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Abstract

This paper proposes a generalized specification for the panel data
model with random effects and first-order spatially autocorrelated
residuals that encompasses two previously suggested specifications.
The first one is described in Anselin’s (1988) book and the second one
by Kapoor, Kelejian, and Prucha (2007). Our encompassing specifica-
tion allows us to test for these models as restricted specifications. In
particular, we derive three LM and LR tests that restrict our general-

ized model to obtain (i) the Anselin model, (ii) the Kapoor, Kelejian,
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and Prucha model, and (iii) the simple random effects model that
ignores the spatial correlation in the residuals. We derive the large
sample distributions of the three LM tests. For two of these three
tests, we obtain closed form solutions. Our Monte Carlo results show
that the suggested tests are powerful in testing for these restricted

specifications even in small and medium sized samples.

JEL classification: C23; C12
Keywords: Panel data; Spatially autocorrelated residuals; maximum-
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1 Introduction

The recent literature on spatial panels distinguishes between two different
spatial autoregressive error processes. One specification assumes that spa-
tial correlation occurs only in the remainder error term, whereas no spatial
correlation takes place in the individual effects (see Anselin, 1988, Baltagi,
Song, and Koh, 2003, and Anselin, Le Gallo, and Jayet, 2006; henceforth
referred to as the Anselin model). Another specification assumes that the
same spatial error process applies to both the individual and remainder error
components (see Kapoor, Kelejian, and Prucha, 2007; henceforth referred to
as the KKP model).

While the two data generating processes look similar, they imply different
spatial spillover mechanisms. For example, consider the question of firm pro-
ductivity using panel data. Besides the deterministic components, firms differ
also with respect to their unobserved know-how or their managerial ability to
organize production processes efficiently. At least over a short time period,
this managerial ability may be time-invariant. Beyond that there are inno-
vations that vary from period to period like random firm-specific technology
shocks, capacity utilization shocks, etc. Under this scenario, it seems rea-
sonable to assume that firm productivity may be spatially correlated due to
spillovers. Such spillovers can occur, e.g., through information flows (trans-
mission of process technologies) embodied in worker flows between firms at
local labor markets or through input-output channels (technology require-
ments and interdependence of capacity utilization). Whereas the Anselin
model assumes that spillovers are inherently time-varying, the KKP process

assumes the spillovers to be time-invariant as well as time-variant. For ex-



ample, firms located in the neighborhood of highly productive firms may get
time-invariant permanent spillovers affecting their productivity in addition to
the time-variant spillovers as in the Anselin model. While the Anselin model
seems restrictive in that it does not allow permanent spillovers through the
individual firm effects, the KKP approach is restrictive in the sense that it
does not allow for a differential intensity of spillovers of the permanent and
transitory shocks.

This paper introduces a generalized spatial panel model which encom-
passes these two models and allows for spatial correlation in the individual
and remainder error components that may have different spatial autoregres-
sive parameters. We derive the maximum likelihood estimator (MLE) for
this more general spatial panel model when the individual effects are as-
sumed to be random. This in turn allows us to test the restrictions on our
generalized model to obtain (i) the Anselin model, (ii) the Kapoor, Kelejian,
and Prucha model, and (iii) a simple random effects model that ignores the
spatial correlation in the residuals. We derive the corresponding LM and LR
tests for these three hypotheses and we compare their size and power perfor-
mance using Monte Carlo experiments. Moreover, we derive the asymptotic

distribution of the proposed LM tests.

2 A Generalized Model

Econometric models for panel data with spatial error processes have been
proposed by Anselin (1988), Baltagi, Song, and Koh (2003), Kapoor, Kele-
jian, and Prucha (2007) and Anselin, Le Gallo, and Jayet (2006), to mention



a few. A generalized spatial panel data model that encompasses these previ-

ous specifications is given as follows:!

yYe = Xtﬁ—l—ut, t:17,T
U = u;+uy
u = pyWu +p

Uy = p2wu2t+1/t,

where the (IV x 1) vector y, includes the observations on the dependent vari-
able at time t, with N denoting the number of unique cross-sectional units.
The non-stochastic (N x K) matrix X; gives the observations at time ¢ for a
set of K exogenous variables, including the constant. 3 is the corresponding
(K x 1) parameter vector. The disturbance term follows an error compo-
nent model which involves the sum of two disturbances. The (N x 1) vector
of random variables u; captures the time-invariant unit-specific effects and
therefore has no time subscript. The (/N x 1) vector of the remainder distur-
bances uy; varies with time. Both u; and uy; are spatially correlated with
the same spatial weights matrix W, but with different spatial autocorrela-
tion parameters p; and p,, respectively. The (N x N) spatial weights matrix
W has zero diagonal elements and its entries are typically declining with
distance. We further assume that the row and column sums of W are uni-
formly bounded in absolute value and that p, is bounded in absolute value,

e, [p.] < Amax for r = 1,2, where Ay is the largest absolute value of

!To avoid index cluttering, we suppress the subscript indicating that the elements of
the spatial weights matrix may depend on N and that the dependent variable and the

disturbances form triangular arrays.



the eigenvalues of W. Hence, the spatial weights matrix may be either row
normalized or maximum row normalized (see Kelejian and Prucha, 2007).
Further, the matrices Iy — p, W are assumed be non-singular.

The elements of p are assumed to be independent across ¢ = 1, ..., N, and
identically distributed as N(0, ai). The elements of v, are assumed to be
independent across ¢ and ¢ and identically distributed as N(0,02). Also, the
elements of pu and v, are assumed to be independent of each other. Appendix
B provides a more detailed set of assumptions.

Stacking the cross-sections over time yields

y = XB+u (1)
u = Z,u; +uy
u = pWu +p

u = po(Ir@W)uy + v,

where y = [y}, ... ¥y, X =[X},...,X%]’, etc., so that the faster index is i
and the slower index is t. The unit-specific errors u; are repeated in all time
periods using the (NT x N) selector matrix Z, = ¢ty ® Iy. ¢r is a vector of
ones of dimension 7" and Iy is an identity matrix of dimension N.

This model encompasses both the KKP model, which assumes that p; =
po, and the Anselin model, which assumes that p, = 0. If p; = p, = 0,
i.e., there is no spatial correlation, this model reduces to the familiar random
effects (RE) panel data model; see Baltagi (2005).

Let A = (In — pyW) and B = (Iy — p,W), then, under the present



assumptions we have

w = Alp~ NO0,02(A'A)Y) (2)

uw = (Ir@B YHv ~ N(0,0%(I; ® (B'B)™).

The variance-covariance matrix of the spatial random effects panel data

model is given by

Q, = E(uu) = E[(Z,u +)(Z,m + w)’ 3)
= 0,(Jr @ (A'A)) +ol(lr @ (BB) )

v

= Jr®[Tos(A’A) " +02(B'B) ']+ 0.(Er ® (BB) ') = 0.3,

This uses the fact that E[uju)] = 0 since g and v are assumed to be
independent. Note that ZuZL = Jr ® Iy, where Jr is a matrix of ones
of dimension 7. Let Ep = Ip — Jp, where J; = Jr/T is the averaging
matrix, the last equality replaces Jr by TJ; and Ip by Er + Jr. Tt is
easy to show that the inverse of the (N7 x NT') matrix €2, can be ob-
tained from the inverse of matrices of smaller dimension (N x N) as follows:

;! = (T7® (Tod(A'A) " +02(B'B) "))+ & (B; 9B'B) = 15", where

I

2 =Jr®(T%A'A)'+(BB))!) + (Er ® BB).

g

NIV

Also, det[Q,] = det[To?(A’A)"" + 02(B'B) '] det[o(B'B)~']""'. Under
the assumption of normality of the disturbances, the log-likelihood function

of the general model is given by

L(B,0) = —%LIn2r — 1lndet[Tos(A'A)™" + 02 (B'B) ™)
—Tlndet[ol(B'B) '] — 1y — XB)Q, ' (y — XB8), (4)



where 8 =(02,02, py, py). The maximum likelihood estimates are obtained
by maximizing the log-likelihood function numerically using a constrained
quasi-Newton method with the constraints as implied by our assumptions.?

The hypotheses under consideration in this paper are the following:

(1) H§': p, = p, = 0, and the alternative H{! is that at least one compo-
nent is not zero. The restricted model is the standard random effects (RE)
panel data model with no spatial correlation, see Baltagi (2005).

(2) HB: p; = 0, and the alternative is HZ: p; # 0. The restricted model
is the Anselin (1988) spatial panel model with random effects. In fact, the
restricted log-likelihood function reduces to the one considered by Anselin
(1988, p.154).

