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Abstract

Model specification for state space is a difficult task as one has to decide which com-
ponents to include in the model and to specify whether these components are fixed or
time-varying. To this aim a new model space MCMC method is developed in this pa-
per. It is based on extending the Bayesian variable selection approach which is usually
applied to model selection for regression models to state space models. For non-Gaussian
state space models stochastic model search MCMC makes use of auxiliary mixture sam-
pling. We focus on structural time series models including seasonal components, trend or
intervention. The method is applied to various well-known time series.
Key words: auxiliary mixture sampling, Bayesian econometrics, noncentered param-
eterization, Markov chain Monte Carlo, variable selection

1 Introduction

State space models are widely used in time series analysis to deal with processes
which gradually change over time. Model specification, however, is a challenge
for these models as one has to specify which components to include and to decide
whether they are fixed or time-varying. For state space models, like for many other
complex models, this often leads to testing problems which are non-regular from the
view-point of classical statistics. Thus, a classical approach toward model selection
which is based on hypothesis testing such as a likelihood ratio test or information
criteria such as AIC or BIC cannot be easily applied, because it relies on asymptotic
arguments based on regularity conditions that are violated in this context.

Consider, for example, modeling a time series y = (y1, . . . , yT ) through the
dynamic linear trend model, defined for t = 1, . . . , T as:

yt = µt + εt, εt ∼ N (
0, σ2

ε

)
, (1)

where µt follows a random walk with a random drift starting from unknown initial
values µ0 and a0:

µt = µt−1 + at−1 + ω1t, ω1t ∼ N (0, θ1) , (2)

at = at−1 + ω2t, ω2t ∼ N (0, θ2) . (3)

A typical model specification problem for this model is to decide if the drift at is
really time-varying or if it is fixed. This could be handled by testing θ2 = 0 versus
θ2 > 0, however, this is a nonregular testing problem, because the null hypothesis
lies on the boundary of the parameter space. Another model specification problem
is selecting the components in this times series model. Is it necessary to include a
dynamic drift term at? Testing the null hypothesis a0 = a1 = · · · = aT = 0 versus
the alternative where at follows a random walk is, again, non-regular because the
size of the hypothesis increases with the number of observations.

The Bayesian approach is, in principle, able to deal with such non-regular testing
problems. Suppose that K different models M1, . . . ,MK are considered to be can-
didates for having generated the time series y. In a Bayesian setting each of these
models is assigned a prior probability p(Mk) and the goal is to derive the posterior
model probability p(Mk|y) for each model Mk, k = 1, . . . , K.
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There are basically two strategies to cope with the challenge associated with
computing the posterior model probabilities. The traditional approach dating back
to Jeffreys (1948) and Zellner (1971) determines the posterior model probabilities
of each model separately by using Bayes’ rule, p(Mk|y) ∝ p(y|Mk)p(Mk), where
p(y|Mk) is the marginal likelihood for model Mk. An explicit expression for the
marginal likelihood exists only for conjugate problems like linear regression mod-
els with normally distributed errors, whereas for more complex models numerical
techniques are required. For Gaussian state space models, marginal likelihoods have
been estimated using methods such as importance sampling (Frühwirth-Schnatter,
1995; Durbin and Koopman, 2000), Chib’s estimator (Chib, 1995), numerical inte-
gration (Shively and Kohn, 1997) and bridge sampling (Frühwirth-Schnatter, 2001).
Recently, Frühwirth-Schnatter and Wagner (2008) considered estimation of the
marginal likelihood for non-Gaussian state space models and demonstrated that
the resulting estimators can be pretty inaccurate.

The modern approach to Bayesian model selection is to apply model space
MCMC methods by sampling jointly model indicators and parameters, using e.g. the
reversible jump MCMC algorithm (Green, 1995) or the stochastic variable selection
approach (George and McCulloch, 1993, 1997). The stochastic variable selection
approach is commonly applied to model selection for regression models and aims at
identifying non-zero regression effects, but it is useful far beyond this problem and
allows parsimonious covariance modelling for longitudinal data (Smith and Kohn,
2002) and covariance selection in random effects models (Chen and Dunson, 2003;
Frühwirth-Schnatter and Tüchler, 2008).

In the present paper we show that the variable selection approach is also useful
for many model selection problems occurring in state space modelling. To perform
stochastic model specification search for the dynamic linear trend model defined in
(1) to (3), for instance, we introduce three binary stochastic indicators in such a
way that the unconstrained model corresponds to setting all indicators equal to 1.
Reduced model specifications result by setting certain indicators equal to 0. One of
those models, for instance, is the local level model, where the drift component at

completely disappears:

µt = µt−1 + ω1t, ω1t ∼ N (0, θ1) . (4)

Another interesting special case is the linear trend model, where

yt = µ0 + ta0 + εt, εt ∼ N (
0, σ2

ε

)
. (5)

We derive an MCMC method for Gaussian as well as non-Gaussian state space
models that performs stochastic model specification search in practice by sampling
the indicators simultaneously with the state process and the models parameters. For
non-Gaussian state space models applied to binary, multinomial or count data we
make use of auxiliary mixture sampling (Frühwirth-Schnatter and Wagner, 2006;
Frühwirth-Schnatter and Frühwirth, 2007) which is a simple MCMC method for
estimating a broad class of non-Gaussian models.

It is well-known that variable selection is sensitive to the choice of the prior, see
e.g. Fernández, Ley, and Steel (2001). Based on a noncentered parameterization of
the state space model, we define a new prior for the process variances of the state
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space model and show that it is far less influential than the usually applied inverted
Gamma prior.

Throughout the paper we focus on structural time series models including sea-
sonal components, trend and an intervention effect and apply the method to various
well-known time series.

2 The Dynamic Linear Trend Model

Our method is based on a noncentered parameterization of the dynamic linear trend
model which is discussed in the next subsection.

2.1 A Noncentered Parameterization

Define two independent random walk processes µ̃t and ãt with standard normal
independent increments as well as an integrated process Ãt:

µ̃t = µ̃t−1 + ω̃1t, ω̃1t ∼ N (0, 1) , (6)

ãt = ãt−1 + ω̃2t, ω̃2t ∼ N (0, 1) ,

Ãt = Ãt−1 + ãt−1, (7)

which all are assumed to start at zero: µ̃0 = ã0 = Ã0 = 0. Combine the state
equations (6) to (7) with following observation equation:

yt = µ0 + ta0 +
√

θ1µ̃t +
√

θ2Ãt + εt, εt ∼ N (
0, σ2

ε

)
, (8)

where µ0 and a0 are equal to the initial values for the level and the drift component
and θ1 and θ2 are equal to the variances in the dynamic linear trend model defined
in (1) to (3). The resulting state space model is a noncentered parameterization of
the dynamic linear trend model. To verify this define

at = a0 +
√

θ2ãt,

µt = µ0 + ta0 +
√

θ1µ̃t +
√

θ2Ãt.

Then

at − at−1 =
√

θ2(ãt − ãt−1) =
√

θ2ω̃2t = ω2t, ω2t ∼ N (0, θ2) ,

µt − µt−1 =
√

θ1(µ̃t − µ̃t−1) + a0 +
√

θ2(Ãt − Ãt−1)

=
√

θ1ω̃1t + a0 +
√

θ2ãt−1 = ω1t + at−1, ω1t ∼ N (0, θ1) ,

which corresponds to the state equations (2) and (3).
The noncentered parameterization of the dynamic linear model has a represen-

tation as a state space model with a state vector of dimension 3:

xt = Fxt−1 + wt, wt ∼ N (0,Q) , (9)

yt = Hxt + zf
t α + εt, εt ∼ N (

0, σ2
ε

)
, (10)
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where x0 = 03×1 and

xt =




µ̃t

ãt

Ãt


 , F =




1 0 0
0 1 0
0 1 1


 , Q =




1 0 0
0 1 0
0 0 0


 ,

H =
( √

θ1 0
√

θ2

)
, zf

t =
(

1 t
)
, α =

(
µ0 a0

)′
.

