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Abstract. Low birthweight outcomes are associated with large social
and economic costs, and therefore the possible determinants of low birth-
weight are of great interest. One such determinant which has received
considerable attention is maternal smoking. From an economic perspec-
tive this is in part due to the possibility that smoking habits can be
influenced through policy conduct. It is widely believed that maternal
smoking reduces birthweight; however, the crucial difficulty in estimat-
ing such effects is the unobserved heterogeneity among mothers. We
consider extensions of three panel data models to a quantile regression
framework in order to control for heterogeneity and to infer conclusions
about causality across the entire birthweight distribution. We obtain
estimation results for maternal smoking and other interesting determi-
nants, applying these to data obtained from Aarhus University Hospital,
Skejby (Denmark). We examine the use of both balanced and unbal-
anced panels. In conclusion, our results show the importance of consid-
ering conditional quantiles and controlling for unobserved heterogeneity
when estimating determinants of birthweight outcomes. An example of
this is the change in magnitude and significance of prenatal smoking.
Controlling for unobserved effects does not change the fact that smoking
reduces birthweight, but it shows that the effect is primarily a problem
in the left tail of the distribution on a slightly smaller scale.
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1 Introduction

The potential adverse health consequences of low birthweight outcomes, along with
the considerable economic burden they are believed to impose on society, have at-
tracted much attention by researchers in both medical and economic literature. The
use of birthweight as a proxy for the general health condition of infants is common-
place, as it has been linked to a vast array of health related complications, both
short- and long-term.

The most severe event, perinatal mortality, has been found to be more likely in
the event of a low birthweight outcome. Several studies find statistical evidence of
this linkage, see e.g. Bernstein et al. (2000), Almond et al. (2005), and Black et al.
(2005). Furthermore, it is believed that low birthweight may lead to complications
such as epilepsy, mental retardation, blindness, and deafness. For a review and
references, see Hack et al. (1995). While many of these complications are directly
observable, some studies also consider less obvious socio-economic implications of
low birthweight, a very popular topic being school performance. Kirkegaard et al.
(2006) find a graded relationship between birthweight and school performance. In
a follow-up study with 5.319 children aged 9–11, they conclude that the risk of
reading, spelling, and arithmetic disabilities is greater with low birthweight children.
Similarly, Corman and Chaikind (1998) find that repeating a grade, or special class
attendance is more likely among low birthweight children. This may suggest that
even future earnings and labour market outcomes may be affected by birthweight.
According to Black et al. (2005) this is indeed the case.

The strong evidence that low birthweight has adverse effects has naturally led
to substantial efforts towards identifying the determinants of these undesirable out-
comes. One such determinant which has received much attention in the literature is
maternal smoking habits during pregnancy. Statistical efforts suggest a strong cor-
relation between birthweight and maternal smoking, see e.g. Bernstein et al. (1978)
and Permutt and Hebel (1989). Other studies examine the effect of smoking on some
of the above-mentioned complications directly, e.g. Wisborg et al. (2000), who find
that smoking increases the risk of the sudden infant death syndrome, Wisborg et al.
(2001), who find an increased risk of still birth and infant mortality from mater-
nal smoking, and Linnet et al. (2006), who link hyperactive-distractible behaviour
in preschool children to intrauterine exposure to tobacco smoke. Medical research
gives several reasons why cigarette smoking may affect birthweight. An explanation
that seems to stand out is that the foetus can suffer from chronic hypoxic stress as
a consequence of smoking. DiFranza et al. (2004) and Hofhuisi et al. (2003) explain
this phenomenon in part by a lowered maternal uterine blood flow and a reduction
in oxygen diffusion across the placenta. An interesting observation is that smok-
ing does not seem to have a significant adverse effect on all birth outcomes. Wang
et al. (2002) conclude that the association between maternal cigarette smoking and
reduced birthweight is modified by maternal genetic susceptibility, after having con-
sidered two specific gene polymorphisms.

From an economic perspective, interest lies not with the individual as such, but
rather with society as a whole. Maternal smoking habits are thus an especially inter-
esting determinant since it is modifiable through policy conduct, e.g. by regulating
taxes on tobacco products. While medical research gives much attention to why
smoking causes low birthweight, the above has led economists to focus primarily on
the extent of this effect, and the associated costs. This perspective has the advan-
tage of allowing analysts to disregard the specific medical links between maternal
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smoking and low birthweight, when using appropriate methods.
In an attempt to estimate the direct costs associated with birthweight, Almond

et al. (2005) use data from hospitals in New York and New Jersey to find that the
costs peak at $150.000 (in year 2000 dollars) for newborns weighing 800 grams. In
contrast, an infant weighing 2000 grams has an estimated associated cost of $15.000.
The soaring costs at the low end of the birthweight distribution highlight an im-
portant point. Using traditional mean regression will only uncover effects on the
birthweight mean, i.e. infants weighing around 3500 grams. One way to overcome
this problem is to use a quantile regression approach, which can provide estimation
results across the entire distribution. This is done by Abrevaya (2001) and Koenker
and Hallock (2001), who find justification for the quantile approach since regression
estimates vary throughout the distribution. It is, however, troublesome to consider
the estimated effects as causal, because the analyses do not account for unobserved
heterogeneity. Not only is the susceptibility of smoking effects among mothers differ-
ent, as noted above, but there are undoubtedly many other individual characteristics
which cannot be accounted for.

Econometric panel data models allow controlling for unobserved heterogeneity.
However, their extension to a quantile regression framework is still somewhat limited.
In a recent paper, Abrevaya and Dahl (2005) consider the extension of the “correlated
random effects” model by Chamberlain (1984) to a quantile regression framework,
and estimate the effects of various birth inputs on birthweight, using data from
Arizona and Washington. Their results indicate that the negative effects of smoking,
albeit present, are significantly lower in magnitude across all quantiles than the
corresponding cross-sectional estimates.

This paper extends the results of Abrevaya and Dahl, using Danish data. Fur-
thermore, we consider a similar extension of the model by Mundlak (1978) which, at
the cost of a more restricted specification, allows for the use of an unbalanced dataset.
Finally, we consider the fixed effects quantile specification of Koenker (2004) and the
two-stage fixed effects approach recently suggested by Arulampalam et al. (2007).

The outline of the paper is as follows. In Section 2 we first review three panel
data models specified for conditional means. We then discuss their extension to a
quantile regression framework. In Section 3 we give a description of the data we will
use for our estimations. Section 4 provides results and interpretations. Concluding
remarks are given in Section 5.

2 The Models

The main difficulty of examining the causal effect of prenatal smoking, and other
relevant observable variables, on birthweight outcomes is the possible existence of
infinitely many other influential determinants. The identification and measurement
of all these determinants is an impossible task, and thus it is necessary to control for
unobserved effects. Panel data models provide various clever ways of dealing with
this issue, three of which will be our point of departure in this analysis. First we will
introduce the basic conditional expectation models, and then discuss their extension
to a quantile estimation setup.
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Basic Unobserved Effects Models

Consider a setup in which data are available on a large sample of mothers, each
contributing with two or more births. The basic linear panel data model can then
be specified as

ymb = x′mbβ + cm + umb, m = 1, . . . ,M ; b = 1, . . . , Bm, (2.1)

where the subscripts m and b index mothers and births respectively. The depen-
dent variable y denotes birthweight in grams, the vector x contains the observable
variables, c is the unobserved “mother effect”, and u is a birth-specific disturbance.
Stacking observations and sorting by mothers, we can rewrite the model more com-
pactly on matrix form as

y = Xβ +Zc+ u, (2.2)

Here the matrixZ is a block diagonal incidence matrix of the form diag(eB1 , . . . , eBM
),

where ei is an i-vector of ones. In the case of a balanced panel, i.e. Bm ≡ B, this
simplifies to IM ⊗ eB.

