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Overview

This project develops a Schumpeterian approach to

the analysis of the interactions of technology, pop-

ulation and exhaustible natural resources in shaping

the economy’s transition to a sustainable growth path

driven by endogenous technological change.



Motivation

I’m curious...



And, perhaps surprisingly, on the crucial issue of sus-

tainability the literature has not made much progress

since the classic papers by Solow and Stiglitz in 1974.



Brock and Taylor’s chapter in 2005 Handbook of Eco-

nomic Growth confirms this impression.

When they introduce natural resources in the standard

Solow model to discuss sustainability they cite just two

papers: Solow (1974) and Stiglitz (1974).

When they push harder for new results, like many oth-

ers, they only use Romer (1990). Hence, in trying to

bring to bear the power of modern theory of endoge-

nous technological change on crucial issues that are

at the forefront of the current debate, the literature

is 18 years behind the frontier.



Why?

I don’t have an answer...

However, understanding endogenous evolution of tech-

nology is crucial in making intelligent projections about

the future and in assessing the dynamic costs/benefits

of proposed interventions.



The Model

Final producers: Homogeneous good that be con-

sumed, used to produce intermediate goods, or in-

vested in R&D. (Basically, one-sector structure.)

Intermediate producers: Develop new goods and set

up operations to serve market (variety innovation or

entry) and, when already in operation, invest in R&D

internal to firm (quality innovation).

Households: Consume, save and, in extension that I

might not have time to discuss in detail, set optimal

path of population growth and/or resource exhaus-

tion.



Final producers

Technology:
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Intermediate producers

Technologies:

Ci = 1 ·Xi + φZ;

Żi = Ri.

Firm’s objective:

Vi (0) =
Z ∞
0

e−
R t
0 r(s)ds [Πi(t)−Ri (t)] dt,
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Πi = Xi (Pi − 1)− φZ.
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.



Households:

U (0) =
Z ∞
0

e−ρt log

Ã
C (t)

M (t)

!
dt, ρ > 0;

Ȧ = rA+ wM + pS − C.

Important:

M (t) =M0e
mt;

S (t) = S0e
−st.

Note:

i. flow utility depends only on consumption per capita;

ii. both population and natural resource stock follow

exponential processes.

s > 0 implies depletion; s = 0 implies that the natural

resource is non-exhaustible (e.g., Ricardian land).

In today’s presentation I set s = 0; I’m still working

on exhaustion...



Optimal plan:

L (t) =M (t) ;

O (t) = S0.

And:

r = ρ+
Ċ

C
.



General Equilibrium

Symmetry in final output production plus factor mar-

kets equilibrium yields:

Y = κZMγS
1−γ
0 , κ ≡ θ

2θ
1−θ .

Output per capita:

y ≡ Y

M
= κZ

µ
S0
M

¶1−γ
.

Accordingly,

g ≡ ẏ

y
= z − (1− γ) (m+ s) ,

where

z ≡ R

Z
=

Ż

Z
.

In words, output per capita growth is TFP growth

minus growth drag due to essential natural resource.

Of course, if γ = 1 drag disappears.



Define market growth factor

η ≡ γm− (1− γ) s > 0.

In words: growth of aggregate market for intermediate

goods. (Recall I focus on case s = 0.)

Note: η > 0 is wholly consistent with growth drag in

output per capita growth.

Intuition: population growth net of resource exhaus-

tion drives growth of aggregate market for interme-

diate goods and thus agents’ investment decisions in

variety and quality dimensions of technology. These

decisions support positive output per capita growth if

resulting TFP growth rate is larger than the growth

drag; this is nothing else than the famous Stiglitz

(1974) condition for sustainability, with the difference

that here TFP growth is endogenous and not neces-

sarily positive.



Next, observe that

r = α
X
³
1
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´
Z

= θ (1− θ)κ
MγS

1−γ
0

N
.

Define

x ≡ X (P − 1)
Z

= θ (1− θ)κ
MγS

1−γ
0

N
.

In words: key measure of firm size is quality-adjusted

gross cash flow. It drives incentives to innovation in

both the vertical and horizontal dimensions of tech-

nology.



Interesting results produced by this model stem from

corner solutions where one or both of the two R&D

activities shut down. Simplicity of structure allows us

to compute in closed form the dates when the econ-

omy turns on each one of the two innovation engines.