This state space form could be used to perform Kalman filtering and to compute
the integrated likelihood p(y|ϑ) for ϑ = (

√
θ1,
√

θ2, σ
2
ε , µ0, a0).

The noncentered parameterization of the dynamic linear model, however, is not
identified, because in the observation equation (8), the sign of

√
θ1 and the sequence

{µ̃t}T
1 may be changed by multiplying all elements with –1 without changing the

distribution of y1, . . . , yT . If we define a state vector x?
t = (−µ̃t, ãt, Ãt)

′ and a
parameter ϑ? = (−√θ1,

√
θ2, σ

2
ε , µ0, a0), then ϑ? and ϑ, although being different,

define the same integrated likelihood:

p(y|ϑ) =

∫
p(y|x1, . . . ,xT ,

√
θ1,

√
θ2, σ

2
ε , µ0, a0)p(x1, . . . ,xT )d(x1, . . . ,xT )

=

∫
p(y|x?

1, . . . ,x
?
T ,−

√
θ1,

√
θ2, σ

2
ε , µ0, a0)p(x?

1, . . . ,x
?
T )d(x?

1, . . . ,x
?
T ) = p(y|ϑ?).

Similarly, the sign of
√

θ2 and the sequences {ãt}T
1 and {Ãt}T

1 may be changed
without changing the distribution of y1, . . . , yT and ϑ? = (

√
θ1,−

√
θ2, σ

2
ε , µ0, a0)

and ϑ define the same integrated likelihood, p(y|ϑ) = p(y|ϑ?).
As a consequence, the likelihood function p(y|ϑ) is symmetric around 0 in the

direction of
√

θ1 and
√

θ2 and therefore multimodal. If the data are generated by a
dynamic linear trend model with parameters (θtr

1 , θtr
2 , ξtr), where ξtr = (σ2,tr

ε , µtr
0 , atr

0 ),
then with increasing number of observations T , the modes of the likelihood func-
tion will be close to (

√
θtr
1 ,

√
θtr
2 , ξtr), (−

√
θtr
1 ,

√
θtr
2 , ξtr), (

√
θtr
1 ,−

√
θtr
2 , ξtr), and

(−
√

θtr
1 ,−

√
θtr
2 , ξtr). If the true variances θtr

1 and θtr
2 are positive, then the likeli-

hood function concentrates around four modes. If one the true variances is equal
to 0 while the other is positive, two of those modes collapse and the likelihood is
bimodal with increasing T . If both variances θtr

1 and θtr
2 are equal to zero, then the

likelihood function becomes unimodal as T increases.
For illustration, Figure 1 shows contour and surface plots of the (scaled) likeli-

hood p(y|√θ1,
√

θ2, σ
2,tr
ε , µtr

0 , atr
0 ) for a time series of length T = 1000 simulated from

a dynamic linear trend model with µtr
0 = 0.3, atr

0 = −0.1 and σ2,tr
ε = 1 and four

different combinations of θtr
1 and θtr

2 . There are clearly four modes, if both process
variances are positive, two modes, if one of the variances is restricted to zero and a
single mode, if both variances are restricted to 0.

Thus by considering the non-centered parameterization and allowing for noniden-
tifiability we gain important information about the hypothesis whether the variances
of the state space model are zero.

2.2 The Parsimonious Dynamic Linear Trend Model

The noncentered parameterization of the dynamic linear model is very useful for
model selection both for the components and the dynamics. The observation equa-
tion (8) of the noncentered parameterization represents the level of the time series
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Figure 1: Contour and surface plots of the (scaled) profile likelihood
l(
√

θ1,
√

θ2)/ max(l(
√

θ1,
√

θ2)), where l(
√

θ1,
√

θ2) = p(y|√θ1,
√

θ2, σ
2,tr
ε , µtr

0 , atr
0 ) for

simulated data with (θtr
1 , θtr

2 ) = (0.152, 0.022) (first row), (θtr
1 , θtr

2 ) = (0.152, 0) (
second row), (θtr

1 , θtr
2 ) = (0, 0.022) (third row), and (θtr

1 , θtr
2 ) = (0, 0) (last row)
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yt as a superposition of the components at time t = 0 and the random processes
µ̃t and Ãt. Note that neither µ̃t nor Ãt degenerate to a static component. A static
component is obtained by setting the appropriate variance equal to 0. For instance,
if the variance θ1 is equal to 0, then

√
θ1 = 0 and µ̃t is not used to explain yt. Simi-

larly, if the variance θ2 is equal to 0, then
√

θ2 = 0 and Ãt is not used to explain yt.
This suggests to consider the choice of the variances θ1 and θ2 as a variable selection
problem in regression model (8).

To this aim we introduce two binary indicators γ1 and γ2, where
√

θi, and con-
sequently θi, is equal to 0, if γi = 0. If γi = 1, then

√
θi is an unconstrained

unknown parameter which is estimated from the data under a suitable prior. Evi-
dently, the indicators γ1 and γ2 decide if a certain component of the state vector is
fixed or changes over time. If both γ1 = 0 and γ2 = 0, then the model reduces to a
regression model with a linear trend, given by (5).

To include or delete the trend, an additional indicator δ is introduced which
decides, if the initial slope a0 is equal to 0 or not. If δ = 0, then a0 is equal to 0;
otherwise, if δ = 1, then a0 is an unknown parameter which is estimated from the
data under a suitable prior. This leads to following parsimonious dynamic linear
trend model:

µ̃t = µ̃t−1 + ω̃1t, ω̃1t ∼ N (0, 1) , (11)

ãt = ãt−1 + ω̃2t, ω̃2t ∼ N (0, 1) , (12)

Ãt = ãt−1 + Ãt−1, (13)

yt = µ0 + δta0 + γ1

√
θ1µ̃t + γ2

√
θ2Ãt + εt, εt ∼ N (

0, σ2
ε

)
. (14)

For a direct comparison with the usual dynamic linear trend model it is useful to
rewrite the parsimonious model in the centered parameterization. Define

at = δa0 +
√

θ2ãt, (15)

µt = µ0 + δta0 + γ1

√
θ1µ̃t + γ2

√
θ2Ãt. (16)

Then (11) to (14) may be rewritten as:

µt = µt−1 + δa0 + γ2(at−1 − δa0) + γ1ω1t, ω1t ∼ N (0, θ1) , (17)

at = at−1 + ω2t, ω2t ∼ N (0, θ2) , (18)

yt = µt + εt, εt ∼ N (
0, σ2

ε

)
. (19)

Evidently, (δ, γ1, γ2) = (1, 1, 1) corresponds to the unrestricted dynamic linear trend
model (2). The combination (δ, γ1, γ2) = (0, 1, 0) leads to the local level model
(4) which is also known as exponential smoothing, (δ, γ1, γ2) = (1, 1, 0) leads to
double exponential smoothing, and (δ, γ1, γ2) = (1, 0, 1) leads to a smooth trend as in
Hodrick-Prescot filtering. The combination (δ, γ1, γ2) = (1, 0, 0) leads to a regression
model with a deterministic linear trend, given by (5) and (δ, γ1, γ2) = (0, 0, 0) leads
to i.i.d. normal data, yt ∼ N (µ0, σ

2
ε).