(3) HS: p; = py = p and the alternative is HY: p; # py. The restricted
model is the KKP spatial panel model with random effects.

In the next subsections, we derive the corresponding LM tests for these
hypotheses and we compare their performance with the corresponding LR
tests using Monte Carlo experiments.®> Appendix A describes some general
results used to derive the score and information matrix for these alternative

models; Appendix B proves the consistency of the ML estimates of the general
model; while Appendices C-E provide the derivations of the large sample

2The numerical maximization procedure can be simplified, if one concentrates the likeli-
hood with respect to 3 and 2. However, our optimization for the Monte Carlo simulation
using MATLAB were quite fast using the constrained quasi-Newton method. Appendix F

describes some details on the numerical optimization procedure.
3LM tests for spatial models are surveyed in Anselin (1988, 2001) and Anselin and

Bera (1998), to mention a few. For a joint test for the absence of spatial correlation and

random effects in a panel data model, see Baltagi, Song, and Koh (2003).



distributions of these LM tests.

2.1 LM and LR Tests for Hg' : p, = p, =0

The ML estimates under H' are labeled by a tilde and the corresponding
restricted parameter vector is indexed by A. The joint LM test statistic for
the null hypothesis of no spatial correlation, Hg' : p; = p, = 0, is derived in
Appendix C and it is given by

_ 1 2 1 72
LMy = 2457 G+ 2b4(T—1)5% My, ()

where 77 = T&Z +52, ba = tr[(W + W)?|, G4 = W[Jr ® (W' + W)U, and
My = W[Er @ (W' + W)J. In this case, T = y — X/3 denotes the vector
of the estimated residuals under Hg'. The restricted model is the simple

random effects (RE) panel data model without any spatial autocorrelation.

and 7> = Lﬁ?h’)ﬁ. Under H§', the LM, statistic

GI(ET®IN)ﬁ

~2
In fact, 0, = N(T—1)

is asymptotically distributed as x3 as shown in Appendix C.

One can also derive the corresponding LR test for H': p; = p, = 0 as
LRA=2(Lg — La),

using the maximized log-likelihood of the general model denoted by Lg and

the maximized log-likelihood under H{':
Ly= —g In 275> %lng—i — %ﬁ'ﬁ_lfi.

v n

This test statistic is likewise asymptotically distributed as y2.



2.2 LM and LR Tests for HP : p; =0

Under HP: p, = 0, the restricted model is the spatial panel data model with
random effects described in Anselin (1988). The corresponding LM test for
HP is a conditional test for zero spatial correlation in the individual effects,
allowing for the possibility of spatial correlation in the remainder error term,
ie., py # 0. Appendix D gives the formal derivation of this LM statistic.
In fact, under HY, the information matrix is block-diagonal with the lower
block being independent of 3. Let dy be the (4 x 1) score vector referring to
the parameter vector @ = (02,07, py, py) and denote the 4 x 4 lower block of
the information matrix by Jy. The ML estimates under HJ are labeled by a
hat. The corresponding estimated residuals are then u =y — XB The LM

test for H makes use of the estimated score dy = 0,0, c/l\pl, 0] with

~ oL ~ 2~ ~ N\~
d,, = -—| =—3T0,tr[CiCy] + 3750 (Jr ® C,C2Ch)u
Ipy HE

= L1762[(WGph) — Ga),

where C; = [T5°Iy + 62(B'B)']™" and C; = (W' + W), Gp= (Jr ®
610261), and gp = tr[ang]. An estimate of the lower (4 x 4) block of the
information matrix Jy under HZ is given by

Hf
~ _ ~ T2 ~ =2 ~ o~ o~ _ —~
%tT[C;;Q] + N(%All) %tr [C3Cl] ;” tr[C3C1Cz] %tT‘[C:gClCd + (Zazl)tT[C4]
o ) ~ srs2 rod o ?
%t?‘ [0301] %tr [C% ;M tr[C%Cz] ;u tT[C%Cﬂ
T52 o~ T252 724 R 78252 o
S tr[C3C1 Ca) S tr[C2Ca) S tr[(C1C2)?] 7472 47[C1C2C1 Cs)

52 o~ o~ A _ ~ G ~o A T5252 A ~ ~ . 54 ~ ~ _ ~
T 4r[C3C1Cs5) + M er[Cy) T2u4r[C2Cs] 247 4r[C1C2C1C5] Z2tr[(C1Cs)?) + T 4r[C3)

52
201/

where C3 = (B'B)"'C,, C4 = (WB+B'W)(B'B)! and C; = (B'B)"!C,.

The LM test for HP has no simple closed form representation and it is cal-

10



culated as
s A
LMp =dy,J;'dy = dpl']3317 (6)
where jggl is the (3,3) element of the inverse of the estimated information

matrix jg ! under HP. This test statistic is shown to be asymptotically

distributed as x3.

In Appendix D, we follow Moulton and Randolph (1989) in deriving the
asymptotic distribution of an alternative LM test statistic based on the stan-
dardized score under H¥, which we denote by LMJy.* This results in an

alternative closed form expression for this LM statistic, namely,

LM = (XOg3nr o

where by = tr[(C1Cs)%. In Appendix D, we show that this test statistic is
asymptotically distributed as x?. LM}, is a simple and practical alternative
to LMp which performs just as well in the Monte Carlo experiments.

The corresponding LR test is based upon the maximized log-likelihood

under HJ:

Lp = =Y 2752 — Lindet(C,) (8)

+7- 1 Indet(B'B) — La@/'Q; 'a.

4Moulton and Randolph (1989, p. 687) find that "the asymptotic unit normal distribu-
tion poorly approximates the finite sample distribution of the LM statistic" in the one-way
random effects model. Therefore, they propose an alternative LM statistic, which is based
on the standardized score. The suggested standardization does not affect the test when
exact critical values are used, but may improve the appropximation of asymptotic critical

values.
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This restricted log-likelihood is the same as that given by Anselin (1988, p.
154).

2.3 LM and LR Tests for HS : p; = py, = p

Under HS : p; = py = p, the true model is the one suggested by Kapoor,
Kelejian, and Prucha (2007). In this case, B = A and the parameter esti-
mates under HS are labeled by a bar. The corresponding estimated residuals
are given by =y — X3. The score and the information matrix needed for
this test are derived in Appendix E. The joint LM test statistic for H{ is
given by

LMo = =G 9)
with G = @ (Jr @ F)u— o%r[D), F = WA + A'W and D = F(A'A)~L.
Also, b = tr[D’] — (tr[D))?/N, o7 = FHrSERIE 4 52 = FELSA AT
Under H§, the LM statistic is supposed to be asymptotically distributed
as x7. In Appendix E, we follow Moulton and Randolph (1989) in deriving
the asymptotic distribution of a slightly modified LM test statistic based on

the standardized score, which we denote by LM(.:

LM, = -G,

1
21700"11
with EIC =1r [52]. The Monte Carlo simulations indicate that the normalized
LM{, performs nearly as well as LM in small samples.

The LR test is based on the following maximized log-likelihood under
HS:

Lo = =% m2na} — FIn(Z) + FInder(A'A) - ju®, '

AL



Kapoor, Kelejian, and Prucha (2007) consider a generalized method of
moments estimator, rather than MLE, for their spatial random effects panel
data model. Nevertheless, Lo is the maximized log-likelihood for the KKP

model with normal disturbances.

3 Monte Carlo Results

In the Monte Carlo analysis, we use a simple panel data model that includes

one explanatory variable and a constant (K = 2)
Yit = Bo+ B1Tit +uye, t=1,...,Nandt=1,....,7,

where 5, = 5 and 3; = 0.5. =z is generated by z; = (;, + z;;, where
¢; ~ ii.d. U[-7.5,75] and z; ~ i.i.d. U[—5,5] with Ula,b] denoting the
uniform distribution on the interval [a, b]. The individual-specific effects are
drawn from a normal distribution so that u; ~ d.i.d. N(0,206), while for

the remainder error we assume v;; ~ i.i.d. N(0,20(1 —6)) with 0 < 6 < 1.

0= aﬁﬁgg is the proportion of the total variance due to the heterogeneity of
the individual-specific effects. This implies that o7 + o7 = 20.

We generate the spatial weights matrix by allocating observations ran-
domly on a grid of 2NV squares. Consequently, as the number of observations
N increases, the number of squares in the grid grows larger, too. The prob-
ability that an observation is located on a particular coordinate is equal for
all coordinates on the grid. This results in an irregular lattice, where each
observation possesses 3 neighbors on average. The spatial weighting scheme

is based on the Queens design and the corresponding spatial weights matrix

is normalized so that each row sums to one.
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The parameters p, and p, vary over the set {—0.8, —0.5, —0.2,0,0.2,0.5,0.8}.

