
Search and Rest Unemployment∗

Fernando Alvarez

University of Chicago
f-alvarez1@uchicago.edu

Robert Shimer

University of Chicago
shimer@uchicago.edu

January 20, 2008

Abstract

This paper extends Lucas and Prescott’s (1974) search model to develop a notion

of rest unemployment. The economy consists of a continuum of labor markets, each of

which produces a heterogeneous good. There is a constant returns to scale production

technology in each labor market, but labor productivity is continually hit by idiosyn-

cratic shocks, inducing the costly reallocation of workers across labor markets. Under

some conditions, some workers may be rest-unemployed, waiting for local labor market

conditions to improve, rather than engaged in time consuming search. The model has

distinct notions of unemployment (moving to a new labor market or waiting for labor

market conditions to improve) and inactivity (enjoying leisure while disconnected from

the labor market). We obtain closed-form expressions for key aggregate variables and

use them to evaluate the model. Quantitatively, we find that in the U.S. economy many

more people may be in rest unemployment than in search unemployment.
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1 Introduction

This paper distinguishes “search” and “rest” unemployment. Search unemployment is a

costly reallocation activity in which workers look for the best available employment opportu-

nities. Rest unemployment is a less costly activity where a worker waits for her current labor

market conditions to improve. While one might naturally think of temporary layoffs as the

empirical counterpart of rest unemployment, we believe it corresponds to a more common

phenomenon. We view anyone who is not currently working but still loosely attached to an

industry where she previously worked as rest-unemployed.

We construct a model where there is a role for both search and rest unemployment. We

then use the model to ask whether economies with different amounts of search and rest unem-

ployment would behave differently and whether the life of a worker in search unemployment

is substantially different from that of one in rest unemployment. We use the answers to

evaluate the importance of search and rest unemployment in the U.S. economy.

Our model is an extension of Lucas and Prescott’s (1974) search model. The economy

consists of a continuum of sectors, each of which produces a heterogeneous intermediate good

which aggregates into the final consumption good using a Dixit-Stiglitz technology with con-

stant elasticity of substitution θ. Each intermediate good is produced with a constant returns

to scale technology using labor only. Labor productivity is continually hit by idiosyncratic

shocks whose growth rate has a constant expected value and a constant variance per unit of

time. Households have standard time additive preferences. In any time period, households

can use their time endowment to engage in four mutually exclusive activities, from which

they derive different amounts of leisure: work, search unemployment, rest unemployment,

and inactivity, i.e. out of the labor force.

We assume that the reallocation of workers across intermediate good sectors requires

search unemployment. Because of that we refer interchangeably to intermediate good sectors

as labor markets. A worker in a given labor market can either work, engage in rest unemploy-

ment, or leave her current labor market. A rest-unemployed worker is available to return to

work in that labor market, and that labor market only, at no cost. If a worker leaves her labor

market she can either be inactive or engage in search unemployment. A search-unemployed

worker finds a job after a random, exponentially distributed amount of time, upon which she

can locate in the market of her choosing. Thus, search is directed as in Lucas and Prescott

(1974). Finally, workers can costlessly move between search unemployment and inactivity.

We study stationary competitive equilibria with complete markets. Equivalently, we

assume that the household is composed of a large number of members. This implies that a

household values the contribution of the earnings of their members in terms of their expected
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discounted values. Firms producing a given intermediate good take as given the aggregate

output of the final good and the price of all intermediate goods. Labor demand in each

market has elasticity θ, due to the effect of sectoral output on its relative price. Idiosyncratic

productivity shocks shift the demand for labor. Wages are determined competitively in each

labor market and so depend on the number of workers in the labor market and on labor

productivity.

To characterize the equilibrium, let ω denote the log of the wage that would prevail in

a particular labor market if all workers in the market were employed, i.e. if there were no

rest unemployment; we measure wages in utility-equivalent units. The behavior of workers in

different labor markets is characterized by three threshold values ω ≤ ω̂ < ω̄. Workers who

have successfully concluded their search process arrive in the best labor markets, which keeps

ω below ω̄ in all labor markets. Workers in depressed labor markets leave to become search

unemployed, which keeps ω above ω. In markets with ω > ω̂ there is full employment and

the log wage is ω. For ω < ω̂, wages stay at ω̂ and the rest unemployment rate in the market

increases. Workers engaged in rest unemployment stay in depressed labor markets waiting

for conditions to improve. If conditions get bad enough, ω = ω, they leave the market.

Depending on parameter values, there may be no rest unemployment, ω̂ = ω.

We solve our model in continuous time, with log productivity following a Brownian mo-

tion. Workers’ decision on when to enter and exit labor markets implies that ω is a regulated

Brownian motion, with barriers given by the endogenously determined thresholds ω and ω̄.

Any barriers ω and ω̄ imply an invariant distribution of ω across workers. Aggregating across

workers, we then determine the value of final output and the employment and unemploy-

ment rates. We obtain simple characterizations of key endogenous variables, including a pair

of equations for the two thresholds ω and ω̄ and closed-form solutions for the labor force

participation rate, unemployment rate, and share of searchers in the unemployment pool.

The closed form solution facilitates comparative statics and a quantitative evaluation of

the model. We find a tight relationship between the search unemployment rate and the

autocorrelation of wages at the labor market level. Using data for five-digit North American

Industry Classification System (NAICS) industries, we show that annual average weekly

earnings at the industry level are essentially a random walk. According to our model, this

implies that labor markets rarely hit the barriers ω̄ and ω that regulate wages. But since

a labor market must move from the upper barrier to the lower barrier in order for a newly

hired worker to enter search unemployment, it follows that the model cannot simultaneously

generate strongly autocorrelated wages and significant amounts of search unemployment. Our

calibrations suggest that the search unemployment rate—the ratio of search unemployment

to the labor force—is less than 0.5%. One tension with our conclusion that the search
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unemployment rate is small is that it requires a relatively large cost of search. We conjecture

that the introduction of labor market-specific human capital accumulation will substantially

reduce the necessary search cost, a topic that we leave for future research.

Rest provides a complementary source of unemployment. We find that the model is able

to generate significant levels of rest unemployment with plausible parameters, while still

being consistent with the autocorrelation and standard deviation of wages in the data. In

particular, although rest provides almost as much leisure as inactivity, the transition rate

from rest unemployment back to employment is high, approximately 1/2t per unit of time

at short unemployment durations t. We also find that rest unemployment can explain why

measures of job creation and job destruction are a concave function of the time horizon.

For labor markets with rest unemployment, creation and destruction are frequently reversed,

inducing the observed concavity. With only search unemployment, creation and destruction

would be nearly linear functions of elapsed time.

Our model is closely related to Lucas and Prescott (1974). There are three significant

differences between the models. First, we introduce rest unemployment to the framework.

Second, we make particular assumptions on the stochastic process for productivity which

enable us to obtain closed-form solutions; however, we believe our insights, e.g. on the link

between search unemployment and the autocorrelation of wages and on the role of rest un-

employment, carry over to alternative productivity processes. Finally, in Lucas and Prescott

(1974), all labor markets produce a homogeneous good but there are diminishing returns to

scale in each labor market. In our model, each labor market produce a heterogeneous good

and has constant returns to scale. We believe this approach is more attractive because the

extent of diminishing returns is determined by the elasticity of substitution between goods,

which is potentially more easily measurable than the degree of decreasing returns on variable

inputs (Atkeson, Khan, and Ohanian, 1996). An online Appendix B.2 tightens the connec-

tions between these models by solving a market social planner’s problem and proving that

the equilibrium is efficient.

Our concept of rest unemployment is closely related to the one used in Jovanovic (1987),

from whom we borrow the term.1 While in both his model and ours search and rest unem-

ployment coexist, the aims of both papers and hence the setup of the models are different.

Jovanovic (1987) focuses on the cyclical behavior of unemployment and productivity, and so

allows for both idiosyncratic and aggregate productivity shocks. But to be able to analyze the

1Our decision to use this name was not easy. An obvious alternative is “wait unemployment,” but the
literature uses this to refer to workers who wait for a job in a high wage primary labor market rather than
accept a readily available job in a low wage secondary labor market. Although workers in rest unemployment
are waiting for a job, their behavior is quite different from those referred to in this literature. Our concept
of rest unemployment corresponds closely to one notion of structural unemployment; see, for example Abel
and Bernanke (2001, p. 95).
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model with aggregate shocks, Jovanovic (1987) assumes that at the end of each period, there

is exactly one worker in each location. This implies that search unemployment is socially

wasteful. Our model illustrates how search unemployment may play an important role in

reallocating workers away from severely depressed labor markets, while rest unemployment

may be an efficient use of workers’ time in marginal labor markets.

King (1990) and Gouge and King (1997) also develop models of rest unemployment in the

Lucas and Prescott (1974) framework. King (1990) focuses on comparative statics of rest and

search unemployment, while Gouge and King (1997) reexamine the business cycle issues in

Jovanovic (1987), especially the finding that rest unemployment is likely to be countercyclical,

consistent with empirical evidence but not with many models of reallocation. Both papers

assume that the idiosyncratic productivity shock follows a two-state Markov process. This

coarse parameterization has the advantage of making the analysis tractable but complicates

the mapping from model to data. Instead, we find that when log productivity follows a

Brownian motion, the model is still tractable and the mapping from model to data is direct.

In Section 2, we describe the economic environment. We analyze a special case where

workers can immediately move to the best labor market in Section 3. Without any search

cost, there no rest unemployment, since either working in the best labor market or dropping

out of the labor force dominates this activity. Instead, idiosyncratic productivity shocks lead

to a continual reallocation of workers across labor markets.

Section 4 characterizes the stationary equilibrium of the economy. Although the microe-

conomic structure of our model is rich, we can characterize the equilibrium as the solution

to a system of two equations in two endogenous variables and various model parameters.

The system is simple in the sense that we can express the equations in closed form. We

prove that the equilibrium is unique and show that it is easy to compute and perform com-

parative statics. In particular, we find that there is rest unemployment only if the cost in

terms of foregone leisure is low. We also provide closed form expressions for the employ-

ment, search unemployment, and rest unemployment rates. While the unemployment rates

depend a comparison of the relative advantage of different leisure activities—search, rest,

and inactivity—the employment rate depends on a comparison of market versus nonmarket

activity.

Section 5 uses our model to understand the extent of search and rest unemployment in the

U.S. economy. The model has trouble simultaneously generating significant levels of search

unemployment and strongly autocorrelated wages; however, there is no tension between rest

unemployment and wages. We also show how the presence of rest unemployment affects the

behavior of job creation and destruction and the hazard rate of finding a job. The model

with rest unemployment is broadly in line with the data, while the model with only search
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is not.

Section 6 uses our model to ask whether economies with different amounts of search and

rest unemployment can be distinguished and whether the life of a worker in search unem-

ployment is substantially different from that of one in rest unemployment. Our preliminary

conclusions are affirmative and support our finding that rest unemployment may be an em-

pirically important phenomenon.

2 Model

We consider a continuous time, infinite-horizon model. We focus for simplicity on an aggre-

gate steady state and assume markets are complete.

2.1 Intermediate Goods

There is a continuum of intermediate goods indexed by j ∈ [0, 1]. Each good is produced

in a separate labor market with a constant returns to scale technology that uses only labor.

In a typical labor market j at time t, there is a measure l(j, t) workers. Of these, e(j, t) are

employed, each producing Ax(j, t) units of good j, while the remaining l(j, t) − e(j, t) are

rest-unemployed. The price of good j, p(j, t), and the wage in labor market j, w(j, t), are

determined competitively at each instant t. We use the final good as the numeraire.

A is the aggregate component in productivity while x(j, t) is an idiosyncratic shock that

follows a geometric random walk,

d log x(j, t) = µxdt+ σxdz(j, t), (1)

where µx measures the drift of log productivity, σx > 0 measures the standard deviation, and

z(j, t) is a standard Wiener process, independent across labor markets.

To keep a well-behaved distribution of labor productivity, we assume that labor market

j shuts down according to a Poisson process with arrival rate δ, independent across labor

markets and independent of labor market j’s productivity. When this shock hits, all the

workers are forced out of the market. A new labor market, also named j, enters with positive

initial productivity x ∼ F (x), keeping the total measure of labor markets constant. We

assume a law of large numbers, so the share of labor markets experiencing any particular

sequence of shocks is deterministic.
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2.2 Final Goods

A competitive final goods producing sector combines the intermediate goods using the con-

stant returns to scale technology

Y (t) =

(
∫ 1

0

y(j, t)
θ−1

θ dj

)

θ
θ−1

, (2)

where y(j, t) is the input of good j at time t and θ > 0 is the elasticity of substitution across

goods. We assume θ 6= 1 throughout the paper and comment in Section 3 on the role of

this assumption. The final goods sector takes the price of the intermediate goods {p(j, t)} as

given and chooses y(j, t) to maximize profits. It follows that

y(j, t) =
Y (t)

p(j, t)θ
. (3)

2.3 Households

There is a representative household consisting of a measure 1 of members. The large house-

hold structure allows for full risk sharing within each household, a standard device for study-

ing complete markets allocations.

At each moment in time t, each member of the representative household engages in one

of the following mutually exclusive activities:

• L(t) household members are located in one of the intermediate goods (or equivalently

labor) markets.

– E(t) of these workers are employed at the prevailing wage and get leisure 0.

– Ur(t) = L(t) − E(t) of these workers are rest-unemployed and get leisure br.

• Us(t) household members are search-unemployed, looking for a new labor market and

getting leisure bs.

• The remaining 1−E(t)−Ur(t)−Us(t) household members are inactive, getting leisure

bi.