The indicators δ, γ1 and γ2 have to be introduced carefully into the centered
parametrization. Consider the following alternative choice which appears more nat-
ural than (17) and (18), but leads to nonindentifiability:

µt = µt−1 + δat−1 + γ1ω1t, ω1t ∼ N (0, θ1) ,

at = at−1 + γ2ω2t, ω2t ∼ N (0, θ2) .
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After recursive substitution we get following representation of the model as a normal
linear mixed model:

yt = µ0 + δta0 + γ1

t∑
j=1

ω1j + δγ2

t−1∑
j=1

(t− j)ω2j + εt,

with fixed effects (µ0, a0) and random effects (ω1j, ω2j), j = 1 . . . , t. Only 6 models
among the 8 possible combinations of the indicators (δ, γ1, γ2) are identifiable, be-
cause γ2 is not identified, if δ = 0. In contrast to that, model (17) to (19) has the
representation

yt = µ0 + δta0 + γ1

t∑
j=1

ω1j + γ2

t−1∑
j=1

(t− j)ω2j + εt.

Evidently, all 8 combinations of the indicators (δ, γ1, γ2) are identifiable.
The noncentered parameterization of the parsimonious dynamic linear trend

model given by (11) to (14) has the following representation as a state space model:

xt = Fxt−1 + wt, wt ∼ N (0,Q) , (20)

yt = H(γ1, γ2)xt + zf
t (δ)α + εt, εt ∼ N (

0, σ2
ε

)
,

where xt, F, Q and α are the same as in (9), while H and zf
t depend on the model

indicators:

H(γ1, γ2) =
(

γ1

√
θ1 0 γ2

√
θ2

)
, zf

t (δ) =
(

1 δt
)
.

2.3 Prior Distributions

To perform Bayesian estimation one has to choose a prior distribution p(δ, γ1, γ2)
for all possible combinations of indicators. Subsequently, we assume a uniform
distribution over all 8 combinations of the indicators. A more flexible distribution
is discussed in Section 5.

As common for dynamic linear models, we assume that apriori µ0 and a0 are
independently normally distributed, µ0 ∼ N (y1, P0,11σ

2
ε) and a0 ∼ N (0, P0,22σ

2
ε).

Furthermore we assume an inverted Gamma prior G−1 (c0, C0) for the observation
variance σ2

ε .
In contrast to previous work, we do not use the usual inverted Gamma priors θ1 ∼

G−1 (d0,1, D0,1) and θ2 ∼ G−1 (d0,2, D0,2) which are the conditionally conjugate priors
in the centered version of the dynamic linear model. For reasons that will become
clear in Subsection 2.4 MCMC estimation is based on the noncentered version of the
dynamic linear trend model. As in this parameterization the parameters

√
θ1 and√

θ2 appear as regression coefficients in the regression model (14), the conditionally
conjugate priors are given by the normal priors

√
θ1 ∼ N (0, B0,1σ

2
ε) and

√
θ2 ∼

N (0, B0,2σ
2
ε). It be should noted that the two priors are equivalent only under

the limiting case of following improper priors: an inverted Gamma prior where
d0,i = −0.5 and D0,i = 0, i.e. p(θi) ∝

√
θi, and a normal prior where B−1

0,i = 0, i.e.

p(
√

θi) ∝ constant.
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Apart from being conditionally conjugate for the noncentered parameterization,
the normal prior turns out to be more suitable under model specification uncertainty
than the inverted Gamma prior. It is well-known, that the hyperparameters in the
inverted Gamma prior θi ∼ G−1 (d0,i, D0,i) strongly influence the posterior density
of θi, if the true value of θi is close to 0.

Consider, for example, a local level model,

µt = µt−1 + ω1t, ω1t ∼ N (0, θ1) ,

yt = µt + εt, εt ∼ N (
0, σ2

ε

)
, (21)

where θ1 is unknown and σ2
ε = 1 is assumed to be known. To compare the inverted

Gamma prior to the normal prior we consider the posterior density of the parameter
±√θ1 which is obtained from θ1 by multiplying the square root of θ1 with a random
sign. We added the ± sign to make it clear that the sign of this parameter is not
identified.

The posterior of ±√θ1 allows to explore the hypothesis that θ1 = 0. Due to the
symmetry of the likelihood discussed in Subsection 2.1, the posterior density of±√θ1

is symmetric around zero as long as the prior is also symmetric around 0. If the
unknown variance θtr

1 is significantly different from zero, then the posterior density
of ±√θ1 is likely to be bimodal with the modes being close to ±

√
θtr
1 . Otherwise,

if θtr
1 is close to or equal to zero, then the posterior density of ±√θ1 is likely be

centered around zero.
For illustration, we consider posterior inference for T = 100 observations simu-

lated from the local level model (21). In Figure 2 the posterior of ±√θ1 is plotted
under the G−1 (0.5, D0)-prior for θ1 and under the normal N (0, B0)-prior for ±√θ1

for two values of θtr
1 and various scale parameters D0 and B0. Whereas the posterior

is fairly robust to the choice of the variance B0 in the normal prior, it turns out to
be rather sensitive to the scale parameter D0 of the inverted Gamma prior.

Both posteriors are roughly the same for θtr
1 = 0.01 and clearly indicate that

θtr
1 > 0. A remarkable difference, however, occurs if θtr

1 = 0. Under the normal
prior, the posterior of ±√θ1 is centered at 0 strongly supporting the hypothesis
that θtr

1 = 0. The inverted Gamma density, however, shrinks the posterior of ±√θ1

away from 0, falsely indicating that θtr
1 > 0.

2.4 MCMC Estimation

An MCMC approach is implemented to sample jointly the indicators (δ,γ) =
(δ, γ1, γ2), the unrestricted elements of the parameter β = (µ0, a0,

√
θ1,
√

θ2), the
observation variance σ2

ε , and the latent state process x = (x1, . . . ,xT ), where xt is
the state vector defined in (9).

When sampling the indicators (δ, γ) it is essential to marginalize over the param-
eters for which variable selection is carried out, see George and McCulloch (1993,
1997) for a full account. To make this feasible, we use the non-centered param-
eterization of the dynamic linear trend model. Conditional on the state process
x = (x1, . . . ,xT ), the observation equation (14) defines a standard regression model

yt = zδ,γ
t βδ,γ + εt, εt ∼ N (

0, σ2
ε

)
. (22)
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Figure 2: Posterior density for ±√θ1 under different priors: top: G−1 (0.5, D0)-prior
for θ1; bottom: N (0, B0σ

2
ε) prior for ±√θ1; true values: σ2

ε = 1, θ1 = 0.01 (left);
θ1 = 0 (right);

If all indicators take the value one, then βδ,γ = β and zδ,γ
t = zt, where zt =

(1, t, µ̃t, Ãt). Otherwise the restricted parameter βδ,γ and the corresponding pre-
dictors zδ,γ

t contain only those elements of β and zt, respectively, for which the
corresponding indicator is equal to 1. Under the conjugate prior

βδ,γ ∼ N
(
aδ,γ

0 ,Aδ,γ
0 σ2

ε

)
, σ2

ε ∼ G−1 (c0, C0) , (23)

the posterior p(δ,γ|x,y) is obtained from Bayes’ theorem:

p(δ,γ|x,y) ∝ p(y|δ,γ,x)p(δ, γ), (24)

where p(y|δ, γ,x) is equal to the marginal likelihood of the regression model (22):

p(y|δ,γ,x) =
1

(2π)T/2

|Aδ,γ
T |1/2

|Aδ,γ
0 |1/2

Γ(cT )Cc0
0

Γ(c0)(C
δ,γ
T )cT

. (25)

Here Aδ,γ
T , cT and Cδ,γ

T denote the posterior moments of βδ,γ and σ2
ε given below in

(26) to (28). It should be noted that such a closed form expression for p(y|δ, γ,x) is
not available if any of the indicators γ1 and γ2 is equal to 1 and an inverted Gamma
prior is chosen for θ1 and θ2. The MCMC scheme reads:

(a) Sample the indicators (δ,γ) = (δ, γ1, γ2), the initial values µ0 and a0, all
variance parameters

√
θ1 and

√
θ2 and the observation variance σ2

ε jointly in
one block:

(a1) Sample the indicators from p(δ,γ|x,y) given in (24);

(a2) sample σ2
ε from G−1

(
cT , Cδ,γ

T

)
, and, conditional on σ2

ε , sample µ0, a0

(if unrestricted), and all unrestricted variance parameters
√

θ1 and
√

θ2

9



jointly from the normal posterior N
(
aδ,γ

T ,Aδ,γ
T σ2

ε

)
where

Aδ,γ
T =

(
(Zδ,γ)

′
Zδ,γ + (Aδ,γ

0 )−1
)−1

, (26)

aδ,γ
T = Aδ,γ

T

(
(Zδ,γ)

′
y + (Aδ,γ

0 )−1aδ,γ
0

)
,

cT = c0 + T/2, (27)

Cδ,γ
T = C0 +

1

2

(
y′y + (aδ,γ

0 )
′
(Aδ,γ

0 )−1aδ,γ
0 − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T

)
,(28)

and Zδ,γ is the regressor matrix with rows equal to zδ,γ
t ;

(a3) set all restricted initial values and all restricted variances equal to 0.

(b) Sample x = (x1, . . . ,xT ) from the state space form (20).

(c) Perform a random sign switch for
√

θ1 and {µ̃t}T
1 . Thus with probability 0.5

the draws of these parameters remain unchanged, while they are substituted
by −√θ1 and {−µ̃t}T

1 with the same probability. Perform another random
sign switch for

√
θ2, {ãt}T

1 and {Ãt}T
1 .

A few comments are in order. The dimension of the normal distribution appearing
in step (a2) depends on the number of unrestricted components and is equal to
1 + δ + γ1 + γ2.

In step (b), forward-filtering-backward-sampling (FFBS, Frühwirth-Schnatter
(1994); Carter and Kohn (1994); De Jong and Shephard (1995)) is used to sam-
ple x = (x1, . . . ,xT ). To speed up sampling, a reduced state space form is used if γ1

or γ2 is 0. If, for instance, γ1 = 0, then the observation equation is independent of
{µ̃t}T

1 . FFBS is applied to the reduced state vector xt = (ãt, Ãt)
′, while µ̃1, . . . , µ̃T

is sampled from (11). A similar method applies, if γ2 = 0, with reduced state vector
xt = µ̃t. If both indicators γ1 and γ2 are equal to 0, then no FFBS is needed, as
sampling of x from the prior is straightforward.

Sampling of the state process in step (b) is based on the noncentered parameter-
ization. The unknown components at and µt in the centered parameterization are
easily reconstructed from the MCMC draws using (15) and (16).

We found it useful to start from an unrestricted model and to run the first say
1000 draws of burn-in without variable selection. This allows to generate sensible
starting values for the state process and the parameters of the unrestricted model
before variable selection actually sets in.

3 Extension to the Basic Structural Model

3.1 The Parsimonious Basic Structural Model

In the basic structural model, a seasonal component is added to the dynamic linear
trend model discussed in Section 2, see e.g. Harvey (1989):

st = −st−1 − · · · − st−S+1 + ω3t, ω3t ∼ N (0, θ3) , (29)

yt = µt + st + εt, εt ∼ N (
0, σ2

ε

)
, (30)

10



where µt is the same as in (2) and (3) and S is the number of seasons. The initial
seasonal pattern is given by s0 = (s−S+1, . . . , s0) with s−S+1 + . . . + s0 = 0. In
addition to the model specification problems discussed in Section 2, a decision has
to made if a seasonal pattern is present and if this pattern is fixed or dynamic. To
this aim, two additional binary stochastic indicators δ3 and γ3 are introduced. δ3

decides, if the initial seasonal pattern is equal to 0, whereas γ3 controls if it changes
over time. As before, the indicators are introduced into the noncentered version of
the model.

Combine the following stochastic difference equation:

s̃t = −s̃t−1 − · · · − s̃t−S+1 + ω̃3t, ω̃3t ∼ N (0, 1) , (31)

where s̃−S+1 = . . . = s̃0 = 0 with the state equations (6) to (7) and following
observation equation:

yt = µt + δ3s0,q(t) + γ3

√
θ3s̃t + εt, εt ∼ N (

0, σ2
ε

)
, (32)

where θ3 is equal to the variance of the error term in (29), µt is the same as in (16)
and s0,q(t) with q(t) = 1 + (t− 1) mod S is the seasonal component corresponding
to time t. The resulting state space model is a noncentered parameterization of the
basic structural model.

If γ3 = 0, we define θ3 = 0 and the resulting seasonal pattern is fixed. If δ3 = 0,
we set the initial seasonal pattern to zero, s0 = 0. If both indicators are equal to 0,
then no seasonal pattern is present in the time series and the model reduces to the
dynamic linear trend model studied in Section 2.

The non-centered parameterization (32) could be written as

yt = µ0 + δta0 + δ3s0,q(t) + γ1

t∑
j=1

ω1j + γ2

t−1∑
j=1

(t− j)ω2j + γ3

t∑
j=1

ω3j + εt,

with fixed effects µ0, a0 and s0,q(t) and random effects ω1j, ω2j and ω3j. Evidently,
all 25 = 32 combinations of indicators are identifiable.

As before, the noncentered model is not identified, as the sign of
√

θ3 and the
sequence {s̃t}T

1 may be changed without changing the likelihood function. As a con-
sequence, the likelihood function p(y|ϑ) where ϑ = (

√
θ1,
√

θ2,
√

θ3, µ0, a0, s0, σ
2
ε) is

symmetric around 0 in the direction of
√

θi, i = 1, 2, 3. With an increasing number
of observations T , the modes of the likelihood function will be close to all combina-
tions of (±

√
θtr
1 ,±

√
θtr
2 ,±

√
θtr
3 , ξtr), where ξtr = (µtr

0 , atr
0 , str

0 , σ2,tr
ε ). Thus with an

increasing number of observations, the likelihood function has eight modes as long
as in the data generating process the true variances θtr

1 , θtr
2 and θtr

3 are positive. If
one of the true variances is equal to 0 while the others are positive, half of those
modes are identical leaving four modes. If two of the true variances are equal to 0
while the other is positive, only two modes are different leaving a bimodal likelihood
with an increasing number of observations T . If all variances are equal to zero, then
the likelihood function will be unimodal with an increasing number of observations
T .

It is easy to verify that in the centered parameterization the parsimonious model
is equivalent to combining (2) and (3) with state equation (29) and following obser-
vation equation:

yt = µt + δ3s0,q(t) + γ3(st − δ3s0,q(t)) + εt, εt ∼ N (
0, σ2

ε

)
. (33)

11



3.2 MCMC Sampling Scheme

An MCMC approach is implemented to sample the indicators δ and γ, the model
parameters β = (µ0, a0, s0,

√
θ1,
√

θ2,
√

θ3), the observation variance σ2
ε , and the

latent state process x = (x1, . . . ,xT ), where xt is following state vector:

xt =
(

µ̃t ãt Ãt s̃t . . . s̃t−S+2

)′
.