The cross-sectional and time dimensions are N = 50, 100 and 7" = 3, 5, 10,
respectively. Lastly, the proportion of the variance due to the random indi-
vidual effects takes the values # = 0.25, 0.50, 0.75. In total, this gives 882
experiments. For each experiment, we calculate the three LM and LR tests

as derived above, using 2000 replications.’

Table 1 reports the frequency of rejections for N = 50,7 = 5,and § = 0.5

2:

in 2000 replications. This means that o,

02 = 10. The size of each test is
denoted in bold figures and is not statistically different from the 5% nominal
size. The only exception where the LM test might be undersized is for the
KKP model, for high absolute values of p; and p,, both equal to 0.8. The
size adjusted power® of the LR and LM tests is reasonably high for all three
hypotheses considered. The performance of the LM test is almost the same
as that of the LR test, except for a few cases. For Hg' : p, = p, = 0, when
p; = —0.5 and p, = 0, the size adjusted power of the LM test is 61.4%
as compared to 64.6% for LR. At p; = 0.5 and p, = 0, the size adjusted
power of the LM test is 70% as compared to 66.4% for LR. Similarly, for

HEP: p; =0, when p, = —0.5 and p, = 0, the size adjusted power of the LM

°In a few cases, we got negative LR test statistics due to numerical imprecision. These
cases occur mainly with the Anselin model at p; = 0. However, this happened in less than
0.5 percent of the Monte Carlo experiments. We drop the corresponding experiments in

the subsequent calculations of the size and power of the tests.
6The size corrected critical level for the test is inferred from the empirical distribution

of the test statistic in the Monte Carlo experiments, so that the rejection region under the

empirical distribution has the correct nominal size.
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test is 70.2% as compared to 72.9% for LR. At p; = 0.5 and p, = 0, the size
adjusted power of the LM test is 76.7% as compared to 74.6% for LR. For
HE : p; = py = p, when p; = —0.5 and p, = 0, the size adjusted power of
the LM test is 66.1% as compared to 68.5% for LR. At p; = 0.5 and p, = 0,
the size adjusted power of the LM test is 70.6% as compared to 65% for LR.

Table 1 also reports the large sample approximations of LMpg and LM,
namely, LM} and LM/, respectively. These results indicate that the large
sample approximations are accurate for small and medium absolute values
of p; (Anselin model) and of p; = p, in the KKP model. However, the tests
tend to be undersized whenever p; or p, is large in absolute value.

Tables 2 and 3 repeat the same experiments but now for 6 = 0.25 and 0.75,
respectively. These tables show that as we increase 6, we increase the power
of these tests. In fact, the power of all three tests is higher, the higher the
variance of the individual-specific effect as a proportion of the total variance.
For example, for H{' : p; = py = 0, when p; = —0.5 and p, = 0, the size
adjusted power of the LM test increases from 61.4% for § = 0.5 (in Table 1)
to 68% for 6 = 0.75 (in Table 3), while the size adjusted power of the LR test
increases from 64.6% to 74.8%. Similarly, when p; = 0.5 and p, = 0, the size
adjusted power of the LM test increases from 70% for # = 0.5 to 78.4% for
6 = 0.75, while the size adjusted power of the LR test increases from 66.4%
to 77.4%. For HP: p; = 0, when p, = —0.5 and p, = 0, the size adjusted
power of the LM test increases from 70.2% for = 0.5 to 81% for # = 0.75,
while the size adjusted power of the LR test increases from 72.9% to 83.4%.
At p; = 0.5 and p, = 0, the size adjusted power of the LM test increases
from 76.7% for 6 = 0.5 to 86.6% for 8 = 0.75, while the size adjusted power

15



of the LR test increases from 74.6% to 84.9% for LR. For HY : p; = py = p,
when p; = —0.5 and p, = 0, the size adjusted power of the LM test increases
from 66.1% for 8 = 0.5 to 73% for 6 = 0.75, while the size adjusted power of
the LR test increases from 68.5% to 74.8%. At p; = 0.5 and p, = 0, the size
adjusted power of the LM test increases from 70.6% for 6 = 0.5 to 80.4% for
6 = 0.75, while the size adjusted power of the LR test increases from 65% to
77.3%.

Things also improve if the number of observations increases. The increase
in power is larger when we double N from 50 to 100 as compared to doubling
T from 5 to 10.” We conclude that the three LM and LR tests perform rea-
sonably well in testing the restrictions underlying the simple random effects
model without spatial correlation, the Anselin model and the KKP model in
small and medium sized samples.

Figures 1-4 plot the size adjusted power for the various hypotheses con-
sidered. In Figure 1, the pure random effects model is true, whereas in Figure
2, the Anselin model is true. In Figures 3 and 4, the KKP-type model is true

with different values for the common p.

Let us start with a comparison of the panels given in Figure 1, which
assumes that the random effects model is true (p; = py = 0). On the left

hand side, we plot the size adjusted power of the LM test for deviations of

"We do not include the corresponding Tables for (N = 50, T = 10) and (N = 100,
T = 5), for 8 = 0.25,0.50, and 0.75, in order to save space. However, these tables
are available upon request from the authors. Below, we summarize the corresponding

information by means of size adjusted power plots.
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p, from 0, maintaining that p, = 0. On the right hand side it is the other
way around. Observe that the power of the LM test is higher for deviations
of p, from 0 as compared to deviations of p; from 0. Keep in mind that
the estimates of p, are based on NT' observations, while those of p; rely on
only N observations. The top two panels show that the power increases for
deviations in p; as 6 increases. However, for deviations in p,, the power of
the test is insensitive to . The two panels at the center of Figure 1 illustrate
that both the size and the power of the LM test improve as the sample size
increases, especially as N becomes larger. A comparison of the two panels
at the center with those at the bottom of Figure 1 provides information on
the interaction of sample size (N, T') and the relative importance of 0. It
is obvious that for deviations of p; from 0 (on the left), the power improves
with N, especially as 6 increases.

Figure 2 assumes that the Anselin-type process of the error term is the
true model (p; = 0). One important difference when compared to Figure 1
is that p, is now a nuisance parameter. The qualitative effects of an increase
in N, T, and # are similar to those in Figure 1 on the left hand side. The
right hand side panels of Figure 2 show that the size adjusted power of the
LM test is lower if p, is high (0.5 compared to 0), especially for low 6 (0.25
compared to 0.75).

Figures 3 and 4 assume that the KKP model is the true one. Note that an
assessment of the performance of the LM test is different here, since the KKP

model assumes that p; = p,. The null hypothesis in Figure 3 is p; = p, = 0.2

17



and the one in Figure 4 is p; = p, = 0.5. The major difference between the
two figures is that assuming a null that is different from p, = p, = 0 shifts the
size adjusted power function and renders it skewed to the right. Otherwise,
the conclusions regarding the impact of #, N, and T are qualitatively similar
to those of the random effects model. A major difference from the random
effects model is that for the KKP model the power is lower in the p, direction,

especially for small 6.

3.1 Robustness Checks

We also assess the robustness of the proposed LM tests with respect to (i)
non-normal errors and (ii) the specification of the spatial weighting matrix.
To compare the simulated power functions for normal vs. non-normal errors,
we generated the remainder error term first as vy ~ t(5) and normalized
its variance to 10. Hence, # = 0.5 holds in this case and the results are
comparable to the basic Monte Carlo set-up defined above. This implies that
the distribution of the remainder error exhibits heavier tails as compared to
the normal distribution but it is still symmetric. Second, we analyzed a
skewed error distribution assuming v;; follows a log-normal distribution with
variance 10, i.e., vy = /10(ef — €°°)/V/e2 — €1, where ¢ ~ N(0,1). For
N =50 and T = 5, the Monte Carlo experiments show that there are minor
changes in the size adjusted power curves under both error distributions.
This holds true for all LM tests considered. The power figures are available

upon request from the authors.
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The non-normality of the remainder error, however, does affect the size
of the tests. In Table 4, we focus on the size of the LM and LR tests under
alternative distributional assumptions of the error term for N = 50, T'=5
and 0 = 0.5. In the first pair of columns we give the true parameters p,,
po, the second pair of columns summarizes the size of the tests under the
assumption that v, ~ ¢(5), in the third pair of columns we assume that v
follows a log-normal distribution with variance 10. It turns out that both
the LM tests and the LR tests are fairly insensitive to the chosen alternative
assumptions about the distribution of the disturbances at intermediate levels
of p; and p,. However, the LM tests tend to be somewhat more undersized
than the LR tests, especially for p; = p, = 0.8. With the caveat of the
limited experiments we performed, this finding suggests that the LM tests
considered are fairly robust to deviations from the assumption of a normally

distributed error term.

