
The effects of birth inputs on birthweight:
evidence from quantile estimation on panel data

by Jason Abrevaya∗ and Christian M. Dahl†

ABSTRACT

Unobserved heterogeneity among childbearing women makes it difficult to isolate the causal effects
of smoking and prenatal care on birth outcomes (such as birthweight). Whether or not a mother
smokes, for instance, is likely to be correlated with unobserved characteristics of the mother. This
paper controls for such unobserved heterogeneity by using state-level panel data on maternally
linked births. A quantile-estimation approach, motivated by a correlated random-effects model, is
used in order to estimate the effects of smoking and other observables (number of prenatal-care
visits, years of education, etc.) on the entire birthweight distribution.
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1 Introduction

Adverse birth outcomes have been found to result in large economic costs, in the form of both

direct medical costs and long-term developmental consequences. It is not surprising, then, that the

public-health community has focused efforts on prenatal-care improvements (e.g., through smoking

cessation, alcohol-intake reduction, and/or better nutrition) that are thought to improve birth out-

comes. Birthweight has served as a leading indicator of infant health, with “low birthweight” (LBW)

infants classified as those weighing less than 2500 grams at birth. Observable measures of poor

prenatal care, such as smoking, have strong negative associations with birthweight. For instance,

according to a report by the Surgeon General, mothers who smoke during pregnancy have babies

that, on average, weigh 250 grams less (Centers for Disease Control and Prevention (2001)).

The direct medical costs of low birthweight are quite high. Based upon hospital-discharge

data from New York and New Jersey, Almond et. al. (2005) report that the hospital costs for

newborns peaks at around $150,000 (in 2000 dollars) for infants that weigh 800 grams; the costs

remain quite high for all “low birthweight” outcomes, with an average cost of around $15,000 for

infants that weigh 2000 grams. The infant-mortality rate also increases at lower birthweights.

Other research has examined the long-term effects of low birthweight on cognitive develop-

ment, educational outcomes, and labor-market outcomes. LBW babies have developmental prob-

lems in cognition, attention, and neuromotor functioning that persist until adolescence (Hack et.

al. (1995)). LBW babies are more likely to delay entry into kindergarten, repeat a grade in school,

and attend special-education classes (Corman (1995); Corman and Chaikind (1998)). LBW babies

are also more likely to have inferior labor-market outcomes, being more likely to be unemployed and

earn lower wages (Behrman and Rosenzweig (2004); Case et. al. (2005); Currie and Hyson (1999)).

Although it has received less attention in the economics literature, high-birthweight out-

comes can also represent adverse outcomes. For instance, babies weighing more than 4000 grams

(classified as high birthweight (HBW)) and especially those weighing more than 4500 grams (clas-

sified as very high birthweight (VHBW)) are more likely to require cesarean-section births, have

higher infant mortality rates, and develop health problems later in life.

A difficulty in evaluating initiatives aimed at improving birth outcomes is to accurately

estimate the causal effects of prenatal activities on these birth outcomes. Unobserved heterogeneity

among childbearing women makes it difficult to isolate causal effects of various determinants of

birth outcomes. Whether or not a mother smokes, for instance, is likely to be correlated with

unobserved characteristics of the mother. To deal with this difficulty, various studies have used

an instrumental-variable approach to estimate the effects of smoking (Evans and Ringel (1999);

Permutt and Hebel (1989)), prenatal care (Currie and Gruber (1996); Evans and Lien (2005);
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Joyce (1999)), and air pollution (Chay and Greenstone (2003a, 2003b)) on birth outcomes.

Another approach has been to utilize panel data (i.e., several births for each mother) to iden-

tify these effects from changes in prenatal behavior or maternal characteristics between pregnancies

(Abrevaya (2006); Currie and Moretti (2002); Rosenzweig and Wolpin (1991); Royer (2004)). One

concern with the panel-data identification strategy is the presence of “feedback effects,” specifically

that prenatal care and smoking in later pregnancies may be correlated with birth outcomes in ear-

lier pregnancies. Royer (2004) provides an explicit estimation strategy to deal with such feedback

effects (using data on at least three births per mother). Abrevaya (2006) shows that feedback

effects are likely to cause the estimated (negative) smoking effect to be too large in magnitude.

Since the costs associated with birthweight have been found to exist primarily at the low end

of the birthweight distribution (with costs increasing significantly at the very low end), most studies

have estimated the effects of birth inputs on the fraction of births below various thresholds (e.g.,

2500 grams for LBW and 1500 grams for “very low birthweight”). As an alternative, this paper

considers a quantile-regression approach to estimating the effects of birth inputs on birthweight,

so it is useful to compare the two approaches. The threshold-crossing approach fixes a common

unconditional threshold for the entire sample, whereas the quantile-regression approach focuses

upon particular conditional quantiles of the birthweight distribution. Denoting birthweight by bw

and a birth input vector by x, a probit-based threshold-crossing model for LBW outcomes would

be Pr(bw < 2500|x) = Φ(x′γ). For each x, there is a conditional probability of the LBW outcome

(bw below the common threshold) and estimates of γ can be used to infer the marginal effects of

the birth inputs upon these conditional probabilities. For the quantile approach, a simple (linear)

model for, say, the 5% conditional quantile would be Q5%(bw|x) = x′β. The value of the conditional

quantile Q5%(bw|x) may be below the LBW threshold of 2500 grams for some x values and above it

for other x values. The estimated marginal effects (inferred from the estimates of β) would indicate

how the 5% conditional quantile would be affected at all x values. These effects are not directly

comparable to the probit-based effects.

For the question of economic costs, both the probit approach and quantile approach have

drawbacks: (i) the probit approach is inherently discontinuous and offers only predictions of LBW

vs. non-LBW outcomes, and (ii) the quantile approach combines predictions from extremely ad-

verse x values (lower Q5%(bw|x)), where the costs are higher, and less adverse x values (higher

Q5%(bw|x)), where the costs are lower. For the question of what causes LBW outcomes, the simple

probit-based approach is certainly sufficient. The quantile approach, however, provides a convenient

method for determining how birth inputs affect birthweight at different parts of the distribution.

The closest analogy with the threshold-crossing approach would be to continuously alter the thresh-

old value and estimate a series of probit models. Given the different aspects of the birthweight
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distribution being modeled and estimated by the two approaches, our view is that these approaches

should be viewed as complements to each other rather than substitutes.

A recent literature on estimation of quantile treatment effects, including Abadie, Angrist,

and Imbens (2002) and Bitler, Gelbach, and Hoynes (2006), has argued that traditional estimation

of average (mean) treatment effects may miss important causal impacts. Specifically, an aver-

age treatment effect inherently combines the magnitudes of causal effects upon different parts of

the conditional distribution. It is quite possible, as in our birthweight application (and also in

wage-distribution applications), that societal costs and benefits are more pronounced at the lower

quantiles of the conditional distribution. As an example, if one estimated the average causal effect

of smoking to be a reduction in birthweight of 150 grams, it could be the case that the effect of

smoking on lower quantiles is substantially higher or lower than 150 grams. If a 200-gram effect

were estimated at lower quantiles and a 100-gram effect at higher quantiles, this would argue for

a stronger policy response than if the effects were instead stronger at the higher quantiles. Ulti-

mately, consideration of how effects vary over the quantiles is an empirical question and one which

we attempt to answer in the context of birthweight regressions in this paper.

Previous quantile-estimation approaches to estimating birth-outcome regressions have used

cross-sectional data and, therefore, have suffered from an inability to control for unobserved

heterogeneity. For instance, Abrevaya (2001) (see also Koenker and Hallock (2001) and Cher-

nozhukov (2005)) uses cross-sectional federal natality data and finds that various observables have

significantly stronger associations with birthweight at lower quantiles of the birthweight distribu-

tion; unfortunately, one can not interpret these “effects” as causal since the estimation has a purely

reduced-form structure that does not account for unobserved heterogeneity.

The outline of the paper is as follows. Section 2 details the quantile-estimation approach,

motivated by the “correlated random effects model” of Chamberlain (1982, 1984). We consider a

notion of marginal effects upon conditional quantiles in which we explicitly control for unobserved

heterogeneity by allowing the “mother random effect” to be related to observables. Section 3

describes the maternally-linked birth panel data for Washington and Arizona that are used in

this study. Section 4 reports the main empirical results of the paper. There are some interesting

differences between the panel-data and cross-sectional results. For example, the results from panel-

data estimation, which controls for unobserved heterogeneity, indicate that the negative effects of

smoking on birthweight are significantly lower (in magnitude) across all quantiles than indicated

by the cross-sectional estimates. Section 4.2 provides a general hypothesis testing framework.

Section 4.3 discusses issues related to endogeneity (e.g., feedback effects and measurement error) in

the panel-data context. Section 5 discusses the theoretical panel-data model in greater detail and

highlights directions for future research.
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2 Quantile estimation for two-birth panel data

Despite the widespread use of both panel-data methodology and quantile-regression methodology,

there has been little work at the intersection of the two methodologies. As discussed in this section,

the most likely explanation is the difficulty in extending differencing methods to quantiles. The

outline of this section is as follows. Section 2.1 briefly reviews the fixed effects and correlated

random effects models for conditional expectations. Building upon the correlated random effects

framework of Section 2.1, Section 2.2 extends the notion of marginal effects (and their estimation)

to conditional quantile models. Section 2.3 discusses previous related studies.

2.1 Review of conditional expectation models with panel data

Suppose that the data source contains information on exactly two births for a large sample of

mothers. A standard linear panel-data model for such a situation would be

ymb = x′
mbβ + cm + umb (b = 1, 2; m = 1, . . . ,M), (1)

where m indexes mothers, b indexes births, y denotes a birth outcome (e.g., birthweight), x denotes

a vector of observables, c denotes the (unobservable) “mother effect,” and u denotes a birth-specific

disturbance. To simplify notation, let xm ≡ (xm1, xm2) denote the covariate values from both births

of a given mother. From the basic model in (1), several different types of panel-data models arise

from the assumptions concerning the unobservable cm. In the “pure” random-effects version of (1),

cm is assumed to be uncorrelated with xm. This assumption is implausible in the context of our

empirical application, so attention is focused upon two models that allow for dependence between

cm and xm: (1) the fixed-effects model and (2) the correlated random-effects model.