The MCMC sampling scheme introduced in Subsection 2.4 is easily modified to deal
with a basic structural model. Conditional on the state process x = (x1, . . . ,xT ),
the observation equation (32) of the non-centered parameterization of the basic
structural model is a standard regression model as in (22) with appropriate regressors
zδ,γ

t . Under the same conditionally conjugate prior for βδ,γ and σ2
ε as in (23),

the marginal likelihood p(y|δ,γ,x) and all posterior moments are then computed
exactly as in Subsection 2.4. This leads to following MCMC scheme:

(a) Sample the indicators (δ, γ), the observation variance σ2
ε and the initial values

µ0, a0, and s0 and all variance parameters
√

θ1,
√

θ2 and
√

θ3 jointly in one
block as in Subsection 2.4.

(b) Sample x = (x1, . . . ,xT ) from the state space form corresponding to (32).

(c) Perform two random sign switches as in step (c) in Subsection 2.4. Perform a
third random sign switch for

√
θ3 and {s̃t}T

1 .

As in Subsection 2.4, FFBS is applied to a reduced state vector, if any of the
indicators γi = 0 is equal to 0, while the remaining components are sampled from
the prior.

3.3 Prior Specification

To run the MCMC schemes, prior distributions have to be defined. As before,
we assume a uniform prior distribution over all possible indicators δ = (δ, δ3) and
γ = (γ1, γ2, γ3).

For the observation variance σ2
ε we choose a hierarchical prior where σ2

ε ∼
G−1 (c0, C0) and C0 ∼ G (g0, G0) with c0 = 2.5, g0 = 5 and G0 = g0/(0.75Var(y)(c0−
1)). For this hierarchical prior it is necessary to add an additional sampling step
were C0 is sampled conditional on σ2

ε from the conditional Gamma posterior C0|σ2
ε ∼

G (g0 + c0, G0 + 1/σ2
ε) at each sweep of the sampler.

Prior (23) assumes normality not only for the initial values µ0, a0, and s0, but
also for all remaining parameters. For the same reasons as in Subsection 2.3, we
do not use inverted Gamma priors for the variances θ1, . . . , θ3 as usual in the basic
structural model, but assume that the parameters ±√θ1,±

√
θ2 and ±√θ3 follow a

normal prior.
In our case studies, we found the following prior choices useful for variable se-

lection. First, we use a partially proper prior which combines the improper prior

p(µ0) ∝ 1 for µ0 with a proper prior N
(
0,Bδ,γ

0 σ2
ε

)
on the remaining unrestricted

12



elements of βδ,γ , where Bδ,γ
0 = B0I. This prior corresponds to choosing aδ,γ

0 = 0
and

(
Aδ,γ

0

)−1

=

(
0

(Bδ,γ
0 )−1

)
. (34)

Under this prior, the sampling scheme described above has to be changed slightly,
because the marginal likelihood p(y|δ, γ,x) and the posterior parameter cT read:

p(y|δ, γ,x) =
1

(2π)T/2

|Aδ,γ
T |1/2

|Bδ,γ
0 |1/2

Γ(cT )Cc0
0

Γ(c0)(C
δ,γ
T )cT

,

cT = c0 + (T − 1)/2.

Another prior commonly used in model selection is the fractional prior (O’Hagan,
1995). In the present context, this is a conditional fractional prior for regression
model (22) which depends on the state vector x and is defined as

p(βδ,γ |σ2
ε) ∝ p(y|βδ,γ , σ2

ε)
b =

(
1

2πσ2
ε

)Tb/2

exp

(
− b

2σ2
ε

(y − Zδ,γβδ,γ)′(y − Zδ,γβδ,γ)

)
.

The fractional prior can be interpreted as posterior of a non-informative prior and
a fraction b of the data y. It reads

βδ,γ |σ2
ε ∼ N

(
aδ,γ

T ,Aδ,γ
T σ2

ε/b
)

,

where aδ,γ
T and Aδ,γ

T are the posterior moments under a non-informative prior:

Aδ,γ
T =

(
(Zδ,γ)

′
Zδ,γ

)−1

, aδ,γ
T = Aδ,γ

T (Zδ,γ)
′
y. (35)

In the MCMC sampling scheme all posterior moments as well as the marginal like-
lihood p(y|δ, γ,x) have to be modified according to:

cT = c0 +
(1− b)

2
T, Cδ,γ

T = C0 +
(1− b)

2
(y′y − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T ),

p(y|δ,γ,x) =
bq/2Γ(cT )Cc0

0

(2π)T (1−b)/2Γ(c0)(C
δ,γ
T )cT

,

where q is the dimension of βδ,γ , while aδ,γ
T and Aδ,γ

T are the same as in (35).

3.4 UK coal consumption data

We reconsider the series of UK coal consumption, analyzed in Harvey (1989), Frühwirth-
Schnatter (1994) and Frühwirth-Schnatter (1995), among others. Data are quarterly
from 1/1960 to 4/1982, see Figure 3, panel (a). We model the series on the log scale
by a basic structural model.
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Figure 3: UK coal consumption; (a) observations 1/1960 to 4/1982 (log scale),
posterior means and point-wise 95% credible regions of (b) the level µt, (c) the drift
at and (d) the seasonal component st in the last three years under the centered
parameterization

3.4.1 Comparing the Centered and the Non-centered Parameterization

For illustration, we compare the centered parameterization with priors θi ∼ G−1 (−0.5, 10−7)
with the noncentered parameterization where ±√θi ∼ N (0, 1) for the unrestricted
basic structural model without variable selection. The remaining priors are µ0 ∼
N (0, 100σ2

ε) and σ2
ε ∼ G−1 (0, 0). Gibbs sampling was run for 40000 iterations after

a burn-in of 10000.
Estimated state components are plotted for the centered parameterization in

Figure 3. The posterior densities of the transformed process variances ±√θi, i =
1, . . . , 3 are plotted in Figure 4. Under the centered parameterization, MCMC draws
for ±√θi are obtained by multiplying the square root of the MCMC draws θ

(m)
i with

a random sign. Evidently, the posterior density of any parameter ±√θi has to be
symmetric around zero. If the unknown variance θi is systematically different from
zero, then the posterior density of ±√θi is likely to be bimodal; otherwise, if θi

is close to zero, the posterior density of ±√θi will be centered around zero. This
should allow to explore the hypothesis that θi = 0.

For the noncentered parameterization, the posterior densities of ±√θ1 and ±√θ3

are unimodal and centered at 0, while the posterior of ±√θ2 is bimodal. This in-
dicates that θ1 and θ3 are equal to 0, while θ2 > 0. This finding is confirmed by
stochastic model selection search in Subsection 3.4.2. Under the inverted Gamma
prior, all posterior densities are bimodal and ±√θi is bounded away from 0, provid-
ing spurious evidence for an unrestricted model.