Equilibrium when entrants are active, Ṅ > 0.

Assets market equilibrium requires

A = NV = N · βX = βθ2Y.

Define c ≡ C
Y and rewrite household budget:

0 = ρ+
ċ

c
+
1− θ − c

βθ2
.

Thus, c jumps to

c∗ = βθ2ρ+ 1− θ.

We have Solow-like property that throughout transi-

tion consumption ratio is constant. This simplifies

dramatically analysis of dynamics.



Equilibrium when entrants are not active, Ṅ = 0.

Assets market equilibrium still requires A = NV but

it is no longer true that V = βX since by definition

free-entry condition does not hold.

However, arbitrage condition on return to equity still

holds. Use it to rewrite household budget:

0 = N
µ
1− θ

θ
X − φ−R

¶
+ (1− θ)Y − C.

Definitions of c and x, R&D technology plus fact that

NX = θ2Y , then yield

c = θ (1− θ)
µ
1− φ+ z

x

¶
+ 1− θ.

In words: In equilibrium with no entry, incumbents

earn rents that as a fraction of GDP are increasing

in our measure of firm size, x, and decreasing in the

R&D intensity of the firm, z = R
Z , if positive.



The steady state

Before embarking on a detailed characterization of dy-

namics, it is useful to look at the endpoint of the tran-

sition. Reveals restrictions needed to satisfy sustain-

ability condition. Such restrictions, of course, have

implications for the shape of the transition path.

In general, definition of c, saving schedule and reduced-

form production function yield:

r = ρ+
ċ

c
+ γm+ z.

Observe that if we are looking at a situation where

both quality and variety R&D take place — the former

to drive endogenous growth of output per capita, the

latter to sterilize the scale effect — then we have c =

c∗, so that ċ = 0, while x constant implies Ẋ
X = z.



Accordingly:

ρ+ γm =
1− θ

βθ

"
1− α

φ+ z

ρ+ γm+ z

#
,

which yields

z∗ =
αφ− (ρ+ γm)

h
1− βθ

1−θ (ρ+ γm)
i

1− α− βθ
1−θ (ρ+ γm)

,

which is positive if:

αφ > (ρ+ γm)
∙
1− βθ

1− θ
(ρ+ γm)

¸
;

1− α >
βθ

1− θ
(ρ+ γm) .



Moreover:

g∗ = z∗ − (1− γ)m.

Hence, sustainability condition:

αφ− (ρ+ γm)
h
1− βθ

1−θ (ρ+ γm)
i

1− α− βθ
1−θ (ρ+ γm)

> (1− γ)m.



Transition dynamics

As mentioned above, a key feature of this model is

that there are threshold values of firm size x below

which investment in either quality or variety, or both,

shuts down and the economy does not grow in per

capita terms. I have already discussed how equilibria

with entry differ from equilibria with no entry in terms

of the consumption-saving decisions of households. I

now work out in detail how these thresholds shape the

transition path.



Observe first that:

Ż > 0⇔ r > ρ+ γm+
ċ

c
;

Ż = 0⇔ r ≤ ρ+ γm+
ċ

c
.

When firms do undertake R&D

r = αx.

Hence, identify threshold of firms size, xZ. Rewrite

return to entry as

ẋ

x
=

⎧⎨⎩
1−θ
βθ

h
1− α− φ−ρ−γm

x

i
− ρ− γm x > xZ

1−θ
βθ

h
1− φ

x

i
− ρ− γm x ≤ xZ

.

The specific value of xZ depends on whether entrants

are active or not.



If Ṅ > 0, c = c∗ so that ċ = 0 and Ż > 0 for

x > ρ+γm
α ;

if Ṅ = 0, calculating the threshold is slightly more

complicated. The Appendix provides the details; the

end result is that Ż > 0 for

x > arg solve

(
αx = ρ+

(1 + θ)x

(1 + θ)x− φθ
γm

)
.



Intuition: The former is the threshold for quality R&D

given that the market already supports entry of new

firms; the latter is the threshold for quality R&D given

that the market does not yet support entry of new

firms.