Fixed-effects model: The fixed-effects model allows correlation between cm and xm in a com-

pletely unspecified manner. The “meaning” of the parameter vector β is given by

β =
∂E(ymb|xm, cm)

∂xmb
(2)

under the following assumption:

(A1) E(um1|xm, cm) = E(um2|xm, cm) = 0 ∀m. (3)

It is well known that, under (A1), β can be consistently estimated by a first-difference regression

(i.e., regressing ym2 − ym1 on xm2 − xm1). The reason that this strategy works for the conditional

expectation hinges critically upon the fact that an expectation is a linear operator, a property that

is not shared by conditional quantiles.
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Correlated random-effects model: The correlated random-effects model of Chamberlain (1982,

1984) views the unobservable cm as a linear projection onto the observables plus a disturbance:

cm = ψ + x′
m1λ1 + x′

m2λ2 + vm, (4)

where ψ is a scalar and vm is a disturbance that (by definition of linear projections) is uncorrelated

with xm1 and xm2. Combining equations (1) and (4) yields

ym1 = ψ + x′
m1(β + λ1) + x′

m2λ2 + vm + um1 (5)

ym2 = ψ + x′
m1λ1 + x′

m2(β + λ2) + vm + um2. (6)

The parameters (ψ, β, λ1, λ2) in (5) and (6) can be estimated by least-squares regression or other

methods (see, e.g., Wooldridge (2002, Section 11.3)). The vector xm1 affects ym1 through two

channels, (i) a direct effect (expressed by the x′
m1β term) and (ii) an indirect effect working through

the unobservable effect cm. In contrast, the vector xm1 affects ym2 only through the unobservable

effect cm. In fact, under the additional assumption

(A2) E(vm|xm) = 0, (7)

the “meaning” of β is given by the following equation

β =
∂E(ym1|xm)

∂xm1
− ∂E(ym2|xm)

∂xm1
=
∂E(ym2|xm)

∂xm2
− ∂E(ym1|xm)

∂xm2
. (8)

That is, β tells us how much xm1 affects E(ym1|xm) above and beyond the effect that works through

the unobservable cm.

2.2 Estimation of effects on conditional quantiles with panel data

For conditional quantiles, a simple differencing strategy is infeasible since quantiles are not linear

operators — that is, in general, Qτ (ym2 − ym1|xm) �= Qτ (ym2|xm) − Qτ (ym1|xm), where Qτ (·|·)
denotes the τ -th conditional quantile function for τ ∈ (0, 1). This inherent difficulty has been

recognized by others and is summarized nicely in a recent quantile-regression survey by Koenker

and Hallock (2000): “Quantiles of convolutions of random variables are rather intractable objects,

and preliminary differencing strategies familiar from Gaussian models have sometimes unanticipated

effects.” Without being more explicit about the relationship between cm and xm, it is difficult to

envision an appropriate strategy for dealing with conditional quantiles, although Koenker (2004)

has made some progress on this front.

To consider the relevant effects of the observables on the conditional quantiles Qτ (ymb|xm)

(rather than E(ymb|xm)), we consider the analogous effects to those given in equation (8). In
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particular, the effects of the observables on a given conditional quantile are given by

∂Qτ (ym1|xm)
∂xm1

− ∂Qτ (ym2|xm)
∂xm1

(9)

and
∂Qτ (ym2|xm)

∂xm2
− ∂Qτ (ym1|xm)

∂xm2
. (10)

For example, the difference in equation (9) is the effect of xm1 (first-birth observables) onQτ (ym1|xm)

above and beyond the effect on the τ -th conditional quantile that works through the unobservable.

To estimate the effects given in equations (9) and (10), a model for both Qτ (ym1|xm) and

Qτ (ym2|xm) is needed. Unfortunately, it is non-trivial to explicitly determine the conditional quan-

tile models. Consider, for example, the simple case in which the data-generating process is given

by equations (1) and (4) (which then imply equations (5) and (6)). If all of the error disturbances

(um1, um2, vm) were independent of xm, then the conditional quantile functions would take a simple

form (analogous to that of the conditional expectation function under assumption (A2)):

Qτ (ym1|xm) = ψ1
τ + x′

m1(β + λ1) + x′
m2λ2 (11)

Qτ (ym2|xm) = ψ2
τ + x′

m1λ1 + x′
m2(β + λ2). (12)

Under this independence assumption, the effect of the disturbances is reflected by a locational shift

in the conditional quantiles (ψ1
τ and ψ2

τ ); the slopes do not vary across the conditional quantiles.

Without the independence assumption, however, the simple linear form for the conditional quantile

functions (like those in equations (11) and (12)) only arises in very special cases. In general, the

conditional quantile functions involve more complicated non-linear expressions and, in fact, can not

be explicitly written down without a complete parametric specification of the error disturbances.

Therefore, the conditional quantiles are viewed as somewhat general functions of xm: say,

Qτ (ym1|xm) = f1
τ (xm) and Qτ (ym2|xm) = f2

τ (xm). To estimate the effects in (9) and (10), then,

reduced-form models for Qτ (ym1|xm) and Qτ (ym2|xm) are specified. These reduced-form models

should be viewed as approximating the “true” conditional quantile functions f1
τ (xm) and f2

τ (xm).

In this paper, a very simple form for the reduced-form models is considered, in which the conditional

quantiles are expressed as linear (and separable) functions of xm1 and xm2:

Qτ (ym1|xm) = φ1
τ + x′

m1θ
1
τ + x′

m2λ
2
τ (13)

Qτ (ym2|xm) = φ2
τ + x′

m1λ
1
τ + x′

m2θ
2
τ . (14)

A more general model, as well as the appropriateness of linearity and separability, is discussed

in greater detail in Section 5. Based upon (13) and (14), the effects of the observables on the

conditional quantiles (see (9) and (10)) are equal to θ1
τ − λ1

τ (for the first-birth outcome) and
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θ2
τ − λ2

τ (for the second-birth outcome). The parameters (φ1
τ , φ

2
τ , θ

1
τ , θ

2
τ , λ

1
τ , λ

2
τ ) can be consistently

estimated with linear quantile regression (Koenker and Bassett (1978)).

Although the linear approximation may at first appear to be restrictive, this strategy is the

one usually employed in cross-sectional quantile regression. In the cross-sectional case, even if the

data-generating process is linear in the covariates with a mean-zero error, the conditional quantiles

will only be linear in the covariates in very special cases (see, e.g., Koenker and Bassett (1982)).

Even in cross-sectional applications, then, the specification chosen by an empirical researcher (lin-

ear usually) should also be viewed as a reduced-form approximation to the true conditional quantile

function. In fact, empirical applications of quantile regression generally start (either explicitly or

implicitly) with a reduced-form approximating model of the conditional quantile function rather

than the data-generating process (see, e.g., Buchinsky (1994) and Bassett and Chen (2001)). An-

grist, Chernozhukov, and Fernandez-Val (2006) provide a framework for analyzing misspecification

of the conditional quantile function. Although beyond the scope of this paper, it would be inter-

esting to apply their methodology to the panel-data setting considered here.

The linear approximation approach is also an inherent feature of the correlated random-

effects approach for the conditional expectation model given by (1) and (4). As Chamberlain (1982)

originally pointed out, if assumption (A2) does not hold, the conditional expectation function is

non-linear; in this case, equations (5) and (6) represent linear approximations (projections) and β

represents the marginal effects of the covariates upon these linear approximations.

For the application in this paper, we impose the additional restriction that the effects on

the conditional quantiles are the same for both birth outcomes. This restriction is similar to the

implicit restriction embodied in the linear panel-data model (1), where β does not vary with b. For

the conditional quantiles, let βτ denote the (common) effect vector, so that the restriction is

βτ = θ1
τ − λ1

τ = θ2
τ − λ2

τ . (15)

Under this restriction, the conditional quantile functions in (13) and (14) can be re-written as

Qτ (ym1|xm) = φ1
τ + x′

m1(βτ + λ1
τ ) + x′

m2λ
2
τ = φ1

τ + x′
m1βτ + x′

m1λ
1
τ + x′

m2λ
2
τ (16)

Qτ (ym2|xm) = φ2
τ + x′

m1λ
1
τ + x′

m2(βτ + λ2
τ ) = φ2

τ + x′
m2βτ + x′

m1λ
1
τ + x′

m2λ
2
τ . (17)

The simplest estimation strategy, based upon the second equalities in both (16) and (17), is to run

a pooled linear quantile regression in which the observations corresponding to both births of a given

mother are stacked together as a pair. In particular, a quantile regression (using the estimator for
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the τ -th quantile) would be run using⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11
y12
· · ·
y21
y22
· · ·
...

· · ·
yM1
yM2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 x′
11 x′

11 x′
12

1 1 x′
12 x′

11 x′
12

· · · · · · · · · · · · · · ·
1 0 x′

21 x′
21 x′

22
1 1 x′

22 x′
21 x′

22
· · · · · · · · · · · · · · ·

...
· · · · · · · · · · · · · · ·
1 0 x′

M1 x′
M1 x′

M2
1 1 x′

M2 x′
M1 x′

M2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

as the left-hand-side and right-hand-side variables, respectively. This pooled regression directly

estimates (φ1
τ , φ

2
τ − φ1

τ , βτ , λ
1
τ , λ

2
τ ). The difference φ2

τ − φ1
τ represents the effect of birth parity.