A further difference between the centered and the non-centered parameterization
lies in the mixing properties of the corresponding MCMC draws. If some variances
are equal to or close to 0, the corresponding MCMC draws mix badly under the
centered parameterizaton, while mixing is perfect under the noncentered parame-
terizaton, see Figure 5.
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Figure 4: UK coal consumption; posterior densities of ±√θ1 (left), ±√θ2 (middle)
and ±√θ3 (right) estimated from the MCMC draws under different priors; top:
N (0, 1) prior for ±√θi; bottom: G−1 (−0.5, 10−7)-prior for θi
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Figure 5: UK coal consumption; MCMC draws for ±√θ1 (left), ±√θ2 (middle)
and ±√θ3 (right) under different parameterizations; top: noncentered parameter-
ization with a N (0, 1)-prior for ±√θi; bottom: centered parameterization with a
G−1 (−0.5, 10−7) prior for θi
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Table 1: Coal data; the three most frequently visited models (among 40000 MCMC
iterations) for various prior distributions

prior δ δ3 γ1 γ2 γ3 frequency
p(µ0) ∝ 1, B0 = 1 0 1 0 1 0 20331

1 1 1 0 0 7032
0 1 1 0 0 6453

p(µ0) ∝ 1, B0 = 100 0 1 0 1 0 26454
0 1 1 0 0 11870
1 1 1 0 0 818

b = 10−3 0 1 0 1 0 25647
0 1 1 1 0 4173
1 1 0 1 0 3994

b = 10−4 0 1 0 1 0 34364
1 1 0 1 0 1799
0 1 1 1 0 1675

b = 10−5 0 1 0 1 0 37012
1 1 0 1 0 1150
0 1 1 1 0 680

Table 2: Coal data; marginal posterior probability of selecting each indicator under
various priors

Prior δ δ3 γ1 γ2 γ3

p(µ0) ∝ 1, B0 = 1 0.2375 1.0000 0.4131 0.6192 0.0597
p(µ0) ∝ 1, B0 = 100 0.0315 1.0000 0.3246 0.6728 0.0051

b = 10−3 0.1845 1.0000 0.2048 0.9295 0.0698
b = 10−4 0.0647 1.0000 0.0765 0.9694 0.0214
b = 10−5 0.0347 1.0000 0.0386 0.9792 0.0078

3.4.2 Stochastic Model Specification Search

Stochastic model specification search was carried out using partially proper priors
with different prior variances B0 and using fractional priors with different fractions
b, see Subsection 3.3. MCMC sampling was carried out for M = 40000 draws after
a burn-in of 10000 draws. The first 1000 draws of the burn-in were drawn from the
unrestricted model, model selection began after these first 1000 draws.

Results of the variable selection procedure are summarized in Table 1 and 2. The
most frequently visited model in Table 1 is robust against the prior choice, only the
frequency with which this model is selected varies. The same model results for all
priors, if in Table 2 an indicator is estimated to be 1, if the corresponding marginal
posterior probability is greater or equal to 0.5.

As expected from panel (a) and (d) in Figure 3, a seasonal pattern is present in
the selected model (δ3 = 1), but it is fixed and does not change over time (γ3 = 0).
The drift at is stochastic (γ2 = 1), but the initial value a0 is selected to be 0 (δ = 0).
This is plausible from panel (c) in Figure 3, where the pointwise confidence band
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covers at = 0 at t = 0, but does not contain the restricted line where at = 0 for all t.
Finally, no additional noise ω1t is added in (2), since γ1 = 0. This finding confirms
model choice based on the marginal likelihoods as in Frühwirth-Schnatter (1995).

4 Model Selection for Non-Gaussian State Space

Models

The variable selection approach developed for Gaussian state space model may
be extended to nonnormal state space models using auxiliary mixture sampling
(Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter and Frühwirth, 2007).
This allow variable selection for state space modelling of times series of small counts
based on the Poisson distribution and of binary as well as categorical time series
based on the logit transform. We provide an illustrative application to two time
series of small counts.

4.1 A Basic structural model for Count Data including In-
tervention

For count data the basic structural model reads (Harvey and Durbin, 1986):

yt ∼ P (etλt) ,

log λt = µt + st, (36)

µt = µt−1 + at−1 + ω1t, ω1t ∼ N (0, θ1) (37)

at = at−1 + ω2t, ω2t ∼ N (0, θ2) , (38)

st = −st−1 − · · · − st−S+1 + ω3t, ω3t ∼ N (0, θ3) . (39)

To account for the intervention at t = tint, equation (38) is modified in the following
way:

µt = µt−1 + at−1 + ∆ + ω1t.

4.1.1 Stochastic model specification search

Indicators δ, δ3, γ1, γ2 and γ3 are introduced as in Section 3 to select the structural
components, and an additional indicator δ4 is introduced for the intervention ef-
fect. In the centered parameterization, equations (36) and (37) are modified in the
following way:

log λt = µt + δ3s0,q(t) + γ3(st − δ3s0,q(t)), (40)

µt = µt−1 + δa0 + γ2(at−1 − δa0) + δ4I{t=tint}∆ + γ1ω1t, (41)

while the (38) and (39) are unaffected. For MCMC estimation, the noncentered
version of this model is required which reads:

log λt = µ0 + δta0 + δ3s0,q(t) + δ4I{t≥tint}∆ + γ1

√
θ1µ̃t + γ2

√
θ2Ãt + γ3

√
θ3s̃t,

where µ̃t and Ãt are defined as in (11) to (13), while s̃t is defined as in (31).
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4.1.2 MCMC Estimation

MCMC estimation is implemented using auxiliary mixture sampling for count data
(Frühwirth-Schnatter and Wagner, 2006). For each t, the distribution of yt|λt is
regarded as the distribution of the number of jumps of an unobserved Poisson process
with intensity etλt, having occurred in the time interval [0,1]. The first step of data
augmentation creates such a Poisson process for each yt, t = 1, . . . , T , and introduces
the inter-arrival times τtj, j = 1, . . . , (yt +1) of this Poisson process as missing data.
Since each τtj ∼ E (etλt) we have

− log τtj = log et + log λt + εtj,

where εtj = − log ξtj with ξtj ∼ E (1). The distribution of εtj is then approximated
by a mixture of normal distributions with component indicator rtj:

pε(εtj) = exp{−εtj − e−εtj} ≈
10∑

rtj=1

wrtj
fN(εtj; mrtj

, s2
rtj

).

The quantities (wj,mj, s
2
j), j = 1, . . . , 10 are the parameters of the finite mixture

approximation tabulated in Frühwirth-Schnatter and Frühwirth (2007, Table 1).
Introducing the auxiliary variables u = (u1, . . . ,uT ), where ut = (τtj, rtj, j =

1, . . . , yt + 1), leads to a conditionally Gaussian state space model:

− log τtj = µ0 + δta0 + δ3s0,q(t) + δ4I{t≥tint}∆

+ γ1

√
θ1µ̃t + γ2

√
θ2Ãt + γ3

√
θ3s̃t + mrtj

+ εtj, εtj ∼ N
(
0, s2

rtj

)
,(42)

where j = 1, . . . , yt+1. An improved version of auxiliary mixture sampling discussed
in Frühwirth-Schnatter, Frühwirth, Held, and Rue (2007) could be applied where
the maximum dimension of ut is equal to 4 rather than 2(yt + 1).

In (42) we are dealing with a state space model that is conditionally Gaussian
with the state vector xt being the same as in Subsection 3.2. The MCMC scheme
introduced in Subsection 3.2 for Gaussian state space models needs only a few
modifications. First, an additional step has to be added to draw the auxiliary
variables u. Second, conditional on the state vector, we are dealing with a regression
model with heteroscedastic normal errors with known error variance:

ỹ = Zδ,γβδ,γ + ε, ε ∼ N (0,Σ) , (43)

where ỹ denotes the collection of the auxiliary variables (− log τtj−mrtj
) and Σ is a

diagonal matrix with elements s2
rtj

. Under the normal prior βδ,γ ∼ N
(
aδ,γ

0 ,Aδ,γ
0

)
,

the marginal likelihood in this regression model defines p(y|δ,γ,x,u):

p(y|δ,γ,x,u) (44)

=
|Σ|−1/2|Aδ,γ

T |1/2

(2π)T/2|Aδ,γ
0 |1/2

exp

(
−1

2

(
ỹ′Σ−1ỹ + (aδ,γ

0 )
′
(Aδ,γ

0 )−1aδ,γ
0 − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T

))
,

where

(Aδ,γ
T )−1 = ((Zδ,γ)

′
Σ−1Zδ,γ + (Aδ,γ

0 )−1), (45)

aδ,γ
T = Aδ,γ

T ((Zδ,γ)
′
Σ−1ỹ + (Aδ,γ

0 )−1aδ,γ
0 ). (46)

The MCMC scheme reads:
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(a1) Sample δ and γ from p(δ,γ|x,u,y) ∝ p(y|δ,γ,x,u)p(δ,γ) conditional on
the state process x and the auxiliary variables u using the marginal likelihood
(44) obtained from regression model (42).