In former case, firms undertaking quality R&D com-

pete for resources with entrepreneurs that are setting

up new firms and face a constant reservation inter-

est rate demanded by savers; in the latter they do not

compete for resources with entrepreneurs but, because

the free entry condition does not hold and they dis-

tribute to shareholders rents that grow with the size of

the market, they face a reservation interest rate that

reflects the associated growing consumption ratio.



Reasoning that led us to identify threshold xZ applies

to investment in entry as well. Definition of x allows

us to ẋ
x equation as

Ṅ

N
=

⎧⎨⎩
1−θ
βθ

h
1− α− φ−ρ−γm

x

i
− ρ x > xZ

1−θ
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h
1− φ

x

i
− ρ x ≤ xZ

.

This says that when x > xZ and firm do R&D, Ṅ > 0

for

x >
φ− ρ− γm

1− α− ρβθ
1−θ

and Ṅ = 0 otherwise.

Similarly, when x < xZ and firms do not do R&D,

Ṅ > 0 for

x >
φ

1− ρβθ
1−θ

and Ṅ = 0 otherwise.



We can then identify two cases. We plot the expres-

sions

1− θ

βθ

∙
1− φ

x

¸
− 1− θ

βθ

∙
α− ρ+ γm

x

¸
and

1− θ

βθ

∙
1− φ

x

¸
.

By construction these intersect exactly at x = xZ.

There is value m̄ such that the two curves evaluated

at their intersection point yield exactly ρ. This is value

of market growth factor such that the thresholds for

Ż = 0 and Ṅ = 0 are identical:

φ− ρ− γm̄

1− α− ρβθ
1−θ

=
φ

1− ρβθ
1−θ

=
ρ+ γm̄

α

⇒ m̄ ≡
⎛⎝ αφ

1− ρβθ
1−θ

− ρ

⎞⎠ 1
γ
.



Now, as m > m̄ the line describing the rate of entry

with positive R&D shifts up while the line describing

the rate of entry with no R&D stays still. We then

have a configuration whereby the threshold for Ż > 0

is smaller than the threshold for Ṅ > 0.

As m < m̄, instead, the line describing the rate of

entry with positive R&D shifts down and we have a

configuration whereby the threshold for Ż > 0 is larger

than the threshold for Ṅ > 0.

The most interesting consequence of this feature for

the economy’s dynamics is that the sequence in which

society turns on the two innovation engines deter-

mines the shape of the transition path.



The case of fast market growth, m > m̄

We have:

ẋ =

⎧⎪⎨⎪⎩
γmx x ≤ xN

ϕ1 − ϕ2x xN < x ≤ xZ
ϕ3 − ϕ4x x > xZ

,

where

ϕ1 ≡
φ (1− θ)

βθ
;

ϕ2 ≡
"
1− θ

βθ
− ρ− γm

#
;

ϕ3 ≡
(φ− ρ− γm) (1− θ)

βθ
;

ϕ4 ≡
"
(1− θ) (1− α)

βθ
− ρ− γm

#
;

xN ≡
φ

1− ρβθ
1−θ

< xZ ≡
ρ+ γm

α
.



Associated to this, we have:

g (t) =

⎧⎪⎨⎪⎩
− (1− γ)m x < xN
− (1− γ)m xN < x < xZ

αx (t)− ρ−m x > xZ

,

since z = r − ρ− γm for x > xZ > xN .



Denote:

ν ≡ (1− θ) (1− α)

βθ
− ρ− γm;

ν̄ ≡ 1− θ

βθ
− ρ− γm.

Also:

x∗ ≡ (φ− ρ− γm) (1− θ)

βθν
;

x̄∗ ≡ φ (1− θ)

βθν̄
.

These are, respectively, the convergence coefficients

and steady-state values of x in the region where Ż > 0

and in the region where Ż = 0.



We construct solution as follows.

Let

x0 =
M

γ
0S

1−γ
0

N0
< xN.

Integrate first line of ẋ equation between 0 and t to

obtain

x (t) = x0e
γmt.

Since x grows exponentially, there exists a date TN
such that

x (TN) = x0e
γmTN = xN,

which yields

TN =
1

γm
log

Ã
xN
x0

!
.

Thereafter, economy follows second line of ẋ equation.

Integrating between TN and t yields

x (t) = xNe
ν̄(TN−t) + x̄∗

³
1− eν̄(TN−t)

´
.



