences do seem relevant in both countries. In particular, the response of the unemployment

gap in the best models are more pronounced for the two countries, both at the peak and cumulat-

ively. Even more interestingly, while the response of in�ation computed from the best model shows

a �price puzzle� for both countries �more markedly signi�cant for the US than for the euro area

economy �with consequent associated long lags, the average responses computed across all models

almost eliminate the initial upward swing and provide a more reasonable timing and magnitudes

of the in�ation responses.

Some important conclusions can therefore de drawn from the whole discussion. One conclusion

is that the average results for the US and the euro area are qualitatively similar, with the latter

being more dispersed than the former. Another conclusion is that dispersion across models is a

feature not only of the policy rules but also of the impulse response functions, and that policymakers

face considerable uncertainty about the future development of relevant variables and the impact

of a given measure. Averaging is therefore a good advise to the policymaker to dampen out this

dispersion. Finally, even though the data have a very strong preference for a small subset of models,

the di¤erences between the best and the average models may be remarkable, with the results of the

latter being more in line with theoretical arguments as, for instance, in the case of the cutback of

the well known �price puzzle�. Overall, therefore, our results con�rm that the model-combination

strategy that central banks already follow when assessing the risks to price stability or deciding a

given policy is indeed an appropriate strategy.

3.5 The real-time dilemma: Preliminary vs. latest available data

We conclude our empirical exploration with a simple additional exercise, and check how sensitive

might the previous results be to data uncertainty, by estimating the policy rules and running the

same impulse response analysis on preliminary instead of fully revised data.

The idea is that all relevant information for monetary policy is measured with error. As early

releases of data can be noisy, the di¤erence between the response coe¢ cients obtained using real-

time vs. fully revised (or latest available) data might measure the uncertainty that policymakers

face when making decisions using policy rules.

The scope of this analysis is much more limited than the one conducted above. In particular: (i)

we focus only on US data, as the real-time data for the euro area have a much smaller coverage; (ii)

we consider only the simplest set of models with three variables, as none of the additional variables

included in the extended models is either revised or simply available in the existing real-time data

sets. Moreover, we use a di¤erent de�nition for in�ation and take the growth rate of the output

de�ator, which is a variable subject to revision, whereas the CPI used so far is typically not revised.
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In this way we have two (unemployment and in�ation) of the three variables of the VARs subject

to revision, instead of just one (unemployment).

The data used come from the real-time data set for macroeconomists, developed at the Federal

Reserve Bank of Philadelphia and described in great details for instance in Crushore and Stark

(2001).

Table 4. about here

Table 4 reports the average rule coe¢ cients for the three variables of interest and the two rules

across models. Consistently with the results of previous studies (see e.g. Aoki 2003; and Jarkko

and Yates 2005), the response coe¢ cients in both the optimal feedback rule and the Taylor rule are

higher when we run the estimation with the data available in real-time, which implies that both

policies might be more aggressive than what a revision of data would entail.

In line with the previous literature, therefore, our results also strengthen the case for a more

cautious monetary policy strategy. Speci�cally, in order to reduce policy mistakes, central banks

should not react strongly to out-of-target developments in in�ation and unemployment gap and

should attenuate the response coe¢ cients in an optimal policy rule, for the measurement error

in early vintages of data signi�cantly a¤ects the real-time results with the consequence that a

�ne-tuning monetary policy might amplify the business cycle.

How much sensitive could then be the response of unemployment to a monetary policy shock

given these di¤erences in the policy rules due to the various data vintages? A simple way of

answering this question is to visually compare the di¤erence between the impulse responses obtained

with the two sets of data. Figure 10, for instance, compares the weighted average across models

of the median, the 16th and 84th percentile responses (36 steps) obtained using the fully revised

data set (vertical axis) with the same percentiles based on real time data (horizontal axis). If the

response functions were una¤ected by the data sets, we should expect all points to lay on the 45

degree line.