(a2) Sample all unrestricted elements of the initial values of x0 and all unrestricted
variance parameters

√
θi jointly from the multivariate normal distribution

N
(
aδ,γ

T ,Aδ,γ
T

)
conditional on x and u using the moments (45) and (46); set

all remaining initial values of x0 and all remaining variances equal to 0.

(b) Sample x = (x1, . . . ,xT ) from an appropriate state space form;

(c) Perform random sign switches as in step (c) in Subsection 3.2.

(d) Sample the auxiliary variables u conditional on the current risk λ1, . . . , λT , see
Frühwirth-Schnatter and Wagner (2006) for more details:

(d1) For each t = 1, . . . , T , sample the order statistics of yt uniform random
variables and define the inter-arrival times τtj for j = 1, . . . , yt as their
increments. Sample the final arrival time as τt,n+1 = 1 − ∑n

j=1 τtj + ξt,
where ξt ∼ E (λt).

(d2) Sample the component indicator rtj conditional on τtj and λt from a
discrete density.

Note that in step (a) marginalizing over the variables and components which are
subject to model selection would not be possible for non-Gaussian state space models
without the use of auxiliary mixture sampling or another augmentation scheme that
leads to a conditionally Gaussian model. Such data augmentation schemes which
enable variable selection in non-Gaussian models have been applied earlier by Holmes
and Held (2006) for binary and multinomial regression model and by Tüchler (2008)
for binary and multinomial regression models with random effects.

The partially proper normal prior and the fractional prior considered in Subsec-
tion 3.3 are easily adjusted for non-Gaussian state space model. A partially proper

normal prior which combines p(µ0) ∝ 1 with a proper prior N
(
0,Bδ,γ

0

)
on the

remaining unrestricted elements of βδ,γ where Bδ,γ
0 = B0I corresponds to aδ,γ

0 = 0
and Aδ,γ

0 being the same as in (34). The marginal likelihood reads

p(y|δ,γ,x,u) =
|Σ|−1/2|Aδ,γ

T |1/2

(2π)T/2|Bδ,γ
0 |1/2

· exp

(
−1

2

(
ỹ′Σ−1ỹ − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T

))
.

For a fractional prior, derived as in Subsection 3.3, the marginal likelihood is given
as

p(y|δ,γ,x,u) = bq/2

( |Σ|−1

(2π)T

)(1−b)/2

·exp

(
−(1− b)

2
(ỹ′Σ−1ỹ − (aδ,γ

T )
′
(Aδ,γ

T )−1aδ,γ
T )

)
,

(47)
where (Aδ,γ

T )−1 = (Zδ,γ)
′
Σ−1Zδ,γ and aδ,γ

T = Aδ,γ
T (Zδ,γ)

′
Σ−1ỹ.
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Figure 6: Road safety data; (a) counts of killed or injured children, (b) number of
children exposed

4.2 Road Safety Data

We analyze a time series consisting of monthly counts of killed or injured pedestrians,
aged 6-10, from 1987-2005 in Linz, which is the third largest town in Austria.1 The
observations are a series of small counts not exceeding 5, see Figure 6. A new law
intended to increase road safety came into force in Austria on October 1, 1994, since
when pedestrians who want to use a pedestrian crossing have to be allowed to cross.
Of interest is the effect of this law on the (monthly) risk of being killed or seriously
injured in a road accident as a child living in Linz.

The basic structural model with intervention effect for Poisson counts defined
in Subsection 4.1 is fitted to the number yt of children killed or seriously injured in
time period t, yt ∼ P (etλt), where et is the number of children living in Linz. Model
specification search is carried out to identify an appropriate model.

4.2.1 Comparing the Centered and the Noncentered Parameterization

For these data, we were not able to estimate the model under the completely centered
parameterization as MCMC did not convergence. For this reason, we compare a
parameterization where only the season is non-centered (Frühwirth-Schnatter and
Wagner, 2006) under the priors θi ∼ G−1 (0.1, 0.001) , i = 1, 2, ±√θ3 ∼ N (0, 1)
with a fully noncentered model with priors ±√θi ∼ N (0, 1) , i = 1, 2, 3. For both
parameterizations we assume that µ0 ∼ N (log(y1/e1), 1) = N (−9.0084, 1) and that
the unknown initial values of the other components and the intervention effect follow
a standard normal prior distribution. We used 20000 iterations after a burn-in of
5000 for each parameterization. As in Subsection 3.4.1, we observe much better
mixing behavior of the MCMC sampler under the non-centered parametrization,
see Figure 7.

Figure 8 shows histograms of the MCMC draws for ±√θi, i = 1, . . . , 3 for both
parameterizations. For the noncentered parameterization with the normal prior the
posterior of all parameters ±√θi, i = 1, . . . , 3 is clearly centered at 0, suggesting

1A shorter version of this time series ranging from 1987-2002 was analyzed in Frühwirth-
Schnatter and Wagner (2006).
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Figure 7: Road safety data; top: MCMC draws for ±√θ1 (left), ±√θ2 (middle) and
±√θ3 (right) for the noncentered parameterization; bottom: MCMC draws for θ1

(left), θ2 (middle) and ±√θ3 (right) under the partially noncentered parameteriza-
tion

that the state space model is overfitting and the data may be explained by a simply
Poisson regression model. This finding is confirmed by stochastic model specification
search in Subsection 4.2.2. As in Subsection 3.4.1 the inverted Gamma density is
very influential and shrinks the posterior densities of ±√θ1 and ±√θ2 away from 0,
spuriously suggesting that θ1 > 0 and θ2 > 0.

Figure 9 shows the various components of the unconstrained model like the
smoothed level µt with pointwise 95% credibility intervals under the centered pa-
rameterization. The estimated monthly risk λt for a child to be seriously injured or
killed seems to decrease at the time of intervention. The drift at is not significantly
different from 0 over the whole observation period. The seasonal component has
significantly lower values than the annual average in the holiday months July and
August and higher values in June and October.

4.2.2 Stochastic Model Specification Search

Stochastic model specification search was carried out using partially proper priors
with different prior variances B0 and using fractional priors with different fractions
b. MCMC sampling was carried out for 40000 iterations after a burn-in of 10000.
The first 1000 draws of the burnin were drawn from the unrestricted model, model
selection began after these first 1000 draws.

Results of the variable selection procedure are summarized in Table 3 and 4.
The most frequently visited model is fairly robust against the choice of the prior,

only the fractional prior with the smallest b leads to a more parsimonious model.
No trend is present in the selected model, because δ = 0 and γ2 = 0 imply that
at = a0 = 0 for the whole observation period. The initial seasonal pattern is
significant (δ3 = 1), but does not change over time (γ3 = 0). The level of the model
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Table 3: Road safety data; the three most frequently visited models (among 40000
MCMC iterations) for various prior distributions

prior δ δ3 δ4 γ1 γ2 γ3 frequency
p(µ0) ∝ 1, B0 = 1 0 1 1 0 0 0 37544

0 1 1 0 0 1 937
0 1 1 1 0 0 611

p(µ0) ∝ 1, B0 = 100 0 1 1 0 0 0 34874
0 1 0 0 0 0 4743
0 1 1 0 0 1 125

b = 10−2 0 1 1 0 0 0 9595
0 1 1 0 0 1 4154
0 1 1 1 0 0 3414

b = 10−3 0 1 1 0 0 0 18528
1 1 0 0 0 0 4048
0 1 1 0 0 1 2686

b = 10−4 0 1 1 0 0 0 24871
1 1 0 0 0 0 4717
0 1 0 0 1 0 2514

b = 10−5 0 0 1 0 0 0 14298
0 0 1 0 0 1 7823
1 0 0 0 0 0 3991

is constant before and after intervention, because γ1 = 0. Most importantly, the
intervention effect is significant, because δ4 = 1 is selected. Interestingly, the selected
model is no longer a state space model (γ1 = γ2 = γ3 = 0), but a simple Poisson
regression model with monthly seasonal dummies and an intervention effect. This
finding is confirmed by the marginal likelihoods computed in Frühwirth-Schnatter
and Wagner (2008).