In the following we shall consider three different panel data models, i.e. three
approaches on how to treat the unobserved mother-specific elements c. The specifica-
tions we will discuss are two “random effects”-type models, provided by Chamberlain
(1984) and Mundlak (1978) respectively, along with the fixed effects model.

In a classic random effects version of (2.2) it is assumed that the unobserved
effects are random and uncorrelated with the observable variables. This assumption
will most likely be violated in the current application, and thus this model will not
be applicable. It is therefore interesting to consider some variations of the random
effects model where some correlation is allowed for.

Chamberlain (1984) assumes that the unobserved effects can be viewed as linear
projections onto the observables. The model requires a balanced panel, i.e. Bm ≡ B,
and the unobserved elements are specified as

cm = ψ + x′m1λ1 + · · ·+ x′mBλB + vm,

= ψ + x′mλ+ vm, (2.3)

where xm ≡ (xm1, . . . ,xmB)′ and λ ≡ (λ1, . . . ,λB)′. The scalar ψ is constant
across mothers, and v is a mother-specific disturbance, which by definition of linear
projections satisfies E(vm) = 0. This specification allows for an individual intercept
which is dependent on the observed variables from all births for a given mother.
The model consists of equations (2.2) and (2.3), and the parameters (β,λ, ψ) can
be estimated by least squares given E(umb|xm, cm) = 0,∀m, b (Wooldridge, 2002, p.
324).

A similar approach by Mundlak (1978) assumes a slightly more restrictive pro-
jection, where the unobserved effects are specified as projections onto an average of
the observables, taken over birth inputs for a given mother. This is given by

cm = ψ +B−1
m (xm1 + · · ·+ xmBm)′π + vm,

= ψ + (B−1
m e′Bm

xm)π + vm. (2.4)

The advantage of this approach, in contrast to the Chamberlain model, is that it
allows for the use of an unbalanced panel, possibly adding several observations to
the sample. In the case of a balanced panel the model can be seen as a restricted
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version of Chamberlain’s approach, with λ1 = · · · = λB = B−1π. The parameters
(β,ψ,π) can likewise be estimated using OLS.

Finally, we consider the fixed effects model, which by subtracting an average
across observations from the standard model (2.1), i.e. a within transformation,
eliminates the (constant) unobserved mother-specific term, and thus allows for cor-
relation with the observable variables. Letting ȳm, x̄m, and ūm denote averages
across b, the equation to be estimated is

ymb − ȳm = (xmb − x̄m)β + umb − ūm. (2.5)

It is well known that β can be consistently estimated using OLS. The fixed effects
estimator is equivalent to the one obtained from a least squares dummy variable
regression (LSDV), i.e. an estimation of (2.2) directly. However, this can become a
cumbersome task when the number of cross-sectional units, and thus the number of
dummy variables included, becomes large.

Quantile Estimation Framework

In some applications, focusing on conditional means may provide the desired insight
on causality. However, many economic policy concerns should focus on entire distri-
butions. For example, it will not be sufficient to consider averages when conducting
policy targeting wage or wealth distribution. Likewise, in the case of low birth
weight outcomes, interest lies in the left tail of the distribution. Quantile regression
estimation allows for a more complete picture of cause and effect throughout the
distribution.

Quantile regression can be compared to the classical least squares minimization
problem, with the conditional mean specified as E(yi|xi) = x′iβ, where β can be
estimated by solving

min
β∈Rp

n∑
i=1

(yi − x′iβ)2. (2.6)

Similarly, if specifying the conditional quantile function as Qτ (yi|xi) = x′iβτ for the
quantile τ , then βτ can be estimated by finding the β that solves

min
β∈Rp

n∑
i=1

ρτ (yi − x′iβ), (2.7)

where

ρτ (u) =

{
uτ if u > 0
u(τ − 1) if u < 0

, (2.8)

is a check function that ensures non-negativity and scales according to the desired
quantile. A thorough review of the subject can be found in Koenker (2005).

One hurdle which must be addressed is the common assumption of a “nice” linear
data-generating process, e.g. as (2.1). Such an assumption, however, will rarely im-
ply a corresponding linear specification of the conditional quantile function. Consider
an arbitrary specification of the unobserved effect

cm = φ(xm) + vm, E(vi|xm) = 0. (2.9)
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This, along with (2.1), implies the conditional quantile function

Qτ (ymb|xm) = x′mbβ + φ(xm) + Qτ (umb + vm|xm). (2.10)

The function φ is often assumed to be linear, and the essential difficulty is how to
handle the last term in the expression properly. It is not straight-forward to go from
the assumption of a linear data-generating process to a conditional quantile function
that is directly applicable. On the other hand, if we specified a linear conditional
quantile function, we would have similar difficulties determining the functional form
of the data-generating process. We thus need some simplifying assumptions in order
to extend the models above to a quantile framework. We follow Abrevaya and Dahl
(2005) and assume the following

vm is independent of xm, (2.11)

Qτ (umb|xm, vm) = Qτ (umb|xmb). (2.12)

Using these assumptions, we can simplify the conditional quantile function of the
error terms to

Qτ (umb + vm|xm) = Qτ (umb + vm|xmb) ≡ fτ,b(xmb), (2.13)

and write (2.10) as

Qτ (ymb|xm) = x′mbβ + fτ,b(xmb) + φ(xm). (2.14)

In general fτ,b(xmb) will be a non-linear function. A simple example illustrating this
is given in Abrevaya and Dahl (2005). Thus in order to obtain a linear expression
for the conditional quantile function, we need to make assumptions about fτ,b(xmb).
We will assume that x′mbβ+fτ,b(xmb) can be approximated by x′mbβτ , giving us the
conditional quantile function

Qτ (ymb|xm) = x′mbβτ + φ(xm). (2.15)

Under these simplifying assumptions, Abrevaya and Dahl (2005) have extended
Chamberlain’s model to quantiles. The result, which we will henceforth refer to
as the AD-model, is given by

Qτ (ymb|xm) = ψτ + x′mbβτ + x′mλτ , (2.16)

This model can be estimated, by stacking observations and sorting by mothers, to
obtain a right-hand side design matrix D = [D′1, . . . , D

′
M ]′, where

Dm =


1 x′m1 x′m1 . . . x′mB
1 x′m2 x′m1 . . . x′mB

...
1 x′mB x′m1 . . . x′mB

 . (2.17)

If the model contains time-invariant variables or dummy variables, i.e. variables that
do not belong in x, then these should be included as columns in (2.17).1

1Our notation differs from the one of Abrevaya and Dahl (2005), in that we have not let the
mother-specific effects depend on the specific birth through ψ. Thus to capture this effect it would
be required to include dummies in the main equation.
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Analogously, by making the same assumptions for the Mundlak specification, we
can extend this to a quantile framework, where (2.15) becomes

Qτ (ymb|xm) = ψτ + x′mbβτ + (B−1
m e′Bm

xm)πτ , (2.18)

The block elements of D corresponding to (2.17) becomes

Dm =
[
eBm

... xm
... eBm ⊗ (B−1

m e′Bm
xm)

]
, (2.19)

where we have used ... as a separator for readability. When the data consist of a
balanced panel, the entire design matrix can be written as

D =
[
eM×B

... X ...
[
IM ⊗ (B−1eBe

′
B)
]
X
]
. (2.20)

As with the AD-model, any time-invariant or dummy variables should be included
in the main equation, and thus added as columns in D.