We assume bi > bs. Household members may costlessly switch between employment and rest

unemployment and between inactivity and searching; however, they cannot switch intermedi-

ate goods markets without going through a spell of search unemployment. Workers exit their

intermediate goods market for inactivity or search in three circumstances: first, they may do

so endogenously at any time at not cost; second, they must do when their market shuts down,
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which happens at rate δ; and third, they must do so when they are hit by an idiosyncratic

shock, according to a Poisson process with arrival rate q, independent across individuals

and independent of their labor market’s productivity. We introduce the idiosyncratic “quit”

shock q to account for separations that are unrelated to the state of the industry. Finally, a

worker in search unemployment finds a job according to a Poisson process with arrival rate

α. When this happens, she may enter the intermediate goods market of her choice.

We can represent the household’s preferences via the utility function

∫ ∞

0

e−ρt
(

u(C(t)) + bi
(

1 −E(t) − Ur(t) − Us(t)
)

+ brUr(t) + bsUs(t)
)

dt, (4)

where ρ > 0 is the discount rate, u is increasing, differentiable, strictly concave, and satisfies

the Inada conditions u′(0) = ∞ and limC→∞ u′(C) = 0, and C(t) is the household’s con-

sumption of the final good. The household finances its consumption using its labor income.

2.4 Equilibrium

We look for a competitive equilibrium of this economy. At each instant, each household

chooses how much to consume and how to allocate its members between employment in

each labor market, rest unemployment in each labor market, search unemployment, and

inactivity, in order to maximize utility subject to technological constraints on reallocating

members across labor markets, taking as given the stochastic process for wages in each labor

market; each final goods producer maximizes profits by choosing inputs taking as given the

price for all the intermediate goods; and each intermediate goods producer j maximizes

profits by choosing how many workers to hire taking as given the wage in its labor market

and the price of its good. Moreover, the demand for labor from intermediate goods producers

is equal to the supply from households in each intermediate goods market; the demand for

intermediate goods from the final goods producers is equal to the supply from intermediate

goods producers; and the demand for final goods from the households is equal to the supply

from the final goods producers.

Standard arguments imply that for given initial conditions, there is at most one compet-

itive equilibrium of this economy.2 We look for a stationary equilibrium where all aggregate

quantities and the joint distribution of wages, productivity, output, employment, and rest

unemployment across labor markets are constant. With identical households and complete

markets, consumption is equal to current labor income and hence we ignore financial markets

2The first welfare theorem implies that any equilibrium is Pareto optimal. Since there is only one type
of household, if there were multiple equilibria, household utility would be equal in each. But a convex
combination of the equilibrium allocations would be feasible and Pareto superior, a contradiction.
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in the remainder of this paper.

3 Costless Mobility

To understand the mechanics of the model, we start with a version where nonworkers can

instantaneously become workers; formally, this is equivalent to the limit of the model when

α → ∞. In this limit, the household does not need to devote any workers to search unem-

ployment. Moreover, for bi > br there is no rest unemployment, since with costless mobility,

resting is dominated by inactivity. Thus the household divides its time between employment

and inactivity. Finally, with costless mobility all workers must earn a common, constant

wage w.

The household therefore solves

max
E(t)

∫ ∞

0

e−ρt
(

u(wE(t)) + bi(1 − E(t))
)

dt,

The first order conditions imply that at each date t, E ≤ 1 and bi ≤ wu′(Ew) with comple-

mentary slackness; note that the Inada condition u′(0) = ∞ rules out the possibility of zero

employment.

To close the model, we compute the equilibrium wage. Consider an intermediate goods

market with productivity x and l workers. Output is Q(l, x) = lAx and so equation (3)

implies the price of the good is P (l, x) =
(

Y
lAx

)1/θ
. Then since workers are paid their marginal

revenue product, the wage is

W (l, x) =

(

Y (Ax)θ−1

l

)
1
θ

. (5)

Since wages are equalized across markets, W (l, x) = w, this pins down the relationship

between productivity and employment across labor markets. When θ > 1, more productive

labor markets employ more workers, while if goods are poor substitutes, θ < 1, an increase

in labor productivity lowers employment so as to keep output relatively constant. In the

special case of θ = 1, employment is constant and equal to Y/w in all labor markets. This is

a simple but uninteresting case and so we omit its analysis from the rest of the paper.

Using equation (5), substitute Q(l, x) = lAx = Y (Ax)θ

wθ into equation (2) and simplify to

show that the wage is a weighted average of productivity across markets,

w = A

(
∫ 1

0

x(j, t)θ−1dj

)

1
θ−1

. (6)
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With an invariant distribution for x, we can rewrite equation (6) by integrating across that

distribution. Appendix A.1 finds an expression for the invariant distribution, which requires

δ > 0. Using this, we prove in the appendix that the wage solves

w = AX0





δ

δ − (θ − 1)
(

µx + (θ − 1)σ
2
x

2

)





1
θ−1

. (7)

if

δ > (θ − 1)

(

µx + (θ − 1)
σ2
x

2

)

(8)

and

X0 =

(
∫ ∞

0

xθ−1
0 dF (x0)

)
1

θ−1

∈ (0,∞) (9)

Condition (7) imposes that the exit rate of markets must be sufficiently large, the drift and

variance of productivity sufficiently small, or that the elasticity of substitution sufficiently

close to 1. If this parameter restriction were to fail with θ > 1, the wage w would be

infinite because extremely productive firms would produce an enormous amount of easily-

substitutable goods; with θ < 1, the wage would be zero because very unproductive firms

would require a huge amount of labor to produce any of the poorly-substitutable goods.

Condition (9) restricts the distribution of productivity in new markets for the same reasons.

For future reference, we note two important properties of the frictionless wage. First, if

µx+(θ− 1)σ2
x/2 = 0, w = AX0, independent of δ. We introduced the assumption that δ > 0

mainly for technical convenience, so imposing the restriction µx + (θ − 1)σ2
x/2 = 0 allows to

focus on the limit as δ converges to zero; we do so in Section 5. The condition is equivalent

to imposing that xθ−1 is a martingale which, by equation (5), implies employment l is a

martingale. If employment were a supermartingale, output would converge to zero for small

δ, while if it were a submartingale output would converge to infinity. Second, because of

constant returns to scale, the wage depends on technology but not on preference parameters.

This implies that an increase in the leisure value of inactivity bi raises the marginal utility

of consumption u′(C) by the same proportion, while employment E decreases in proportion

to C. Similar properties hold in the frictional model, to which we turn now.

4 Characterization of Equilibrium

We now return to the model where it takes time to find a new labor market, α <∞. We look

for a steady state equilibrium where the household maintains constant consumption, obtains
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a constant income stream, and keeps a positive and constant fraction of its workers in each

of the activities, employment, rest unemployment, search unemployment, and inactivity. In

equilibrium, in each labor market, which is characterized by productivity x and the number

of workers l, the ratio xθ−1/l follows a Markov process. Workers enter labor markets when

the ratio exceeds a threshold and exit labor markets when it falls below a strictly smaller

threshold.

4.1 The Marginal Value of Household Members

We start by computing the marginal value of an additional household member engaged in

each of the three activities. These are related by the possibility of reallocating household

members.

Consider first a household member who is permanently inactive. It is immediate from

equation (4) that he contributes

v =
bi
ρ

(10)

to household utility. Since the household may freely shift workers between inactivity and

search unemployment, this must also be the incremental value of a searcher, assuming some

members are engaged in each activity. A searcher gets flow utility bs and the possibility of

finding a labor market at rate α, giving capital v̄ − v, where v̄ is the value to the household

of having a worker in the best labor market. This implies ρv = bs + α (v̄ − v) or

v̄ = bi

(

1

ρ
+ κ

)

, where κ ≡
bi − bs
biα

(11)

is a measure of search costs, the percentage loss in current utility from searching rather

than inactivity times the expected duration of search unemployment 1/α. Conversely, a

worker may freely exit her labor market, and so the lower bound on the value of a household

member in a labor market, either employed or search unemployed, is v. If the household

values a worker at some intermediate amount, it will be willing to keep her in her labor

market rather than having her search for a new one.

Finally, consider the margin between employment and resting for a worker in a labor

market paying a wage w. An employed worker generates income valued at u′(C)w, while a

resting worker generates br utils. Since switching between employment and resting is costless,

all workers are employed in any labor market with w > br/u
′(C), and all workers are resting

in any market with w < br/u
′(C). In the intermediate case, some may be employed and some

resting.
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4.2 Wage and Labor Force Dynamics

Consider a labor market with l workers and productivity x. Let P (l, x) denote the price of

its good, Q(l, x) denote the amount of the good produced, W (l, x) denote the wage rate, and

E(l, x) denote the number of workers who are employed. Competition ensures that the wage

is equal to the marginal product of labor, W (l, x) = P (l, x)Ax, while the production function

implies Q(l, x) = E(l, x)Ax. Combining these conditions with the intermediate good demand

curve from equation (3) and the rest-work decision gives

W (l, x) =
1

u′(C)
max{br, e

ω} (12)

Q(l, x) = lAxmin{1, eω/br}
θ (13)

where

ω ≡
log Y + (θ − 1) log(Ax) − log l

θ
+ log u′(C) (14)

is the logarithm of the “full-employment wage” measured in utils, the wage that would prevail

if there were full employment in the labor market.3 When eω > br, the wage exceeds the

value of leisure and so there is no rest unemployment. Otherwise, enough workers rest to the

raise the wage to br/u
′(C).

Since the wage only depends on ω, we look for an equilibrium in which workers immedi-

ately enter any labor market with ω > ω̄ and exit any labor market with ω < ω, where the

thresholds ω ≤ ω̄ are determined endogenously. There is neither entry nor endogenous exits

from labor markets with ω ∈ (ω, ω̄), although a fraction of the workers qdt quit during an

interval of time dt. We allow for the possibility that ω = −∞ so workers never exit labor

markets. When a positive shock hits a labor market j with ω(j, t) = ω̄, ω stays constant and

the labor force l increases. Conversely, negative shocks reduce ω, with l falling as workers

exogenously quit the market. At ω < ω(j, t) < ω̄, both positive and negative shocks affect ω,

while l falls deterministically at rate q. When ω(j, t) = ω, a negative shock reduces l without

affecting ω, while a positive shock raises ω, with l falling due to quits.

If there is an equilibrium with this property, its definition in equation (14) implies ω(j, t)

is a regulated Brownian motion in each market j. When ω(j, t) ∈ (ω, ω̄), only productivity

shocks change ω, so

dω(j, t) =
θ − 1

θ
d log x(j, t) +

q

θ
dt = µdt+ σωdz(j, t), (15)

3Note that eω is analogous to R(Ax, l) in Lucas and Prescott’s (1974) notation. Their production tech-
nology implies that Y does not affect R, while risk-neutrality ensures that u′(C) is constant. Lucas and
Prescott (1974) also assume that Rx > 0—see their equation (1)—which in our set-up is equivalent to θ > 1.
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where

µ ≡
θ − 1

θ
µx +

q

θ
, σω ≡

θ − 1

θ
σx, and σ ≡ |σω|,

i.e., in this range ω(j, t) has drift µ and instantaneous standard deviation σ. When the

thresholds ω and ω̄ are finite, they act as reflecting barriers, since productivity shocks that

would move ω outside the boundaries are offset by the entry and exit of workers. If we

allowed θ = 1, productivity shocks would be offset by price changes in a way that leaves the

wage unchanged and so µ = q and σ = 0, an uninteresting case that would require a separate

analysis.

4.3 Labor Force Participant Value Function

We return now to the value of a worker in a labor market with productivity x and with

l workers. Since the wage only depends on ω, a regulated Brownian motion, we look for

an equilibrium where the worker’s value depends only on ω. Given arbitrary values for the

barriers ω ≤ ω̄, we can define the incremental value to the household of having a worker in

a market with current productivity ω0 as

v(ω0;ω, ω̄) = E

(
∫ ∞

0

e−(ρ+λ)t
(

max{br, e
ω(t)} + λv

)

dt

∣

∣

∣

∣

ω(0) = ω0

)

, (16)

where expectations are taken with respect to future values of the random variable ω(t) and

λ ≡ q + δ

is the rate at which workers exogenously exit markets. The discount rate ρ+λ accounts both

for impatience and for the possibility that the labor market ends exogenously. The time-t

payoff is the prevailing wage; this holds whether the worker is employed or rest-unemployed

because when there is rest unemployment, the worker is indifferent between the two states.

In addition, if the worker exogenously leaves the market, which happens with hazard rate λ,

the household gets a terminal value v.

The utility of a worker in any market must be between v and v̄. If she is in the best

possible market, her utility must be v̄ so searchers are willing to take a job there. If she is in

the worst possible market, her utility must be v so she is indifferent about exiting her labor
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market; such a market exists only if the lower threshold is finite.

v(ω;ω, ω̄) ∈ [v, v̄] for all ω

v(ω̄;ω, ω̄) = v̄ (17)

v(ω;ω, ω̄) = v if ω > −∞.

To characterize the thresholds further, define

Π(ω;ω0;ω, ω̄) ≡ E

(
∫ ∞

0

e−(ρ+λ)tIω(ω(t))dt

∣

∣

∣

∣

ω(0) = ω0

)

,

where Iω(ω(t)) is an indicator function, equal to 1 if ω(t) < ω and equal to zero otherwise.

This discounted occupancy function evaluates to zero at ω ≤ ω and to 1
ρ+λ

at ω ≥ ω̄. We use

Πω(ω;ω0;ω, ω̄) for the density of ω or the discounted local time function, where the subscript

denotes the partial derivative with respect to the first argument. Then switching the order of

integration in equation (16), which is permissible since for −∞ ≤ ω ≤ ω̄ <∞ and ρ+λ > 0,

the function max{br, e
ω} + λv is integrable, we get

v(ω0;ω, ω̄) =

∫ ω̄

ω

(max{br, e
ω} + λv) Πω(ω;ω0;ω, ω̄)dω. (18)

The value of being in a market with current log full-employment wage ω0 is equal to the

expected value of future ω weighted by the appropriate discounted local time function.