Figure 5 investigates the extent to which the specification of the spatial
weighting scheme matters for the size and power of the tests considered. We
generated an alternative spatial weighting matrix allowing for a more densely
populated grid. In particular, we randomly allocated the observations on the
grid so that there are 5 rather than 3 neighbors per observation on average.
As expected, the power of the tests is somewhat lower in this case, but still

big enough to detect relevant deviations from the null.
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4 Conclusions

The recent literature on first-order spatially autocorrelated residuals (SAR(1))
with panel data distinguishes between two data generating processes of the
error term. One process described in Anselin (1988) and Anselin, Le Gallo
and Jayet (2006) assumes that only the remainder error component is spa-
tially correlated. In an alternative process put forward by Kapoor, Kelejian,
and Prucha (2007) both the individual and remainder components of the
disturbances are characterized by the same spatial autocorrelation pattern.
This paper formulates a SAR(1) process of the residuals with panel data
that encompasses these two processes. In particular, this paper derives three
LM tests based upon the more general model, testing its restricted counter-
parts: the Anselin model, the Kapoor, Kelejian, and Prucha model, and the
random effects model without spatial correlation. For the latter two tests,
closed-form expressions for the LM statistics can be obtained.

Our Monte Carlo study assesses the small sample performance of the
derived tests. We find that the tests are properly sized and powerful even
in relatively small samples. The LM tests are easy to calculate and their
power is reasonably high for all three tests considered. The power of these
LM tests matches that of the corresponding LR tests except in few cases. In
general, the power of the tests increases with the relative importance of the
individual effects’ variance as a proportion of the total variance, as well as
with increasing N and 7. They are robust to non-normality of the error term
and sensitive to the specification of the weight matrix. Hence, these LM and
LR tests are recommended for the applied researcher to test the restrictions

imposed by the RE model with no spatial correlation, the Anselin model,
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and the Kapoor, Kelejian, and Prucha model.
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Appendix A: Score and Information Matrix

For convenience, we reproduce the variance-covariance matrix of the gen-

eral model given in (3):
Q,=Jr@[To.(AA)" +0.(BB) |+ 0l[Er @ (B'B) ]
Q;l = jT X [TO'i(AIA)il + O'Z(B/B)il]il -+ U%Q,(ET X B/B>,

where A = (Iy — pyW) and B = (Iy — p,W).

2

v

Denote the vector of parameters of interest by 8 = (02,072, p1, p,)’. Below,
we can focus on the part of the information matrix corresponding to 6. The
part of the information matrix corresponding to 3 can be ignored in com-
puting the LM test statistics, since the information matrix is block-diagonal
between @ and 3, and the first derivative with respect to B evaluated at the
restricted MLE is zero.

First, we drive the score and the relevant information submatrix of the
general model. These results are then used to test the three hypotheses of

interest below. Hartley and Rao (1971) and Hemmerle and Hartley (1973)

give a general useful formula that helps in obtaining the score:

L Q Q
oL _ —Lltr (Q;la “) + (Q;lhﬁ‘l) u, r=1,.,4  (10)

00, 00, 00,
Observe, that
oAb, _ Jr@(BB)'+(E B'B) )=1 B'B)!
2 T r® (B'B)"")=1r ® (B'B)
o, -
=T, @T(A'A)?
por ~ 1T ETAA)
Q. -
aa = Tr @ T (AA) (W W - 20, WW)(A'A)
1
I
) Ir ® 02(B'B) ' (W + W — 20, WW)(B'B) .
2
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To derive the information submatrix we use the general differentiation result

given in Harville (1977):

0%L 1 o2 o2
Js=E | — = _tr |Q 1t =1,..,4.
{ aerej 27”{ 99, o0, BET
Here, g—gLr and J,, are evaluated at the MLE estimates.

Appendix B: Identification and Consistency

In the sequel, we use subscript 0 to indicate true parameter values where
necessary.
Assumptions®
A1l (random effects model): The model comprises unit-specific random
effects denoted by the (N x 1) vector p. The elements of p are assumed
to be i.i.d. N(0,0%) with 0 < ¢, < 07 < ¢, < co. v is the vector of

remainder errors and its elements are assumed to be i.i.d. N(0,0%) with

2

2 < ¢, < oo. The elements of p and v are assumed to be

0<¢ <o

independent of each other.

A2 (spatial correlation): (i) Both u; and uy are spatially correlated with
the same spatial weights matrix W whose elements may depend on N. The
(N x N) spatial weights matrix W has zero diagonal elements. (ii) The

row and column sums of W are uniformly bounded in absolute value. (iii)

1

X for r = 1,2, where Aj.x
max

p, is bounded in absolute value, i.e., |p,| <

denotes the largest absolute value of the eigenvalues of W. (iv) The matrices

8To avoid index cluttering, we suppress the subscript indicating that the elements of
the spatial weights matrix may depend on N and that the dependent variable and the

disturbances form triangular arrays.
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Iy — p, W are non-singular and their inverses have bounded row and column

sums.

A3 (compactness of the parameter space): the parameter space ® with
elements (B,0%,02, py, py) is compact. The true parameter vector (indexed

by 0) lies in the interior of ©.

We note that Assumptions Al and A2 imply that E = {(¢, p1, p,)|(05, 02, py,
py) € ®} with ¢ = 07, /07 is also compact. In the following, the elements of

E are denoted by the vector 9.

A4 (identification of 9): For every 9 # ¥

— 3 In(57tr [ (90)Eu(9)Y]) — 537 In[det 3, () / det 2, ()] < 0.

A5 (identification of (3): The non-random matrix X has rank K < N
and its elements are uniformly bounded constants for all N. Further, the
non-random matrix lim y o (57 X2, (99) ~*X) is finite and non-singular and

iy o0 (577 Zu () ' X) is finite and has full column rank.

Consistency of the ML estimates under the general model.

In proving the consistency of MLE, we make use of the following Lemmas.

Lemma 1 Under the maintained assumptions (i) the row and column sums
of (A’A)~! and (B'B)~! are bounded in absolute value. (ii) The row and

column sums of X,(9) and X,(9)~ are bounded in absolute value.
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Proof. (i) By Assumption A2 the row and column sums of the matrices W,
A, B, A" and B! are bounded in absolute value. Since this property is
preserved when multiplying matrices of proper dimension that have bounded
row and column sums (see Kelejian and Prucha, 2001, p. 241f), one can
conclude that the row and column sums of (A’A)~! and (B'B)~! are also

bounded in absolute value, say, by constants c4 and cpg, respectively.

(ii) The row and column sums of 3,(¢¥}) are bounded in absolute value,
since |p,| < Klaxby Assumption A2 and = is compact by Assumption A3. To
see this, denote the typical element of 3,() by o,;. Then, maz; ;i <
Toca+ cp < oo and maz; )y, 0, < T'oca + cg < co. Since X, (V) is sym-
metric and invertible, |[Inr — 3,(9)]] < 1 (see, Horn and Johnson, 1985,
p. 301), where ||-|| denotes a matrix norm, e.g., the maximum column or
row sum norm. Accordingly, [|Z,(9)7Y = ||, Inr — Zu(9) | <
Y v Mnr — 2,9 = m < o00. We conclude that the row

-1

and column sums of ¥, ()" are also uniformly bounded under the present

assumptions. m

Lemma 2 Under the maintained assumptions, (i) the matrices %,(9) and
. (9)7! are positive definite. (ii) Let M(9)= X (X'S,(9)X) ' X'S, (9) L,
then 3,(9)7! (Iyy — M(9)) is positive definite.

Proof. (i) Observe that det[X,(9)] = det[T'¢(A’A)~1+(B'B) ! det[(B'B)!]7!
and that det[T'o(A’A)~! + (B'B)7!] > det[T'¢(A’A)~!] + det[(B'B) 7] > 0,
since ¢ > 0 and (A’A)~! as well as (B’B)~! are positive definite by Assump-
tion A2 (see Abadir and Magnus, 2005, p. 215 and p. 325). Therefore, ¥, (1)
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and X, (1)1 are positive definite.
(ii) This result holds, since 3,(19) is positive definite and X is of full column
rank (K). =m

The proof of consistency of the maximum likelihood estimates under the
general model is based on the concentrated log-likelihood. Recall that the

unconcentrated log-likelihood is given by

L(B,68) = =X In2r — LIndet[To’(A'A)™" + 02 (B'B) ']

—Tlndet(o2(B'B) ') — Ly — XB)Q, ' (y — XB).