Finally, we consider the extension of the fixed effects model. As noted above, this
can be estimated either by differencing out the unobserved effects or by a dummy
variable regression when considering mean regression. However, differencing is not
an option, since conditional quantiles are not linear operators. The dummy variable
regression, on the other hand, is feasible and is described by Koenker (2004). One
downside of the dummy variable regression is the enormous amount of parameters
to estimate, especially when M is large and Bm is small. This is typically the case
when considering birth outcomes. Koenker mitigates the problem by estimating all
desired quantiles simultaneously and holding unobserved effects dummies constant
across quantiles. Furthermore, he adds a penalty term to control the variability
introduced by the large number of estimated parameters.

Assuming again that the conditional quantile function can be specified as (2.15),
the fixed effects model is

Qτ (ymb|xm) = ψτ + x′mβτ + cm. (2.21)

The simultaneous estimation of quantiles and the penalty term alter the minimization
problem. In contrast to (2.7), Koenker proposes to solve

min
c,β

q∑
k=1

M∑
m=1

Bm∑
b=1

wkρτk(ymb − cm − x′mbβτk) + λ

M∑
m=1

|cm|, (2.22)

where q is the number of quantiles to estimate, wk is the weight assigned to quantile
k in order to control the relative influence of the quantile on the estimation of c.
The parameter λ controls the impact of the penalty term. In the limit as λ → 0,
the penalty term disappears, and at the other extreme with λ → ∞, we have that
c→ 0, i.e. a model with no fixed effects.

Using the above specification of the minimization problem, the design matrix can
be written as

D =

[
diag(w)⊗X w ⊗Z

0M λIM

]
, (2.23)

where 0M is an M -vector of zeros, w is the vector of weights, and Z is defined as in
(2.2). The corresponding response vector is [(w ⊗ y)′ ... 0′M ]′.

7



Recently, Arulampalam et al. (2007) have suggested an alternative quantile re-
gression fixed effects approach. In particular, they propose – in the first stage – to
obtain a consistent estimator of the fixed effects from applying LSDV on equation
(2.1). Denote this estimator ĉm. In the second stage cm in equation (2.21) is substi-
tuted with ĉm. Subsequently, estimates of βτ can be obtained from standard quantile
regression on the observables and ĉm. Although the statistical properties of the two
stage fixed effects estimator are unknown the approach is quite appealing due to its
simplicity.

Owing to our simplifying assumptions regarding the conditional quantile func-
tions, the design matrices for these three models can be used to obtain point esti-
mates for both quantile and mean regression, using linear quantile regression and
OLS, respectively. However, because of dependence between each mother’s births,
the standard asymptotic-variance formulas cannot be used to obtain standard errors.
Furthermore, a standard bootstrapping approach is not applicable either. Instead, a
subsampling bootstrap approach should be used where random subsamples of moth-
ers (including all their births) are drawn repeatedly with replacement (Abrevaya and
Dahl, 2005).

3 Data

The data used in this study were obtained from Aarhus University Hospital, Skejby,
in Denmark. In the Aarhus region this hospital is the only one with a maternity
ward, and thus the data in fact represent a broad population group, i.e. all economic
and social classes. The models considered in this paper require a panel of mothers
with two or more registered births. For the variables of interest the data offer a
panel consisting of 20.407 births and 9.629 mothers. The descriptive statistics for
the dataset are given in Table 3.1.

1st child 2nd child 3rd child 4th child

Variable Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

Birthweight 3504.33 (532.82) 3647.79 (531.88) 3673.48 (555.05) 3622.97 (535.56)
Doctor visits 3.05 2.99 2.93 2.79
Complications 0.22 0.25 0.28 0.27
Test tube baby 0.02 0.01 0.00 0.01
Birth control pills 0.27 0.16 0.14 0.11
Weight 63.99 (10.90) 65.25 (12.01) 65.82 (12.35) 65.70 (12.18)
Prenatal visits 5.10 4.59 4.41 4.38
Age 28.20 (3.78) 30.94 (3.83) 33.11 (3.92) 34.64 (4.16)
Smoked before 0.28 0.23 0.24 0.28
Smoked during 0.13 0.12 0.15 0.21
Drink 0.03 0.03 0.03 0.03
Male child 0.51 0.50 0.51 0.50
Married 0.43 0.65 0.76 0.72
Height 168.62 (6.11) 168.60 (6.14) 168.20 (6.07) 167.41 (6.01)
Diabetes 0.01 0.01 0.02 0.02

Birthweight quantiles

Quantile 1st child 2nd child 3rd child 4th child

10% 2900 3030 3040 3009
25% 3200 3330 3350 3280
50% 3500 3650 3670 3650
75% 3840 3990 4020 3980
90% 4150 4300 4350 4291

Observations 8276 9003 2678 450

Table 3.1: Descriptive statistics for the Aarhus Birth Cohort.

Some of the variables in the table are self-explanatory, while others require a brief
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description. Doctor visits refers to the number of consultations with a doctor during
the pregnancy. Complications is a binary variable indicating whether or not there
were any kind of complications during the delivery. Test tube baby is a binary variable
indicating whether the child was conceived using artificial insemination. Birth control
pills is also a binary variable which indicates whether or not the mother has used
these within a 4 month period prior to the pregnancy. Prenatal visits is the number
of consultations with a midwife during the pregnancy. Smoked before and smoked
during are both binary variables for the smoking status of the mother before and
during the pregnancy, respectively. Drink is a binary variable indicating whether or
not the mother has consumed alcohol during the pregnancy.2 Finally, diabetes is a
binary variable which indicates whether or not the mother had diabetes at one or
more of the registered pregnancies.

The choice of variables is highly motivated by the study of Abrevaya and Dahl
(2005). In order to reproduce their results we need the same, or at least similar
explanatory variables. The variables for which this was possible are weight, age,
drink, male child, and married. Furthermore, prenatal smoking status and prenatal
care are represented, although in a slightly different way. We use data on smoking
both during and before pregnancy, allowing for smoke to have causal effect in different
ways. Prenatal care is not represented by dummies for the occurrence of the first
prenatal care visit, but only as the number of actual consultations with a midwife.
Even though the data sets display similarities, there are also a few differences. One
variable, or a proxy, could not be obtained, namely the mother’s education, and
some additional variables have been included. These are the mother’s height, birth
complications, artificial insemination, usage of birth control pills, and diabetes.