Figure 10 about here

The charts indeed show some notable divergence, as the points summarizing the impulse re-

sponse distribution tend to deviate from the diagonal for both the optimal feedback rule and the

Taylor rule. Data revisions therefore a¤ect the probability distribution of the unemployment re-

sponse to a monetary shock, though the di¤erences seem quantitative in line with the uncertainty
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and the ranges reported in the previous subsection, and not as much informative as one would

argue.

This simple experiment would therefore indicate that the analysis conducted in real-time to

evaluate the e¤ects on unemployment of a monetary policy shock would not lead to a signi�cantly

di¤erent conclusion from an ex-post one based on fully revised data. This is in part due to the

limitation of the current comparison. As stressed in another paper (Altavilla and Ciccarelli 2007),

results based only on the comparison between preliminary vs. latest available data might not be

as informative as those that would instead be based on all available vintages or revisions. Our

recommendation in evaluating the use of real-time data in policy experiments �to check if and how

revisions systematically a¤ect the results �would be for a much more comprehensive approach that

makes use of the whole revision process. Such an extension goes however well beyond the scope of

this paper.

4 Conclusions

This paper has shown that model uncertainty plays a crucial role in determining the e¤ects of

monetary policy shocks on unemployment dynamics in the euro area and the US.

Following previous methodological works, for instance by Brock et al (2007), we have speci�ed a

range of 128 BVAR models that di¤er in terms of variables, lag structure, and the way the in�ation

process is modelled. Each model is a constraint for the central bank which sets the interest rate

minimizing a loss function. Given the solution in terms of policy rule, we quantify the impact of a

monetary policy shock on unemployment, and measure the degree of uncertainty as represented by

the dispersion of both the policy rule parameters and the impulse response functions across models.

The comparative evidence from the US and the euro con�rm that simple linear autoregressive

models that di¤er in several dimensions may give rise to a signi�cant degree of uncertainty in the

distribution of optimal policy parameters, expected losses and impulse response functions. Simple

or weighted averages across models help dampen this uncertainty and provide a more consistent

representation of both the policy rules and the e¤ects on unemployment than the one based on

�best�models selected using their posterior probability. Moreover, even though the data seem to

have a very strong preference for a small subset of models, the di¤erences between the best and the

average models may be remarkable. In particular averaging across models seem to provide impulse

responses which are more in line with theoretical arguments as, for instance, in the case of the

cutback of the well known �price puzzle�.

We have also shown that, even though by choosing the best model the policy maker can not be

seriously misled about the policy parameters, (s)he might nonetheless incur in a higher associated
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cost. Results �that are very much consistent with previous literature �would also recommend the

choice of relatively parsimonious representations of the economy, regardless of the country and the

policy rules. Overall our results �which are very similar for US and the euro area �con�rm that

the model-combination strategy that central banks already follow when assessing the risks to price

stability or deciding a given policy is indeed an appropriate strategy.

To some extent, and given the scope of the analysis, our quantitative results can also be used

as references for the quanti�cation of policy rules and impulse responses in similar future studies.

Finally, a preliminary and incomplete evidence seems to indicate that data vintages and re-

visions might make a di¤erence in the choice of the policy parameters as well as in the e¤ects

on unemployment of a policy measure. A much deeper analysis which exploits information con-

tained in all vintages or historical revisions might be needed, perhaps in a uni�ed framework that

simultaneously consider data, parameter and model uncertainty.
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Appendix

A Models

The following table (A1) describes the 128 models that form the model space. The �rst column

reports the model number. In the second column the models speci�cation is detailed with the

number and the type of variables used; the third column reports the codi�cation where V stands

for variable, L for lags and P for prior of in�ation.

Table A1 here

B Derivation of the posterior

By stacking appropriately variables and coe¢ cients in the VAR (3), we can re-write it as:

yt = (In 
Wt)� + "t (14)

where, yt is the (n� 1) vector of endogenous variables [Z 0t i0t]
0, Wt =

�
y0t�1; :::; y

0
t�p
�0 is k � 1, � is

the nk� 1 vectorization of the matrices fA;b; c; dgj=1;:::;p, "t is the (n� 1) vector of reduced form
innovations

�
"Zt 0; "it

�0
, and k = np is the number of parameters in each equation.