Equation (18) is convenient because Πω(ω;ω0;ω, ω̄) is a known function (Stokey, 2006).

It is worth noting that equations (17) and (18) imply some familiar conditions:

(ρ+ λ)v(ω0;ω, ω̄) = max{br, e
ω} + λv + µvω0(ω0;ω, ω̄) +

σ2

2
vω0,ω0(ω0;ω, ω̄), (19)

and vω0(ω̄;ω, ω̄) = vω0(ω;ω, ω̄) = 0, (20)

where subscripts denote partial derivatives with respect to the first argument.4 Together

with the “value-matching” conditions v(ω̄;ω, ω̄) = v̄ and v(ω;ω, ω̄) = v in equation (17), this

is an equivalent representation of the labor force participant’s value function.

Using monotonicity of the period payoff function in equation (18) and monotonicity in

the sense of first order stochastic dominance of Πω, we can now prove

4The first condition, the Hamilton-Jacobi-Bellman equation, can be verified directly by differentiating
equation (18) using the definition of Πω in equation (44). The interested reader can consult the online
Appendix B.1 for the details of the algebra. The second pair of conditions, “smooth-pasting,” follow from

equation (18) because equation (44) implies
∂Πω(ω;ω0;ω,ω̄)

∂ω0

= 0 when ω0 = ω or ω0 = ω̄.

13



Lemma 1. v is continuous and nondecreasing in ω0, ω, and ω̄. It is strictly increasing in

each argument if ω0 ∈ (ω, ω̄) and ω̄ > log br.

The proof is in Appendix A.2. Building on this, we characterize the thresholds:

Proposition 1. Equations (17) and (18) uniquely define ω and ω̄ as functions of model

parameters. A proportional increase in bi, br, and bs raises eω and eω̄ by the same proportion.

Moreover, ω < log bi < ω̄ <∞, with ω > −∞ if and only if br < bi.

The proof of the Proposition in Appendix A.3 defines two objects, Ω̄(ω) solving v(ω̄;ω, ω̄) ≡ v̄

and Ω(ω̄) solving v(ω;ω, ω̄) ≡ v. That is Ω̄(ω) gives the value of the upper threshold such that

if workers enter and exit the market to keep ω̄ ≥ ω ≥ ω, a market at the upper threshold

in fact delivers value v̄. Similarly, Ω(ω̄) gives the value of the lower threshold such that

under the same condition, a market at the lower threshold delivers value v. An equilibrium

is then defined by a fixed point ω̄ = Ω̄(ω) and ω = Ω(ω̄). Exploiting a single-crossing of the

functions Ω and Ω̄, we prove that there exists a unique solution to this pair of equations. The

single-crossing property relies on two key features of the model: the period return function

is monotonic; and an increase in the upper (lower) bound affects the discounted occupancy

function more when ω0 is closer to the upper (lower) bound. Although our proof relies on the

exact functional form of the discounted occupancy function, the properties are likely to hold

more generally when ω is persistent. One can also construct an alternative proof relying on

solving the “island planner’s problem” developed in the online Appendix B.2.

The Proposition establishes that ω is finite when br < bi. Intuitively, if a market is hit

by sufficiently adverse shocks, workers will leave since rest unemployment is costly and has

low expected payoffs. In contrast, when br ≥ bi, rest unemployment is costless and hence

workers only leave labor markets when they shut down. Moreover, if br ≤ bi, there is no

rest unemployment in the best labor markets, ω̄ > log br. The next proposition addresses

whether there is rest unemployment in the worst labor markets, ω ≷ log br.

Proposition 2. There exists a b̄r such that in an equilibrium, br R eω if and only if br R b̄r,

with b̄r = B(κ, ρ + λ, µ, σ)bi for some function B, positive-valued and decreasing in κ with

B(0, ρ+ λ, µ, σ) = 1.

The proof is in Appendix A.4. This Proposition implies that there is rest unemployment

if search costs κ are sufficiently high given any br > 0, or equivalently if the leisure value of

resting br is sufficiently close to the leisure of inactivity bi given any κ > 0. If a searcher finds

a job sufficiently fast (so κ is small) or resting gives too little leisure (so br is small), there is

no reason to wait for labor market conditions to improve, and so B is monotone in κ.
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4.4 Equilibrium

We have solved for the values ω and ω̄ that describe workers’ incentive to enter and exit

labor markets as functions of model parameters. Taking these thresholds as given, we now

find the remaining variables and equations that determine an equilibrium and establish that

they have a unique solution by solving them explicitly. This section is about mechanics and

aggregation given our characterization of optimizing behavior.

The first equilibrium condition is that the final goods market clears, Y = C.

Next, a key object for us is the stationary distribution of the L workers across log full-

employment wages ω; we denote its density by f defined on [ω, ω̄]. Since f is a density,

∫ ω̄

ω

f(ω)dω = 1. (21)

By taking the limit of a discrete time, discrete state-space analog of our model, we prove in

Appendix A.5 that this density has to satisfy three conditions, equations (22)–(24) below.

First, in the interior of its support, it must solve a Kolmogorov forward equation,

λf(ω) = −µf ′(ω) +
σ2

2
f ′′(ω) for all ω ∈ (ω, ω̄). (22)

This captures the requirement that inflows and outflows balance at each point in the support

of the density. Workers exit markets either because of quits or shutdowns at rate λ, while

otherwise ω is a Brownian motion with drift µ and standard deviation σ. Workers whose ω

changes leave this point in the density for higher or lower values of ω, while the density picks

up mass from points above and below when they are hit by appropriate shocks. In a short

period of time, this relates the density of f at nearby points, i.e. it relates the level of f and

its derivatives.

Second, at the lower bound ω,

σ2

2
f ′(ω) −

(

µ+
θσ2

2

)

f(ω) = 0. (23)

The elasticity of substitution θ appears in this equation because it determines how many

workers must exit from depressed markets required to regulate ω above ω. The exogenous

separation rate λ does not appear in this equation because the ratio of endogenous to ex-

ogenous exits is infinite in a short time interval for a market at the lower bound. Since by

definition there are no markets with smaller ω, f(ω) is not fed from below, which explains
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the difference between equations (22) and (23). Finally, at the upper bound ω̄,

σ2

2
f ′(ω̄) −

(

µ+
θσ2

2

)

f(ω̄) = δ
L0

L
, (24)

where L0 is the (endogenous) average number of workers in a new labor market. The logic

for the left hand side of this equation parallels the logic behind equation (23). There is an

extra inflow at ω̄ coming from newly-formed markets, which absorb δL0 workers per unit

of time; dividing by L expresses this inflow as a percentage of the workers located in labor

markets.

In a new labor market with productivity x0, equation (14) implies that the number of

workers is Y u′(Y )θ(Ax0)
θ−1e−θω̄ to ensure a log full-employment wage ω̄. Integrating this

across markets gives

L0 =

∫ ∞

0

Y u′(Y )θ(Ax0)
θ−1e−θω̄dF (x0) = Y u′(Y )θ(AX0)

θ−1e−θω̄, (25)

where the second equation uses the definition of X0 in equation (9).

Our last condition relates intermediate and final goods output. It is convenient to first

define the productivity of a location x consistent with l workers present in the location, a

log full-employment wage ω, and aggregate output and consumption Y . From equation (14),

this solves

x = ξ(l, ω, Y ) ≡
1

A

(

leθω

Y u′(Y )θ

)
1

θ−1

. (26)

Then from equation (13), output in a market with l workers and log full-employment wage

ω is

Q(l, ξ(l, ω, Y )) = Y
−1
θ−1

(

eωl

u′(Y )

)
θ

θ−1

min{1, eω/br}
θ. (27)

Using this notation, we can write equation (2) as

Y =

(∫ 1

0

Q
(

l(j, t), ξ(l(j, t), ω(j, t), Y )
)

θ−1
θ dj

)

θ
θ−1

=

(∫ 1

0

Q
(

L, ξ(L, ω(j, t), Y )
)

θ−1
θ
l(j, t)

L
dj

)

θ
θ−1

The second equation follows because Q(·, ξ(·, ω, Y ))
θ−1

θ is linear (equation 27). To solve this,

we change the variable of integration from the name of the market j to its log full-employment

wage ω and number of workers l. Let f̃(ω, l) be the density of the joint distribution of workers
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in markets (ω, l). Then

Y =

∫ ω̄

ω

∫ ∞

0

Q(L, ξ(L, ω, Y ))
θ−1

θ
l

L
f̃(ω, l) dl dω.

Since f(ω) =
∫∞

0
l
L
f̃(ω, l) dl, we can solve the inner integral to obtain

Y =

(

∫ ω̄

ω

Q
(

L, ξ(L, ω, Y )
)

θ−1
θ f(ω)dω

)
θ

θ−1

, (28)

without characterizing the joint density f̃ .

To summarize, given the thresholds ω and ω̄, an equilibrium is a list {Y, L0, L, f(·)}

solving equations (21)–(25) and (28). We have the following result:

Proposition 3. There exists a unique equilibrium. The steady state density of workers

across labor markets is

f(ω) =

∑2
i=1 |ηi + θ|eηi(ω−ω)

∑2
i=1 |ηi + θ| e

ηi(ω̄−ω)−1
ηi

; (29)

output solves

u′(Y )1−θ =
−2δ(AX0)

θ−1e−(θω̄−ω̂)

σ2(θ + η1)(θ + η2)
(

eη2(ω̄−ω) − eη1(ω̄−ω)
)×

2
∑

i=1

|θ + ηi|

(

eηi(ω̂−ω) − e−θ(ω̂−ω)

θ + ηi
+ eηi(ω̄−ω) e

(ω̄−ω̂) − e−ηi(ω̄−ω̂)

1 + ηi

)

; (30)

and the number of workers in labor markets is

L =
Y u′(Y )

∑2
i=1 |θ + ηi|

eηi(ω̄−ω)−1
ηi

eω̂
∑2

i=1 |θ + ηi|
(

eηi(ω̂−ω)−e−θ(ω̂−ω)

θ+ηi
+ eηi(ω̄−ω) e(ω̄−ω̂)−e−ηi(ω̄−ω̂)

1+ηi

) , (31)

where ω̂ ≡ max{ω, log br} and η1 < 0 < η2 solve the characteristic equation λ = −µη+ σ2

2
η2.

Proof. We solve the system of equations defining an equilibrium recursively. The second

order differential equation (22) and the boundary conditions equations (21) and (23) yields

equation (29) using standard calculations.

Using the expression for f we solve equations (24), (25), and (28) for L0, L, and Y . First
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eliminate L0 between equations (24) and (25) and evaluate f(ω̄) using equation (29) to get

L =
−2δY u′(Y )θ(AX0)

θ−1e−θω̄

σ2(θ + η1)(θ + η2)
(

eη2(ω̄−ω) − eη1(ω̄−ω)
)

2
∑

i=1

|θ + ηi|
eηi(ω̄−ω) − 1

ηi
. (32)

Substitute equation (27) into equation (28) to get

Y =
L

u′(Y )

∫ ω̄

ω

eω min{1, eω/br}
θ−1f(ω)dω

=
Leω̄

u′(Y )

∑2
i=1 |θ + ηi|e

−(ω̄−ω̂)
(

eηi(ω̂−ω)−e−θ(ω̂−ω)

θ+ηi
+ eηi(ω̄−ω) e(ω̄−ω̂)−e−ηi(ω̄−ω̂)

1+ηi

)

∑2
i=1 |θ + ηi|

eηi(ω̄−ω)−1
ηi

, (33)

where we solve the integral using the expression for f in equation (29). Eliminating L

between these equations and solving for u′(Y ) gives equation (30). Since the left hand side

of this equation is monotone, there exists a unique Y solving this equation. Finally, solve

equation (33) for L to complete the proof. �

4.5 Measurement of Unemployment

Once we have found an equilibrium, we can measure the rest and search unemployment rates.

Recall that Ur is the fraction of household members who are rest-unemployed. If log br ≤ ω,

this is zero. Otherwise, in a market with ω ∈ [ω, ω̂], the rest unemployment rate is 1−eθ(ω−ω̂).

Integrating across such markets using equation (29) gives

Ur
L

=

∫ ω̂

ω

(

1 − eθ(ω−ω̂)
)

f(ω) dω = θ

eη2(ω̂−ω)−1
η2

− eη1(ω̂−ω)−1
η1

∑2
i=1 |θ + ηi|

(

eηi(ω̄−ω)−1
ηi

)
. (34)

The remaining household members who are in labor markets are employed, E = L− Ur.

Now we turn to the search unemployed. Let Ns be the number of workers among L that

leave their labor market per unit of time, either because conditions are sufficiently bad or

because their labor market has exogenously shut down. Appendix A.6 takes limits of the

discrete time, discrete state space model to show that this rate is given by

Ns =
θσ2

2
f(ω)L+ λL. (35)

The first term gives the fraction of workers who leave their labor market to keep ω above

ω. The second term is the fraction of workers who exogenously leave their market. In
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steady state, the fraction of workers who leave labor markets must balance the fraction of

workers who arrive in labor markets. The latter is given by the fraction of workers engaged

in search unemployment Us, times the rate at which they arrive to the labor market α, so

αUs = Ns. Solve equation (35) using equation (29) to obtain an expression for the ratio of

search unemployment to workers in labor markets:

Us
L

=
1

α

(

θσ2

2

η2 − η1
∑2

i=1 |θ + ηi|
eηi(ω̄−ω)−1

ηi

+ λ

)

(36)

To have an interior equilibrium we require that Us + Ur + E ≤ 1 so that the labor force is

smaller than the total population.5

We deliberately leave the expressions for unemployment as a function of the thresholds ω,

ω̂, and ω̄ in order disentangle optimization—the choice of thresholds—from the mechanics of

aggregation. This has two advantages. First, we find it useful to exploit this dichotomy in our

numerical evaluation of the model in Section 5. Second, the expressions for rest and search

unemployment as a function of the thresholds are identical in other variants of the model,

including the original Lucas and Prescott (1974) model. For example, suppose the curvature

of labor demand comes from diminishing returns at the island level, due to a fixed factor,

rather than imperfect substitutability (see footnote 3). Then the analog of the elasticity of

substitution is the reciprocal of the elasticity of revenue with respect to the fixed factor, while

the expressions for unemployment are otherwise unchanged.