Birth parity can not be included explicitly in x since the associated components of βτ , λ1
τ , and

λ2
τ would not be separately identified. In a traditional panel-data context, the difference φ2

τ − φ1
τ

would represent the “time effect.” Although the application considered here does not have any

birth-invariant explanatory variables (“time-invariant” variables), such variables could be easily

incorporated into (18) as additional columns in the RHS matrix; like birth parity, it would not

be possible to separately identify the direct effects of these variables on y from the indirect effects

(working through c) on y.

The only difficulty introduced by the pooled regression approach involves computation of

the estimator’s standard errors. Since there is dependence within a mother’s pair of births, the

standard asymptotic-variance formula (Koenker and Bassett (1978)) and the standard bootstrap

approach, which are both based upon independent observations, can not be applied. Instead, a

given bootstrap sample is created by repeatedly drawing (with replacement) a mother from the

sample of M mothers and including both births for that mother, where the draws continue until

the desired bootstrap sample size is reached. For a given bootstrap sample, the pooled quantile

estimator is computed. After repeating this process for many bootstrap samples, the original

estimator’s variance matrix can be estimated by the empirical variance matrix of the bootstrap

estimates. Similarly, bootstrap percentile intervals for the parameters can be easily constructed.

2.3 Review of related studies

In their recent survey of quantile regression, Koenker and Hallock (2000) cite only a single panel-

data application. The cited study by Chay (1995) uses quantile regression on longitudinal earnings

data to estimate the effect of the 1964 Civil Rights Act on the black-white earnings differential.

Chay (1995) allows the individual effect to depend on the racial indicator variable, which amounts

to a shift in the conditional quantile function and is a special case of the general approach described
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in Section 2.2. Interestingly, the application of Chay (1995) involves censored earnings data, so that

quantile regression methods for censored data (Powell (1984, 1986)) are needed. Such censored-

data quantile methods would also work with the general model of Section 2.2 but are not needed

for the application considered in this paper.

A more recent application of quantile regression on panel data is Arias et. al. (2001), who

estimate the returns to schooling using twins data. To deal with the unobserved “family effect,”

the authors include proxy variables (father’s education and sibling’s education) in the model. This

proxy-variable approach is related to the correlated random effects model in the sense that the latter

specification can be viewed as using the observables xm1 and xm2 as proxies for the unobserved

individual effect. One could also incorporate an external proxy (such as father’s education in the

Arias et. al. (2001) case) into the correlated random effects framework.

Another panel-data study that is directly related to our empirical application is Royer (2004),

who applies a correlated random effects model to maternally linked data from Texas. Royer (2004)

estimates the effects of various observables (with a focus upon maternal age) on “binary” birth

outcomes (such as premature birth or LBW birth). Fixed-effects estimation is also possible (in the

context of the linear probability model) whereas no such alternative is available in the conditional

quantile case. Royer (2004) also relaxes the strict exogeneity assumption (required for consistency

of the fixed-effects estimator) in several interesting ways. Unfortunately, identification of the least

restrictive models requires panel data with at least three births per mother. As a practical matter,

this requirement reduces the sample size to an extent that makes the estimated effects of observ-

ables rather imprecise and introduces a possible selection bias (see the discussion in Royer (2004,

pp. 39ff)). Analogous extensions to the conditional quantile models are left for future research.

3 Data

Detailed “natality data” are recorded for nearly every live birth in the United States. Information

on maternal characteristics (age, education, race, etc.), birth outcomes (birthweight, gestation,

etc.), and prenatal care (number of prenatal visits, smoking status, etc.) is collected by each state

(with federal guidelines on specific data-item requirements). Unfortunately, due to confidentiality

restrictions, comprehensive natality data with personal identifiers are not available at the federal

level, making it difficult to reliably construct maternally-linked panel data. However, individual

states may release such personal identifiers to researchers, subject to confidentiality agreements in

most cases. The data used in this study were obtained from two states, Washington and Arizona,

and are described in detail below:
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1. Washington data: The Washington State Longitudinal Birth Database (WSLBD) was pro-

vided by Washington’s Center for Health Statistics. The WSLBD is a panel dataset consisting

of all births between 1992 and 2002 that could be accurately linked together as belonging to

the same mother. (The original WSLBD has births dating back to 1980, but mother’s edu-

cation is not available as a data item until 1992.) The matching algorithm used to construct

the WSLBD used personal identifying information such as mother’s full maiden name and

mother’s date of birth. For two births to be linked together, (i) an exact match on mother’s

name, mother’s date of birth, mother’s race, and mother’s state of birth was required, and

(ii) consistency of birth parity and the reported interval-since-last-birth was required. Only

births that could be uniquely linked together were retained in the WSLBD.

2. Arizona data: The Arizona Department of Health Services provided the authors with data

on all births occurring in the state of Arizona between 1993 and 2002. Although names were

not provided, the exact dates of birth for both mother and father were provided in the data.

To maternally link births together, we followed as closely as possible the algorithm used for

the Washington data. For two births to be linked together, (i) an exact match on mother’s

date of birth, father’s date of birth, mother’s race, and mother’s state of birth was required,

and (ii) consistency of birth parity and the reported interval-since-last-birth was required. As

with the Washington data, only births that could be uniquely linked together were retained.

Since births could not be linked by maternal name, we decided to also require an exact match

on father’s date of birth in order to minimize the chance of false matches entering the sample.

(Roughly 3.5% of births that were linked on the basis of mother’s birthdate are dropped

when links are also based upon father’s birthdate.) This choice turns out to have very little

impact on the estimation results reported in Section 4. The decision to match upon father’s

birthdate restricts the Arizona sample to mothers whose children had the same birth father,

which is not a restriction of the Washington sample.

For this study, we consider only pairs of first and second births to white mothers. Birth

outcomes (and the effects of other variables upon birth outcomes) have been found to differ across

different races and at higher birth parities. The choice of subsample circumvents these issue by fo-

cusing upon a more homogeneous sample. The resulting estimates, of course, should be interpreted

as being applicable to the subpopulation represented by this sample choice.

Estimation was carried out separately for the Washington data and Arizona data. The

Washington data has several advantages over the Arizona data: (i) the matching of siblings for the

Washington data is of higher quality due to the use of mothers’ names, (ii) the Washington data is

not restricted to siblings with the same fathers, and (iii) the Washington data includes information
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on the month of first prenatal visit. For these reasons, most of the detailed analysis will be reported

for the Washington data. Results for Arizona will be discussed more briefly, but these results serve

as a useful comparison to the Washington results.

Table 1 provides descriptive statistics for the Washington and Arizona samples, broken down

by first-child and second-child births. Any mother with missing data items in either of her two births

(for the variables summarized in Table 1) was dropped from the sample. The resulting samples used

for estimation consist of 45,067 Washington mothers (90,134 births) and 56,201 Arizona mothers

(112,402 births). Sample averages are reported for all variables, as well as standard deviations for

the non-indicator variables. The “Smoke” (“Drink”) variable is equal to one if the mother reported

smoking (drinking alcohol) during pregnancy. Although alcohol consumption during pregnancy is

known to be severely under-reported, the “Drink” variable is included in the regressions as it may

be useful a proxy for other unobservables. For Washington, the four prenatal-care categories (“No

prenatal care,” “1st-trimester care,” “2nd-trimester care,” “3rd-trimester care”) were constructed

on the basis of the reported month of the first prenatal-care visit. Unfortunately, the month of first

prenatal-care visit is not reported in the Arizona data until 1997. As a result, only the number

of prenatal visits and an indicator variable for “no prenatal care” (equal to one if there are no

prenatal visits) are summarized in Table 1 and used in the empirical analysis of Section 4. The

other variables are self-explanatory.

The descriptive statistics in Table 1 indicate that average birthweight increases by 88 grams

at the second birth for both Washington mothers and Arizona mothers. For their second birth,

women are less likely to smoke and drink and more likely to be married, have a male child, and

have a first-trimester prenatal-care visit. Based on the summary statistics, the two samples of

mothers are quite similar. On average, Arizona mothers are slightly less educated and have higher

birthweight babies. The largest difference between the two samples appears to be the level of

smoking: Washington mothers report smoking in 13.7% of pregnancies (close to the national average

during this time period), whereas only 4.7% of Arizona mothers report smoking. These smoking

percentages are below the overall smoking percentages for pregnant women in these two states

during the periods of interest (8.9% in Arizona and 18.4% in Washington), indicating that the

matching algorithms result in subsamples that over-represent non-smokers. For instance, unmarried

Arizona mothers (for whom the smoking percentage is 12.7%) are far more likely to have father’s

date-of-birth missing from the data (45.9% of the time, as compared to 1.1% for married mothers)

and, therefore, not included in the matched sample. The reported rate of drinking during pregnancy

is also lower in Arizona than Washington; these reported percentages are also lower than the overall

percentages for pregnant women in the two states (2.7% in Washington, 1.4% in Arizona).

11



Table 1: Descriptive Statistics, Washington and Arizona Birth Panels

Variable Washington Arizona
1st Child 2nd Child 1st Child 2nd Child

Birthweight (in grams) 3442 (523) 3530 (536) 3339 (517) 3427 (505)
Male child 0.515 0.511 0.520 0.516
Mother’s age 25.27 (5.25) 27.89 (5.35) 25.23 (5.26) 27.85 (5.36)
Mother’s education 13.52 (2.32) 13.72 (2.21) 13.21 (2.68) 13.39 (2.61)
Married 0.751 0.853 0.780 0.886
No prenatal care 0.004 0.003 0.005 0.006
1st-trimester care 0.879 0.895 — —
2nd-trimester care 0.107 0.093 — —
3rd-trimester care 0.014 0.012 — —
Smoke 0.143 0.132 0.049 0.044
Drink 0.017 0.014 0.009 0.007
# prenatal visits 12.06 (3.53) 11.63 (3.25) 11.83 (3.59) 11.73 (3.55)
Quantiles of birthweight:

10% quantile 2807 2892 2750 2863
25% quantile 3146 3220 3061 3146
50% quantile 3458 3543 3373 3445
75% quantile 3770 3855 3685 3742
90% quantile 4060 4167 3968 4040

# of Observations 45,067 45,067 56,201 56,201
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Table 1 also provides the (unconditional) 10%/25%/50%/75%/90% quantiles for first and

second births in Washington and Arizona. These quantiles indicate fairly symmetric birthweight

distributions, with the median quite close to the mean, the 25% and 75% quantiles roughly equidis-

tant from the median, and the 10% and 90% quantiles roughly equidistant from the median. For

both states, there is a positive shift in the entire birthweight distribution from first to second births.