Because by assumption it is p ("t) = N (0;�), the likelihood is proportional to

L (D j �;�) / j�j�T=2 exp
(
�1
2

X
t

[yt � (In 
Wt)�]
0��1 [yt � (In 
Wt)�]

)
(15)

where, as in the text, D represents the stacked data.

Given the joint prior distribution on the parameters, p (�;�), the joint posterior distribution of

the parameters conditional on the data is obtained through the Bayes rule

p (�;� j D) =
p (�;�)L (D j �;�)

p (D)

/ p (�;�)L (D j �;�) ;

We have assumed an independent Normal-Wishart distribution for the prior, with

p (�) = N
�
�; V�

�
/
���V�����1=2 exp��1

2

�
� � �

�0
V�

�1 �� � ��� (16)

and

p
�
��1

�
=W

�
S�1; �

�
/ j�j�(��n�1)=2 exp

�
�1
2
tr
�
S��1

��
(17)
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The joint posterior density for (�;�) is proportional to the product of (15), (16), and (17). Given

the independency assumption, such posterior does not take the form of a standard distribution

and cannot be directly used for inference. A Gibbs sampling algorithm is instead available, for the

conditional posterior of both � and � are simple to derive. The conditional posterior of � is derived

by multiplying (15) and (16), and ignoring the terms that in the product do not involve �. It is

given by

p (� j D;�) = N
�
��; �V�

�
/ exp

�
�1
2

�
� � ��

�0 �V �1�

�
� � ��

��
(18)

where

�V� =

 X
t

(In 
Wt)
0��1 (In 
Wt) + V�

�1

!�1
�� = �V�

 X
t

(In 
Wt)
0��1yt + V�

�1�

!

Similarly, the conditional posterior for � is derived by multiplying (15) and (17). Ignoring the

terms that do not involve �, we have

p
�
��1 j D;�

�
= W

�
S��1; ��

�
/ j�j�(�

��n�1)=2 exp

�
�1
2
tr
�
S���1

��
(19)

where

S� = S +
X
t

[yt � (In 
Wt)�] [yt � (In 
Wt)�]
0

�� = � + T

Starting from arbitrary values of �, a Gibbs algorithm samples alternately from (18) and (19).

The RATS codes used to perform estimation and inference are available from the authors upon

request.
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Figure 1. Relative Marginal Likelihoods

Note: The models on the x-axis are ordered by lags, priors on inflation, and number of variables. The first 16 models are those with 3 variables; the next 48 models 
are those with 4 variables; and so on. See Table A1 for an exact mapping.
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Figure 2. Posterior distributions of policy parameters and expected losses

Note: The models on the x-axis are ordered by level of complexity as determined by the prior on
inflation and the number of lags. Therefore models with the UN prior are placed first ; models with the
RW prior come next and so on. Inside each block, then, models are ordered according to the number of
lags. 
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Note: The box plots report minimum, maximum, and interquartile range for each rule and country. Empty circles represent the best models; full squares are the 
weighted averages

Figure 3.  Distributions across models of the median policy parameters and expected losses
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EA

Figure 4. Dispersion of expected losses

Note: The charts report scatter plots of the minimum expected losses of all models (x-axis) against the relative marginal likelihoods of the models (y-axis)
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Figure 5. Dispersion of policy parameters. OFR

Note: The charts report scatter plots of the optimal policy parameters of all models (x-axis) against the relative marginal likelihoods of the models (y-axis)
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US

Figure 6. Impulse response functions. Weighted averages across models

Note: The charts plot the weighted average unemployment responses to a monetary policy shock identified with the optimal feedback rule (OFR) and the Taylor rule (TR). Dashed lines are the 68 percent confidence 
bands of the impulse responses relative to the OFR for each variable and country.
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Optimal Feedback Rule Taylor Rule

Note: the `fan-chart' distribution across models of the median, the 16th and the 84th percentile responses are reported in each chart. The shaded areas represent the dispersion across models. The principle is the same as in a fan chart 
representation: there is an equal number of bands on either side of the central band. The latter covers the interquartile range across models and is shaded with the deepest intensity. The next deepest shade, on both sides of the central 
band, takes the distribution out to 80%; and so on, untile the 99% of the distribution is covered. The solid black line that goes through the areas is the weigthed average of each quantile (median, 16th and 84th percentile) across models, 
where the weights are given by the RML of each model.