We close this section by noting some homogeneity properties of employment, rest unem-

ployment, search unemployment, and consumption.

Proposition 4. Let br = βb̄r, bs = βb̄s, bi = βb̄i for fixed b̄r, b̄s, and b̄i. The equilibrium

value of the unemployment rate Us+Ur

Us+Ur+E
and the share of rest-unemployed Ur

Ur+Us
do not

depend on β, the level of productivity A, the distribution of productivity in new labor

markets F , or the utility function u. The equilibrium value of u′(Y ) is proportional to β
AX0

.

Proof. By inspection, the unemployment rate and share of rest-unemployed are functions

of the difference in thresholds ω̄−ω and ω̄− ω̂ and the parameters α, δ, q, θ, µ (or µx), and σ

(or σx), either directly or indirectly through the roots ηi. From Proposition 1, the thresholds

depend on the same parameters and on the discount rate ρ. This completes the first part of

the proof.

5If this condition fails, all household members participate. The equilibrium is equivalent to one with a
higher leisure value of inactivity, the value of bi such that Us +Ur +E = 1. In any case, Proposition 4 implies
that for br, bs, and bi large enough, the equilibrium has Us + Ur + E < 1.
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Next, recall from Proposition 1 that eω and eω̄ are proportional to β. Then equation (30)

implies u′(Y ) inherits the same proportionality. On the other hand, Proposition 1 implies

AX0 does not affect any of the thresholds and so equation (30) implies u′(Y ) is inversely

proportional to AX0. �

This proposition shows that the unemployment rate and composition of unemployment

is determined by the relative advantage of different leisure activities, while output, and

hence consumption and employment, depends on an absolute comparison of leisure versus

market production. Indeed, the finding that u′(Y ) is proportional to β/AX0 holds in the

frictionless benchmark, where an interior solution for the employment rate requires bi =

u′(Y )w, while the wage is proportional to AX0 (see equation 7). Whether higher productivity

lowers or raises equilibrium employment depends on whether income or substitution effects

dominate in labor supply. With u(Y ) = log Y , an increase in productivity raises consumption

proportionately without affecting employment or labor force participation.

4.6 The Limiting Economy

This section discusses an important limit of the model, when the exogenous shut-down rate of

markets δ is zero. We introduced the assumption that intermediate goods markets shut down

for technical reasons, to ensure an invariant distribution of productivity and employment.

Still, with the parameter restriction, µx + (θ− 1)σ2
x/2 = 0, discussed previously in Section 3,

the economy is well behaved even when δ limits to zero. It is clear from Proposition 1 that

ω and ω̄ converge nicely for any value of µx as long as the discount rate ρ is positive. More

problematic is whether aggregate employment, unemployment, and output converge. We

now show that the same parameter restriction yields a well-behaved limit of the frictional

economy.

When µx = −(θ−1)σ2
x/2 and δ → 0, the roots of the characteristic equation in Proposition 3

converge to η1 = −θ and η2 = 2q/θσ2. Substituting into equation (29), we find

f(ω) =
η2e

η2(ω−ω)

eη2(ω̄−ω) − 1
.

If q = 0 as well, this simplifies further to f(ω) = 1/(ω̄ − ω), i.e. f is uniform on its support,

while for positive q the density is increasing in ω. We can also confirm from equation (30)

that output is positive and finite in the limiting economy:

u′(Y )1−θ =
(AX0)

θ−1(θ + η2)e
−(θω̄−ω̂)

eη2(ω̄−ω) − e−θ(ω̄−ω)

(

eη2(ω̂−ω) − e−θ(ω̂−ω)

θ + η2
+ eη2(ω̄−ω) e

(ω̄−ω̂) − e−η2(ω̄−ω̂)

1 + η2

)

.
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We can similarly compute limits of the key measures of employment and unemployment.

From equation (31), the fraction of household members in labor markets is

L =
Y u′(Y )e−ω̂ e

η2(ω̄−ω)−1
η2

eη2(ω̂−ω)−e−θ(ω̂−ω)

θ+η2
+ eη2(ω̄−ω) e(ω̄−ω̂)−e−η2(ω̄−ω̂)

1+η2

.

Finally, from equations (34) and (36), rest and search unemployment converge to

Ur
L

=
θ e

η2(ω̂−ω)−1
η2

+ e−θ(ω̂−ω) − 1

(θ + η2)
(

eη2(ω̄−ω)−1
η2

)
and

Us
L

=
q

α
(

1 − e−η2(ω̄−ω)
) . (37)

Each of these expressions simplifies further when there are no quits, q = 0 and so η2 → 0.6

But the important point is that, although productivity does not have a well-behaved limiting

distribution when δ converges to 0, aggregate output, employment, and rest and search

unemployment are well-behaved in this limit.

5 Quantitative Evaluation

The goal of this section is to use our model to understand the role of search and rest unem-

ployment in the U.S. economy. We focus on the limit of the economy discussed above, i.e. we

assume that µx = −(θ − 1)σ2
x/2 and that δ → 0. Because we have closed-form expressions

for the unemployment and labor force participation rates, comparative statics are relatively

straightforward. It is also straightforward to see how various parameters affect other vari-

ables of interest, including the stochastic process for wages, measures of job creation and

destruction, and the hazard rate of exiting unemployment.

5.1 No Rest Unemployment

To connect the model to the data, we find it useful first to examine the reduced-form rela-

tionships in equation (37), without worrying about the determinants of the three thresholds

ω, ω̂, and ω̄.7 Focus first on Us/L and assume there is no rest unemployment, ω̂ = ω. One

can think of the search unemployment rate as depending on four forces. 1/α is the mean

duration of a spell of search unemployment and so Us/L is decreasing in α. q is the exogenous

quit rate and so Us/L is increasing in q.
ω̄−ω

σ
determines the average time it takes a labor

market to move from the hiring threshold to the firing threshold, and so is related to the

6The order of convergence of δ and q to zero does not affect these results.
7The thresholds are determined by the discount rate ρ and the three leisure values, bi, br, and bs, in

addition to the parameters that directly enter equation (37), θ, σ, q, and α.
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duration of employment. And θσ determines how many workers must exit a labor market

at the lower threshold following a one standard deviation productivity shock, and so is also

important for the duration of employment.

To determine reasonable values for these variables, we map our model to the data. From

1990 to 2006, the unemployment rate in the United States averaged 5.5 percent. The mean

duration of an in-progress unemployment spell was 0.31 years, which is implied by α = 3.2.8

For now, we set q = 0 so as to examine the amount of search unemployment that the model

can generate endogenously.

To pin down the remaining parameters, we need to take a stand on the nature of a labor

market. A labor market has two defining characteristics. First, the goods produced within

a labor market are homogeneous while the goods produced in different labor markets are

heterogeneous, as captured by the elasticity of substitution θ. This suggests modeling a

labor market as an industry. Second, workers are free to move within a labor market but

not between labor markets, presumably both because of some specificity of human capital

and because of geographic mobility costs. To the extent that human capital is occupation,

not industry, specific (Kambourov and Manovskii, 2007), this suggests that a labor market

may be a cross between an occupation and a geographic location. In the end, our definition

of a labor market is governed by data availability: we measure a labor market as a five-digit

NAICS industry. Using international trade data, Broda and Weinstein (2006) report median

estimates of the elasticity of substitution between goods at the five-digit SITC level of about

2.8 (see their Table IV). We therefore set θ to 3.9

Rather than take a stand on values of σ and ω̄ − ω directly, we observe that σ is critical

for the volatility and
ω̄−ω

σ
for the autocorrelation of wages at the industry level. That σ

affects the volatility is immediate from equation (15). When
ω̄−ω

σ
is large, wages are nearly

a random walk and so this year’s wage level is very informative about next year’s, i.e. the

autocorrelation of wages is large. For small values of
ω̄−ω

σ
, wages hit the bounds frequently

within a short period of time and so are nearly uncorrelated.10 We measure industry-level

average weekly earnings for 312 five-digit industries from 1990 to 2006 from the Current

8The empirical duration numbers were constructed by the Bureau of Labor Statistics from the Current
Population Survey and may be obtained from http://www.bls.gov/cps/. Our choice of years is governed
by the availability of industry wage data.

9This elasticity is in line with the one used in much of the literature that quantitatively evaluates the
Lucas and Prescott (1974) model. Recall that the analog of θ in a model with diminishing returns at the
labor market level due to a fixed factor is the reciprocal of the elasticity of revenue with respect to the fixed
factor. If the fixed factor is capital, then a capital share of 1

3 is empirically reasonable. Alvarez and Veracierto
(1999) set the elasticity of fixed factor to 0.36, Alvarez and Veracierto (2001) set it to 0.23, and Kambourov
and Manovskii (2007) set it to 0.32, in line with values of θ between 2.8 and 4.3.

10Ball and Roma (1998) find an exact formula for the autocorrelation of annual observations from a reflected
Brownian motion without drift and prove it depends only on

ω̄−ω

σ
.
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Employment Statistics (http://www.bls.gov/ces/), all the industries with available data.

We deflate the nominal annual average of industry earnings by the nominal annual average of

private sector earnings w̄t and take logs to construct ωj,t, log relative average weekly earnings

in industry j and year t.11 We then measure the standard deviation of the growth rate of

earnings in the J industries and T years as

SD =
1

J

J
∑

j=1

(

1

T − 1

T
∑

t=2

(

ωj,t − ωj,t−1

)2

)1/2

and the autocorrelation of earnings as

AC =
1

J

J
∑

j=1

∑T
t=2

(

ωj,tωj,t−1

)2

(

∑T−1
t=1 ω

2
j,t

∑T
t=2 ω

2
j,t

)1/2
.

Note that neither of these formulas subtracts industry-specific means. Consistent with our

model, we assume we know industry-specific mean log average weekly earnings deflated by

private sector earnings: it is equal to zero.

To compare the model with U.S. data, we generate data from a discrete time version of

the model, where a time period is 1 week. Each week, we add a normal innovation to log

wages and adjust employment to keep log wages in the appropriate bounds. At the end of

each year, we average the model-generated data, deflate by the theoretical average earnings

w̄ = eω̂
∫ ω̂

ω

f(ω)dω +

∫ ω̄

ω̂

eωf(ω)dω,

and take logs to construct ωj,t. We repeat for T = 17 years and J = 10, 000 industries to

obtain accurate estimates of the two moments SD and AC.

To summarize, we match the empirical search unemployment rate of Us

Us+L
= 0.055 and

set α = 3.2, q = 0, and θ = 3. This is consistent with many different values of σ and ω̄ − ω,

each associated with a different standard deviation of the growth rate and autocorrelation of

the level of earnings. Figure 1 shows that it is impossible to simultaneously match the two

targets. The empirical average autocorrelation of the level of earnings is more than 0.97. To

match such a high autocorrelation, the model requires a standard deviation of growth rates

about eight times as high as the empirical value of 0.03.12 Intuitively, if the difference ω̄− ω

11Fluctuations in productivity A may cause fluctuations in average earnings. With log utility, such fluc-
tuations cause proportional changes in wages but do not affect the unemployment rate. Deflating by w̄t

therefore perfectly controls for aggregate fluctuations.
12Other moments contain similar information to the autocorrelation of wages, notably the kurtosis of wage

growth. When
ω̄−ω

σ
is small, wage changes are frequently truncated and so the distribution of wage growth
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Figure 1: Variation in search unemployment rate. AC is the autocorrelation of earnings
and SD is the standard deviation of the growth rate of earnings. The solid red line shows
the correlation between wj,t and wj,t−1 and the standard deviation of wj,t−wj,t−1 consistent
with α = 3.2, θ = 3, q = 0, and a 5.5% unemployment rate with no rest unemployment.
The dashed blue line shows the combinations consistent with 2% search unemployment; the
dash-dotted green line shows 1% search unemployment; and the dotted black line shows
0.5% search unemployment. The four larger dots show the empirical averages at the two- to
five-digit NAICS levels.

is large, wages are nearly a random walk; however, when this difference is large, the incidence

of unemployment is small because it takes labor markets a long time to move from upper to

the lower threshold.

Looking at more disaggregated data might mitigate but is unlikely to eliminate this

problem. First, the additional dots in Figure 1 shows that at higher levels of industry

aggregation, the autocorrelation in wages is slightly higher and the standard deviation of

wages slightly lower. Although data are not available, it is reasonable to expect similarly

modest changes in the autocorrelation and standard deviation in more disaggregated data.