The shift is largest in magnitude at the 90% quantile (107 grams) for Washington births and at the

10% quantile (113 grams) for Arizona births. Finally, we note that the LBW cutoff of 2500 grams

corresponds to the 3–5% quantiles of the unconditional birthweight distributions, whereas the HBW

cutoff of 4000 grams corresponds to the 85–92% quantiles of the unconditional distributions.

4 Results

Regression results for the two maternally linked datasets are provided in Section 4.1, within the

strict-exogeneity framework introduced in Section 2. A straightforward approach to hypothesis

testing is provided in Section 4.2. Section 4.3 provides discussion related to possible violations of

strict exogeneity (e.g., feedback effects or mismeasured variables).

4.1 Regression results

In the interest of space, the full set of numerical results (tables) and a detailed discussion are

provided only for the Washington data (Section 4.1.1). The Arizona results are reported in a

graphical format comparable to the Washington results (Section 4.1.3), but the detailed tables have

been omitted and the discussion is limited to comparisons with the Washington results. (Complete

tables are available upon request from the authors.)

4.1.1 Washington data

The tables report estimates for the quantiles τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90} (along with least-

squares estimates for comparison), although the figures presented in this section consider marginal

effects at 2-percent intervals (specifically, τ ∈ {0.04, 0.06, . . . , 0.94, 0.96}). Throughout this section,

the dependent variable of interest is birthweight (measured in grams). In order to have a relevant

comparison for the panel-data results, cross-sectional results (without incorporating the correlated

random effects) are also reported. For the cross-sectional results, the panel structure of the data

is only used for computing standard errors. Since each mother appears twice in the data, the

pair-sampling bootstrap described at the end of Section 2.2 is used.

Tables 2 and 3 report the cross-sectional results and panel-data results, respectively. The

model specification includes the variables summarized in Table 1, along with an indicator variable

13



Table 2: Cross-Sectional Estimation Results, Washington Data. The dependent variable is birth-
weight (in grams).

Quantile regressions
10% 25% 50% 75% 90% OLS

Second child 100.65*** 92.87*** 93.86*** 99.99*** 110.37*** 98.95***
(7.24) (4.96) (4.40) (4.89) (6.84) (4.04)

Male child 87.22*** 115.87*** 128.34*** 142.70*** 160.83*** 124.34***
(6.25) (4.33) (3.85) (4.25) (5.65) (3.57)

Age 19.30*** 13.81*** 7.39** 7.92** 5.47 12.57***
(6.35) (4.02) (3.58) (3.93) (5.17) (3.41)

Age2 -0.385*** -0.258*** -0.131** -0.122* -0.070 -0.228***
(0.115) (0.070) (0.064) (0.070) (0.091) (0.061)

Education 31.02** 22.46** 30.23*** 28.81*** 23.87** 26.94***
(14.32) (8.80) (7.70) (6.71) (10.45) (7.16)

Education2 -0.744 -0.603* -0.927*** -0.987*** -0.793** -0.789***
(0.525) (0.324) (0.285) (0.250) (0.388) (0.264)

Married 36.58*** 27.52*** 26.74*** 22.41*** 16.20* 28.11***
(10.22) (7.61) (6.03) (6.91) (9.19) (6.23)

No prenatal care -324.75* -22.76 -36.05 15.54 176.44** -34.57
(177.34) (55.29) (41.13) (44.24) (74.27) (47.90)

2nd-trimester care 37.34*** 27.93*** 24.72*** 31.58*** 37.96*** 38.73***
(11.86) (8.41) (7.00) (8.27) (10.43) (6.48)

3rd-trimester care 106.60*** 59.36*** 37.26* 26.07 24.40 66.39***
(30.75) (20.43) (19.79) (18.81) (23.84) (15.96)

Smoke -186.05*** -182.29*** -178.57*** -176.05*** -160.02*** -177.97***
(11.40) (7.64) (6.23) (7.51) (9.92) (6.16)

Drink -21.80 -20.08 -7.27 -15.01 17.03 3.89
(28.14) (22.67) (16.10) (20.00) (26.55) (16.47)

# prenatal visits 19.33*** 16.52*** 15.11*** 14.82*** 13.92*** 18.46***
(1.35) (0.89) (0.76) (0.82) (1.10) (0.85)

Bootstrapped standard errors in parentheses, using bootstrap sample size of 20,000 (10,000 pairs)
and 1,000 bootstrap replications. Year dummies were included in all regressions.

‘*’: significant at 10% level (2-sided); ‘**’: 5% level; ‘***’: 1% level.

for the second child, quadratic variables for both mother’s age and education, and a full set of

year-of-birth dummy variables. For the prenatal-care variables, the omitted category corresponds

to first-trimester prenatal care, so the estimates for the other three prenatal-care variables (“No

prenatal care,” “2nd-trimester care,” and “3rd-trimester care”) should be interpreted as differences

from first-trimester prenatal care. The effect of prenatal care will therefore be captured by (i) the

trimester of the first prenatal visit (if any) and (ii) the number of prenatal visits (if any).

It should be pointed out that interpreting the effect of any prenatal-care variable is a bit

difficult since the observed prenatal care proxies for both intended prenatal care and pregnancy

problems. For instance, if two mothers have identical intentions (at the beginning of pregnancy)

with respect to prenatal-care visits, the mother that experiences problems early in her pregnancy

would be more likely to have an earlier first prenatal-care visit and to have more prenatal-care visits

overall. The estimated effects of the prenatal-care variables, therefore, may reflect the combined
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effects of intended care and pregnancy complications. This idea has been independently investigated

by Conway and Deb (2005), who (i) find that bimodal residuals result from a standard 2SLS

regression of birthweight and (ii) use a two-class mixture model to explicitly allow for a difference

between “normal” and “complicated” pregnancies. The estimates for the no-prenatal-care indicator

variable in both Tables 2 and 3, which are significantly negative at the 10% quantile and significantly

positive at the 90% quantile, illustrate this point. A possible explanation for the dramatic difference

at the two ends of the distribution is that lack of prenatal care is more likely to proxy for lack of

intended care at the lowest quantiles and more likely to proxy for a problem-free pregnancy at

the highest quantiles. Alternatively, the positive effect found at higher quantiles could still be

consistent with a lack of intended care since HBW outcomes have previously been associated with

poor prenatal care and disadvantage mothers. (Unfortunately, the leading indicators of HBW

outcomes are mother’s weight prior to pregnancy and weight gain during pregnancy. Neither of

these items is available in the datasets, forcing us to focus less on the effects of birth inputs on HBW

outcomes.) At the intermediate quantiles, the effect of the no-prenatal-care indicator is found to

be statistically insignificant in both the cross-sectional and panel results.

Overall, the cross-sectional results in Table 2 are very similar to those found in previous

studies using federal natality data (Abrevaya (2001); Koenker and Hallock (2001)). For the panel-

data results in Table 3, unobserved heterogeneity is modeled as in Section 2.2 (see equations (16)

and (17)). For the pooled quantile regressions, Table 3 reports the estimates of the marginal

effects βτ . The estimates of the parameters λ1
τ and λ2

τ are reported in the Appendix (Tables 5

and 6); these estimates measure the extent of the cross-sectional bias (through the relationship of the

unobserved heterogeneity with the observables). To provide a more complete view of the variables’

effects on birthweights and to allow an easy comparison with the cross-sectional estimates, Figures 1

and 2 plot the estimated effects from both the panel and cross section. For these figures, the

quantile regressions were estimated at 2% intervals, from the 4% quantile through the 96% quantile

(inclusively). The panel-data estimates are represented with a solid line, and the 90% confidence

intervals (bootstrap percentile intervals) for these estimates are represented with dotted lines. The

cross-sectional estimates, computed at the same quantiles, are represented with a dashed line. (To

avoid cluttering the figures, confidence intervals for the cross-sectional results (which can be inferred

from Table 2) are not reported.) Since both age and education have quadratic terms in the model

specification, the marginal-effect plots for age and education are based upon estimates evaluated

at specific values for the two variables (25 years old for age and 12 years for education level).
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Table 3: Panel Data Estimation Results (βτ ), Washington data. The dependent variable is birth-
weight (in grams).