The descriptive statistics show some interesting differences to the data from Ari-
zona and Washington. First, it can be noticed that, on average, the birthweights are
around 100 grams higher both for first and second child observations. Furthermore,
it seems that mothers in Denmark are almost three years older on average. This
is also the case both for the first and second child. Finally the data indicate that
it is more commonplace to have children out of wedlock in Denmark, than it is in
Arizona and Washington.

The models discussed in the previous section do not all allow the use of an
unbalanced panel, which opts for a division of the data. This study will make use of
three sub data sets, a balanced panel containing the two first observed births of each
mother (19.528 observations), and an unbalanced panel containing all observations
(20.407). Furthermore, for a more precise comparison, we include a balanced panel
with the restriction that the two observed births must actually be the mother’s two
first births (15.620 observations). We will refer to this as the restricted balanced
panel.

2We define alcohol consumption as more than 1 Danish standard drink (12 grams of pure
alcohol) per week.
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4 Estimation Results

Applying the models from Section 2 to the data described in Section 3, the causal
effects of maternal smoking and the other observed variables on birthweight are
estimated. The model specification includes the variables summarized in Table 3.1,
dummy variables indicating whether an observation is a mother’s second, third, or
fourth birth, along with dummy variables for birth years. In order to allow for
non-linear effects in weight and age these are also included in quadratic forms.

The choice of birhtweight as the dependent variable gives rise to an important
question: should gestational age be included as an explanatory variable? There is no
doubt that gestational age is correlated with birthweight and that it is not captured
in the unobserved heterogeneity. However, in the present analysis the interest lies in
the total effect of maternal smoking on birthweight, including any effects propagated
through gestational age. Therefore it is not necessary to include gestational age as
an explanatory variable, it might even be inappropriate as it could have undesirable
effects due to multicollinearity. In this context it should also be emphasized that
on the matter of not including gestational age as explanatory variable we follow
recent leading econometric studies on birthweight, see e.g. Abrevaya (2001, 2006),
Abrevaya and Dahl (2005), Chernozhukov (2005), and Koenker and Hallock (2001).

All estimations agree on the presence of a significant adverse effect of maternal
smoking during pregnancy, leaving little doubt that smoking may reduce birthweight
to some extent. This, along with other interesting findings from each model, will be
discussed in the following. First, in the interest of comparison with Abrevaya and
Dahl (2005), we examine the AD-model. Second, the pros and cons of the extended
version of the Mundlak model are presented, along with a discussion of the balanced
and unbalanced datasets. Finally, we comment on the usability of the fixed effects
model in the present analysis. Providing a complete set of results would be too
extensive and unnecessary for our purpose. The assessment is therefore restricted to
results yielding main insights and differences between the models. A complete set of
results is, however, available upon request from the corresponding author.

The AD-model

The results for the AD-model estimation and a comparable cross-sectional estima-
tion, i.e. a pooled regression ignoring all unobserved heterogeneity, are presented in
Tables 4.1–4.2. These will serve as a good frame of reference for our discussion
since they are comparable to Abrevaya and Dahl (2005, tables 2–3) and illustrate
important points regarding the analysis.

The variables second child and male child are significant and positive across all
quantiles in both the cross-section and AD-model estimations. This is to be expected
since it is generally acknowledged that the birthweight of male children is higher on
average, and that the birthweight increases with the parity of the mother. This is
generally in line with Abrevaya and Dahl’s results except that their estimates of the
second child -coefficients are smaller.

The interpretation of the variables doctor visits and prenatal visits is somewhat
difficult. The main problem with prenatal visits is that there may be two reasons
for consulting a midwife, either as a routine/precautionary measure or because of
complications. It is not possible to distinguish between these two effects of the vari-
able. In spite of this, the estimates are significant, positive, and slightly decreasing
across the quantiles, and clearly capture some effect. However, it is difficult to say
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Quantile Regressions

10% 25% 50% 75% 90% OLS

Second child 189.755 *** 194.697 *** 180.800 *** 154.846 *** 142.358 *** 163.750 ***

(23.750) (16.637) (13.678) (25.372) (38.138) (21.215)
Height 9.043 *** 9.429 *** 10.485 *** 12.016 *** 11.227 *** 11.122 ***

(1.444) (1.054) (0.945) (1.037) (1.268) (0.861)
Diabetes 208.023 ** 166.742 ** 258.316 *** 307.097 *** 346.674 *** 259.728 ***

(105.063) (72.229) (50.345) (60.695) (107.671) (54.452)
Doctor visits 9.080 11.546 14.837 * 15.242 * 7.884 15.895

(14.641) (10.602) (8.014) (8.199) (10.184) (9.939)
Complications -107.590 *** -69.679 *** -34.493 ** -35.107 ** -20.853 -68.540 ***

(26.905) (17.739) (15.457) (17.628) (27.202) (12.466)
Test tube baby -58.471 -39.007 9.673 -25.361 -245.637 ** -51.388

(125.002) (84.679) (51.349) (70.056) (108.613) (47.038)
Birth control pills -34.941 -30.793 -22.358 -6.226 4.336 -16.644

(23.717) (18.873) (16.013) (16.754) (23.662) (11.500)
Weight 21.008 1.484 4.390 16.663 * 7.021 11.087

(14.566) (11.126) (8.744) (9.691) (14.654) (7.202)

Weight2 -0.140 -0.009 -0.041 -0.109 * -0.014 -0.069
(0.097) (0.073) (0.058) (0.064) (0.096) (0.047)

Prenatal visits 98.923 *** 82.284 *** 73.899 *** 71.518 *** 73.636 *** 59.392 ***

(12.795) (7.779) (5.468) (5.793) (7.735) (14.269)
Age -19.790 -7.228 -19.173 -33.333 -36.239 -29.097

(36.486) (26.033) (22.047) (25.435) (35.063) (18.757)

Age2 0.294 0.118 0.286 0.674 * 0.827 0.553 *

(0.586) (0.421) (0.357) (0.399) (0.567) (0.293)
Smoked before -9.656 -10.147 -2.290 -17.972 -19.368 -17.993

(40.758) (34.466) (27.275) (30.851) (39.134) (22.182)
Smoked during -199.603 *** -175.664 *** -97.892 *** -61.750 -44.052 -91.221 ***

(55.014) (39.147) (31.715) (39.620) (41.454) (26.386)
Drink -0.283 5.985 -16.021 -59.112 -90.497 * -54.434 *

(56.018) (51.755) (40.477) (41.017) (54.334) (29.501)
Male child 146.448 *** 137.056 *** 142.064 *** 166.553 *** 185.202 *** 150.489 ***

(20.990) (13.946) (11.113) (12.939) (17.596) (8.961)
Married 15.998 -12.503 4.690 8.819 -7.206 9.084

(29.768) (20.529) (17.250) (20.335) (28.925) (14.457)

Asterisks denote the significance level (double-sided). *: 10%, **: 5%, ***: 1%.
Bootstrapped standard errors are given in parentheses. The bootstrapping was done using samples of
10.000 births and 1.000 iterations.