Assuming that x̄∗ > xZ, which must be true since

g∗ > 0, there exists a date TZ such that

x (TZ) = xNe
ν̄(TN−TZ) + x̄∗

³
1− eν̄(TN−TZ)

´
= xZ,

which yields

TZ = TN +
1

ν̄
log

Ã
x̄∗ − xN
x̄∗ − xZ

!
.

Thereafter economy follows third line of ẋ equation.

Integrating between TZ and t yields

x (t) = xZe
ν(TZ−t) + x∗

³
1− eν(TZ−t)

´
,

which converges to x∗ as t→∞.

Time-path of output per capita growth:

g (t) = − (1− γ)m

for 0 ≤ t < TN and TN < t < TZ;

g (t) = α
h
xZe

ν(TZ−t) + x∗
³
1− eν(TZ−t)

´i
− ρ−m

for t > TZ.
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Figure 1: The case of fast population growth 



As one can see, the economy starts out in a situ-

ation where there is no entry and firms earn rents.

These rents grow with the size of the market and

fuel consumption growth in excess of output growth.

Consequently, negative output per capita growth does

not necessarily imply falling consumption per capita,

C/M . In fact, it is straightforward to verify that for

z = 0, we have

Ċ

C
−m =

ċ

c
+
Ẏ

Y
−m =

ċ

c
− (1− γ)m ≷ 0

if
γm

1+θ
θ

x
φ − 1

≷ (1− γ)m.



The case of slow market growth, m < m̄

We have

ẋ =

⎧⎪⎨⎪⎩
γmx x ≤ xZ
γmx xZ < x ≤ xN

ϕ5 − ϕ6x x > xN

,

where:

ϕ5 ≡
(φ− ρ− γm) (1− θ)

βθ
;

ϕ6 ≡
"
(1− θ) (1− α)

βθ
− ρ− γm

#
;

xN ≡
φ− ρ− γm

1− α− ρβθ
1−θ

;

xZ ≡ arg solve
(
αx− γm

(1 + θ)x

(1 + θ)x− θφ
= ρ

)
.



Also:

g (t) =

⎧⎪⎨⎪⎩
− (1− γ)m x < xZ

αx (t)− ċ
c − ρ−m xZ < x < xN

αx (t)− ρ−m x > xN

.

Term ċ
c in second line complicates things a bit. It

picks up the role of consumption smoothing in driving

reservation interest rate of savers in a situation where

free entry does not yet apply and existing firm earn

growing rents.



Important: When firms turn on quality innovation en-

gine but free entry does not yet apply, we need to char-

acterize path of an endogenous growth model driven

by vertical innovation with a fixed number of products

and exponential population growth.

This is precisely explosive situation that has been long

considered problematic in first-generation models and

that prompted the development of the class of models

that exploits product variety expansion to sterilize the

scale effect.

Difference is that while we are working with a model

of that very class, we are not imposing that product

variety expansion be operational all the time so that

a finite period of faster than exponential growth is

possible.



Let x0 < xZ and integrate the first line of ẋ equation

between 0 and t to obtain

x (t) = x0e
γmt.

Then, there exists a date TZ such that

x (TZ) = x0e
γmTZ = xZ,

which yields

TZ =
1

γm
log

Ã
xZ
x0

!
.

After crossing this threshold economy keeps following

ẋ = γmx and thereforemust cross entry threshold xN
in finite time. Integrating between TZ and t yields

x (t) = xZe
γm(t−TZ).

There thus exists a date TN such that

x (TN) = xZe
γm(TN−TZ) = xN,

which yields

TN = TZ +
1

γm
log

Ã
xN
xZ

!
=

1

γm
log

Ã
xN
x0

!
.



Thereafter economy follows third line of ẋ equation.

Integrating between TZ and t, we have:

x (t) = xNe
ν(TN−t) + x∗

³
1− eν(TN−t)

´
,

which converges to x∗ as t→∞.