Second, one can prove that changing the elasticity from θ to θ′ > θ shifts the curve down by a

factor θ′/θ. In other words, raising the elasticity of substitution from θ = 3 to θ′ = 6 implies

that the model-generated value of the standard deviation SD is four times the empirical value

(rather than eight times, as discussed in the previous paragraph) when the model matches

the empirical value of the autocorrelation AC. Broda and Weinstein (2006) find that at

the seven digit (TSUSA/HTS) level, the median elasticity of substitution is still below 4, so

is platykurtic. For large
ω̄−ω

σ
, time aggregation leads to a slightly leptokurtic wage growth distribution. For

example, at values of
ω̄−ω

σ
that generate AC = 0.97, the kurtosis of wage growth is about 3.3. In the data,

wage growth is slightly more leptokurtic, with a kurtosis of 3.7.
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Figure 2: Variation in quit rate. AC is the autocorrelation of earnings and SD is the standard
deviation of the growth rate of earnings. The solid red line shows the correlation between
wj,t and wj,t−1 and the standard deviation of wj,t − wj,t−1 consistent with α = 3.2, θ = 3,
q = 0, and a 5.5% unemployment rate with no rest unemployment. The dashed blue line
shows the combinations consistent with q = 0.06; the dash-dotted green line shows q = 0.12;
and the dotted black line shows q = 0.18 search unemployment. The four larger dots show
the empirical averages at the two- to five-digit NAICS levels.

we view the values of the elasticity needed to bring the model in line with the data to be

empirical implausible at any level of disaggregation. Alternatively, we can reduce the amount

of search unemployment that we ask the model to generate. This alone does not seem to

be a promising resolution: the remaining three lines in Figure 1 show that even reducing

the search unemployment rate to 0.5% reduces but does not eliminate the gap between the

model and data.

Allowing for exogenous quits also improves the fit of the model to data, but again only

marginally. Keep the same values of the other parameters as in the baseline, α = 3.2, θ = 3,

and a 5.5% search unemployment rate. Figure 2 shows that by raising the exogenous quit

rate to 0.18, we again close part of the gap between model and data. However, with these

parameters, exogenous quits account for 98 percent of all unemployment. In any case, we find

a model where exogenous parameters govern both unemployment incidence (q) and duration

(α) to be uninteresting.

5.2 Reintroducing Rest Unemployment

Reintroducing rest unemployment improves the model’s fit for several reasons: it creates

another source of unemployment; it reduces the standard deviation of wages by creating an
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interval [ω, ω̂] where wages are constant from year-to-year; and it raises the autocorrelation

of wages because of the persistence generated by labor markets that spend time in this

interval. The last two forces imply that the presence of rest unemployment may permit

more search unemployment without generating unrealistically low autocorrelations or high

standard deviations of growth rates of average weekly earnings.

To be concrete, again set α = 3.2, θ = 3, and q = 0, and choose σ, ω̄ − ω, and ω̂ − ω

to generate a 1.3 percent search unemployment rate and 4.2 percent rest unemployment

rate. This breakdown between search and rest unemployment is consistent with evidence

in Murphy and Topel (1987) from the March Current Population Survey and in Loungani

and Rogerson (1989) from the Panel Study of Income Dynamics (PSID). The two papers

classify switchers and stayers in a similar way, based on whether the workers switched two-

digit industry, and find that workers who switch two-digit industries account for about a

quarter of all unemployment spells, while stayers account for the remaining three-quarters.

According to our model, all stayers experienced a spell of rest unemployment, while switchers’

unemployment spell ended in search.13

The solid red line in Figure 3—which has a more compressed scale than the preceding

figures—shows that higher values of σ allow for a higher autocorrelation AC without sub-

stantially increasing the standard deviation SD; indeed, in the limit, increases in σ raise the

fraction of industries with rest unemployment by enough to drive AC to 1 and SD to 0.

Although a gap between model and data remains, the figure shows that this can be reduced

by introducing exogenous quits. Still fixing α = 3.2 and θ = 3, let q = 0.04, σ = 0.12,

ω̄ − ω = 1.61, and ω̂ − ω = 0.55. This generates the target search and rest unemployment

rates and matches the autocorrelation of wages (AC) at the industry level.14 The standard

deviation of wage growth (SD) is still higher in the model (0.046) than the data (0.031 at

the five-digit level), as can be seen in Figure 3. We can close this gap either by a moderate

increase in the elasticity of substitution, to approximately θ = 4.5, or by a further reduction

in the target for the search unemployment rate matched by an increase in the target for the

rest unemployment rate.

13In the model without rest unemployment, we chose α to match the mean duration of unemployment.
In Section 5.4, we compute the mean duration of unemployment in the full model and show that it is no
longer equal to 1/α. Still, we keep α fixed at 3.2 for two reasons: it simplifies the comparison of the models
with and without rest unemployment; and Loungani and Rogerson (1989) find that switchers account for
about a a quarter of all unemployment spells and a third of all weeks of unemployment, which implies that
the duration of unemployment spell for a switcher is only slightly longer than for the average unemployment
spell.

14The kurtosis of wage growth is 3.4, slightly higher than the values with only search unemployment and
the same AC (see footnote 12). Rest unemployment raises the kurtosis by effectively creating two sets
of industries, some with instantaneous standard deviation of wage growth σ and some—those with rest
unemployment—with zero standard deviation.
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Figure 3: Variation in quit rate with rest unemployment. AC is the autocorrelation of
earnings and SD is the standard deviation of the growth rate of earnings. The solid red
line shows the correlation between wj,t and wj,t−1 and the standard deviation of wj,t−wj,t−1

consistent with α = 3.2, θ = 3, q = 0, a 1.3% search unemployment rate, and a 4.2% rest
unemployment rate. The dashed blue line shows the combinations consistent with q = 0.02;
and the dash-dotted green line shows q = 0.04. The four larger dots show the empirical
averages at the two- to five-digit NAICS levels.

We can back out the structural parameters consistent with this search and rest unemploy-

ment rate. To be consistent with balanced growth, we assume u(·) = log(·). Still thinking

of a unit of a time as a year, we set ρ = 0.05. From Proposition 4, the search and rest

unemployment rates, Ur

Us+L
= 0.042 and Us

Us+L
= 0.013, then depend only on ratios of the

three leisure values, which pins down br/bi = 0.97 and κ ≡ bi−bs
αbi

= 12.3.

These numbers reveal two regularities. First, in order to generate rest unemployment,

br/bi must be close to 1. Given all the other structural parameters, we require br/bi > 0.76

to have any rest unemployment (see Proposition 2). This suggests that, while the rest

unemployed must pay some cost to remain in contact with their labor market, the cost

is small. Put differently, rest unemployment and inactivity may look quite similar to an

outsider who observes individuals’ time use, even though the rest unemployed may be much

more likely to return to work.

Second, to generate a strong autocorrelation in wages, we need the search cost κ to be

large, here equivalent to 12.3 years of inactivity.15 Indeed since κ > 1/α, the leisure value of

15This is mainly due to the high autocorrelation in wages, not rest unemployment. If we calibrate the
model to match a 5.5% search unemployment rate with no rest unemployment, θ = 3, α = 3.2, no exogenous
quits, and AC = 0.97 (so σ = 0.55, ω̄ − ω = 2.44, and SD = 0.24), the required search cost is κ = 9.4.
Calibrating the model with exogenous quits, it is higher still.

27



rest unemployment must actually be negative. A strong autocorrelation in wages requires a

large region of inaction ω̄ − ω, but this implies that the wage in the most productive labor

markets is much higher than the wage in less productive markets. In order for workers to be

willing to endure such an unproductive market, the cost of moving must be large. This is

essentially the contrapositive of Hornstein, Krusell, and Violante’s (2006) finding that when

search costs are small, search models cannot generate much wage dispersion. Introducing

other mobility costs, such as market-specific human capital, may alleviate this issue.

5.3 Job Creation and Destruction

We can use the model to measure gross job creation and job destruction rate at the industry

level. Following Davis, Haltiwanger, and Schuh’s (1996) analysis of firms, we define the

number of jobs destroyed in a labor market between t0 and t1 as the decrease in the number

of employed workers in that labor market between those dates, or zero if the number of

employed workers increased. Job creation is defined symmetrically. The gross job destruction

(creation) rate is then defined as the total number of jobs destroyed (created) across all labor

markets divided by employment E.

The job creation and destruction rates are easily computed numerically. Consider a

labor market that has a log full-employment wage ω at t0. Using Monte Carlo, we find

the job creation and destruction rates at t1; these rates depend on ω but are independent

of the number of workers in the market. We then take a weighted average of job creation

and destruction rates, weighting by the fraction of employed workers at each value of ω,

eθmin{ω−ω̂,0}f(ω), where eθmin{ω−ω̂,0} accounts for rest unemployment in markets with ω < ω̂.

When there is no rest unemployment, jobs are destroyed only to keep ω regulated above ω.

The instantaneous job destruction rate is then given by Ns in equation (35). Moreover, once

a job is destroyed, it is only recreated if the market experiences a series of shocks that brings

ω back to ω̄. Over annual frequencies, this probability is negligible if
ω̄−ω

σ
is large enough

to give a plausible autocorrelation of earnings. Thus we would expect the job destruction

rate over a time horizon t to be roughly equal to Nst. Unreported simulations support this

intuition.

In the full model, jobs are also destroyed when workers become rest unemployed, which

is easily reversed. This makes the job destruction rate a concave function of the amount of

elapsed time. The red line shows job destruction (and job creation) in the calibrated model

with search and rest unemployment; the concavity is clearly visible.

We can compare this finding with data on job creation and job destruction at the industry

level. We use the Current Employment Statistics measure of monthly employment for 387

five-digit NAICS industries from 1990 to 2006 and adjust the data to eliminate multiplicative
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Figure 4: The solid red line shows the job creation and destruction rate from the model.
The parameter values are in the text. The dots show show job creation and destruction for
five-digit industries at different frequencies.

seasonal factors.16 Figure 4 shows a clear concave pattern in these measures as well. In the

data, the ratio of job destruction at annual and quarterly frequencies is 2.1. For job creation,

the ratio is somewhat higher, 2.9. According to the calibrated model, the ratio of job creation

or destruction at annual and quarterly frequencies should be 3.2.

It is worth noting that the model significantly overstates the incidence of job creation

and destruction at the industry level. It is unclear how to reconcile model and data along

this dimension. For example, reducing the elasticity of substitution to θ = 2 reduces the

annual creation and destruction rates only marginally below 4 percent. One possibility is

lowering the target for search unemployment and raising the target for rest unemployment,

keeping the total unemployment rate constant. Since rest unemployment is rapidly reversed,

it contributes to unemployment incidence but has little effect on longer-term measures of

creation and destruction. For example, set the target for the search unemployment rate to

0.7 percent and for the rest unemployment rate to 4.8 percent. Also reduce the quit rate

to q = 0.02, since higher values are inconsistent with such a low search unemployment rate.

Then the annual job creation and destruction rates are about 2.6 percent, with little effect

on the curvature in Figure 4.

16The data show net employment growth, which is easily introduced to the model by making households
increase in size over time. We find the existence of significant seasonal factors intriguing. It would be hard to
get workers moving in and out of the labor force seasonally when doing so entails time-consuming search. It
is easier instead to move between employment and rest unemployment. Incorporating seasonal fluctuations
in the value of leisure into the model goes beyond the scope of this paper.
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The finding that job creation and destruction increase less than linearly with time is

consistent with other datasets. Davis, Haltiwanger, and Schuh (1996) report a quarterly job

destruction rate for manufacturing establishments of 5.5% and an annual destruction rate

of 10.3%.17 Using the same data set, Schuh and Triest (2000) report 27.4% job destruction

at a five year horizon. Faberman (2003) studies all private sector establishments in 53

Metropolitan Statistical Areas in five states. He reports 6.7% job destruction at quarterly

frequencies and 11.4% at annual frequencies. Using microdata from the Job Openings and

Labor Turnover Survey, Davis, Faberman, and Haltiwanger (2006) report a monthly job

destruction rate of 1.5% and quarterly job destruction rate of 3.1%. From the Business

Employment Dynamics survey of all private establishments, they report 7.6% quarterly job

destruction and 13.7% annual. Each of these papers finds similar curvature for job creation.

The strong reversibility of job creation and job destruction, consistent with firms having easy

access to a pool of rest-unemployed workers, appears to be a robust empirical fact.

5.4 Hazard Rate of Exiting Unemployment

When there is no rest unemployment, the hazard of exiting unemployment is simply α. This

section characterizes the hazard of exiting unemployment when there is rest unemployment,

ω̂ > ω. A worker who just switched between employment and rest unemployment is at

the margin between the two states. A small shock will move him back. But the longer

a worker remains unemployed, the more likely her labor market has suffered a series of

adverse shocks, reducing the hazard of finding a job. The low hazard rate of exiting long-

term unemployment may be important for understanding the coexistence of many workers

who move easily between jobs and a relatively small number of workers who suffer extended

unemployment spells (Juhn, Murphy, and Topel, 1991).

Observe that our model determines the number of workers who are employed and rest

unemployed in each labor market j and the number of workers who are in search unemploy-

ment. It does not determine which of the workers in a labor market with rest unemployment

is employed, nor who exits a market when ω hits ω, nor which workers are in search un-

employment rather than inactivity. To discuss labor market flows, we need to determine

these.

First, we impose that some workers are permanently inactive. This means that workers

who leave their labor market become search unemployed. This can be interpreted as the

outcome of heterogeneity in preference for leisure, in which case our analysis considers the

17Our model is inconsistent with annual job destruction less than half as big as quarterly job destruction.
There is a significant seasonal component in Davis, Haltiwanger, and Schuh’s (1996) data which may explain
this finding.
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limit as the heterogeneity vanishes.

To determine who works and who is unemployed, we suppose there is a small amount of

industry-specific learning-by-doing. Then the least-skilled worker—the one with the shortest

tenure in the industry—will always be the first to enter rest unemployment and the first

to exit the labor market. Again, our analysis corresponds to the limit as learning-by-doing

vanishes. The important implication of this assumption is that the hazard rate of exiting

unemployment conditional on unemployment duration is the same for all workers.