The first order conditions for 3 and o2 are given by

8Lé(),£;,0) _ %(X’Zu(ﬂ)*ly—X'E 1X,6 )
1

= B) = (X'S,(9)7'X) ' X'S;'(9)y

OUEO — ML 4 Lu(B(9))S,(8) u(B)) =0
R uAﬁ/Eu’ﬂ_luAﬂ 'S, ()" YA —M(9
= 52(19) = MBOVELO) EO) _ y'Eu®) Ay -M@))y

where M(9)= X (X'2,(9)'X) ' X'S,(¥)"! and u(8(9)) = y — XB(9).
This uses 3, (9) M (9)= M(9)'Z,(9) = M(9)'Z,(9) ' M(9). Since the
elements of X are uniformly bounded by Assumption A5 and ¥,(19) is
uniformly bounded in its row and column sums by Lemma 1, it follows
that the row and column sums of M(¥) are uniformly bounded. Also,
¥.(9)7 (Iyr — M(¥9)) is positive definite by Lemma 2. This implies that
72(9) > 0.

The concentrated log-likelihood function is then given by

L°(9) = =2 In2r — 2L In52(9) — S Indet £,(9) — &L

5 -
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To obtain the non-stochastic counterpart of L¢(1¥), we use

E[L(By.0)) = —2In2r — 2 Ino? — Ln[det ,(9)] — Z5tr[S(9) ", (9))

20

and

02
PR = i+ tr[Bu(9) 7 (D)) =

o2 20°%

= 072(9) = ZLtr[%,(9) 5, (9)).

Since X, (9)~! is positive definite by Lemma 2, it follows that o**(9) > 0

and

QD) = marBIL(B,, 0)
= - In2r — X lno}?(¥) — 1Indet X, (9) — L.

Theorem 3 Under Assumptions A1-A5, the maximum likelihood estimates

are unique and consistent.

Proof. To prove consistency, we have to show that +=(L¢(9) — Q(9))

converges uniformly to 0 in probability.

Note that 5= (L¢(89) — Q(¥)) = —3(In 72(9) — Ino*?(19)) and
U(B(ﬁ))'xu( 9) "' u(B(8)) = u(By) Tu(9) " u(By)— u(By) Su(¥) T M(B)u(By)=
tr[2u ()~ (Ivr — M(9))u(Bo)u(B,)']

Now, limy—.o E[5,,(9)~03*(9)] = — limy oo 7 Bltr[Su(9) " M(9)u(B,)u(B,)']
= —limy 0o NLﬁtr[Eu(ﬂ)_lM(ﬁ)Eu(ﬁg)]. According to Lemma 1, the row

and column sums of 3, (9) 'M(¥9) and X, (9) are bounded in absolute value
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and this property is preserved under matrix multiplication. Therefore, the el-
ements of X, (9)"'M(89)X,(9) are uniformly bounded by some constant ¢y,
(see also Lemma A.7 in Lee, 2004b) so that i? T tr[3,(9) T M(9) 2, ()] <
ﬁK cy = 0. The latter follows from the fact that
3.(9)TM(9)X, () is of rank K.

limy o0 VGT‘[A2(’I9> 0:2(9)] = limy o Var|z7tr[Zu(9) "M () u(By)u(B,)']] =
limpy o (NT)2 —20 tr [(X,(9) TM(9) X, (9))?] using Lemma (A1) in Kelejian and
Prucha (2007, p. 29) and Assumption Al. As aresult, limy_, (N”)O r[(E.(9)~ 1
M(9)E,(9))?] = o(1). By Chebyshev’s inequality, we conclude that 57 () —
o*2(89)=0,(1). Also, 5>(89) > 0 and 0*?(89) > 0 as shown above.

. . ~2 _ *2 G (9)—03*(9)
Using the mean value theorem it follows that In 7, () = In 0}*(9)+> ==
with the constant @2(9) lying in between ¢%(9) and 72(+9) and ,%(19) <

*2( )+A2(19) < 00. Therefore, we obtain gupNT |L¢(9) — Q)| = sup|Ina>(I)

Je=

—Ino2(9)|= supﬁ 72(9) — o7 9)| = 0,(1), since G2(9) — 072(9)=0,(1)

v

and —t

@) is bounded by some positive constant.

Secondly, we have to prove the following uniqueness identification condi-
tion (see Lee, 2004a). For any ¢ > 0, limsupy_, o, maXycw. (9 7 (Q(9) —
Q(¥y)) < 0, where N.(1) is the complement of an open neighborhood of
¥ of diameter c. Note, Q(9) — Q(F) = —EL[Inc*(¥) — Ino}?(Yo)]—
£ In[det 33, (9)/ det 2, (90)].

Now, Ino32(9) — In0}(9) = Intr+= (20 (%) Xu(9) 7= In =tr[Inr] =

NT
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In 52 (3 (96) 24 (9) 1] and 15(Q(9) ~Q(By)) = —5 In 7[5, (96) S, (9) ]
— g7 In(det ,(9)/ det B, (90)) < 0

for every ¥ # 9, € E by Assumption A4. Accordingly, we conclude that the
maximum likelihood estimator ¥ of 1Yy under the general model is unique and

consistent, since (1) is continuous and the parameter space is compact.

—_

Lastly, ,@(’3) is identified by Assumption A5. Specifically, we have (ﬁX’ EJ@)*X)
2, (ﬁX’Eu(ﬂo)*lX)fl and ﬁx’z;l(@)*lu(ﬁ) 2o, since 9 L9,
Hence, plimNHooB(@) = Bo+ plim oo [(ﬁX’Eu(@)%X) ﬁX’E;l(ﬁ)—lu(a)} =
B, under Assumption A5. m

Appendix C: LM Test for random effects
Below, Theorems 7-9 derive the asymptotic distribution of the LM tests.

The following three Lemmas are useful in proving these theorems.

Lemma 4 Let pp ~ N(0,021y) and v ~ N(0,0.(Ir ® Iy)) and assume

that Assumptions A1-A2 hold. Consider the quadratic form Q, = (Z, A" p+
Ir@B ) (Jr @ H) (Z, A p+(I;@B~1)v), where H is a non-stochastic
symmetric N x N matrix with uniformly bounded row and column sums. Then
E[Qy] = Toltr[H(A'A) +oltr[H(B'B) |, Var[Qy] = 2{T?otr[(H(A’A)~')*]+
2Toroztr[H(A'A)""H(B'B) ']+ optr[(H(B'B)™")*]} and

Qp—Toltr[H(A'A) " —o2tr[H(B'B) ']
\/Q{TQUﬁtT[(H(A’A)*l)2}+2T0',2/U tr(H(A’A)~1TH(B'B)~1]+oitr[(H(B'B)~1)2]}

< N(0,1).

2
m
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Proof. Inserting Z,, = (vp ® Iy) gives

AZ, (I eH)Z,AT = A7 (L 91y) (Jr@H) (ir @ Iy) A7
= TA'HA™
A7, (Jr®H) (Ir e B™) = A",  HB™)
IroB™")Y (JroH)(Ir®B™") = (Jy  B~'HB ™)

Let Li= A 'HA !, Ly= A" 'HB ', Ls= B 'HB ', and £ =(p', v/}, ..., V}.)".

Then, we obtain

TL,; Ls L,
L/ ng. 1L3
Qr=€Lg=¢| 2177717 ¢
| Ly L . 7Lg

T T T T
t=1 t=1 t=1 t=1

Now _ -
UiIN 0 .. 0

, 0 UZIN .. 0
Q. = Elg¢] = ,

0 0 .. O'?/IN

since E[up'] = 021y, Eluv)] = E[v,v)] =0 for 7 # t and Elywj] = o 1y.
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Using Lemma A1l of Kelejian and Prucha (2007, p. 29), we have

E[Qb] = t’l“[Lbﬂg]
TUiLl 0-12/L2 .. O'?,LQ

27/ 1.2 1.2
. OMLQ TUVL?) .. TJVL?)