Table 4.1: Quantile regression estimates of βτ , τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}
and OLS estimates of β for the AD-model applied to the restricted balanced
dataset. The dependent variable is birthweight in grams.

whether it is the prenatal visits as such that increases birthweight or if it is simply
a proxy for something else. One could, for instance, imagine that mothers of lower
social class would be less inclined to attend prenatal visits due to either economic
or social reasons. If, say, lower class mothers in general give birth to less healthy
babies, then this could account for a significant part of the observed effect. If this
is the case, we would expect the estimates from the AD-model to be lower than the
cross-section estimates, because the mother’s social class would be part of the unob-
served heterogeneity. When not controlling for this, the effect could be captured in
prenatal visits. The estimates of the AD-model are, however, only slightly smaller
than the cross-section estimates.

The interpretation of doctor visits is also difficult since the need for a doctor visit
may or may not be related to the pregnancy, and the assessment of when a doctor
visit is actually necessary is very individual. Thus we are again faced with a problem
of unobserved heterogeneity. Our estimates, however, show only little significance,
so judging whether the AD-model handles this is impossible. A comparison with
Abrevaya and Dahl is troublesome for these two variables since they account for
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Quantile Regressions

10% 25% 50% 75% 90% OLS

Second child 180.412 *** 200.236 *** 175.475 *** 177.905 *** 174.807 *** 180.189 ***

(16.554) (10.846) (9.403) (11.439) (16.311) (9.532)
Height 8.883 *** 9.619 *** 10.248 *** 11.675 *** 11.007 *** 10.931 ***

(1.405) (0.970) (0.929) (1.018) (1.228) (0.845)
Diabetes 35.502 125.087 * 264.538 *** 274.123 *** 288.340 *** 224.711 ***

(106.122) (70.557) (46.208) (53.998) (105.230) (53.099)
Doctor visits 14.270 12.286 14.102 ** 11.308 1.219 17.498 *

(10.530) (7.776) (6.699) (7.868) (10.192) (9.359)
Complications -221.364 *** -126.828 *** -78.780 *** -66.966 *** -58.654 *** -129.241 ***

(22.370) (13.909) (11.313) (11.913) (16.762) (11.476)
Test tube baby -9.895 -7.795 -9.278 -22.087 -31.191 -19.736

(73.345) (46.189) (29.450) (37.648) (48.922) (32.649)
Birth control pills -14.933 -14.974 -20.171 * -12.654 -8.765 -12.284

(17.279) (11.985) (11.964) (13.836) (13.729) (10.030)
Weight 22.821 *** 24.132 *** 22.685 *** 20.730 *** 21.981 *** 23.043 ***

(5.927) (3.886) (3.308) (4.066) (4.646) (3.159)

Weight2 -0.125 *** -0.124 *** -0.109 *** -0.089 *** -0.089 *** -0.111 ***

(0.040) (0.027) (0.022) (0.028) (0.031) (0.021)
Prenatal visits 109.217 *** 96.544 *** 92.358 *** 94.920 *** 88.196 *** 72.130 ***

(12.436) (7.172) (5.400) (4.814) (6.615) (15.870)
Age 29.311 13.737 2.735 -20.771 6.849 8.149

(18.129) (16.294) (12.283) (13.504) (18.272) (11.879)

Age2 -0.494 -0.248 -0.057 0.348 -0.102 -0.143
(0.304) (0.271) (0.204) (0.226) (0.298) (0.195)

Smoked before 7.580 24.190 -1.754 4.349 15.803 0.843
(21.009) (16.820) (14.697) (18.916) (26.121) (15.619)

Smoked during -204.451 *** -207.515 *** -171.138 *** -163.841 *** -136.874 *** -166.515 ***

(31.334) (23.073) (19.527) (28.523) (39.527) (23.651)
Drink 10.210 -3.196 9.895 -52.831 * -57.418 * -10.840

(44.174) (28.541) (24.523) (30.981) (34.270) (22.964)
Male child 115.649 *** 113.763 *** 121.437 *** 149.842 *** 165.181 *** 133.374 ***

(13.979) (9.640) (8.504) (9.871) (13.576) (7.725)
Married -19.810 -16.545 -8.808 -1.487 10.025 -8.323

(16.037) (11.098) (9.788) (11.077) (14.541) (8.944)

Asterisks denote the significance level (double-sided). *: 10%, **: 5%, ***: 1%.
Bootstrapped standard errors are given in parentheses. The bootstrapping was done using samples of
10.000 births and 1.000 iterations.

Table 4.2: Quantile regression estimates of βτ , τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}
and OLS estimates of β for the cross-sectional estimation based on the re-
stricted balanced dataset. The dependent variable is birthweight in grams.

prenatal care with different variables, but in general they also find that prenatal
care is significant.

In the cross-sectional case, the estimates of smoked during are significant across
the entire distribution, suggesting an effect of 140–200 grams reduction in birth-
weight. It seems plausible, however, that the variable also captures the effect of an
overall unhealthy lifestyle. This should be controlled for in the AD-model producing
a different picture, and surely this is the case. The AD-model shows a similarly large
and significant effect at the far left part of the distribution. This effect, however,
diminishes more rapidly and loses significance when we move towards the right tail.
This is in contrast to of Abrevaya and Dahl’s findings, where there is a pronounced
reduction in the effect across the entire distribution. Our model specification also
includes the variable smoked before. Interestingly, this variable is not significant,
indicating no direct effects from maternal smoking prior to pregnancy on birth out-
comes.

The remaining variables comparable to Abrevaya and Dahl’s study are married,
age, and age2. Here our results differ substantially. In the study by Abrevaya and
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Dahl all three variables are significant in both estimations, whereas our results show
almost no significance. A reason for this could be that America has a substantial
social gap compared to Denmark. This will undoubtedly have consequences for young
and/or unmarried mothers in America, who do not have the same social benefits as
offered in Denmark.

Our model includes three variables that describe the mother’s physical size,
weight, weight2, and height. If we consider the cross-sectional results first, we find
that the estimates are significant across the distribution, which indicates that they
affect birth weight. However, the same results are not present in the AD-model. The
conclusions of the weight coefficients change dramatically. While the mother’s weight
significantly explains some of the unobserved heterogeneity through λ, e.g. genes or
an unhealthy lifestyle, which may have causal effect on the birthweight outcome, it
does not have direct effect through the point estimates. The two estimations obtain
similar results for height.

Diabetes is commonly thought to increase the birthweight of babies. This is also
seen in both estimations. The AD-model shows a positive and significant estimate
across all quantiles, where the cross-sectional estimation lacks significance in the
left tail. Complications shows a decreasing effect, in absolute terms, across the
quantiles. This seems plausible since birth complications are more common in cases
of very low birthweights. After controlling for unobserved effects, the coefficients are
approximately halved and even become insignificant at the 90% quantile.

The last three variables, test tube baby, birth control pills, and drink, are all
mostly insignificant in both estimations. It seems puzzling that drink has very
little significance. In view of the negative health implications attributed to alcohol
consumption, it could be expected to have a negative effect on birthweight. There
could be many reasons why this does not show up in our results, one of which could
be measurement or reporting errors.

The Extended Mundlak Model

The motivation for considering an extension of the Mundlak model to quantiles is
that, at the expense of a restriction on the projection of cm, it allows for unbalanced
datasets. As argued in Section 2, the Mundlak model can be viewed as a restricted
version of the AD-model when considering balanced datasets. Therefore, it would
be tempting to expect the results of the two models to be similar, which in fact they
turn out to be.