Time-path of output per capita growth:

g (t) = − (1− γ)m

for 0 ≤ t < TZ;

g (t) = z (t)− (1− γ)m

for TZ < t < TN ;

g (t) = α
h
xNe

ν(TN−t) + x∗
³
1− eν(TN−t)

´i
−ρ−m,

for t > TN .
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Figure 2: The case of slow population growth 



An important feature of this equilibrium path is that

society turns on the quality innovation engine of growth

before the free-entry condition applies. This means

that firms start undertaking R&D when they are still

earning escalating rents driven by aggregate market

growth due to population growth. As in the previous

case, these rents fuel consumption growth in excess

of output growth.



We now have:

Ċ

C
−m =

γm
1+θ
θ

x
φ − 1

− (1− γ)m,

for φ ≤ x ≤ xZ;

Ċ

C
−m =

γm
1+θ
θ

x
φ − 1

− (1− γ)m+ z

for xZ < x ≤ xN .



The most important difference with the previous case

is that for x > xZ we have z = αx− ρ− γm− ċ
c so

that the second line of this equation reduces to

αx− ρ−m.

It follows that consumption per capita growth hits its

minimum at x = xZ. It is then possible to choose

parameter values such that

αxZ − ρ−m > 0

and consequently have a growth path whereby con-

sumption per capita grows all the time despite the

fact that output per capita growth is initially nega-

tive.



Extension: Endogenous m

I modify preferences as follows:

U0 =
Z ∞
0

e−ρt
"
log

Ã
C (t)

M (t)

!
+ μ log (b (t)M (t))

#
dt,

where μ measures preference for children and replace

exogenous exponential process for population growth

with

Ṁ =M (b− δ) ,

where b is the fertility rate.

To keep things as simple as possible, I assume that

reproduction entails a cost of ψ units of time per child.

Therefore, flow budget constraint is

Ȧ = rA+ wM (1− ψb) + pO − C.



The first order conditions for control variables C, b

are:

1 = λAC;
μ

b
= λAwMψ − λMM .

Conditions for state variables A, M are:

r +
λ̇A
λA

= ρ;

μ− 1 + λAwM (1− ψb)

λMM
+

Ã
λ̇M
λM

+
Ṁ

M

!
= ρ.



The first order conditions for consumption C and fi-

nancial wealth A yield the usual Euler equation

r = ρ+
Ċ

C
.

Also, in equilibriumwL = wM (1− ψb) = γ (1− θ)Y

and pO = (1− γ) (1− θ)Y .

Then, if entrants are active, i.e., if Ṅ > 0, we have

A = βθ2Y . Hence, define c ≡ C
Y and rewrite budget

constraint as

0 = βθ2
µ
ρ+

ċ

c

¶
+ 1− θ − c,

which again says that the consumption ratio jumps to

c∗ = βθ2ρ+ 1− θ.



Eliminating λA and labor income wL reduces first or-

der condition for population M to

μ− 1 + γ(1−θ)
c∗

λMM
+

Ã
λ̇M
λM

+
Ṁ

M

!
= ρ.

This is an unstable differential equation in the control-

like variable λMM that, accordingly, jumps to

(λMM)∗ =
μ− 1 + γ(1−θ)

c∗

ρ
.

We can rewrite the condition for the fertility rate b as

μ

b
=

γ (1− θ)

c∗
ψ

1− ψb
− 1
ρ

"
μ− 1 + γ (1− θ)

c∗

#
,

which yields b∗ constant.

So, when entrants are active we replace constant, but

arbitrary, exogenous growth rate of populationm used

in the previous section with m∗ = b∗−δ, which is still

constant but no longer arbitrary since it is endogenous.



When entrants not active, i.e., Ṅ = 0, we have more

complicated story...

The gist is that there we can start economy at x = φ:

- profits are zero, there is no tech. progress, popula-

tion is stable;

- but there is incentive to reproduce (shadow value of

children is high).

Hence, households jump on path with δ < b (t) < b∗.

Important:

m (t) > 0⇒ ẋ (t) > γm (t)x (t) .

Also,

ḃ (t) > 0.

Hence, firm size grows at accelerating rate. Eventu-

ally, hits threshold xN . Thereafter we are in Ṅ > 0

case.



Generate path whereby g becomes negative as pop.

growth takes economy to region where tech. progress

drives g positive.

Additional twist. If ψ (z) for z > 0 with ψ0 < 0, then

can get



 

x&  

x Nx  Zx *x

mg,  

t NT  ZT

*g  

*m  

Figure 3: The general case  