Let H(t,∆) be the probability that a worker who has had a (rest or search) unemployment

spell of duration t will transit from unemployment to employment at least once in the next ∆

units of time and let h(t) = lim∆→0H(t,∆)/∆ be the associated hazard rate. Given values

for the thresholds ω, ω̂, and ω̄, we can compute the hazard rate h(t) as the weighted average

of two hazard rates:

h(t) = ĥr(t)
ur(t)

ur(t) + us(t)
+ α

us(t)

ur(t) + us(t)

where ur(t)
ur(t)+us(t)

is the probability that a worker with unemployment duration t is rest-

unemployed. For a search-unemployed worker, spells end at rate α, independent of the

duration of the spell. For a rest-unemployed worker, her spell ends when local labor market

conditions improve enough for her to reenter employment. We let ĥr(t) denote that hazard

rate of this event. It is also useful to let hr(t) denote the hazard of endogenously exiting rest

unemployment for search unemployment. We prove in Appendix A.7 that

ĥr(t) =

∑∞
n=1 n

2e−tψn

∑∞
n=1

n2

ψn
e−tψn

(

1 − (−1)ne−
µ(ω̂−ω)

σ2

) (38)

hr(t) =
−
∑∞

n=1 n
2e−tψn(−1)ne−

µ(ω̂−ω)

σ2

∑∞
n=1

n2

ψn
e−tψn

(

1 − (−1)ne−
µ(ω̂−ω)

σ2

) ,

where

ψn ≡
1

2

(

µ2

σ2
+

n2π2σ2

(ω̂ − ω)2

)

.

These sums are easily calculated numerically.

We then compute the duration-contingent unemployment rates by solving a system of

two ordinary differential equations with time-varying coefficients:

u̇r(t) = −ur(t)(δ + q + hr(t) + ĥr(t)) and u̇s(t) = −us(t)α + ur(t)(δ + q + hr(t)) (39)

for all t > 0. The number of workers in rest unemployment falls as markets shut down and

workers exogenously quit, as they exit the market for search unemployment, and as they
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reenter employment. In the first three events, they become search unemployed, while search

unemployment falls at rate α as these workers find jobs. To solve these differential equations,

we require two boundary conditions; however, to compute the share of rest unemployed in the

unemployed population with duration t, ur(t)
ur(t)+us(t)

, we need only a single boundary condition,

∫∞

0
ur(t)dt

∫∞

0
us(t)dt

=
Ur
Us
, (40)

where Ur and Us are given in equations (34) and (36).

The hazard rate is particularly easy to characterize both at short and long durations.

When t is small, we find that ĥr(t) ≈
1
2t

. Intuitively, consider a market with ω = ω̂. After a

short time interval—short enough that the variance of the Brownian motion dominates the

drift—there is a 1
2

probability that ω has increased, so the worker is reemployed, and a 1
2

chance it has fallen. But a one-half probability over any horizon t implies a hazard rate 1/2t.

When t is large, the first term of the partial sum in equation (38) dominates,

lim
t→∞

ĥr(t) =
ψ1

1 + e−
µ(ω̂−ω)

σ2

and lim
t→∞

hr(t) =
ψ1e

−
µ(ω̂−ω)

σ2

1 + e−
µ(ω̂−ω)

σ2

.

In addition, if α > δ + q + ψ1,

lim
t→∞

ur(t)

us(t)
=

(α− ψ1 − δ − q)
(

1 + e−
µ(ω̂−ω)

σ2

)

δ + q + (δ + q + ψ1)e
−

µ(ω̂−ω)

σ2

,

while otherwise the limiting ratio is zero. Together this implies limt→∞ h(t) = min{α, ψ1 +

δ + q}, a function only of the slower exit rate. In our baseline calibration, α = 3.2, δ = 0,

q = 0.04, and ψ1 = 0.24, so the exit rate from long-term unemployment is governed by

the behavior of the rest unemployed. The efficiency of search affects the hazard of exiting

long-term unemployment only indirectly, through its influence on the distance between the

rest unemployment boundaries ω̂ − ω̄.

Figure 5 shows the annual hazard rate of finding a job in our baseline calibration, including

a 4.2 percent rest unemployment rate and 1.3 percent search unemployment rate. The overall

hazard rate roughly mimics the behavior of ĥr(t), especially at short unemployment durations,

when most unemployed workers are in rest unemployment. Since the rest unemployed find

jobs so quickly at the start of an unemployment spell, the share of searchers among the

unemployed grows rapidly (Figure 6), peaking at about 54 percent of unemployment after

two months duration. After this point, however, the hazard of exiting rest unemployment
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Figure 5: Hazard rate of finding a job as a function of unemployment duration. The param-
eter values are in the text.

falls below the hazard of exiting search unemployment and so the share of searchers starts

to decline, asymptoting to just 4 percent of unemployment at very long durations.

Our finding of a constant hazard rate for workers in search unemployment and a decreasing

hazard rate for workers in rest unemployment is qualitatively consistent with Katz and Meyer

(1990) and Starr-McCluer (1993). Katz and Meyer (1990) show that the empirical decline in

the job finding hazard rate is concentrated among workers on temporary layoff. Moreover,

they find that workers who expect to be recalled to a past employer and are not—in the

parlance of our model, workers who end a spell of rest unemployment by searching for a

new labor market, at hazard hr(t) + δ + q—experience longer unemployment duration than

observationally equivalent workers who immediately entered search unemployment. In our

model, this last group would correspond to workers experiencing a δ or q shock. Starr-

McCluer (1993) finds that the hazard of exiting unemployment is decreasing for workers who

move to a job that is similar to their previous one (rest unemployed) while it is actually

increasing for workers who move to a different type of job (search unemployed).

In contrast to Murphy and Topel (1987) and Loungani and Rogerson (1989), Starr-

McCluer (1993) finds relatively few stayers and finds that stayers experience relatively short

unemployment spells. The behavior of hazard rates in our model can reconcile these findings.

To understand why, note that in Starr-McCluer’s (1993) data, many unemployment spells

are censored. She finds that stayers account for half of all unemployment spells but a quarter

of all weeks of unemployment, switchers account for a quarter of all unemployment spells
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Figure 6: Fraction of searchers among the unemployed by duration, us(t)
ur(t)+us(t)

. The parameter
values are in the text.

and a quarter of all weeks of unemployment, and censored observations account for a quarter

of all unemployment spells and and a half of all weeks of unemployment. That is, stayers

find jobs quickly while censored observations have the longest unemployment spells. Because

of the relative duration of stayers’ and switchers’ spells, she guesses that most of the cen-

sored observations would ultimately be classified as switchers if the data were available. Our

model’s declining hazard rate for the rest-unemployed instead suggests that many of them

would ultimately be classified as stayers. Using the classification suggested by our model,

Starr-McCluer’s (1993) data imply a breakdown between stayers and switchers and a pattern

for their unemployment duration consistent with Loungani and Rogerson (1989).

Finally, in the baseline calibration of our model, the mean duration of an in progress

unemployment spell is 2.5 years while the median duration is 1.1 years. Both of these

numbers are far larger than in the data, reflecting infrequent episodes of very long term

unemployment. Unfortunately, we believe it is not possible to parameterize the model to

match simultaneously the level of unemployment, the division between search and rest, the

behavior of wages, and the mean duration of unemployment.

6 Discussion

We finish by answering the two questions posed in the introduction: Can we distinguish

between economies with different amounts of search and rest unemployment? And is the
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life of a worker in search unemployment substantially different from that of one in rest

unemployment?

Our analysis in Section 5 provides a partial answer to the first question. Rest unemploy-

ment helps explain why wages are so persistent yet some workers cycle frequently between

jobs. It helps explain why job creation and destruction are such concave functions of elapsed

time. And it helps explain why the hazard of exiting unemployment declines with unem-

ployment duration, leading to the coexistence of a large number of very short unemployment

spells with a small number of workers who stay unemployed for years. In each case, this is a

consequence of workers’ ability to cycle costlessly between rest unemployment and work.

To answer the second question, we talk with a worker in rest unemployment. She might

tell us that she routinely moves in and out of jobs, and perhaps is classified as working part

time.18 When we ask her why she does not search for a job in a different industry, she

explains all the costs of doing so, including gathering the necessary information, retraining,

and moving to a new city. Things really are not that bad and might get a lot better.

When we catch up with our worker a year later, she tells us that she has not worked since

we last met. Again we ask her why she doesn’t look for a better job. She tells us that she

is thinking about moving, but in fact many of her former coworkers have already left town.

If labor market conditions should improve, she could easily find a job paying a high wage.

We ask her, with the benefit of hindsight, if she should have looked for a new job after our

previous conversation. She says of course, but stresses that there is no way she could have

known how badly things would turn out. When we try to find her after another year has

passed, her neighbor tells us she has left town and is now working at a higher wage in a new

job. In the end, he says, it took her less than four months to find the new job.

18From 1994 to 2007, the U.S. unemployment rate averaged 5.1 percent. Including discour-
aged workers and other marginally attached workers raises this to 6.1 percent, while also adding
those who work “part time for economic reasons” raises the average to 8.9 percent. See
http://www.bls.gov/webapps/legacy/cpsatab12.htm.
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A Appendix

A.1 Density of Productivity x

Consider a labor market with initial productivity x0. Let fx(x̃; x0) denote the steady state

density of log productivity, x̃ ≡ log x, across all such labor markets. This solves a Kolmogorov

forward equation:

δfx(x̃; x0) = −µxf
′
x(x̃; x0) +

σ2
x

2
f ′′
x (x̃; x0)

at all x̃ 6= x̃0 ≡ log x0. The solution to this equation takes the form

fx(x̃; x0) =







D1
1(x0)e

η̃1x̃ +D1
2(x0)e

η̃2x̃ if x̃ < log x0

D2
1(x0)e

η̃1x̃ +D2
2(x0)e

η̃2x̃ if x̃ > log x0,

where η̃1 < 0 < η̃2 are the two real roots of the characteristic equation

δ = −µxη̃ +
σ2
x

2
η̃2. (41)

For this to be a well-defined density, integrating to 1 on (−∞,∞), we require that D1
1(x0) =

D2
2(x0) = 0. To pin down the remaining constants, we use two more conditions: the density is

continuous at x̃ = log x0; and it integrates to 1. Imposing these boundary conditions delivers

fx(x̃; x0) =







η̃1η̃2
η̃1−η̃2

eη̃2(x̃−log x0) if x̃ < log x0

η̃1η̃2
η̃1−η̃2

eη̃1(x̃−log x0) if x̃ > log x0.
(42)

With this notation, we can rewrite equation (6) as

w = A

(
∫ ∞

0

∫ ∞

−∞

e(θ−1)x̃fx(x̃; x0)dx̃dF (x0)

)
1

θ−1

. (43)

The interior integral converges if η̃1 + θ − 1 < 0 < η̃2 + θ − 1. The definition of η̃i in

equation (41) implies these inequalities are equivalent to condition (8). With this restriction,

equation (43) reduces to equation (7).

A.2 Proof of Lemma 1
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Stokey (2006) proves in Proposition 10.4 that for all ω0 ∈ [ω, ω̄],

Πω(ω;ω0;ω, ω̄) =



























(

ζ2e
ζ1ω0+ζ2ω̄ − ζ1e

ζ1ω̄+ζ2ζ2ω0
)(

ζ2e
ζ2(ω−ω) − ζ1e

ζ1(ω−ω)
)

(ρ+ λ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
) if ω ≤ ω < ω0

(

ζ2e
ζ1ω0+ζ2ω − ζ1e

ζ1ω+ζ2ω0
)(

ζ2e
ζ2(ω̄−ω) − ζ1e

ζ1(ω̄−ω)
)

(ρ+ λ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
) if ω0 ≤ ω ≤ ω̄,

(44)

where ζ1 < 0 < ζ2 are the two roots of the characteristic equation

ρ+ λ = µζ +
σ2

2
ζ2. (45)

For ω0 < ω, Πω(ω;ω0;ω, ω̄) = Πω(ω;ω;ω, ω̄) and for ω0 > ω̄, Πω(ω;ω0;ω, ω̄) = Πω(ω; ω̄;ω, ω̄).

That v is continuous follows immediately from equations (18) and (44). In particular, the

latter equation defines Πω as a continuous function.

We next prove that the distribution Π(·;ω0;ω, ω̄) is increasing in each of ω0, ω, and ω̄ in

the sense of first order stochastic dominance. This follows from differentiating equation (44)

with respect to each variable and using simple algebra. One can verify that an increase

in ω strictly increases Πω(ω;ω0;ω, ω̄) for all ω ∈ (ω, ω̄). This therefore strictly reduces

Π(ω;ω0;ω, ω̄) for ω ∈ (ω, ω̄). Similarly, an increase in ω̄ strictly reduces Πω(ω;ω0;ω, ω̄) for

all ω ∈ (ω, ω̄), which also strictly reduces Π(ω;ω0;ω, ω̄) for ω ∈ (ω, ω̄). Finally, an increase

in ω0 when ω0 ∈ (ω, ω̄) reduces Πω(ω;ω0;ω, ω̄) for ω ∈ (ω, ω0) and raises it for ω ∈ (ω0, ω̄).

Once again, this implies a stochastic dominating shift in Π.

Since the return function max{br, e
ω} + λv is nondecreasing in ω, weak monotonicity of

v in each argument follows immediately from equation (18). In addition, the return function

is strictly increasing when ω > log br, and so we obtain strict monotonicity when the support

of the integral includes some ω > log br, i.e. when ω̄ > log br.

A.3 Proof of Proposition 1

We start by proving the result when br < bi and defer br ≥ bi until the end.