If we assume the AD-model is a well specified model for estimating effects on
birthweight, it seems that the restriction imposed by using the extended Mundlak
model does not invalidate the results, and this justifies its use when beneficial. To
explore this further we will now consider the balanced dataset, i.e. the dataset with-
out the restriction that only first and second children are allowed. The estimation
results for the extended Mundlak model are given in Table 4.3.

Comparing the results to those of the corresponding AD-model estimation reveals
only few differences, and this further supports the idea that the models reach similar
conclusions. These findings suggest that, at least for our specification, we can ex-
tend the AD-model analysis to unbalanced datasets by using the extended Mundlak
model. The obvious reason for using an unbalanced panel is that it increases our
sample size. There is, however, also a more subtle reason. The restricted balanced
dataset used for the AD-model estimation in Table 4.1 only includes the first two
births for a given mother. This is a sample selection we have not justified. Restrict-
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Quantile Regressions

10% 25% 50% 75% 90% OLS

Height 7.978 *** 9.248 *** 10.345 *** 11.604 *** 10.524 *** 10.580 ***

(1.364) (0.904) (0.866) (0.992) (1.276) (0.818)
Diabetes 227.743 *** 233.965 *** 264.737 *** 320.381 *** 333.542 *** 287.184 ***

(78.996) (63.938) (43.952) (45.670) (86.036) (44.881)
Second child 159.972 *** 165.738 *** 146.458 *** 161.901 *** 146.070 *** 152.574 ***

(20.503) (13.641) (14.239) (12.274) (20.485) (13.645)
Third child 190.762 *** 181.595 *** 165.659 *** 217.390 *** 221.757 *** 187.903 ***

(31.421) (25.315) (21.456) (23.266) (28.936) (20.110)
Fourth child 124.089 * 183.398 *** 194.305 *** 167.819 *** 221.412 *** 171.732 ***

(63.518) (48.495) (43.837) (45.089) (55.041) (33.644)
Doctor visits 5.323 6.708 16.147 *** 11.461 * 1.767 13.929 **

(10.983) (8.566) (6.111) (6.939) (9.545) (6.892)
Complications -126.132 *** -72.458 *** -48.998 *** -38.661 ** -17.035 -77.132 ***

(24.225) (16.424) (13.320) (15.879) (21.691) (10.996)
Test tube baby -40.857 -34.183 32.675 -32.220 -183.582 ** -43.127

(108.593) (79.441) (55.083) (57.907) (82.413) (40.005)
Birth control pills -47.132 * -51.985 *** -25.949 * -5.240 2.269 -27.736 **

(25.968) (16.642) (13.609) (16.969) (22.594) (11.810)
Weight 4.171 0.058 1.766 4.208 7.319 6.388

(13.149) (9.136) (7.791) (7.250) (11.752) (5.587)

Weight2 -0.022 0.009 -0.019 -0.025 -0.011 -0.035
(0.085) (0.058) (0.053) (0.047) (0.078) (0.036)

Prenatal visits 106.033 *** 88.020 *** 72.258 *** 73.366 *** 65.808 *** 63.255 ***

(9.229) (5.066) (4.430) (5.063) (7.072) (13.384)
Age -31.579 -9.213 -0.366 -35.329 * 4.155 -10.110

(29.321) (19.721) (16.621) (20.443) (27.703) (14.503)

Age2 0.625 0.236 0.113 0.666 ** 0.076 0.280
(0.466) (0.311) (0.256) (0.326) (0.437) (0.223)

Smoked before -41.428 -8.077 -13.029 -4.285 -17.518 -21.043
(40.110) (27.490) (25.356) (25.926) (36.435) (19.314)

Smoked during -154.714 *** -145.682 *** -105.910 *** -118.914 *** -29.055 -111.761 ***

(54.337) (36.197) (31.635) (35.411) (49.585) (25.267)
Drink 37.855 -39.930 -41.613 -60.300 -45.709 -45.961 *

(55.184) (39.995) (33.765) (36.719) (43.853) (25.302)
Male child 132.131 *** 130.009 *** 135.214 *** 163.873 *** 182.605 *** 149.059 ***

(16.549) (11.625) (9.596) (12.618) (15.593) (8.295)
Married 14.053 -0.299 8.881 1.107 -9.919 6.347

(26.185) (17.923) (15.248) (17.731) (28.270) (12.808)

Asterisks denote the significance level (double-sided). *: 10%, **: 5%, ***: 1%.
Bootstrapped standard errors are given in parentheses. The bootstrapping was done using samples of
10.000 births and 1.000 iterations.

Table 4.3: Quantile regression estimates of βτ , τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}
and OLS estimates of β for the Mundlak-model applied to the balanced
dataset. The dependent variable is birthweight in grams.
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Quantile Regressions

10% 25% 50% 75% 90% OLS

Height 8.017 *** 9.329 *** 10.345 *** 11.783 *** 10.640 *** 10.609 ***

(1.381) (0.881) (0.854) (0.945) (1.226) (0.769)
Diabetes 214.311 *** 237.259 *** 268.596 *** 313.671 *** 365.995 *** 286.970 ***

(78.770) (65.245) (42.555) (47.417) (89.944) (46.080)
Second child 162.594 *** 163.974 *** 146.047 *** 167.760 *** 151.549 *** 158.344 ***

(17.867) (14.272) (14.192) (11.937) (18.573) (11.854)
Third child 191.163 *** 185.084 *** 174.986 *** 232.630 *** 225.607 *** 200.432 ***

(26.972) (22.762) (19.963) (21.385) (26.919) (17.404)
Fourth child 149.724 *** 174.944 *** 176.530 *** 194.989 *** 212.862 *** 176.321 ***

(52.256) (34.491) (38.501) (38.876) (45.732) (29.381)
Doctor visits 5.223 6.812 15.735 *** 11.922 * 0.917 12.991 **

(9.385) (7.524) (5.979) (6.302) (7.955) (6.511)
Complications -141.136 *** -77.764 *** -54.438 *** -36.287 ** -13.061 -78.756 ***

(21.490) (14.846) (11.708) (14.139) (19.629) (10.038)
Test tube baby -54.188 -14.497 12.181 -35.263 -169.351 ** -47.760

(100.113) (74.896) (55.983) (55.975) (79.365) (39.067)
Birth control pills -47.964 ** -48.141 *** -26.857 ** -2.581 -1.977 -28.424 **

(22.014) (15.761) (12.948) (16.523) (20.412) (11.312)
Weight 2.530 -1.276 2.758 4.114 17.714 7.857

(11.288) (9.119) (7.827) (7.118) (11.029) (5.680)

Weight2 -0.012 0.019 -0.021 -0.023 -0.079 -0.042
(0.074) (0.059) (0.053) (0.046) (0.072) (0.037)

Prenatal visits 105.219 *** 88.322 *** 72.275 *** 72.906 *** 65.419 *** 64.910 ***

(8.102) (4.991) (4.504) (4.895) (6.440) (12.127)
Age -13.588 -12.287 -5.671 -30.932 * 3.166 -9.703

(24.921) (16.166) (17.833) (17.144) (24.278) (13.137)

Age2 0.334 0.327 0.183 0.551 ** 0.038 0.251
(0.392) (0.250) (0.271) (0.269) (0.386) (0.199)

Smoked before -29.795 -7.694 -15.973 -4.508 -23.288 -15.269
(35.511) (25.186) (23.699) (25.682) (33.935) (18.088)

Smoked during -135.706 ** -135.621 *** -102.690 *** -118.826 *** -30.931 -112.046 ***

(54.916) (30.292) (28.994) (33.754) (48.382) (23.212)
Drink 10.109 -31.438 -37.624 -49.840 -47.725 -42.651 *

(53.593) (35.293) (35.422) (36.005) (41.802) (24.605)
Male child 119.863 *** 126.476 *** 135.747 *** 161.193 *** 192.018 *** 145.486 ***

(15.397) (10.807) (9.161) (11.461) (140) (7.466)
Married 1.389 -12.561 1.967 -4.695 -16.802 -2.811

(24.369) (16.776) (14.179) (16.298) (24.628) (11.225)

Asterisks denote the significance level (double-sided). *: 10%, **: 5%, ***: 1%.
Bootstrapped standard errors are given in parentheses. The bootstrapping was done using samples of
10.000 births and 1.000 iterations.