277 1.2 12
oLy zo,Ls .. TO'VLg_

= Totr[Ly|+oitr[Ls] = Tortr[H(A'A) ™ |+o2tr[H(B'B) '],

since tr[A"THA ™| = tr[H(A’A)7Y], tr[B""HB '] = tr[H(B'B) "], and

VCLT[Q(,] = 2tT[Lb95LbQ§] =

- -2
2 2 2
T(TMLl oLy .. 0iL,
o1/ 1 _2 1 2
2Ll =o0°Ls .. =o0°L

2 14 3 14 3
2t7ﬁ 14 T T

21/ 1.2 2
o, Ly zo,Ls .. zo,L3

o ToyLyLy + 007 LsL JzaiL’QLg—i—%J;‘jL%

_TU;‘;L'QLl + 0202 LsLy oo LyLo+50,L3
which reduces to

T?04 L3+ Tol02 Loy TohoiliLyt+oiloLs .. TohoLiLy+opLoLs

2271/ 1 4712
O-VU;LLQL2+TUVL3

2 27/ 1 472
0,0, Lslo+70, L3 |

Var(Qy) = 2(T?otr(L]] + 2Ta,%a§tr[L’2L2] + oitr[L3)

= 2(TPoutr[(H(A'A) ™)’ + 2T o 0 tr[H(A'A)""H(B'B) ']

+o,tr[(H(B'B)™)?).
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Since the row and column sums of A, B, (A’A)~!, (B'B)~! and H are uni-
formly bounded, so are those of Li, Ls, L3 and L;. Furthermore, since the
elements of £ are independent and normally distributed by Assumption Al
and Q, = €'Ly¢ = &' (L} + Ly)&, the assumptions of the central limit the-
orem for linear quadratic forms given as Theorem 1 in Kelejian and Prucha

(2001, p. 227) are fulfilled and
Qy—ToZtr[H(A'A) " |—o2tr[H(B'B) ']

d
2AT2ohtr[(H(A'A)~1)2)+2T 0202 tr[H(A’A)~'H(B'B)~!|+oitr[(H(B'B)~1)2]} - NO,1). =

Lemma 5 Let p ~ N(0,021y) and v ~ N(0,02(Ir ® Iy)) and assume that
Assumptions A1-A2 hold. Consider the quadratic form Q. = (Z,p + (Ir ®
In)v) (Er @ H) (Z,p+ (Ir @Iy)v), where H is a non-stochastic symmetric
N x N matriz with uniformly bounded row and column sums. Then, E[Q,] =

w—02(T—1)tr d
o2(T — Dtr[H], Var[Q.] = 204(T — 1)tr[H? and ‘O_?% v ;T_l)lg:u[{‘j]] < N(0,1).

Proof. Inserting Z,, = (vr ® Iy) and using v, Ep = Epup =0 gives

Z, (Er®H)Z,=0
Z,(EroH)(I;®Iy) =0

Ir2Iy) (Er@H)(Ir®Iy) =Er@H
and
Qu =V (Er@H)v
T T T
- ZV;HVt — = (Z 1/2) H <Z I/t) :

t=1 t=1 t=1
Next, E[v/(Er@H)v] = tr[(Er@H)o2Iny| = 02(T—1)tr[H], and Var[v/'(Er®
H)v|=20%(T — 1)tr[H?]. Theorem 1 in Kelejian and Prucha (2001) can be
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directly applied, since the elements of v are independent and the row and

column sums of H are bounded in absolute value: Q;" —p (T Dir[H] 4, s (0,1).
024/2(T—1)tr[H2]

]
Lemma 6 Assume u ~ N(0,8,), where Q, = 02(Jr @ Iy) + 0%(Er @ Iy).
Then G4 = ' (J7 ® (W' + W))u and My = u' (Er ® (W + W))u are

independent.

Proof. By Theorem (viii) in Rao (1973, p. 188), a necessary and suffi-
cient condition for the independence of G4 and M 4 is €2, (jT ® (W' + W)) Q,
(Er @ (W' + W))Q, =0. Now Q, (J7r ® (W' + W)) = 03(Jr (W' +W))
and (Er @ (W' + W))Q, = 02 (Er @ (W' + W)). Therefore,

Q. (Jr®@ (W +W))Q, (Ere (W +W))Q,
=0i(Jr @ (W + W) oi(Jr @ In) + 02(Er @ In)|os (Er @ (W' + W))
=01(Jr® (W +W))o2 (Er @ (W' +W)) =0,
since J;JEr = 0. m

Next, this Appendix derives the LM test for the null hypothesis Hg' :

p1 = py = 0, i.e., that there is no spatial correlation in the error term. The

joint LM test for the null hypothesis of no spatial correlation in model (1)
tests Hg' : p; = p, = 0. The LM statistic is given by

LM, = D,J, Dy, (11)

where Dy = (9L/08)(8) is a 4 x 1 vector of partial derivatives of the log-
likelihood function with respect to the elements of 8, evaluated at the re-
stricted MLE, 0. Jy = E[—02L/8006'](8) is the part of the information

matrix corresponding to @, also evaluated at the restricted MLE, 0.
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Under H, 64

above, the score under H{' is determined as

oLl _ _~ _ N@oy
80.3 Hé“ 20% 202
oL
doz| = o FagiUr@lyu
w1 Hg
oL o2
% A:ﬁul[JTQQ(W'—l-W)]u
11 Hg
oL o2 =
dpy HA o1
and )
W T s a0
NT NT? 0
J0|HA _ 20‘11 20"11 ) 4
° 0 0 L,
0 0 T;’ﬁai‘—bA

where by = tr[(W' + W)2|.

TO'

(20’ +

:pp = py =0, B=A =1y. Using the general formulas given

+ %ll/ (%%jT + %ET) X IN] u

%ET) ® (W' + W)] u

0
0
O'bA

(r- 1)) ba

The score with respect to each element of 6

evaluated at the restricted MLE 6 under H{ withu =y — Xﬁ is given by

0

- 0
Dy =

The determinant of the submatrix jp P2

det |:Jp17p2 H64:|
_ 2 1

T ba T2(T-1)5,

and its inverse is

-1
P1,P2

A
HO

36

J‘u’ [Jr @ (W' +W)]u
E [(;;JT + LB @ (W + W)

_ (%A)?T“’(T_Uﬁ

1

T—1)5 +a —TU
( 1
T~2~2

v

is determined as

l/

2~4
T 0,



Defining

Ga=1[Tro (W +W)|a
My = U [Er ® (W +W)| 4,

we have

Y-l 1 A2 1 172
LMA*DQJQ Dg—mGA—FmMA.

Theorem 7 (LMy,) Suppose Assumptions Al - A5 hold and HE' - p; = py =

0 is true. Then, LM, = ﬁ;éi—kmﬁﬁ 18 asymptotically distributed
o1 —1)o,

as x3.

Proof. First, use the residuals of the true model u =y — X3, and define

G4y =dG u

MA = u’MAu,

where G4 = J7®@(W'+W), and M4 = Er®(W'+W). Under H§' (random
effects model) and Assumption A1, u ~ N(0,Q,) with Q, = 0% (Jr ® Iy) +
0'12, (ET X IN)

(i) We can apply Lemma 4 by setting A = B = Iy so that H =(W'+W)
with ¢r[H] = 0, because tr[W] = 0. Hence, E[G4] = 0 and Var|[G 4] = 207ba
with by = tr[H?]. By Assumption A2 the row and column sums of H are
uniformly bounded, so o—‘;’?/—gbi converges in distribution to the standard nor-
mal.

(ii) Using Lemma 5 with H =(W’+ W) implies that —24— % N(0, 1),

024/2(T=1)by

v
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(iii) Lemma 6 establishes the independence of G4 and My.

(iv) Given a consistent estimator of 3, say Z\i and U =y — XZ;, we have
LG AT = WG ut 20 GAX(B-B)+ 1 (8—B0) X' GaX(B—-8,) =
7w G qu+to,(1), since X and G4 are non-stochastic matrices (see Lemma
1 in Kelejian and Prucha, 2001, p. 229) and B = By+o,(1). Similarly,
WMl = WMautoy(1). /20%bs > 0 and \/20%4(T — 1)bs > 0, since
02,02 > 0 and by > 0 by Assumptions Al and A2. As shown in Appen-
dix B, ] = 02 + 0,(1) and 5> = 02 + 0,(1). Then, Theorem 2 of Kele-

jian and Prucha (2001, p. 230) implies that = G4__ 4 0,(1) and
\/ b2 \/20"1112124
My Ma .
N 1)bA \/20 ST—00x + 0p(1). Furthermore, this theorem establishes
that ——4— converge in distribution to a standard normal.
20‘1*1)2 283 (T—l)bA

Combining these results, LM, is a sum of squares of two independent
standardized quadratic forms of random variables, which are both asymp-
totically standard normal under the adopted assumptions. Hence, LM, is

asymptotically distributed as x3 under HJ'. =

Appendix D: LM Test for the Anselin Model
This Appendix derives the LM test for the null hypothesis that the spatial
correlation follows the specification described in Anselin (1988). This is given
by HE : p, = 0.