Quantile regressions
10% 25% 50% 75% 90% OLS

Second child 137.46*** 113.17*** 109.76*** 113.56*** 125.63*** 122.32***
(11.75) (8.30) (7.03) (7.69) (11.38) (5.99)

Male child 100.67*** 131.64*** 146.69*** 160.12*** 173.35*** 138.75***
(7.76) (5.15) (4.40) (4.82) (6.64) (3.68)

Age -38.73*** -20.88*** -30.13*** -31.52*** -48.18*** -33.06***
(11.26) (7.00) (6.27) (6.61) (9.47) (5.31)

Age2 0.515*** 0.290** 0.467*** 0.529*** 0.845*** 0.483***
(0.197) (0.120) (0.109) (0.117) (0.161) (0.092)

Education 35.54* 17.26 27.22*** 17.96** 5.97 19.16**
(18.25) (11.91) (10.23) (8.46) (13.47) (7.62)

Education2 -1.436* -0.881* -1.029** -0.761** -0.594 -0.851**
(0.762) (0.503) (0.433) (0.388) (0.607) (0.334)

Married 39.71** 15.49 27.99*** 21.13* 11.41 27.87***
(17.26) (11.71) (9.21) (11.32) (16.05) (8.30)

No prenatal care -323.39* -13.77 1.66 26.03 271.21*** -18.08
(172.94) (60.05) (51.94) (54.87) (76.06) (49.01)

2nd-trimester care 26.80* 6.63 -0.20 22.95** 34.39** 22.19***
(14.48) (10.46) (8.72) (10.18) (13.52) (6.93)

3nd-trimester care 62.87* 71.79*** 31.75 30.50 39.22 55.73***
(34.96) (25.25) (22.67) (23.91) (32.04) (17.32)

Smoke -24.58 -60.64*** -81.43*** -57.70*** -56.19*** -56.86***
(19.47) (14.23) (11.45) (12.09) (17.58) (9.10)

Drink -44.24 -32.19 4.29 -1.57 9.25 2.11
(35.84) (25.36) (20.00) (24.77) (29.79) (17.11)

# prenatal visits 20.01*** 14.79*** 12.70*** 12.32*** 12.65*** 17.48***
(1.59) (1.10) (0.88) (1.01) (1.43) (0.93)

Bootstrapped standard errors in parentheses, using bootstrap sample size of 20,000 (10,000 pairs)
and 1000 bootstrap replications. Year dummies were included in all regressions.

‘*’: significant at 10% level (2-sided); ‘**’: 5% level; ‘***’: 1% level.
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The estimated effects of the various variables, as presented in Tables 2 and 3 and Figures 1

and 2, are discussed in more detailed below:

Second child: Birthweights are uniformly larger for second children at all quantiles, for both

the cross-sectional and panel estimates. The panel estimates of the second-child effect are

somewhat larger than the cross-sectional estimates, with the largest effects at the lowest

quantiles (e.g., 137 grams at the 10% quantile).

Male child: It is well-known that, on average, male babies weigh more at birth than female babies.

The quantile estimates indicate that the positive male-child effect on birthweight is present at

all quantiles of the conditional birthweight distribution. The magnitude of the effect increases

when one moves from lower quantiles to higher quantiles, with the panel estimates indicating

a slightly higher effect (10–20 grams) than the cross-sectional estimates.

Age and education: Figure 1 shows the estimated (one-year) effects of age and education, evaluated

at 25 years of age and 12 years of education, respectively. For age, both the cross-sectional and

panel estimates are very close to zero in magnitude (and statistically insignificant at a 5% level

for all quantiles). For education, the cross-sectional estimates are positive across the quantiles

and statistically significant (at a 5% level) except at quantiles above 80%. In contrast, the

panel estimates are statistically insignificant across all quantiles. This difference could be due

to two factors: (i) the amount of within-mother variation in education is quite small, with

the average change in education for the sample being about 0.2 years; and, (ii) the level of

education may be related to the mother-specific unobservable. For the latter factor, years of

schooling is likely positively related to cm, which would imply an upward bias in the cross-

sectional estimates that is consistent with Figure 1. The issue of education being potentially

mismeasured is briefly discussed in Section 4.3.2. Results for other age and education levels

are reported in Abrevaya and Dahl (2006).

Marital status: The estimated positive effects of marriage on birthweight are quite similar for the

cross-sectional and panel specifications, in the 20–50 gram range over the quantiles considered.

One should be cautious about interpreting the cross-sectional marriage estimates as causal

since marital status is an explanatory variable that a priore would appear to serve as a proxy

for mother-specific unobservables (i.e., marital status positively correlated with cm). The

panel estimates are slightly lower than the cross-sectional estimates in the lower quantiles

(until around the 40% quantile), suggesting that this might be a factor in the lower quantiles.

Somewhat surprisingly, however, the panel estimates of the marriage effect remain positive

throughout the range of quantiles and significantly so (at the 10% level) at nearly all the

quantiles below 80%. On the whole, the estimates are consistent with a situation in which
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marriage provides the birth mother with support (financial support, emotional support, etc.)

that would lead to a more favorable birth outcome.

Prenatal-care visits: Lack of prenatal care is found to have a significant negative effects at lower

quantiles and significant positive effects at the upper quantiles. The estimated effects are

similar for both the cross-sectional and panel regressions. As discussed above, a logical

explanation is that the “No prenatal care” indicator variable may proxy for poor care at lower

quantiles but for problem-free pregnancies at upper quantiles. For the third-trimester-care

indicator variable, the cross-sectional and panel estimates are also similar, indicating positive

effects (as compared to first-trimester care) which become less statistically significant at higher

quantiles. For the indicator variables, the largest difference between the cross-sectional and

panel results shows up in the second-trimester-care variable; the cross-sectional estimates are

statistically significant at all quantiles and range from 25 to 50 grams, whereas the panel

estimates are somewhat lower (close to zero in intermediate quantiles) and only significantly

positive at the highest quantiles. The effect of the number of prenatal visits is estimated to

be significantly positive across all quantiles, with larger effects found at lower quantiles and

the effects essentially “flattening out” (at around 14–15 grams per visit for the cross-sectional

results and 12–13 grams per visit for the panel results). The estimated effects for the panel

specification exhibit a sharper decline, leading to lower estimates (roughly a 2-gram per-visit

differential) than the cross-sectional specification. This variable shows up significantly in the

λ1
τ and λ2

τ estimates (see Tables 5 and 6), leading to the differences found and suggesting that

the variable is related to the mother-specific unobservable.

Smoking: The most dramatic differences between the cross-sectional and panel results are the

estimated effects of smoking. The cross-sectional results indicate that the negative effects

of smoking are in the range of 150–200 grams, with larger effects at lower quantiles. The

panel estimates are still significantly negative at all but the lowest quantiles, but the esti-

mated effects are much lower in magnitude (mostly in the 50–80 gram range between the 20%

and 80% quantiles). The omitted-variables explanation of this large difference would be that

the smoking indicator in the cross-sectional specification is negatively related with the error

disturbance in the birthweight regression equation. Consistent with this explanation, the

smoking coefficients in both λ1
τ and λ2

τ are found to be significantly negative across the quan-

tiles (Tables 5 and 6). The magnitudes of the panel estimates are also significantly lower than

those found in previous work, including quasi-experimental estimates based upon cigarette-

tax changes (e.g., Evans and Ringel (1999) and Lien and Evans (2005)) and experimental

estimates (e.g., Permutt and Hebel (1989)). These studies have estimated causal (IV) effects

of smoking on birthweight which are not statistically different from the OLS estimates; these
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estimates have relatively large standard errors (due to the sources of variation exploited) and,

in some cases, are even larger in magnitude than the OLS estimates. We believe that our

panel estimates are quite credible given the compelling nature of the omitted-variables expla-

nation in this context. We note, however, that our results do not directly contradict those

found by instrumental-variables methods. First, the IV estimates are quite imprecise (large

standard errors), so our estimates would also fall within reasonable confidence intervals for

these previous studies. Second, the panel estimates are identified from mothers who change

their smoking status for any reason whereas the IV estimates are identified from mothers

who change their smoking status in response to a specific treatment (e.g., prenatal counseling

or cigarette-tax increases); since these subpopulations are different, the underlying treatment

effects could themselves also be different. Finally, we point out that misclassification of smok-

ing status could explain part of the difference found here since the effect of misclassification is

more severe in the panel-data case (see, for example, Freeman (1984) and Jakubson (1986)).

This possibility is further discussed in Section 4.3.2.

Alcohol consumption: In contrast to the smoking results, the estimated effects of alcohol consump-

tion are quite similar for the cross-sectional and panel specifications. Drinking is estimated

to have significant negative effects at lower quantiles (below about the 20% quantile), with

the magnitudes of the effects ranging between about 40 and 80 grams. Of course, very few

mothers actually report alcohol consumption during pregnancy (only about 1.5% in our sam-

ple). The lack of strong statistical evidence regarding the effects of drinking could stem from

the low variation in the indicator variable and the probable large rates of misclassification.

4.1.2 “Overcontrolling” and interpretation of estimates

If one is interested in the “structural” estimates related to prenatal care and smoking, it is not

obvious which variables should be included in the regression specification. In particular, the esti-

mates presented above are identified from within-mother variation (rather than variation induced

by a specific policy), but we would like to be able to offer an interpretation of the estimates relevant

to potential policy impacts. What would be the effect of a policy that increased the likelihood of

a first-trimester prenatal visit? What would be the effect of a policy that reduced the likelihood

of prenatal smoking? Related to these two questions, there are potential concerns with the specifi-

cation used above, which includes variables for prenatal-care initiation, number of prenatal visits,

and smoking status. If earlier prenatal-care initiation (e.g., a first-trimester visit) has the “me-

chanical” effect of increasing the number of prenatal-care visits, inclusion of the number of visits

as a covariate effectively “overcontrols” for the effect of early prenatal-care initiation. Similarly, if

prenatal care affects birthweight only through its effect on smoking initiation, inclusion of smoking
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Figure 3: Results for initial-prenatal-visit variables under different specifications (Washington
data). The solid line corresponds to the full specification, the dotted line to the specification
in which “# of prenatal visits” is dropped, and the dashed line to the specification in which “# of
prenatal visits,” “Smoke,” and “Drink” are dropped. The omitted category is first-trimester care.

status as a covariate could also be an “overcontrolling” factor.