Table 4.4: Quantile regression estimates of βτ , τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}
and OLS estimates of β for the Mundlak-model applied to the unbalanced
dataset. The dependent variable is birthweight in grams.

ing the data in such a way induces a potential risk of biased estimates. By using
an unbalanced panel we can reduce this sample selection problem, as all available
observations are included. The estimates based on this panel, using the extended
Mundlak model, are presented in Table 4.4.

The balanced and unbalanced panels, in this case, do not differ substantially
in terms of the number of observations. Therefore, it is hardly surprising that the
estimations based on these produce almost identical results. The restricted balanced
panel, on the other hand, contains almost 5.000 observations less than the unbalanced
panel, a difference which has an impact on some of the estimation results. The
most conspicuous difference is the point estimates of smoked during, which after the
inclusion of the remaining observations, becomes smaller in magnitude, and shows
less variation across quantiles. However, the significance is hardly affected, cf. This
is conveniently illustrated in Figure 4.1.
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Figure 4.1: Difference in point estimates of smoked during for the extended
Mundlak model, including 95% confidence bands, when applied to the re-
stricted balanced and unbalanced datasets. The straight lines are from the
OLS estimation.

This naturally leads to the very interesting question of which estimates are more
“correct”. It would be tempting to conclude that the restricted balanced dataset is
biased and that the “correct” effect is smaller in magnitude. However, this is not nec-
essarily true. It is important to realize is that we obtain two different estimates from
the restricted balanced and balanced/unbalanced datasets, since the estimates are
assumed to be constant across births. When estimations are based on the restricted
balanced dataset we obtain an estimate of how smoked during affects first and second
borns, whereas the balanced and unbalanced datasets give an estimate of causality
for first through fourth borns. Thus, if we cannot assume that the estimates are
constant across births, then the estimates are not directly comparable.

The Fixed Effects Model

The fixed effects model provides a quite different way of controlling for the unob-
served heterogeneity. While the two models above view the heterogeneity as projec-
tions onto the observables, the fixed effects model directly estimates these effects, i.e.
an estimate for each cm in (2.21) is obtained. The model proposed by Koenker (2004)
assumes these to be constant across quantiles, and thus requires all quantiles to be
estimated simultaneously. For this purpose we need to define the weights assigned
to each quantile. In his paper, Koenker only considers three quantiles, using Tukey’s
trimean as a prototype for his weights. This is one way of providing estimates that
reflect the central tendency of the distribution of cm. In our estimation we are not
interested in using the estimates of the unobserved heterogeneity directly, their only
purpose is to control for the unobserved effects. We therefore simply weigh all quan-
tiles equally. Furthermore, we choose the penalty parameter in the same way as
Koenker, i.e. λ = 1. The estimation results for the restricted balanced dataset are
provided in Table 4.5.

The table also provides OLS estimates of the model which, however, do not
include the penalty. The variables height and diabetes are for a given mother constant
across births, and can therefore not be estimated by means of OLS. The results are
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Quantile Regressions

10 % 25 % 50 % 75 % 90 % OLS

Height 13.304 13.001 13.051 12.607 12.452
(218.617) (218.648) (218.636) (218.673) (218.648)

Diabetes 204.062 215.103 247.081 277.842 270.466
(44941.512) (44938.923) (44939.356) (44939.642) (44939.678)

Doctor visits 16.249 * 15.989 ** 16.309 ** 14.947 ** 13.753 * 15.058
(8.732) (7.655) (7.182) (6.736) (7.331) (11.093)

Complications -103.455 *** -80.241 *** -65.932 *** -59.095 *** -58.157 -201.472 ***

(27.931) (30.384) (22.987) (21.334) (50.580) (44.196)
Test tube baby -26.827 -19.604 -7.193 -11.861 -28.208 22.162

(71.322) (57.075) (48.216) (52.322) (58.609) (42.654)
Birth control pills -26.219 -23.001 * -20.115 -14.788 -13.085 -13.681

(16.210) (13.004) (12.945) (14.562) (16.258) (14.007)
Weight 21.638 * 21.776 19.504 19.448 20.162 35.684 ***

(11.056) (13.360) (12.657) (13.821) (12.524) (4.241)

Weight2 -0.110 * -0.108 * -0.089 -0.084 -0.087 -0.177 ***

(0.057) (0.065) (0.059) (0.065) (0.061) (0.029)
Prenatal visits 78.235 *** 78.558 *** 78.478 *** 78.829 *** 78.263 *** 96.201 ***

(9.516) (8.713) (8.196) (8.090) (7.617) (22.178)
Age -2.213 -5.751 -10.954 -17.389 -14.261 63.678 ***

(29.522) (35.504) (34.353) (32.249) (30.816) (18.684)

Age2 -0.016 0.054 0.156 0.277 0.236 -1.069 ***

(0.392) (0.517) (0.488) (0.443) (0.430) (0.297)
Smoked before -20.371 -11.101 -4.500 -2.090 -2.306 12.217

(30.076) (22.240) (21.819) (22.851) (26.582) (20.522)
Smoked during -164.691 *** -160.723 ** -153.053 ** -143.558 *** -131.266 *** -193.477 ***

(62.883) (64.972) (60.259) (55.380) (40.121) (29.453)
Drink -27.749 -30.080 -46.020 -45.556 -53.730 19.880

(44.219) (40.223) (34.820) (36.064) (44.272) (32.622)
Male child 126.667 *** 133.984 *** 146.549 *** 153.923 *** 157.357 *** 116.775 ***

(14.287) (15.215) (10.395) (11.437) (16.738) (14.750)
Married 7.324 6.297 3.024 1.900 2.688 -32.659 **

(18.363) (16.137) (16.281) (16.869) (17.472) (14.055)
Second child 175.163 *** 176.564 *** 176.647 *** 175.074 *** 173.241 *** 177.532 ***

(42.410) (18.290) (18.686) (18.552) (35.592) (24.682)

Asterisks denote the significance level (double-sided). *: 10%, **: 5%, ***: 1%.
Bootstrapped standard errors are given in parentheses. The bootstrapping was done using samples of
10.000 births and 1.000 iterations.