In Table 5 and Figure 10, we compare posterior inference for the intervention
effect for the unconstrained basic structural model and the model obtained by vari-
able selection. We observe here an impressive gain of statistical efficiency for this
parameter of interest. For the unconstrained basic structural model, making the
level dynamic before and after the intervention causes quite a loss of information,
leading to an intervention effect that is not significant.

Table 4: Road safety data; marginal posterior probability of selecting each indicator
trend season intervention process variances

prior δ δ3 δ4 γ1 γ2 γ3

p(µ0) ∝ 1, B0 = 1 0.0047 1.0000 0.9798 0.0209 0.0005 0.0244
p(µ0) ∝ 1, B0 = 100 0.0019 1.0000 0.8767 0.0042 0.0001 0.0035

b = 10−2 0.3140 1.0000 0.7769 0.2872 0.2767 0.3015
b = 10−3 0.2152 1.0000 0.7094 0.1567 0.1576 0.1289
b = 10−4 0.1563 1.0000 0.7196 0.0772 0.0963 0.0501
b = 10−5 0.1753 0 0.5718 0.0734 0.0971 0.3514
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Table 5: Road safety data; posterior inference for the intervention effect ∆

∆ Mean Std.dev. 95%H.P.D. regions
Basic structural model -0.4070 0.4954 [-1.3741; 0.5756]

Poisson regression model with seasonal dummies -0.3579 0.0977 [-0.5519; -0.1726]
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Figure 10: Road safety data; posterior density of the intervention effect ∆ in compar-
ison to the prior; left: unrestricted basic structural model, right: Poisson regression
model with seasonal pattern (selected model)

The seasonal pattern disappears, if b is rather small in the fractional prior, see
Table 3 and 4. Decreasing b forces more parsimonious models. Not surprisingly
the seasonal pattern disappears first in a more parsimonious model, because in the
selected model only a few seasonal dummies are different from 0, see also Figure 9.

4.3 Purse snatching in Hyde Park, Chicago

For further illustration, we reanalyze a time series of cases of purse snatching yt

in the Hyde park neighborhood in Chicago (Harvey, 1989) reported for the period
from January 1968 to September 1973. We consider a simplified version of the model
introduced in Subsection 4.1, where no seasonal and no intervention effect is present
and the exposures et are equal to 1.

First, Gibbs sampling was run without variable selection for 15000 iterations
after a burn-in of 10000 for both parameterizations. We selected the normal prior
N (0, 10) both for µ0 and a0, while θi ∼ G−1 (−0.5, 0.0001) under the centered and
±√θi ∼ N (0, 1) under the noncentered parameterization, for i = 1, 2. Figure 11
shows histograms of ±√θi under both priors. The posterior for ±√θ1 is roughly
the same under both priors and clearly indicates that θ1 > 0. Again, the inverted
Gamma density is too influential for θ2 and shrinks the draws away from 0, while
for the normal prior the posterior is clearly centered at 0, suggesting that θ2 = 0.

Second, stochastic model specification search was carried out using partially
proper priors with various prior variances B0 and using fractional priors with various
fractions b. The sampling scheme was run for M = 40000 iterations after a burn-in
of 10000. The first 1000 draws of the burn-in were drawn from the unrestricted
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Figure 11: Purse snatching data; histograms for ±√θ1 (left) and ±√θ2 (right); top:
N (0, 1) prior for ±√θ1 and ±√θ2; bottom: G−1 (−0.5, 0.0001)-prior for θ1 and θ2

Table 6: Purse snatching; the three most frequently visited models (among 40000
MCMC iterations) for various prior distributions

δ γ1 γ2 B0 = 1 B0 = 100 b = 10−3 b = 10−4 b = 10−5

0 1 0 39436 39822 20944 32971 38135
1 1 0 442 166 8263 3705 957
0 1 1 118 12 8110 3090 899

model, model selection began after these first 1000 draws.
Results of the variable selection procedure are presented in Table 6 and 7. Model

selection is extremely robust to the prior choice and clearly picks a local level model.
The drift disappears because δ = 0 and γ2 = 0 imply that at ≡ a0 = 0 for all t.
This finding is confirms model selection by the marginal likelihoods in Frühwirth-
Schnatter and Wagner (2008).

Table 7: Purse snatching; marginal posterior probability of selecting each indicator
prior δ γ1 γ2

p(µ0) ∝ 1, B0 = 1 0.0112 1.0000 0.0031
p(µ0) ∝ 1, B0 = 100 0.0042 1.0000 0.0003

b = 10−3 0.2698 1.0000 0.2737
b = 10−4 0.0985 1.0000 0.0831
b = 10−5 0.0227 1.0000 0.0242
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5 Concluding remarks

The model space MCMC approach discussed in this paper could be easily adapted
to other state space models. Auxiliary mixture sampling as discussed in Frühwirth-
Schnatter and Frühwirth (2007), for instance, allows to consider state space mod-
elling of binary and categorical time series. Another important extension is searching
for fixed and time-varying coefficients in a regression model.

A couple of modifications of our approach are worth being considered. First, the
uniform prior over all models may be substituted by a more flexible prior which is
obtained by assuming that the prior occurrence of δi = 1 and γi = 1 is different:

Pr(δi = 1|αδ) = αδ, Pr(γi = 1|αγ) = αγ.

In this prior, αδ and αγ may be chosen as fixed values, if prior information on the
occurrence probabilities is available. If this is not the case, a hyperprior may be put
on αδ and αγ as in Smith and Kohn (2002) and Frühwirth-Schnatter and Tüchler
(2008). If both hyperparameters αδ and αγ are iid Uniform on [0,1], then

p(δ, γ) = B(1 +
∑

i

I{δi=1}, 1 +
∑

i

I{δi=0})B(1 +
∑

i

I{γi=1}, 1 +
∑

i

I{γi=0}),

where B(·, ·) is the Beta function. This prior leads to a uniform distribution over
model size and outperforms the uniform prior over all models in variable selection
for large regression models, see Ley and Steel (2007). In our applications, where
model size is small, posterior inference under both priors is virtually the same.

Second, sampling the indicators could be modified. In our MCMC schemes,
the indicators (δ, γ) are sampled jointly from the discrete posterior p(δ,γ|x,y) by
evaluating the right hand side of (25) for all combinations of indicators at each
sweep of the sampler. This multi-move sampling is rather time-consuming and may
be substituted single-move sampling, i.e. sampling recursively from p(δj|δ−j, γ,x,y)
and p(γj|γ−j, δ,x,y).

An open issue of our approach is the influence the prior on the initial values
and the process variances exercises on final model selection. We demonstrated that
the normal prior put on the signed square root of the process variances is far less
influential than the usual inverted Gamma for the process variances themselves.
The sensitivity analysis carried out for all of our case studies revealed a surprising
robustness of the finally selected model against variation in the normal prior. A
concise statement which prior scale leads to model consistency in the sense of Casella,
Girón, Mart́ınez, and Moreno (2006), however, is far beyond the scope of the present
paper.
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