Figure 7. Impulse response dispersion across models
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Figure 8. Standard deviations across IRF

Note: The charts plot the standard deviation of three percentiles (black= 50%, red = 16%, blue = 84%) of the 
unemployment responses distribution across models for each step ahead.
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Figure 9. Comparison between IRF of best and average model

Note: The charts plot the median unemployment responses relative to the best model and the weighted average model to a monetary policy shock identified with the optimal feedback rule (OFR). Dashed lines 
are the 68 percent confidence bands of the impulse responses relative to the OFR for each variable and country.
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Figure 10. Fully revised vs. real-time data: IRF

Note: Circles represent the (weigthed) average IRF. On the x-axis are the IRF computed using the real time data. On the y-axis are the IRF computed using the latest 
available data. 36 steps are reported. Diagonals are the 45 degree lines.
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Table 1. Relative Marginal Likelihood- Summary Statistics
STATISTICS 
Minimum 
Q1
Median
Q3
Maximum
Equal weight (WE)
Fraction of models with RML>EW
Sum of RML for models with RML>EW
Sum of RML

Table 2. Properties of the models with lowest and highest RML

Variables Lags Prior Type f u /(1-f i ) f π /(1− f i ) f i Loss f u /(1-f i ) f π /(1− f i ) f i Loss

Highest RML
US u,pr,π,i 3 3 1.7 1.6 0.6 7 2.6 1.8 0 7.3
EA u,pr,π,i 4 3 0.8 1.4 0.4 8.5 0.8 1.7 0 9

Lowest RML
US u,pr,π,Cp,e,i 4 4 2.3 2.5 0.7 2.9 3.9 1.3 0.8 2.9
EA u,pr,π,e,i 1 2 0.6 1.7 0.4 4.9 1.3 4.2 0.7 4.8

41

TROFR

US

0.071508
0.004293
0.000724
0.000123

0.000001

0.000475
0.00006

0.5
0.007813

0.000002
EA

Note: This table reports the distribution across models of their Relative Marginal 
Likelihoods (RML), given in Eq. (13) and computed using the harmonic mean of the 
Gibbs output.

Note: The table reports the posterior mean values of the optimal policy parameters and the expected losses for the models with the 
highest and the lowest RML.

0.101785
0.004102

1
0.917233
0.132813
0.007813

1
0.852669



Steps min median wgt. av. max min median wgt. av. max min mdian wgt. av. max min median wgt. av. max min median wgt. av. max min mdian wgt. av. max