To empirically assess the possible importance of “overcontrolling,” we re-ran the Washington

regressions under two alternative specifications: (i) original specification with number of prenatal

visits dropped, and (ii) original specification with number of prenatal visits, smoking status, and

drinking status dropped. Figure 3 reports the estimates on the prenatal-care-initiation categorical

variables for these two specifications along with the original specification. Dropping the number of

prenatal visits from the specification has important consequences. For each of the three variables

(which are interpreted as differences from first-trimester care), there is a significant drop in the

coefficient estimates across the quantiles. The second-trimester estimate goes from being positive

(and statistically insignificant) at most quantiles to being negative and statistically significant (at

a 10% level) at all quantiles below 60%. The no-prenatal-care variable also becomes negative

and statistically significant (at a 10% level) at all quantiles below 60%. (Note the difference

in scale on the y axes for the three variables.) The third-trimester estimate goes from being

significantly positive at most quantiles to being negative, but statistically insignificant, at most

quantiles. Overall, if one views first-trimester prenatal care as mechanically increasing the number

of prenatal-care visits, the estimates from Figure 3 indicate that the structural effect of increasing

early prenatal-care initiation would be to increase birthweight at lower quantiles (with small effects
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of about 20 grams for transitions from second-trimester care to first-trimester care and much larger

effects for transitions from no prenatal care to first-trimester care). We also note that the estimates

on the other variables (those not shown in Figure 3) remain essentially unchanged when number

of visits is dropped from the specification.

When smoking status and drinking status are also dropped from the specification, there is

essentially no change in the prenatal-care-initiation estimates shown in Figure 3 (the comparison

between the dotted and dashed lines). This suggests that the inclusion of smoking status in the

original specification (and also in the one dropping number of visits) did not have an impact on

the estimated effect of the timing of prenatal-care initiation. Alternatively, in thinking of other

variables as possibly “overcontrolling” for smoking status, we tried several specifications in which

other covariates were dropped from specifications in which smoking status remained. For these

specifications, we found estimated smoking effects that were extremely similar to those reported in

Figure 1. These results make us more comfortable about interpreting the original smoking estimates

(Figure 1) as structural effects upon the conditional quantile distribution.

4.1.3 Arizona data

Figures 4 and 5 plot the estimated quantile effects (4% through 96% quantiles, inclusively) for the

Arizona maternally-linked sample. The same model specification discussed above was used, except

that indicator variables for second-trimester and third-trimester prenatal care were not included.

The figures are comparable to Figures 1 and 2 for the Washington data, with the age effect reported

at 25 years and the education effect at 12 years.

Overall, there is a remarkable similarity between the results for the two samples. The

common findings for the two samples include the following:

• There is a significant positive effect of the second child across all quantiles (50–125 grams in

the Arizona panel estimates).

• The positive birthweight effect of a male child increases from lower to higher quantiles.

• Despite a positive estimated cross-sectional effect of education at lower quantiles, the panel

estimates indicate no significant education effect.

• The effect of the number of prenatal visits is highest at lower quantiles, with the effect

flattening out at higher quantiles. For both Washington and Arizona, the cross-sectional

estimate of the effect is lower at lower quantiles and higher at higher quantiles.

• The magnitude of the negative smoking effect is significantly lower for the panel estimates

(ranging between 40 and 80 grams for Arizona) than for the cross-sectional estimates.
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Some differences between the results for the two samples are also worth noting:

• Although the cross-sectional estimates of the marriage effect are still significantly positive (p-

values lower than 0.10 throughout the range of quantiles), the panel-data estimates indicate

no statistically significant effect of marriage for Arizona mothers. The likely explanation

of this finding is that the father’s date of birth is required to match for both births of an

Arizona mother (see Section 3), meaning that the father is the same even if marital status

differs across the births. For the Washington sample, a change in marital status might also

be related to a change in father.

• Due to the lack of indicator variables for second-trimester and third-trimester care, the esti-

mated effects of the no-care indicator variable and the number of prenatal visits are slightly

different. The magnitude of the quantile effects for number of prenatal visits is roughly 50%

lower for the Arizona sample, although the shape of the quantile-effect curve is extremely

similar. The shape of the no-prenatal-care effect is also very similar to that of Washington,

but the estimated panel effects are not significantly different from zero at any of the quantiles.
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4.2 Hypothesis testing

In this section, we discuss the results of several hypothesis tests that were used in order to test the

model specification and/or the significance of differences across the estimates at different quantiles.

The minimum-distance (MD) framework of Buchinsky (1998) is used (and extended to the panel-

data case) to test various (linear) restrictions placed on the parameters in the estimated models.

4.2.1 Minimum-distance testing framework

Let p denote the number of different quantiles at which the model is estimated, with τ1, . . . , τp

denoting the quantiles. For a given quantile τ , individual elements of the parameter vectors β, λ1
τ ,

and λ2
τ (recall the model in (16) and (17)) are referenced by subscripts as follows:

βτ = (βτ1, ..., βτL)′ , λ1
τ =

(
λ1

τ1, . . . , λ
1
τK

)′
, λ2

τ =
(
λ2

τ1, . . . , λ
2
τK

)′
,

where K is the number of variables in xm1 and xm2. For generality, βτ has L ≥ K elements, to allow

for additional variables (e.g., time-invariant regressors) that may not appear in the λ estimates.

Then, for a given quantile τ , the full parameter vector is denoted

γτ ≡
(
φ1

τ , βτ0, β
′
τ , λ

1
τ
′
, λ2

τ
′)′
, (19)

where βτ0 ≡ φ2
τ − φ1

τ . The (stacked) parameter vector for all of the estimated quantiles is denoted

γ ≡ (γ′
τ1 , γ

′
τ2 , . . . , γ

′
τp

)′ (20)

and has dimension p(2K +L+ 2) × 1. Further, let γ̂ denote the estimator of γ, and define Â to be

the estimated variance-covariance matrix (obtained via the bootstrap) of γ̂.

In the MD framework, the “restricted” parameter estimator is defined as

γ̂R = arg min
γR∈Θ

(
γ̂ −RγR

)′
Â−1 (

γ̂ −RγR
)
, (21)

where R is a restriction matrix that will depend on the type of restrictions imposed. Since only

linear restrictions are considered, γ̂R can be written explicitly as

γ̂R =
(
R′Â−1R

)−1 (
R′Â−1γ̂

)
. (22)

The asymptotic variance of γ̂R is given by

var(γ̂R) =
(
R′Â−1R

)−1
. (23)

For the purposes of hypothesis testing, note that under the null hypothesis that the restrictions are

true (i.e., H0 : γ = RγR), the following MD test statistic has a limiting chi-square distribution:(
γ̂ −Rγ̂R

)′
Â−1 (

γ̂ −Rγ̂R
) d−→

H0
χ2

M , (24)
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where M is the number of restrictions (i.e., M = rows (R)−columns (R)). The Appendix provides

specific details on the appropriate choice of R and M for each of the tests described below.

4.2.2 Test results

Using the MD testing framework, the following hypothesis tests were conducted:

Test of correlated random effects: To determine whether a “pure” random effects specification

(in which cm is uncorrelated with xm) would be rejected for a given quantile τ , the null

hypothesis H0 : λ1
τ = λ2

τ = 0 is tested. For the quantiles τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}, the

null hypothesis is overwhelmingly rejected with p-values extremely close to zero.

Test of the equality of the “effect vector” across quantiles: This test considers whether there are any

statistically significant differences in the βτ estimates across two different quantiles. For the

panel specifications, we conducted this test for each pairwise combination of quantiles from

the set {0.10, 0.25, 0.50, 0.75, 0.90}. For Washington, the p-values (all below 2%) indicate

very significant differences across the quantiles. For Arizona, there are significant differences

between the lowest quantiles (10% and 25%) and other quantiles; however, the p-values for the

50%/90% and the 75%/90% comparisons do not indicate a statistically significant difference

in the βτ estimates.

Test of the equality of individual variables’ effects across quantiles: For a given variable (for

example, marital status), this test checks whether the estimated effects at different quantiles

are significantly different. The set of different quantiles considered is the same as that used

in Tables 2–3. For the marriage indicator, for instance, the null hypothesis would be H0 :

βmarried
τ=0.10 = βmarried

τ=0.25 = βmarried
τ=0.50 = βmarried

τ=0.75 = βmarried
τ=0.90 . Since both age and education enter

into the model specification in two terms (a linear term and a quadratic term), the appropriate

tests for these two variables are joint tests of equality. The test results (p-values) for all of

the variables, in both the cross-sectional and panel specifications, are reported in Table 4

for Washington and Arizona. The results are very much in line with the quantile-estimate

graphs in Figures 1–2 and Figures 4–5. Two variables (male-child indicator and number of

prenatal visits) vary significantly across the quantiles for both the cross-sectional and panel

specifications. The effect of the no-prenatal-care indicator also varies significantly (p-value

of 0.010 in the cross section and 0.004 in the panel) for the Washington sample. On the

other hand, there is no statistical evidence that the effects of marital status or drinking

vary over quantiles in either specification. The cross-sectional estimated effects of both age

and education vary significantly across quantiles, whereas the panel estimated effects do not.

For the smoking-indicator variable, the p-value for the Washington cross-sectional results is
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Table 4: Tests of Marginal-Effect Equality Across Quantiles. For each covariate, p-values based
upon cross-sectional and panel-data estimates are reported for the null hypothesis of equality of
marginal effects for the five quantiles 0.10, 0.25, 0.50, 0.75, and 0.90. Results are based upon 1,000
bootstrap replications.

Washington Arizona
Cross Panel Cross Panel

Section Data Section Data
Second child 0.135 0.113 0.000 0.049
Male child 0.000 0.000 0.000 0.000
Age, age2 jointly 0.006 0.088 0.000 0.944
Education, education2 jointly 0.014 0.336 0.002 0.927
Married 0.574 0.457 0.565 0.739
No prenatal care 0.010 0.004 0.442 0.874
2nd-trimester care 0.620 0.059 — —
3nd-trimester care 0.154 0.638 — —
Smoke 0.257 0.063 0.236 0.834
Drink 0.578 0.602 0.346 0.905
# prenatal visits 0.005 0.000 0.005 0.000

quite high (0.396), whereas the p-value (0.063) for the panel specification suggests a more

significant difference in the estimated effects across quantiles. Finally, it should be noted that

the choice of the quantile set {0.10, 0.25, 0.50, 0.75, 0.90} is admittedly arbitrary, following

what has become the convention for quantile regression.