First, define ω̄∗ to solve v(ω̄∗; ω̄∗, ω̄∗) = v̄. When ω is regulated at the point ω̄∗, it is

trivial to solve equation (16) to obtain

eω̄
∗

+ λv

ρ+ λ
= v̄.

This point is depicted along the 45◦ line in Figure 7. Lemma 1 ensures v is continuous

and strictly increasing in its first three arguments. Moreover, for any ω < ω̄∗, we can

37



ω

ω̄

log br

ω̄ = ω

ω̄∗ω∗

ω̄∗∗

ω̄ = Ω̄(ω)

ω = Ω(ω̄)

Figure 7: Illustration of the proof of Proposition 1 when br < bi.

make v(ω̄;ω, ω̄) unboundedly large by increasing ω̄, while we can make it smaller than v̄

by setting ω̄ = ω̄∗. Then by the intermediate value theorem, for any ω < ω̄∗, there exists

a Ω̄(ω) > ω̄∗ solving v(Ω̄(ω);ω, Ω̄(ω)) ≡ v̄. Continuity of v ensures Ω̄ is continuous while

monotonicity of v ensures it is decreasing. In addition, because the period return function

s(ω) ≡ max{br, e
ω} + λv is bounded below but not above, ω̄∗∗ ≡ limω→−∞ Ω̄(ω) is finite.

Thus Ω̄(ω) ∈ (ω̄∗, ω̄∗∗) for any ω < ω̄∗. Figure 7 illustrates this function.

Similarly, define ω∗ to solve v(ω∗;ω∗, ω∗) = v. Again solve equation (16) to obtain

eω
∗

+ λv

ρ+ λ
= v.

Since v < v̄, ω∗ < ω̄∗, while equation (10) implies ω∗ = log bi. For any ω̄ > ω∗, we can make

v(ω;ω, ω̄) approach ρbr+λbi
ρ(ρ+λ)

< v by making ω arbitrarily small, while we can make it bigger

than v by setting ω = ω∗. Then by the intermediate value theorem, for any ω̄ > ω∗, there

exists a Ω(ω̄) < ω∗ solving v(Ω(ω̄); Ω(ω̄), ω̄) ≡ v. Continuity of v ensures Ω is continuous

while monotonicity of v ensures it is decreasing. Thus Ω(ω̄) < ω∗ for any ω̄ > ω∗.

An equilibrium is simply a fixed point ω̄ of the composition of the functions Ω̄ ◦ Ω. The

preceding argument implies that this composition maps [ω̄∗, ω̄∗∗] into itself and is continuous,

and hence has a fixed point.

To prove the uniqueness of the fixed point when br < bi, we prove that the composition

of the two functions has a slope less than 1, i.e. Ω̄′(Ω(ω̄))Ω′(ω̄) < 1. To start, simple

transformations of equation (44) imply that the cross partial derivatives of the discounted
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occupancy function satisfy

Πω0,ω̄(ω;ω0;ω, ω̄) =
ζ1ζ2e

(ζ1+ζ2)ω̄
(

e−ζ1(ω−ω) − e−ζ2(ω−ω)
) (

eζ1ω+ζ2ω0 − eζ1ω0+ζ2ω
)

(eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω)
2
(ρ+ λ)

< 0

Πω0,ω(ω;ω0;ω, ω̄) =
−ζ1ζ2e

(ζ1+ζ2)ω
(

eζ2(ω̄−ω) − eζ1(ω̄−ω)
) (

eζ1ω0+ζ2ω̄ − eζ1ω̄+ζ2ω0
)

(eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω)
2
(ρ+ λ)

> 0,

where the inequalities use the fact that all the terms in parenthesis are positive. Then use

integration-by-parts on equation (18) to write

v(ω0;ω, ω̄) =
s(ω̄)

ρ+ λ
−

∫ ω̄

ω

s′(ω)Π(ω;ω0;ω, ω̄)dω,

where the period return function s(ω) is nondecreasing and strictly increasing for ω > log br,

and Π is the discounted occupancy function. Taking the cross partial derivatives of this

expression gives vω0,ω̄(ω0;ω, ω̄) > 0 > vω0,ω(ω0;ω, ω̄). In particular,

vω̄(ω̄;ω, ω̄) > vω̄(ω;ω, ω̄) and vω(ω;ω, ω̄) > vω(ω̄;ω, ω̄).

Now since vω0(ω0;ω, ω̄) > 0 from Lemma 1, these inequalities imply

vω(ω̄;ω, ω̄)

vω0(ω̄;ω, ω̄) + vω̄(ω̄;ω, ω̄)

vω̄(ω;ω, ω̄)

vω0(ω;ω, ω̄) + vω(ω;ω, ω̄)
< 1.

In particular, this is true when evaluated at any point {ω, ω̄} where ω̄ = Ω̄(ω) and ω = Ω(ω̄).

Implicit differentiation of the definitions of these functions shows that the first term in the

above inequality is −Ω̄′(ω) and the second term is −Ω′(ω̄), which proves Ω̄′(Ω(ω̄))Ω′(ω̄) < 1.

Next we prove proportionality of the thresholds eω̄ and eω to the leisure values br, bi,

and bs. From equations (10) and (11), v and v̄ are homogeneous of degree one in the three

leisure values. The function max{br, e
ω} + λv is also homogeneous of degree 1 in the leisure

values and eω. By inspection of equation (44), Πω is unaffected by an equal absolute increase

in each of its arguments. Then the integral in equation (18) is homogeneous of degree one in

the b’s and eω̄ and eω. The result follows from equation (17).

Finally we consider br ≥ bi, so the period return function s(ω) ≥ bi + λv for all ω. This

implies v(ω;−∞, ω̄) ≥ v for all ω and ω̄. Then an equilibrium is defined by v(ω̄;−∞, ω̄) = v̄.

As discussed above, the solution of this equation is ω̄∗∗ ∈ (ω̄∗,∞).
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A.4 Proof of Proposition 2

First, set br = 0. By Proposition 1, there exists a unique equilibrium characterized by

thresholds ω0 and ω̄0. We now prove that b̄r ≡ eω0 . To see why, observe that for all

br ≤ b̄r, the equations characterizing equilibrium are unchanged from the case of br = 0

because log br ≤ ω0, and hence the equilibrium is unchanged. Conversely, for all br > b̄r, the

equations characterizing equilibrium necessarily are changed, and so the equilibrium must

have log br > ωbr .

Next we prove that b̄r/bi = B(κ, ρ+ λ, µ, σ). Again with br = 0, combine equations (17)

and (18), noting the discounted local time function Πω integrates to 1
ρ+λ

, and use the defini-

tions of v and v̄ in equations (10) and (11):

bi
ρ+ λ

=

∫ ω̄0

ω0

eωΠω(ω;ω0;ω0, ω̄0)dω and

bi

(

1

ρ+ λ
+ κ

)

=

∫ ω̄0

ω0

eωΠω(ω; ω̄0;ω0, ω̄0)dω.

Since Πω is homogeneous of degree zero in the exponentials of its arguments (see equation 44),

this implies eω0 and eω̄0 are homogeneous of degree 1 in bi. Moreover, ζi depends on ρ +

λ, µ, and σ by equation (45) and so the density Πω in equation (44) depends on these

same parameters. It follows that the solution to these equations can depend only on these

parameters and the parameters on the left hand side of the above equations. In particular,

this proves

eω0 = biB(κ, ρ+ λ, µ, σ).

Since b̄r = eω0 , that establishes the dependence of b̄r on this limited set of parameters.

Obviously B is positive-valued. By Proposition 1, ω0 < log bi and so B < 1. We finally

prove it is decreasing in κ. Since κ affects ω and ω̄ only through v̄, to establish that B is

decreasing in κ it suffices to show that the ω and ω̄ that solve equations (17) and (18) is

decreasing in v̄. This follows because Ω̄(ω) is increasing in v̄ and Ω(ω̄) is unaffected, where

these functions are defined in the proof of Proposition 1. A decrease in v̄ then reduces the

composition Ω̄ ◦ Ω. Since the slope of this function is less than 1, it reduces the location of

the fixed point ω̄ and hence raises ω = Ω(ω̄).

A.5 Derivation of the Density f

We use a discrete time, discrete state space model to obtain the Kolmogorov forward equa-

tions and boundary conditions for the density f . Divide [ω, ω̄] into n intervals of length

∆ω = (ω̄ − ω)/n. Let the time period be ∆t = (∆ω/σ)2 and assume that when ω < ω̄, it

40



decreases with probability 1
2
(1 + ∆p) where ∆p = µ∆ω/σ2; when ω > ω, it increases with

probability 1
2
(1 − ∆p); and otherwise ω stays constant. Note that for ω < ω(t) < ω̄, the

expected value of ω(t + ∆t) − ω(t) is µ∆t and the second moment is σ2∆t. As n goes to

infinity, this converges to a regulated Brownian motion with drift µ and standard deviation σ.

Now let fn(ω, t) denote the fraction of workers in markets with log full employment

wage ω at time t for fixed n. With a slight abuse of notation, let fn(ω) be the stationary

distribution. We are interested in characterizing the density f(ω) = limn→∞
fn(ω)
∆ω

. For

ω ∈ [ω + ∆ω, ω̄ − ∆ω], the dynamics of ω imply

fn(ω, t+ ∆t) = (1 − λ∆t)
(

1
2
(1 + ∆p)fn(ω − ∆ω, t) + 1

2
(1 − ∆p)fn(ω + ∆ω, t)

)

. (46)

In any period of length ∆t, a fraction λ∆t of workers leave due to market shut downs and

idiosyncratic quits. Thus the workers in markets with ω at t + ∆t are a fraction 1 − λ∆t

of those who were in markets at ω − ∆ω at t and had a positive shock, plus the same

fraction of those who were in markets at ω+∆ω at t and had a negative shock. Now impose

stationarity on fn. Take a second order approximation to fn(ω+∆ω) and fn(ω−∆ω) around

ω, substituting ∆t and ∆p by the expressions above:

fn(ω) =

(

1 − λ
∆ω2

σ2

)(

fn(ω) − µ
∆ω2

σ2
f ′
n(ω) +

∆ω2

2
f ′′
n(ω)

)

⇒ λfn(ω) =

(

1 − λ
∆ω2

σ2

)(

−µf ′
n(ω) +

σ2

2
f ′′
n(ω)

)

Taking the limit as n converges to infinity, fn(ω)
∆ω

→ f(ω) solving equation (22).

Now consider the behavior of fn at the lower threshold ω. A similar logic implies

fn(ω, t+ ∆t) = (1 − λ∆t)1
2
(1 − ∆p)

(

fn(ω + ∆ω, t) + fn(ω, t)(1 − ∆l̃)
)

.

The workers at ω at t+∆t either were at ω+∆ω or at ω at t; in both cases, they had a negative

shock. Moreover, in the latter case, a fraction ∆l̃ ≡ θ∆ω of the workers exited the market

to keep ω above ω. Again impose stationarity but now take a first order approximation to

fn(ω + ∆ω) at ω; the higher order terms will drop out later in any case. Replacing ∆t, ∆p,

and ∆l̃ with the expressions described above gives

fn(ω) =

(

1 − λ
∆ω2

σ2

)(

1 −
µ∆ω

σ2

)(

fn(ω)

(

1 −
θ∆ω

2

)

+
∆ω

2
f ′
n(ω)

)

Again eliminating terms in fn(ω) and taking the limit as n → ∞, we obtain
fn(ω)

∆ω
→ f(ω)
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solving equation (23).

Now consider the behavior of fn at the upper threshold ω̄:

fn(ω̄, t+ ∆t) = (1 − λ∆t)1
2
(1 + ∆p)

(

fn(ω̄ − ∆ω, t) + fn(ω̄, t)(1 + ∆l̃)
)

+ δ∆tL0/L.

Compared to the equation at the lower threshold, the only significant change is the last term,

which reflects the fact that on average a fraction L0/L workers enter at the upper threshold

when a new market is created. Recall also that markets are destroyed at rate δ per unit

of time and hence δ∆tL0/L is the fraction of workers added to the upper threshold due to

newly created markets. Impose stationarity and take limits to get

fn(ω̄) =

(

1 − λ
∆ω2

σ2

)(

1 +
µ∆ω

σ2

)(

fn(ω̄)

(

1 +
θ∆ω

2

)

−
∆ω

2
f ′
n(ω̄)

)

+ δ
∆ω2

σ2
L0/L

Eliminate terms in fn(ω̄) and take the limit as n → ∞ to obtain fn(ω̄)
∆ω

→ f(ω̄) solving

equation (24).

A.6 Exit Rates from Labor Markets

A worker exits her labor market if the log full-employment wage is ω and the market is hit

by an adverse shock, if the labor market closes, or if she quits. In the discrete time, discrete

state space model, the first event hits a fraction 1
2
∆l̃(1 − ∆p) of the workers who survive in

a labor market with ω = ω:

Ns∆t ≡ (1 − λ∆t)1
2
(1 − ∆p)∆l̃fn(ω)L+ λ∆tL

Reexpress ∆ω, ∆l̃, and ∆p in terms of ∆t, take the limit as n → ∞, and use fn(ω)
∆ω

→ f(ω),

to get equation (35).