1 -0.05 -0.04 -0.03 -0.02 -0.03 -0.01 -0.01 0.01 -0.01 0.01 0.02 0.04 -0.04 -0.02 -0.02 -0.01 -0.03 0.00 0.00 0.01 -0.02 0.01 0.01 0.02
2 -0.08 -0.06 -0.06 -0.04 -0.05 -0.03 -0.03 -0.01 -0.02 0.00 0.00 0.03 -0.07 -0.04 -0.03 -0.02 -0.05 -0.02 -0.02 0.00 -0.03 0.00 0.00 0.02
4 -0.21 -0.15 -0.15 -0.09 -0.14 -0.09 -0.08 -0.03 -0.06 -0.02 -0.02 0.03 -0.18 -0.11 -0.10 -0.06 -0.13 -0.06 -0.06 -0.02 -0.08 -0.02 -0.02 0.03
8 -0.46 -0.32 -0.29 -0.13 -0.30 -0.19 -0.17 -0.04 -0.17 -0.08 -0.06 0.07 -0.38 -0.21 -0.20 -0.12 -0.27 -0.14 -0.12 -0.05 -0.17 -0.06 -0.05 0.03
12 -0.43 -0.24 -0.22 -0.05 -0.27 -0.13 -0.11 0.03 -0.14 -0.03 -0.01 0.12 -0.27 -0.12 -0.11 -0.06 -0.16 -0.05 -0.05 -0.01 -0.09 -0.01 -0.01 0.04
16 -0.38 -0.19 -0.16 0.01 -0.20 -0.07 -0.06 0.09 -0.08 0.02 0.03 0.18 -0.14 -0.05 -0.04 -0.01 -0.06 0.00 0.00 0.03 -0.01 0.04 0.04 0.09
20 -0.34 -0.15 -0.13 0.06 -0.14 -0.04 -0.03 0.14 -0.03 0.03 0.04 0.24 -0.06 -0.02 -0.01 0.01 -0.01 0.02 0.02 0.07 0.02 0.06 0.06 0.17
24 -0.30 -0.12 -0.11 0.08 -0.10 -0.04 -0.02 0.16 -0.02 0.03 0.04 0.26 -0.04 -0.01 0.00 0.02 -0.01 0.02 0.02 0.10 0.02 0.06 0.06 0.20
28 -0.27 -0.11 -0.10 0.09 -0.08 -0.03 -0.01 0.16 -0.01 0.03 0.04 0.27 -0.04 0.00 0.00 0.03 -0.01 0.02 0.02 0.10 0.01 0.05 0.05 0.20
32 -0.24 -0.10 -0.09 0.08 -0.06 -0.02 -0.01 0.15 -0.01 0.02 0.03 0.25 -0.04 0.00 0.00 0.03 -0.01 0.01 0.01 0.08 0.00 0.04 0.04 0.17
36 -0.22 -0.09 -0.08 0.07 -0.05 -0.02 -0.01 0.13 -0.01 0.02 0.03 0.23 -0.05 0.00 0.00 0.01 -0.01 0.01 0.01 0.05 0.00 0.02 0.03 0.13

cumulative impact 
after 2 years -0.80 -0.57 -0.52 -0.27 -0.52 -0.32 -0.46 -0.06 -0.27 -0.08 -0.06 0.17 -0.68 -0.37 -0.35 -0.21 -0.48 -0.22 -0.26 -0.06 -0.29 -0.06 -0.06 0.10