Under HY : py = 0; A = Iy and Q, = Jr ® (To}Iy + 02(B'B) ')+
or(Er @ (B'B) ™), Q,' = Jr @ (To;Iy + 03 (B'B) ™)'+ L(Er @ (B'B)).

Using the general formulas for the score and the information submatrix given
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above, we get

oL _ _
52|, = —3tr[(To} BB+ o)Iy) '] — X050
vt
+3u'[Jr @ (To:B'B+0.1y) (To2ly +0.B'B) ™!
+55(Er ® B'B)u
oL _
&7 = —%T tT[(TUiIN + O'ZB/B> 1]
wiHp
+3u'[Jr @ (To’Iy +0.B'B)Ju
oL
5| = —1To’ tr[(Toly + o, (B'B) ™) (W' + W)
P1lHE
+30ou[Jr @ (Tordy +0,(BB) )" (W' + W) (Too Iy +0,(BB)"") 'u
L
37 = —30. tr[(To.Iy + 0.B'B) " (B'B)"'(W'B + B'W)(B'B) ']
21HE

~ T [(W'B + B'W)(BB) ™Y

+3u'[02Jr @ (To’Iy + 0.(B'B)"")"(B'B) " (W'B + B'W)(B'B) "

(TopIy +0,(BB)™) ™ + 4 (Er ® (WB +B'W))lu
and the elements of the information matrix are determined as
(r-1

112
J11|H63 = %t?“ [(TUZB/B + O’?,IN) 1] + NQT

JlQ‘HOB = Ztr [(To’B'B+ o 1y) ' (To Iy + 0. (B'B) )]

DL tr[(To2B'B + 02Ly) (T + o(B'B) ") (W' + W)

Jislpp =

Julps = Ftr[(To?B'B + 02Ly) ™ (To? + 03(B'B) ™)™
(B'B)" (W'B +B'W)(B'B) '] + 2tr[(W'B + B'W)(B'B) ']
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Jao|gs = Str [(To?y + 02(B'B) ™))’

2 2
TO'H

Joa|gp = 5 tr[(TopIy + oy (B'B) ™) *(W' + W)

Joa|yp = TT"Etr[(To—iIN +0(BB)")"*(B'B) '(W'B + B'W)(BB)™ ]

2 4
TUH

T3l yp = = tr[((To’Iy + o2 (B'B) )" (W' + W))?|

2
v

Jsalgp = ZE 4 (To? Ty + 02(B'B) ™) 7H (W' + W)

(TUiIN +02(B'B)) '(B'B)Y(W'B +B'W)(B'B) ]

Julgs = Ftr[(TolIy + 0c2(B'B)™")7/(B'B)" (W'B + B'W)(B'B) ")

+5 26 [(WB +B'W)(B'B) ™).

The LM test for H? makes use of the estimated score Dy = [0, 0, cipl, 0] with

~ oL R T C.C.CO0
dpl - _ = _T “tr[Clcg] + 7#11/<JT & Clc2cl)u;
9p, HE

2

where i =y — X3, C; = (I52Iy +52(B'B)™) " and C; = (W +W). An
estimate of the lower (4 x 4) block of the information matrix J, under HE
is given by

I up =
~ _ ~ ~ T2 ~ ~ 52 ~ o~ o~ _ ~
1tr[Cs2] + Y71 Tty [0301] Thtr[C3C1Ca] G tr[C3CiCs] + LM tr(Cy
U 2 A 252 52 o
Ttr [CaCy] i (€3] Jit tr[C2Co] T2 4r[C2Cs)
TG | N 7262 o T35 5 T5252 ~ A
) tT[C3C102] ) T[CICQ} 5 t'r‘[(Clcg)] Tt’r‘[clcgclcg)}
~2 ~ o~ o~ _ —~ ~2 o~ o~ T2 52 —~ ~ o~ ~4 ~ o~ _ ~
T2 tr[C3C1Cs) + TP tr[Cy] T224r[C2C5] —£724r[C1C201C5] 22 tr[(C1C5)%) + L5 24r(C3)

where Cs = (ﬁ'ﬁ)*lél, Cy = (W']§+]§’W)(]§’]§)*1 and Cy = (]§']A3)*164.
The LM test for HP does not have a simple closed form. However, an al-
ternative closed form expression for this LM statistic based on the square

(/G pii-gp)’
25

JT X 610261, /g\B = %ﬂt’f’[t\th] and /b\B = tr[(ang)Q].

of the standardized score is given by LM} = , where G B =

40



Theorem 8 (LMpg) Suppose Assumptions A1 - A5 hold and HE : p; =0 is

true. Then, LM} = (GIG'%M is asymptotically distributed as 3.
B

Proof. Using the residuals and the parameters of the true model under
HP, the score is given by
dPl = %TO-IQLGB’
where Gp = (W'Gpgu— gp) and Gp= (J7 ® C;C,C;), using C; = (TUfLIN +
02(B'B) 1)1, C; = (W' + W) and g5 = #r[C; Ca).

(i) Under Hég A =1y and we can apply Lemma 4 setting H = C;C,C; so

that E[u'Gpu] = To’tr[H|+ otr[H(B'B) '] = T'o’tr[C,CyCy |+ 02tr[C,C,C1(B'B) '] =
tr[C1CoCy(To2In+ 02(B'B)~1)] = tr[C,C,] = gp. Observe, To’ H+0,H(B'B)™' =

C,C,.

Var[w'Gpu] = 2(T?oytr[H?| 4+ 2T o202 tr[H*(B'B) '] + o, tr[(H(B'B) ~1)?]).
and tr[(ToH+0,H(B'B)')?] = tr[T%0, H*+-2T 00, H*(B'B) ' +-0,,(H(B'B)')?]

= tr[(C,C3)?. Hence, by Lemma 4 #J;TB with bp = tr[(C;C3)?] converges

in distribution to the standard normal.

(i) As a result, we obtain var(d, | = 7?07, Var[u'Gpu] = ;7%0},bs. Hence,

T4
172 4 2
2TO'HGB_
124 -
2Ta'ub]_:g

the square of the standardized score statistic is given by LMp =

%. By analogy to the arguments in the proof of Theorem 7, we conclude

that the quadratic form \/G% converges in distribution towards a standard
B
normal under HP. Hence, LM}, is asymptotically distributed as x? under

HP. =
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Appendix E: LM Test for the KKP Model
To derive the asymptotic distribution of the LM test for HY, it proves useful
to re-parameterize the model so that p; = p, + A and to test HY : A =0 vs.
HE : A #0, i.e., that the spatial panel correlation follows the specification
proposed by KKP.

Under HS, B= A, Q,
»Er) ®

= (02Jr +02Er) @ (A’/A)~! and Q! = (Ul%jT +
(A’A). Using the general formulas for the score and for the infor-

mation matrix given above, we get

oL - N
s = S WG + 5 Br) © A’AJu

ao_y HOC' o7 b g1 v
oL T
2 = i@ e A
Tulpgg ' 1

oL T0'2 1.,/ Ui_
N o1 17(D] + 3 (T Jr ® Flu
aL 0_2_

oL ~ 2o D] + 2 (2T @ Fu
dpy HS ! '

3%+ (T -
3tr[D] + 30[(5Ir + 5 Er) @ Flu,

where F = WA + A’'W and D = F(A’A)~!. The elements of the relevant

part of the information matrix are

N(T-1 To? o2 T_1
% + (20'3 ) % 20-2‘1; tT[D} <201./111 + (20_12/)> tT’[D]
2052 o2
5 Nw S vl gD
0lgc = 2,2 2 o,
° o] SHeD] EeD? e (D?)
a2 TO' O’V
(& + (2021)>tr[D] LebtrD] Tt (g + fE ) tr(D?) |

The restricted MLE estimates under H§ are labeled by a bar. In fact, this
gives the MLE version of the KKP model and @ = y — X3. The score with
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respect to each element of @ evaluated at the restricted MLE 8 is given by

0
- 0
0 = 2 — — —
2 [—ottrD] + W (Tr @ F)ul
0

Using d¢ = tr[D] and e = tr[ﬁQ], the lower (4 x 4) block of the estimated

information matrix evaluated at the restricted MLE 8 is given by

(r-eiial BN V. e
4 — —2
NT TG, TdC M2 TU;
s 1 T TUM o1
0~ %7 2 2 4 =22
_ [ To To), o010
Td . K Te a K
¢ (T-1)7%4+5252 _—o Ol oy _
1 vI1 F 0.20.2 0.4
! ez % 1% 01 |
oMy M
= 5T
My, Moo

To derive the lower right block of the inverse J,, 1, we employ the formula for

the partitioned inverse so that j:pz = 201 (Magy — Moy M "M yp) L

_ 174175252
O 72 T#E || T -1 72 Uloitouey
My M '!M;y = —Zelde " " " Toy
21+¥411 12 — NT(T=1)7 P, =4 | =4
( 71 | (T-1)7i+a252 o (T-1)o{+0, —9 —2
—t—1 -1 = T o
T2 1 To2 H 1
. —2 —2 (T-1)77
_ ord T, Tao, 0 =
N(T-1)7] | (1-1)54+5252 o (T-1)7{52 (T-1)51{2
TG 91 B T
v v v
~ —2 —2 —2
_ T T, Ta, 0 o2
N | (T-DFi+oe7 2 —2 —2
T52 71 T O
~ —4 =22
TR o, 010,
= 3¢ ,
—2—-2  —4
| 010, 01
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using [My;| = NT%ﬁ.