A.7 Hazard Rates

Consider a Brownian motion with initial ω ∈ (ω, ω̂). Let Ĝ(t; ·; ·) and G(t; ·; ·) denote the

cumulative distribution function for the times until each of the barriers is hit, conditional on

the initial value of ω:

Ĝ(t; ω̂, ω;ω) = Pr{t ≤ Tω̂, Tω̂ < Tω |ω(0) = ω}

G(t; ω̂, ω;ω) = Pr{t ≤ Tω, Tω < Tω̂ |ω(0) = ω},
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with associated densities ĝ and g. Kolkiewicz (2002, pp. 17–18) proves

ĝ(t; ω̂, ω;ω) =
πσ2

(ω̂ − ω)2

∞
∑

n=1

n(−1)n−1 sin

(

πn(ω − ω)

ω̂ − ω

)

e
µ(2(ω̂−ω)−µt)

2σ2 −π2n2σ2t

2(ω̂−ω)2

g(t; ω̂, ω;ω) =
πσ2

(ω̂ − ω)2

∞
∑

n=1

n(−1)n−1 sin

(

πn(ω̂ − ω)

ω̂ − ω

)

e
−µ(2(ω−ω)−µt)

2σ2 −π2n2σ2t

2(ω̂−ω)2 .

The hazard rate of the first hitting time, conditional on a rest unemployment spell starting

at time 0, i.e conditional on ω = ω̂, is

ĥr(t) ≡ lim
ω↑ω̂

ĝ(t; ω̂, ω, ω)

1 − Ĝ(t; ω̂, ω, ω)−G(t; ω̂, ω, ω)
and hr(t) ≡ lim

ω↑ω̂

g(t; ω̂, ω, ω)

1 − Ĝ(t; ω̂, ω, ω)−G(t; ω̂, ω, ω)
.

Equation (38) follows using L’Hopital’s rule.
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B Additional Appendixes not for Publication

B.1 Derivation Hamilton-Jacobi-Bellman

This appendix proves that if v(ω0) is given by:

v(ω0) =

∫ ω̄

ω

R(ω)Πω(ω;ω0)dω (47)

for an arbitrary continuous function R(·) and where the local time function Πω(·) is given as

in Stokey (2006) Proposition 10.4:

Πω(ω;ω0) =



























(

ζ2e
ζ1ω0+ζ2ω̄ − ζ1e

ζ1ω̄+ζ2ω0
)(

ζ2e
ζ2(ω−ω) − ζ1e

ζ1(ω−ω)
)

(ρ+ λ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
) if ω ≤ ω < ω0

(

ζ2e
ζ1ω0+ζ2ω − ζ1e

ζ1ω+ζ2ω0
)(

ζ2e
ζ2(ω̄−ω) − ζ1e

ζ1(ω̄−ω)
)

(ρ+ λ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
) if ω0 ≤ ω ≤ ω̄,

(48)

where ζ1 < 0 < ζ2 are the two roots of the characteristic equation ρ+ λ = µζ + σ2

2
ζ2, then

(ρ+ λ)v(ω0) = R(ω0) + µv′(ω0) +
σ2

2
v′′(ω0).

Proof. Differentiating v with respect to ω0 we get

v′(ω0) =

∫ ω̄

ω

R(ω)Πωω0(ω;ω0)dω

v′′(ω0) =

∫ ω̄

ω

R(ω)Πωω0ω0(ω;ω0)dω +R(ω0)
(

lim
ω↑ω0

Πωω0(ω;ω0) − lim
ω↓ω0

Πωω0(ω;ω0)
)

where we use that Πω is continuous but Πωω0 has a jump at ω = ω0. Then

(ρ+ λ)v(ω0) − µv′(ω0) −
σ2

2
v′′(ω0)

=

∫ ω̄

ω

R(ω)

(

(ρ+ λ)Πω(ω;ω0) − µΠωω0(ω;ω0) −
σ2

2
Πωω0ω0(ω;ω0)

)

dω

−
σ2

2
R(ω0)

(

lim
ω↑ω0

Πωω0(ω;ω0) − lim
ω↓ω0

Πωω0(ω;ω0)

)

.

Using the functional form of Πω we have, for ω < ω0 :

Πω(ω;ω0) = eζ1ω0 h̃1(ω) − eζ2ω0 h̃2(ω)
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where

h̃1(ω) =
ζ2e

ζ2ω̄
(

ζ2e
ζ2(ω−ω) − ζ1e

ζ1(ω−ω)
)

(ρ+ λ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
)

and h̃2(ω) =
ζ1e

ζ1ω̄
(

ζ2e
ζ2(ω−ω) − ζ1e

ζ1(ω−ω)
)

(ρ+ λ)(ζ2 − ζ1)
(

eζ1ω+ζ2ω̄ − eζ1ω̄+ζ2ω
) .

Thus for all ω < ω0:

(ρ+ λ)Πω(ω;ω0) − µΠωω0(ω;ω0) −
σ2

2
Πωω0ω0(ω;ω0)

=
[

(ρ+ λ) − ζ1µ− (ζ1)
2σ

2

2

]

eζ1ω0h̃1(ω) −
[

(ρ+ λ) − ζ2µ− (ζ2)
2σ

2

2

]

eζ2ω0 h̃2(ω) = 0

where the last equality follow from the definition of the roots ζi . Hence

∫ ω0

ω

R(ω)

(

(ρ+ λ)Πω(ω;ω0) − µΠωω0(ω;ω0) −
σ2

2
Πωω0ω0(ω;ω0)

)

dω = 0.

Using a symmetric calculation for ω > ω0 we have:

∫ ω̄

ω0

R(ω)

(

(ρ+ λ)Πω(ω;ω0) − µΠωω0(ω;ω0) −
σ2

2
Πωω0ω0(ω;ω0)

)

dω = 0.

Next, differentiating Πω(ω;ω0) when ω < ω0 and when ω > ω0 and let ω → ω0 from below

and from above, tedious—but straightforward—algebra, gives:

lim
ω↑ω0

Πωω0(ω;ω0) − lim
ω↓ω0

Πωω0(ω;ω0) = −
ζ1ζ2
ρ+ λ

.

Then use the expression for the roots: ζ1ζ2 = −(ρ+ λ)/(σ2/2). Putting this together proves

the result. �

B.2 Market Social Planner’s Problem

In this section we introduce a dynamic programming problem whose solution gives the equi-

librium value for the thresholds ω, ω̄. This problem has the interpretation of a fictitious social

planner located in a given market who maximizes net consumer surplus by deciding how many

of the agents currently located in the market work and how many rest and whether to adjust

the number of workers in the market. The equivalence of the solution of this problem with

the equilibrium value of the labor market participant has the following implications. First, it
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establishes that our market decentralization is rich enough to attain an efficient equilibrium,

despite the presence of search frictions. Second, it gives an alternative argument to establish

the uniqueness of the equilibrium values for the thresholds ω and ω̄. Third, it connects our

results with the decision theoretic literature analyzing investment and labor demand model

with costly reversibility.

The market planner maximizes the net surplus from the production of the final good in a

market with current log productivity x̃ and l workers, taking as given aggregate consumption

C and aggregate output Y . The choices for this planner are to increase the number of

workers located in this market (hire), paying v̄ to the households for each or them, or to

decrease the number of workers located at the market number (fire), receiving a payment v

for each. Increases and decreases are non-negative, and the prices associated with them have

the dimension of an asset value, as opposed to a rental. We let M(x̃, l) be the value function

of this planner, hence:

M(x̃, l) = max
lh,lf

E

(
∫ ∞

0

e−(ρ+δ)t
((

S(x̃(t), l(t)) + vql(t)
)

dt − v̄dlh(t) + vdlf(t)
)

∣

∣

∣

∣

x̃(0) = x̃, l(0) = l

)

subject to dl(t) = −ql(t)dt+ dlh(t) − dlf (t) and dx̃ = µxdt+ σxdz. (49)

The lh(t) and lf(t) are increasing processes describing the cumulative amount of “hiring” and

“firing” and hence dlh(t) and dlf(t) intuitively have the interpretation of hiring and firing

during period t. The term ql(t)dt represent the exogenous quits that happens in a period

of length dt. The planner discounts at rate ρ + δ, accounting both for the discount rate of

households and for the rate at which her labor market disappears.

The function S(x̃, l) denotes the return function of the market social planner per unit of

time and is given by

S(x̃, l) = max
E∈[0,l]

u′(C)

∫ EAex̃

0

(

Y

y

)
1
θ

dy + br(l − E) + δlv.

The first term is the consumer’s surplus associated with the particular good, obtained by

the output produced by E workers with log productivity x̃. The second term is value of the

workers that the planner chooses to send back to the household, receiving v for each. The

third term is the value of the “sale” of all the workers if the market shuts down. Setting

q = δ = br = 0 our problem is formally equivalent to Bentolila and Bertola’s (1990) model

of a firm deciding employment subject to a hiring and firing cost and to Abel and Eberly’s

(1996) model of optimal investment subject to costly irreversibility, i.e. a different buying

and selling price for capital.
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Using the envelope theorem, we find that the marginal value of an additional worker is:

Sl(x̃, l) = max

{

u′(C)

(

Y (Aex̃)θ−1

l

)
1
θ

, br

}

+ δv (50)

≡ s

(

(θ − 1)(x̃+ logA) + log Y − log l

θ
+ log u′(C)

)

where the function s(·) is given by s(ω) = max{eω, br}+ δv and is identical to the expression

for the per-period value of a labor market participant in our equilibrium, except that δv is

in place of λv. This is critical to the equivalence between the two problems.

To prove this equivalence, we write the market social planner’s Hamilton-Jacobi-Bellman

equation. For each x̃, there are two thresholds, l(x̃) and l̄(x̃) defining the range of inac-

tion. The value function M(·) and thresholds functions {l(·), l̄(·)} solve the Hamilton-Jacobi-

Bellman equation if the following two conditions are met:

1. For all x̃, and l ∈ (l(x̃), l̄(x̃)) employment decays exponentially with the quits at rate

q and hence the value function M solves

(ρ+ δ)M(x̃, l) = S(x̃, l) − qMl(x̃, l) + µxMx̃(x̃, l) +
σ2
x

2
Mx̃x̃(x̃, l). (51)

2. For all (x̃, l) outside the interior of the range of inaction,

(ρ+ δ)M(x̃, l) + qlMl(x̃, l) − µxMx̃(x̃, l) −
σ2
x

2
Mx̃x̃(x̃, l) ≤ S(x̃, l), (52)

v = Ml(x̃, l) ∀l ≥ l̄(x̃), and v̄ = Ml(x̃, l) ∀l ≤ l(x̃) (53)

Equation (53) is also referred to as smooth pasting. Since M(x̃, ·) is linear outside the range

of inaction, a twice-continuously differentiable solution implies super-contact, or that for all

x̃ :

0 = Mll(x̃, l̄(x̃)) = Mll(x̃, l(x̃)). (54)

According to Verification Theorem 4.1, Section VIII in Fleming and Soner (1993), a twice-

continuously differentiable function M(x̃, l) satisfying equations (51), (53), and (54) solves

the market social planner’s problem.

If M is sufficiently smooth, finding the optimal thresholds functions {l(·), l̄(·)} can be

stated as a boundary problem in terms of the functionMl(x̃, l) and its derivatives. To see this,
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differentiate both sides of equation (51) with respect to l and replace Sl using equation (50):

(ρ+ δ + q)Ml(x̃, l) = s

(

(θ − 1)(x̃+ logA) + log Y − log l

θ
+ log u′(C)

)

− qlMll(x̃, l) + µxMx̃l(x̃, l) +
σ2
x

2
Mx̃x̃l(x̃, l). (55)

If the required partial derivatives exist, any solution to the market social planner’s problem

must solve equations (53)–(55). Moreover, there is a clear relationship between the value

function v(ω) in the decentralized problem and the marginal value of a worker Ml in the

market social planner’s problem:

Lemma 2. Assume that θ 6= 1 and that the functions Ml(·) and v(·) satisfy

Ml(x̃, l) = v(ω), where ω =
log Y + (θ − 1)(logA+ x̃) − log l

θ
+ log u′(C) (56)

and that thresholds functions {l(·), l̄(·)} and the thresholds levels {ω, ω̄} satisfy

log l̄(x̃) = log Y + (θ − 1)(x̃+ logA) − θ(ω − log u′(C)) (57)

log l(x̃) = log Y + (θ − 1)(x̃+ logA) − θ(ω̄ − log u′(C)). (58)

Then, Ml(·) and {l(·), l̄(·)} solve equations (53)–(55) for all x̃ and l ∈ [l(x̃), l̄(x̃)] if and only

if v(·) and {ω, ω̄} solve equations (17).

Proof. Differentiate equation (56) with respect to x̃ and l to get

Mlx̃(x̃, l) = v′(ω)
θ − 1

θ
, Mlx̃x̃(x̃, l) = v′′(ω)

(

θ − 1

θ

)2

and Mll(x̃, l) = −v′(ω)
1

θ
.

Recall that a solution of equation (17) is equivalent to a solution to equations (19), (20), and

v(ω̄) = v̄ and v(ω) = v. The equivalence between equation (17) and equations (53)–(55) is

immediate, recalling that λ = q + δ, and the definitions of µ and σ. �

This lemma has important implications. First, it establishes, not surprisingly, that the

equilibrium allocation is Pareto Optimal. Second, since the market social planner’s problem

is a maximization problem, the solution is easy to characterize. For instance, since the

problem is convex, it has at most one solution and hence the equilibrium value of a labor

market participant is uniquely defined, for given u′(C) and Y . The fact that v is increasing

is then equivalent to the concavity of S(x̃, ·). Finally, notice that Proposition 1 in Section
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4.3 we establish existence and uniqueness of the solution to equation (17) only under mild

conditions on s(·), i.e. that it was weakly increasing and bounded below. Proposition 1 can

be used to extend the uniqueness and existence results of the literature of costly irreversible

investment to a wider class of production functions. Currently the literature uses that the

production function is of the form xax lal for some constants ax and al, with 0 < al < 1, as

in Abel and Eberly (1996). Proposition 1 shows that the only assumption required is that

the production function be concave in l, and that the marginal productivity of the factor l

can be written as a function of the ratio of the quantity of the input l to (a power of) the

productivity shock x.
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