4.3 Endogeneity Issues

In this section, we consider the sensitivity of the estimation results to possible sources of endogene-

ity. Note that the estimation method introduced in Section 2 (and discussed further in Section 5)

is based upon the assumption of strict exogeneity and, in general, will be inconsistent when this

assumption is violated. The two most important sources of endogeneity in the current application

are: (1) a “feedback effect” by which the first-birth outcome (birthweight) influences second-birth

explanatory variables (e.g., a low-birthweight first-birth outcome causing a mother to quit smoking

for the second birth) and (2) mismeasured explanatory variables.

4.3.1 Feedback or dynamic effects

The issue of feedback effects is discussed at length in Abrevaya (2006) in the context of a conditional-

expectation model, where instrumental-variables methods (using lagged birthweights as instru-

ments) can be utilized. Unfortunately, there is no obvious analogue to instrumental variables in
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the conditional-quantile context. Instead, to see if allowing for dynamic effects alters the panel-data

estimates in an important way, we consider an augmented model specification in which lagged birth-

weight is included as an explanatory variable. Specifically, since data on two births per mother are

available, ym1 (first-birth birthweight) is included as a right-hand-side variable for the second-birth

equation. (Considering matched panel data with three births per mother reduces the sample size

to an extent which makes all of the estimates imprecise.) Only a single coefficient for ym1 in the

second-birth equation can be estimated; there is no way to separately identify coefficients within

both βτ and λ2
τ .

Overall, the inclusion of lagged birthweight in the second-birth equation does not have a

large effect on the estimated effects of the other observable variables. Lagged birthweight is found

to be a significant predictor of second-birth birthweight, with coefficient estimates around 0.45 at

the lower quantiles and gradually decreasing to around 0.40 at the higher quantiles. Despite the

significant effects of lagged birthweight, the estimated effects of smoking do not change much. The

new estimates are mostly flat at around −75 grams, just slightly below the original panel estimates.

The interested reader is referred to Abrevaya and Dahl (2006) for more details.

Another source of endogeneity related to “feedback effects” is that the decision to have

a second child may itself be affected by the first-birth outcome. For instance, one might expect

mothers with a particularly adverse (good) first-birth outcome to be less (more) likely to have a

second child. This source of endogeneity is difficult to handle without more a more explicit model of

the second-birth selection/attrition process, and the present data do not provide obvious candidates

for convincing exclusion restrictions in such a model.

4.3.2 Measurement error

To examine the issue of measurement error, we focus on two explanatory variables: education and

smoking. Since the panel-data estimated effects of education are insignificant, it is worthwhile

to examine whether measurement error in education might be causing an attenuation bias in the

estimated effects. For smoking, the panel-data approach yields vastly different estimates (lower in

magnitude) than the cross-sectional approach. As discussed in Section 4.1.1, one possible cause of

these lower magnitudes is misclassification of smoking status (specifically, smokers being misclassi-

fied as non-smokers). Freeman (1984) and Jakubson (1986) have shown that the attenuation bias

from misclassification of an explanatory variable can be more severe in the panel-data case than

the cross-sectional case. Unfortunately, cross-validation data are not available for the education

and smoking variables.

For education, there are cross-sectional units for which the education variable must be

mismeasured due to inconsistencies in reporting from the first-birth data to the second-birth data.
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Using the Washington data, we dropped all observations having (i) more additional education than

possible given the change in age (ΔEducation > ΔAge + 1) or (ii) a drop in years of education

(ΔEducation < 0). There were 5,455 mothers (12% of the sample) with such inconsistencies in

reported education, with 346 mothers in group (i), 5,117 in group (ii), and 8 in both. Re-running

the panel-data regressions on the less error-ridden subsample yielded extremely similar results to

the original regressions, with the education effects remaining insignificant and the other estimated

effects being nearly identical. More details are provided in Abrevaya and Dahl (2006). Of course,

there may be other forms of reporting errors in education (see, for example, Kane, Rouse, and

Staiger (1999)), but cross-validation data would be required to examine these.

To gauge the sensitivity of the smoking-effect estimates to possible misclassification of smok-

ing status, we conducted simulations where we artificially introduced misclassification into the esti-

mation sample. In each simulation, we misclassified a fraction q (for q = 0.1 and q = 0.2) of observed

smokers as non-smokers and then compute the panel-data estimates (at τ ∈ {0.1, 0.2, . . . , 0.8, 0.9}.

(We assume no misclassification of non-smokers as smokers.) Abrevaya and Dahl (2006) report

details of the simulation results, which we briefly summarize here. As expected, the artificial mis-

classification induces an attenuation bias in the estimated smoking effect. The simulations suggest

biases on the order of 20–80% for the misclassification rates considered, biases which are far too

small to explain the difference between the cross-sectional and panel estimates. For 20% misclassi-

fication, the simulations suggest that misclassification bias accounts for nearly half of the difference

between the panel and cross-sectional estimates; however, at quantiles away from the median (es-

pecially so at the 10% quantile), the misclassification bias accounts for less of the difference from

the cross-sectional estimates. Finally, we note that the “model” of misclassification used to create

the artificial datasets is too simplistic since it does not allow for (i) a mother’s reporting errors to

be correlated over time or (ii) reporting errors to be correlated with other observables. The first

issue is considered by Abrevaya (2006), where it is shown that positive correlation in misreporting

(i.e., a mother who misreports during her first pregnancy is more likely to misreport during her

second pregnancy) reduces the extent of the misclassification bias. The second issue is considerably

more difficult to analyze without some type of cross-validation data.

5 Discussion of the theoretical model

In this section, we provide a more formal discussion of the panel-data framework introduced in Sec-

tion 2. In doing so, we highlight the pros and cons of the proposed approach and suggest directions

for future research. To be consistent with the standard panel-data notation, this section will use i

(rather than m) to denote cross-sectional units and t (rather than b) to denote time. The number of
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time periods T ≥ 2 for each cross-sectional unit is assumed to be fixed, whereas the number of cross-

sectional units n → ∞. The random variables {(xi1, . . . , xiT , ui1, . . . , uiT , ci)}n
i=1 are assumed to be

i.i.d. draws from their underlying distributions. The observed data are {(yi1, . . . , yiT , xi1, . . . , xiT )}n
i=1,

where each yit is generated according to the model

yit = x′
itβ + ci + uit. (25)

The relationship between ci and xi ≡ (xi1, . . . , xiT ) is described by

ci = φ(xi) + vi, where E(vi|xi) = 0. (26)

Equation (26) is not restrictive, in the sense that the conditional-mean “assumption” (E(vi|xi) = 0)

is merely a normalization that fixes location.

For any τ ∈ (0, 1), the conditional τ -th quantile of yit is

Qτ (yit|xi) = x′
itβ + φ(xi) +Qτ (vi + uit|xi). (27)

The assumptions related to the last term in (27), Qτ (vi + uit|xi), dictate how the marginal effects

of xit upon Qτ (yit|xi) can be identified. Consider the following two simplifying assumptions:

(B1) vi is independent of xi (28)

(B2) Qτ (uit|xi, vi) = Qτ (uit|xit). (29)

Assumption (B1) is commonly used in estimation of non-linear panel-data models with correlated

random effects. The data-generating process allows xi to affect the level of the yit variables (through

the φ(xi) function), but Assumption (B1) restricts the quantiles of the fixed effect to not depend

upon xi. Assumption (B2), which says that the quantiles of uit depend upon xi only through xit,

allows for arbitrary forms of xit-related heteroskedasticity. Note that Assumption (B2) also imposes

a form of strict exogeneity since the presence of feedback effects (relationships between past u’s

and future x’s) or lagged dependent variables would violate this assumption.

Taken together, Assumptions (B1) and (B2) imply that

Qτ (vi + uit|xi) = Qτ (vi + uit|xit) ≡ fτ,t(xit). (30)

The t subscript in fτ,t(xit) allows the relationship between the uit distribution and xit to change

with t. (If this relationship is assumed to be the same over time, the t subscript could be omitted,

leaving fτ (xit).) Plugging equation (30) into equation (27) yields

Qτ (yit|xi) = x′
itβ + fτ,t(xit) + φ(xi). (31)
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In general, both fτ,t and φ(xi) will be non-linear functions. Consider the following simple example,

which illustrates the inherent non-linearity of fτ,t:

Example: Linear-scale heteroskedasticity

The following distributional assumptions for ci and uit are made:

ci|xi ∼ N(ψ + x′
i1λ1 + · · · + x′

itλT , σ
2
c )

uit|ci, xi ∼ N(0, (x′
itγt)2)

These assumptions generalize the linear-scale model considered by Koenker and Bassett (1982) to

a panel-data setting and also impose normality. The variance of (ci + uit)|xi is σ2
c + (x′

itγt)2, which

implies fτ,t(xit) = zτ
√
σ2

c + (x′
itγt)2, where zτ denotes the τ -th quantile of the standard normal

distribution. In this example, linearity of fτ,t with respect to xit would only arise when σ2
c = 0.

In the context of the general model described above (with Assumptions (B1) and (B2)),

the estimation approach proposed in Section 2 uses linear approximations for the two components

(x′
itβ + fτ,t(xit) and φ(xi)) of the conditional quantile in equation (31). Specifically, generalizing

the notation used in Section 2 to T ≥ 2, x′
itβτ is used to approximate x′

itβ + fτ,t(xit), and ψt
τ +

x′
i1λ

1
τ +· · ·+x′

iTλ
T
τ is used to approximate φ(xi). The conditional-quantile function in equation (31)

is additively separable in the functions of xit and xi, with φ(xi) entering the conditional-quantile

function in the same way in each time period. This separability makes it possible to directly estimate

the marginal effects of interest (i.e., the effects of xit upon x′
itβ+fτ,t(xit)) by the proposed approach.