Table 4.5: Quantile regression estimates of βτ , τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}
and OLS estimates of β for the FE-model applied to the restricted balanced
dataset. The dependent variable is birthweight in grams.

roughly comparable to those of the AD- and extended Mundlak models. Except for
height and diabetes, the variables show similar significance levels and point estimates.
The standard errors for height and diabetes are, however, quite unsettling. Applying
the model to the two larger datasets further adds to our discomfort as the results are
altered dramatically. Figure 4.2 illustrates this by comparing two sets of estimates
for smoked during using the unbalanced dataset, where the only difference is the
omission of the insignificant variable smoked before. Obviously, Koenker’s method
might behave in this fashion because of the lack of meaningful variation in “problem”
variables such as height and diabetes.

However, we believe that an estimation problem of this magnitude causes great
numerical stability issues. In particular, it turns out that estimation results based
on the balanced and unbalanced panels vary unpleasantly with the choice of com-
puter processor. For some estimates differences even appear on the first digit. This
phenomenon is present, but not as pronounced, for the restricted balanced panel.
This indicates that numerical errors accumulate drastically with the proportions of
the minimization problem.
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Figure 4.2: Difference in point estimates of smoked during for the FE-model,
including 95% confidence bands, when removing the insignificant variable
smoked before.

Assuming that the problem is the dimensions of the panel, we seek to overcome
this by employing a simple two-stage estimation procedure along the lines of Arulam-
palam et al. (2007). The results from using this procedure on the restricted balanced
dataset are given in Table 4.6. Here the coefficient ĉm is associated with the esti-
mated unobserved mother-specific effect. With the exception of the coefficients to
the variables height and diabetes that still seem to be problematic (as in Koenker’s
method), the signs of the estimated effects are generally as expected hereby con-
firming our previous findings. In addition, there are a few other noticeable features.
First, the estimated effects of smoked during are of a smaller magnitude numeri-
cally and are less than 100 grams uniformly across quantiles. Second, smoked before
comes out significantly negative at the 10% quantile. Third, drink has a significantly
negative effect on the right-hand side of the conditional birthweight distribution.

5 Concluding Remarks

In this paper we have used the AD-model to investigate causal effects of birth input
on birthweight outcomes. Like those of Abrevaya and Dahl (2005), our results show
the importance of considering conditional quantiles and controlling for unobserved
heterogeneity when estimating determinants of birthweight outcomes in a Danish
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Quantile Regressions

10 % 25 % 50 % 75 % 90 % OLS

Height -1.031 * -0.922 0.148 0.768 0.792
(0.608) (0.752) (0.119) (0.537) (0.571)

Diabetes -72.418 * -53.042 4.062 48.756 100.171 **

(43.892) (33.662) (3.250) (31.952) (50.980)
Doctor visits 15.008 15.299 * 16.026 * 15.887 * 12.258 16.160 *

(9.957) (9.235) (9.453) (8.861) (9.298) (9.413)
Complications -94.608 *** -69.085 *** -54.620 *** -36.477 * -23.680 * -65.549 ***

(20.580) (14.171) (15.949) (20.564) (14.362) (13.114)
Test tube baby -82.054 -59.978 -37.668 -47.442 -26.815 -51.721

(58.974) (51.942) (48.787) (50.519) (54.297) (48.180)
Birth control pills -18.737 -15.467 -19.528 * -14.214 -12.229 -16.850

(14.470) (12.182) (11.847) (12.241) (13.083) (11.688)
Weight 9.839 12.672 * 11.030 10.582 14.013 * 11.638

(8.059) (7.332) (7.440) (7.564) (7.772) (7.409)

Weight2 -0.070 -0.084 * -0.069 -0.060 -0.079 -0.072
(0.053) (0.049) (0.050) (0.051) (0.051) (0.050)

Prenatal visits 70.206 *** 66.021 *** 64.351 *** 64.611 *** 66.923 *** 58.637 ***

(13.705) (13.736) (14.971) (12.848) (10.655) (15.558)
Age -45.808 * -39.803 -37.273 -32.939 -26.179 -34.806

(25.818) (24.821) (24.766) (24.735) (24.510) (24.721)

Age2 0.632 ** 0.535 * 0.520 * 0.468 * 0.378 0.477 *

(0.302) (0.284) (0.284) (0.284) (0.285) (0.284)
Smoked before -53.044 ** -31.555 -17.527 -5.696 7.902 -19.561

(26.112) (23.617) (21.045) (23.044) (23.142) (21.040)
Smoked during -86.668 *** -97.116 *** -90.409 *** -91.580 *** -89.592 *** -92.724 ***

(30.385) (26.322) (26.311) (26.581) (28.957) (25.904)
Drink -39.208 -38.222 -53.992 * -64.381 ** -73.152 ** -55.082 *

(36.464) (33.790) (29.967) (32.516) (33.813) (29.948)
Male child 138.050 *** 146.482 *** 149.144 *** 159.331 *** 153.927 *** 150.052 ***

(11.515) (9.899) (9.428) (11.601) (11.749) (9.389)
Married 8.045 14.965 8.424 9.063 9.313 10.921

(16.711) (15.038) (14.282) (14.117) (14.781) (14.089)
Second child 164.540 *** 162.812 *** 162.711 *** 160.855 *** 156.740 *** 160.170 ***

(20.179) (19.266) (18.964) (19.010) (18.617) (19.001)
ĉm 1.038 *** 1.009 *** 1.000 *** 0.986 *** 0.951 *** 1.000 ***

(0.018) (0.008) (0.000) (0.010) (0.023) (0.000)

Asterisks denote the significance level (double-sided). *: 10%, **: 5%, ***: 1%.
Bootstrapped standard errors are given in parentheses. The bootstrap was done using a sample size of
10.000 births and 1.000 iterations.

Table 4.6: Quantile regression estimates of βτ , τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}
and OLS estimates of β for the two-step plug-in FE-model applied to the
restricted balanced dataset. The dependent variable is birthweight in grams.

dataset. An example of this is the change in magnitude and significance of prenatal
smoking. Controlling for unobserved effects does not change the fact that smoking
reduces birthweight, but it shows that the effect is primarily a problem in the left
tail of the distribution on a slightly smaller scale. We have argued that a restriction
based on the model by Mundlak (1978) may allow the use of unbalanced datasets,
without this affecting conclusions. We find that including more births is not trivial
and changes both the value and the interpretation of the estimates. Thus, while the
Mundlak-type extension seems to hold for an unbalanced dataset, the estimation ob-
jective should be clear when deciding upon the data to be used. Finally, we consider
two fixed effects estimation approaches applicable to quantile regression models pro-
posed by Koenker (2004) and Arulampalam et al. (2007), respectively. With respect
to Koenker’s approach, we find the estimations to be numerically unstable and not
very suitable for our specific purpose. The results based on the two-stage fixed effects
estimation approach proposed by Arulampalam et al. (2007) are overall in overall

19



agreement with the AD and Mundlak estimations, but with the important exception
that the estimated effects of smoking are reduced significantly in magnitude at the
lower quantiles.

The possible weakness of our methodology is the simplifying assumptions that
were needed in order to go from a linear specification of the data-generating process
to a linear conditional quantile model. This is a challenging problem for further
research, as also noted by Abrevaya and Dahl (2005).
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