steps min median wgt. av. max min median wgt. av. max min mdian wgt. av. max min median wgt. av. max min median wgt. av. max min mdian wgt. av. max
1 -0.06 -0.04 -0.03 -0.02 -0.04 -0.01 -0.01 0.00 -0.02 0.01 0.01 0.02 -0.10 -0.03 -0.02 -0.01 -0.09 -0.02 -0.01 0.00 -0.07 0.00 0.00 0.02
2 -0.09 -0.06 -0.05 -0.04 -0.06 -0.03 -0.03 -0.01 -0.03 -0.01 0.00 0.02 -0.10 -0.04 -0.04 -0.02 -0.09 -0.03 -0.02 0.00 -0.07 -0.01 -0.01 0.02
4 -0.22 -0.15 -0.13 -0.11 -0.15 -0.10 -0.08 -0.05 -0.08 -0.04 -0.03 0.01 -0.21 -0.11 -0.10 -0.06 -0.17 -0.08 -0.06 -0.02 -0.13 -0.04 -0.03 0.03
8 -0.42 -0.32 -0.29 -0.22 -0.28 -0.20 -0.18 -0.12 -0.15 -0.09 -0.07 0.00 -0.40 -0.24 -0.20 -0.12 -0.28 -0.16 -0.13 -0.04 -0.20 -0.09 -0.07 0.08
12 -0.32 -0.22 -0.22 -0.12 -0.20 -0.11 -0.11 -0.03 -0.11 -0.01 -0.02 0.10 -0.28 -0.16 -0.13 -0.05 -0.17 -0.10 -0.07 0.01 -0.09 -0.04 -0.03 0.13
16 -0.23 -0.13 -0.13 0.00 -0.12 -0.01 -0.03 0.13 -0.05 0.09 0.06 0.30 -0.14 -0.07 -0.06 0.01 -0.06 -0.02 -0.02 0.06 -0.01 0.02 0.03 0.17
20 -0.17 -0.06 -0.08 0.09 -0.08 0.04 0.02 0.24 -0.01 0.14 0.11 0.43 -0.06 -0.02 -0.02 0.04 -0.01 0.03 0.02 0.08 0.00 0.08 0.06 0.20
24 -0.14 -0.03 -0.05 0.11 -0.05 0.05 0.03 0.26 0.01 0.14 0.11 0.46 -0.03 0.01 0.00 0.04 -0.01 0.05 0.03 0.10 0.00 0.11 0.07 0.24
28 -0.11 -0.02 -0.05 0.10 -0.04 0.05 0.03 0.23 0.01 0.13 0.09 0.42 -0.02 0.01 0.00 0.04 -0.01 0.05 0.03 0.10 0.00 0.11 0.07 0.24
32 -0.10 -0.02 -0.04 0.06 -0.03 0.04 0.02 0.17 0.01 0.11 0.07 0.35 -0.02 0.00 0.00 0.03 0.00 0.03 0.02 0.08 0.00 0.08 0.05 0.23
36 -0.10 -0.02 -0.04 0.03 -0.03 0.03 0.01 0.11 0.00 0.08 0.06 0.29 -0.04 0.00 0.00 0.02 0.00 0.02 0.01 0.06 0.00 0.05 0.04 0.19

cumulative impact 
after 2 years -1.05 -0.75 -0.69 -0.49 -0.69 -0.44 -0.43 -0.21 -0.37 -0.15 -0.12 0.12 -0.99 -0.56 -0.46 -0.25 -0.71 -0.37 -0.31 -0.06 -0.49 -0.19 -0.13 0.26
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Table 3. Cumulative impulse response functions
Optimal Feedback Rule

Taylor Rule
EA

US
16th median 84th

US

EA
16th

Note: The table reports for each quantile of the IRF (median, 16th and 84th) the distribution across models of the cumulative response of unemployment between forecast steps. For instance, at step 4 the cumulative impact 
between step 2 and step 4 is repor

median 84th

16th median 84th16th median 84th



Real-Time Fully-Revised Real-Time Fully-Revised Real-Time Fully-Revised
Optimal feedback rule

Average 3.23 2.50 2.18 1.78 0.58 0.56
St. Dev. 2.02 2.34 0.70 1.20 0.08 0.14

Taylor Rule

Average 2.13 1.08 1.38 0.75 0.25 0.48
St. Dev. 0.71 0.88 0.49 0.61 0.30 0.31
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Table 4. Fully revised vs. real-time data: Long run policy parameters

Unemployment Inflation Interest rate

Note: values are the weighted averages across models, where weights are given by the RML of each model. Only models with three variables are 
considered.



Model number

Specification 
and order of the 
variables in the 
VAR

Codification: 
V=Variable; L=Lags; 
P=Prior

Model 1 3 Variables 3V_1L_1P Model 65 5 Variables 5V_1L_1P
Model 2 u,p,i 3V_2L_1P Model 66 u,pr,p,Cp,i 5V_2L_1P
Model 3 3V_3L_1P Model 67 5V_3L_1P
Model 4 3V_4L_1P Model 68 5V_4L_1P
Model 5 3V_1L_2P Model 69 5V_1L_2P
Model 6 3V_2L_2P Model 70 5V_2L_2P
Model 7 3V_3L_2P Model 71 5V_3L_2P
Model 8 3V_4L_2P Model 72 5V_4L_2P
Model 9 3V_1L_3P Model 73 5V_1L_3P
Model 10 3V_2L_3P Model 74 5V_2L_3P
Model 11 3V_3L_3P Model 75 5V_3L_3P
Model 12 3V_4L_3P Model 76 5V_4L_3P
Model 13 3V_1L_4P Model 77 5V_1L_4P
Model 14 3V_2L_4P Model 78 5V_2L_4P
Model 15 3V_3L_4P Model 79 5V_3L_4P
Model 16 3V_4L_4P Model 80 5V_4L_4P