The most important topic for future research is to consider the situation in which Assump-

tion (B1) is violated. If the quantiles of vi depend upon xi, the conditional quantiles of yit will

not have the additive-separability property seen above. Instead, the conditional quantile function

would be a nonseparable function of xit and xi, say Qτ (yit|xi) = fτ,t(xit, xi). The effect of interest

is the derivative of fτ,t with respect to its first argument, where integration over the distribution

of xi could provide some type of average effect. A nonparametric approach to this problem, along

the lines of Altonji and Matzkin (2005), may be feasible. Alternatively, a linear-index approach (to

simplify how xit and/or xi enter into fτ,t) may prove useful. Another important topic for future

research is relaxation of strict exogeneity. Violations of strict exogeneity have been considered

extensively in the conditional-expecation panel-data models. For linear panel-data models, instru-

mental variables estimation is the usual solution to violations of the strict exogeneity assumption,

but such an approach is not likely to carry over to conditional-quantile models.
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Appendix A: Details on hypothesis testing

This section of the Appendix provides details on the hypothesis tests conducted in Section 4.2.2.

• (Test of correlated random effects) Test of H0 : λ1
τi = 0 ∧ λ2

τi = 0 simultaneously ∀i ∈
{1, . . . ,K} and ∀τ ∈ {τ1, τ2, . . . , τp}. Define

R′
p(L+1)×p(2K+L+2)

≡
[

Ip×p ⊗ [
1 O1×(2K+L+1)

]
Ip×p ⊗ [

O(L+1)×1 I(L+1)×(L+1) O(L+1)×2K

] ]
,

and use M = 2pK.

• (Test of the equality of the “effect vector”) Test of H0 : βτ1i = βτ2i = · · · = βτpi simultaneously

for ∀i ∈ {0, 1, 2, . . . , L}. Let ip be a (p, 1) vector of ones. To perform this test, define

R′ ≡
⎡
⎣ Ip×p ⊗ [

1 O1×((L+1)+2K)
]

Ip×p ⊗ [
O2K×(L+2) I2K×2K

]
i′p ⊗ [

O(L+1)×1 I(L+1)×(L+1) O(L+1)×2K

]
⎤
⎦

and use M = (p− 1)(L+ 1).

• (Test of the equality of individual variables’ effects (single parameter)) Test of H0 : βτ1i =

βτ2i = · · · = βτpi for a single i ∈ {0, 1, 2, . . . , L}. Let

E1 ≡ Ip×p ⊗ [
1 O1×((L+1)+2K)

]
,

E2 ≡ Ip×p ⊗ [
O2K×(L+2) I2K×2K

]
,

E3 ≡ i′p−1 ⊗ [
O(L+1)×1 Dii,(L+1)×(L+1) O(L+1)×2K

]
,
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and

E4 ≡
[

O(L+1)×1 I(L+1)×(L+1) O(L+1)×2K E3
O(p−1)L×1 O(p−1)L×(L+1) O(p−1)L×2K I(p−1)×(p−1) ⊗ S−i·

]
,

where

S ≡ [
O(L+1)×1 I(L+1)×(L+1) O(L+1)×2K

]
,

and S−i· is equal to S without the i’th row. Dii,(L+1)×(L+1) is a matrix of zeros except

for the entry (i, i) which equals unity. Then, the test of H0 can be performed by defining

R ≡ (E′
1, E

′
2, E

′
4)

′, with M = p− 1.

• (Test of the equality of individual variables’ effects (joint test of two parameters)) Test of

H0 : βτ1i = βτ2i = · · · = βτpi ∧βτ1j = βτ2j = · · · = βτpj for i, j ∈ {0, 1, 2, . . . , L} and i �= j. Let

E1 ≡ Ip×p ⊗ [
1 O1×((L+1)+2K)

]
,

E2 ≡ Ip×p ⊗ [
O2K×(L+2) I2K×2K

]
,

E3 ≡ i′p−1 ⊗ [
O(L+1)×1 D(ii,jj)(L+1)×(L+1) O(L+1)×2K

]
,

and

E4 ≡
[

O(L+1)×1 I(L+1)×(L+1) O(L+1)×2K E3
O(p−1)(L−1)×1 O(p−1)(L−1)×(L+1) O(p−1)(L−1)×2K I(p−1)×(p−1) ⊗ S−ij·

]
,

where

S ≡ [
O(L+1)×1 I(L+1)×(L+1) O(L+1)×2K

]
,

and S−ij· is equal to S without rows i and j. D(ii,jj)(L+1)×(L+1) is a matrix of zeros except

for the entries (i, i) and (j, j) which both equal unity. To test H0, define R ≡ (E′
1, E

′
2, E

′
4)

′

and use M = 2(p− 1).

Appendix B: Additional results

This section of the Appendix contains the Washington results for the estimates of λ1
τ and λ2

τ (for

τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}) in Tables 5 and 6, respectively.
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Table 5: Panel-Data Estimation Results for λ1
τ , Washington Data. The dependent variable is

birthweight (in grams). The coefficients represent the relationship between the covariates and the
first-birth component of the correlated random effect.

Quantile regressions
10% 25% 50% 75% 90% OLS

Male child -30.70*** -28.68*** -25.51*** -24.21*** -18.24** -23.95***
(7.66) (5.47) (4.88) (5.61) (7.30) (4.50)

Age -4.50 -15.19 -4.64 -1.27 6.72 -8.29
(14.77) (9.42) (8.98) (9.23) (12.06) (8.37)

Age2 0.222 0.341* 0.151 0.017 -0.153 0.224
(0.277) (0.180) (0.174) (0.180) (0.231) (0.160)

Education -13.98 11.77 8.73 14.02* 26.44** 11.72
(15.75) (11.43) (11.39) (8.51) (11.75) (8.58)

Education2 0.613 -0.290 -0.321 -0.464 -0.811 -0.360
(0.672) (0.467) (0.460) (0.380) (0.534) (0.363)

Married -7.62 4.09 -7.19 -3.28 -2.29 -6.32
(15.06) (9.89) (8.65) (10.02) (13.90) (8.27)

No prenatal care 103.15 97.91** 40.78 52.16 -71.85 34.70
(86.87) (46.97) (45.18) (47.98) (54.24) (39.72)

2nd-trimester care 23.91 25.88** 30.29*** 12.18 15.69 20.56**
(14.63) (10.54) (8.66) (9.91) (12.98) (8.43)

3nd-trimester care 69.72** 20.88 20.51 24.55 -0.73 31.31
(29.96) (23.28) (22.15) (25.24) (33.56) (19.93)

Smoke -101.93*** -61.35*** -52.67*** -74.32*** -69.53*** -70.28***
(16.34) (12.88) (10.23) (11.43) (14.73) (9.62)

Drink 0.07 -3.04 -26.93 -15.49 -16.20 -15.45
(30.75) (21.46) (21.41) (25.15) (28.79) (18.92)

# prenatal visits 6.26*** 7.18*** 6.88*** 6.99*** 6.50*** 5.58***
(1.47) (1.10) (0.86) (1.09) (1.29) (0.96)

Bootstrapped standard errors in parentheses, using bootstrap sample size of 20,000 (10,000 pairs)
and 1,000 bootstrap replications.

‘*’: significant at 10% level (2-sided); ‘**’: 5% level; ‘***’: 1% level.
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Table 6: Panel-Data Estimation Results for λ2
τ , Washington Data. The dependent variable is

birthweight (in grams). The coefficients represent the relationship between the covariates and the
second-birth component of the correlated random effect.

Quantile regressions
10% 25% 50% 75% 90% OLS

Male child 5.77 -2.60 -9.28* -9.04* -7.66 -5.66
(7.83) (5.48) (5.05) (5.48) (7.06) (4.53)

Age 78.18*** 57.53*** 54.65*** 51.34*** 61.12*** 65.83***
(14.10) (10.06) (9.25) (9.24) (12.79) (8.38)

Age2 -1.328*** -0.973*** -0.921*** -0.820*** -0.984*** -1.088***
(0.246) (0.177) (0.164) (0.166) (0.227) (0.149)

Education 0.04 -2.70 -10.04 1.40 2.31 1.80
(19.97) (12.80) (10.41) (9.49) (12.28) (9.23)

Education2 0.375 0.441 0.544 0.035 0.182 0.193
(0.782) (0.508) (0.429) (0.401) (0.534) (0.378)

Married 17.64 10.59 7.17 3.28 10.50 7.76
(14.46) (12.10) (9.12) (10.54) (14.46) (8.78)

No prenatal care -84.39 -101.96* -100.54* -81.13 -135.76 -66.57
(103.30) (53.07) (54.15) (58.07) (98.83) (55.43)

2nd-trimester care 3.87 12.69 14.43 2.53 -5.51 11.53
(14.09) (10.37) (9.56) (10.25) (13.06) (8.18)

3nd-trimester care 4.32 -39.33 7.65 -17.88 -30.06 -8.17
(38.55) (27.14) (25.40) (23.27) (31.01) (20.40)

Smoke -86.33*** -83.49*** -69.97*** -74.34*** -61.31*** -78.52***
(16.56) (12.97) (10.95) (10.51) (15.58) (9.30)

Drink 38.86 11.79 9.67 -11.79 31.91 23.65
(38.29) (28.74) (19.71) (23.26) (32.37) (20.25)

# prenatal visits -7.19*** -4.21*** -3.36*** -3.34*** -3.22** -4.64***
(1.56) (1.12) (0.85) (0.92) (1.33) (0.95)

Bootstrapped standard errors in parentheses, using bootstrap sample size of 20,000 (10,000 pairs)
and 1,000 bootstrap replications.

‘*’: significant at 10% level (2-sided); ‘**’: 5% level; ‘***’: 1% level.
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