Model 17 4 Variables 4V_1L_1P Model 81 5 Variables 5V_1L_1P
Model 18 u,pr,p,i 4V_2L_1P Model 82 u,pr,p,e,i 5V_2L_1P
Model 19 4V_3L_1P Model 83 5V_3L_1P
Model 20 4V_4L_1P Model 84 5V_4L_1P
Model 21 4V_1L_2P Model 85 5V_1L_2P
Model 22 4V_2L_2P Model 86 5V_2L_2P
Model 23 4V_3L_2P Model 87 5V_3L_2P
Model 24 4V_4L_2P Model 88 5V_4L_2P
Model 25 4V_1L_3P Model 89 5V_1L_3P
Model 26 4V_2L_3P Model 90 5V_2L_3P
Model 27 4V_3L_3P Model 91 5V_3L_3P
Model 28 4V_4L_3P Model 92 5V_4L_3P
Model 29 4V_1L_4P Model 93 5V_1L_4P
Model 30 4V_2L_4P Model 94 5V_2L_4P
Model 31 4V_3L_4P Model 95 5V_3L_4P
Model 32 4V_4L_4P Model 96 5V_4L_4P

Model 33 4 Variables 4V_1L_1P Model 97 5 Variables 5V_1L_1P
Model 34 u,Cp,p,i 4V_2L_1P Model 98 u,Cp,p,e,i 5V_2L_1P
Model 35 4V_3L_1P Model 99 5V_3L_1P
Model 36 4V_4L_1P Model 100 5V_4L_1P
Model 37 4V_1L_2P Model 101 5V_1L_2P
Model 38 4V_2L_2P Model 102 5V_2L_2P
Model 39 4V_3L_2P Model 103 5V_3L_2P
Model 40 4V_4L_2P Model 104 5V_4L_2P
Model 41 4V_1L_3P Model 105 5V_1L_3P
Model 42 4V_2L_3P Model 106 5V_2L_3P
Model 43 4V_3L_3P Model 107 5V_3L_3P
Model 44 4V_4L_3P Model 108 5V_4L_3P
Model 45 4V_1L_4P Model 109 5V_1L_4P
Model 46 4V_2L_4P Model 110 5V_2L_4P
Model 47 4V_3L_4P Model 111 5V_3L_4P
Model 48 4V_4L_4P Model 112 5V_4L_4P

Model 49 4 Variables 4V_1L_1P Model 113 6 Variables 6V_1L_1P
Model 50 u,e,p,i 4V_2L_1P Model 114 u,pr,p,Cp,e, i 6V_2L_1P
Model 51 4V_3L_1P Model 115 6V_3L_1P
Model 52 4V_4L_1P Model 116 6V_4L_1P
Model 53 4V_1L_2P Model 117 6V_1L_2P
Model 54 4V_2L_2P Model 118 6V_2L_2P
Model 55 4V_3L_2P Model 119 6V_3L_2P
Model 56 4V_4L_2P Model 120 6V_4L_2P
Model 57 4V_1L_3P Model 121 6V_1L_3P
Model 58 4V_2L_3P Model 122 6V_2L_3P
Model 59 4V_3L_3P Model 123 6V_3L_3P
Model 60 4V_4L_3P Model 124 6V_4L_3P
Model 61 4V_1L_4P Model 125 6V_1L_4P
Model 62 4V_2L_4P Model 126 6V_2L_4P
Model 63 4V_3L_4P Model 127 6V_3L_4P
Model 64 4V_4L_4P Model 128 6V_4L_4P
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Table A1. Mapping of the model numbers with the specifications according to number of 
variables, lags, and priors on inflation