. TG, 750, re2, | 10, o105,
M22 — MglMH M12 = T@C oo 4 - N - A
010, 0, | 010, O
52
2 Ta o
—T(ex — % 1%
M wm o
1Y 1]
-1
—2—-9 —4 —2-9
3 o Ta, @i, _ ) oy —010,
Ay T The T T(T-1)boat )
’ 5252 4 Oy —2—2 A
010, 0 —oy0, 10,

where be = & — 320 /N. Defining G = @ (Jr ® F)u — 72tr[D] the resulting
LM statistic for HS is given by

v s Y T —2
LMC = DGJQ Dg = WGC.

Theorem 9 (LM¢) Suppose Assumptions A1 - A5 hold and HS: py = py =
pis true. Let F = (WA+AW), D=FAA)" andGe = (Jr@F)u—
&2tr[D]. Then, LM}, = @EZ with B,c =ec = tr[ﬁQ] is asymptotically
distributed as 3.

Proof. Define G¢ = (J;r ® F) and go = o2tr[D] so that the score under

c * . 1. To? = To? TO'
H§ is given by da = 3u (—EJT ® F)u — —g‘tr[D] = o (u Gou—go) =
Loy GC Note that first, we use the true residuals and the true parameters

under Hg.

(i) We can apply Lemma 4 with H = F and A = B to obtain:
Elu'(Jr @ F)u] = Totr[F(A’A)+o2tr[F(A’A) 7] = o3tr[D] = gc and
Vara'(Jr@F)u] = 2(T%0tr[(F(A’A) )2+ 2T o202 tr[F(A'A)'F(A'A) ]+
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oltr[(F(A’A)™1)?] = 201tr[D?] = 201bl,. Since W is uniformly bounded and

|p| Amax < 1, we conclude that the elements of D are also uniformly bounded
GC*O’%IET[D]

A/ 20‘%})’0

in absolute value and that converges in distribution to the stan-

dard normal.

(ii) By analogy to the arguments in the proof of Theorem 7, we conclude that
Gc

724/ 2b¢

asymptotically distributed as x? under HS. m

the quadratic form

converges in distribution to N(0,1) and LM/, is

Note that the standardized LM, in the proof differs from the formula

for LMy in the text which relies on the normalization %Ecﬁ‘f, with b =

tr[D’] — tr[D]2/N.

Appendix F: Numerical optimization

We use the constrained quasi-Newton method involving the constraints

2

JZ > 0,07 >0, -1 <p, <land —1 < p, < 1 to estimate the para-
meters of the four models (the unrestricted model and the three restricted
ones: random effects, Anselin, and KKP). The quasi-Newton method calcu-
lates the gradient of the log-likelihood numerically. We use the optimization
routine fmincon available from Matlab which uses the sequential quadratic
programming method. This method guarantees super-linear convergence by
accumulating second order information regarding the Kuhn-Tucker equations
using a quasi-Newton updating procedure. An estimate of the Hessian of the
Lagrangian is updated at each iteration using the BFGS formula. All tests

are based on the analytically derived formulas for both the gradient and the

information matrix, using the estimated parameters.
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Table 1: Monte carlo simulationsfor size and power of LM and LR tests of the random effects, the Anselin and
the Kapoor-K elgian-Prucha models; share of reectionsin 2000 replications

(N=50, T=5, 6°,=10, 6°,=10)

Random effects model Anselin model Kelgjian-Prucha model
H0A3 p1=0, p=0 HoB3 p1=0 H0C3 P1=p2
P1 P, LMy LR, LMg LMg LRs LM¢ LM LR
-0.80 -0.80 1.000 1.000 0.938 0.924 0.964 0.039 0.028 0.041
-0.80 -0.50 1.000 1.000 0.985 0.973 0.992 0.590 0.580 0.565
-0.80 -0.20 0.997 0.998 0.989 0.988 0.991 0.919 0.927 0.922
-0.80 0.00 0.979 0.982 0.989 0.992 0.991 0.982 0.993 0.985
-0.80 020 0.997 0.997 0.989 0.989 0.993 0.999 0.999 0.999
-0.80 050 1.000 1.000 0.972 0.975 0.977 1.000 1.000 1.000
-0.80 0.80 1.000 1.000 0.925 0.936 0.938 1.000 1.000 1.000
-0.50 -0.80 1.000 1.000 0.562 0.570 0.595 0.172 0.135 0.307
-0.50 -0.50 1.000 1.000 0.692 0.687 0.711 0.046 0.046 0.046
-0.50 -0.20 0.913 0.925 0.727 0.752 0.742 0.318 0.315 0.324
-0.50 0.00 0.614 0.646 0.702 0.698 0.729 0.661 0.645 0.685
-0.50 020 0.888 0.886 0.690 0.710 0.724 0.868 0.867 0.894
-0.50 050 1.000 1.000 0.613 0.610 0.632 0.985 0.980 0.992
-0.50 0.80 1.000 1.000 0.430 0.445 0.450 0.999 0.998 1.000
-0.20 -0.80 1.000 1.000 0.144 0.138 0.153 0.643 0.615 0.755
-0.20 -0.50 1.000 1.000 0.175 0.157 0.183 0.209 0.228 0.231
-0.20 -0.20 0.663 0.669 0.164 0.200 0.167 0.042 0.035 0.045
-0.20 0.00 0.130 0.139 0.158 0.166 0.169 0.157 0.183 0.171
-0.20 020 0.696 0.660 0.186 0.187 0.203 0.453 0.466 0.499
-0.20 050 1.000 1.000 0.131 0.158 0.142 0.863 0.864 0.910
-0.20 0.80 1.000 1.000 0.095 0.114 0.097 0.976 0.965 0.996
0.00 -0.80 1.000 1.000 0.043 0.025 0.058 0.822 0.814 0.899
0.00 -0.50 1.000 1.000 0.043 0.037 0.055 0.501 0.485 0.509
0.00 -0.20 0582 0.574 0.045 0.038 0.059 0.106 0.109 0.099
0.00 0.00 0.043 0.053 0.049 0.048 0.058 0.054 0.045 0.059
0.00 020 0.646 0.602 0.042 0.041 0.047 0.133 0.154 0.154
0.00 050 1.000 1.000 0.049 0.028 0.051 0.595 0.583 0.672
0.00 0.80 1.000 1.000 0.050 0.017 0.053 0.898 0.881 0.962
0.20 -0.80 1.000 1.000 0.117 0.116 0.092 0.962 0.952 0.983
0.20 -0.50 1.000 1.000 0.147 0.139 0.126 0.818 0.830 0.827
0.20 -0.20 0.605 0.593 0.174 0.163 0.142 0.402 0.407 0.382
0.20 0.00 0.130 0.110 0.148 0.141 0.125 0.131 0.154 0.111
0.20 020 0.686 0.649 0.171 0.160 0.140 0.048 0.039 0.053
0.20 050 1.000 1.000 0.134 0.141 0.116 0.283 0.307 0.348
0.20 0.80 1.000 1.000 0.093 0.087 0.082 0.798 0.752 0.909
0.50 -0.80  1.000 1.000 0.667 0.673 0.632 0.999 0.998 0.999
0.50 -0.50 1.000 1.000 0.761 0.743 0.728 0.989 0.992 0.988
0.50 -0.20 0.901 0.889 0.781 0.790 0.739 0.903 0.904 0.886
0.50 0.00 0.700 0.664 0.767 0.778 0.746 0.706 0.722 0.650
0.50 020 0.934 0.923 0.771 0.795 0.750 0.372 0.365 0.302
0.50 050 1.000 1.000 0.683 0.685 0.662 0.044 0.040 0.054
0.50 0.80 1.000 1.000 0.397 0.378 0.402 0.434 0.350 0.590
0.80 -0.80 1.000 1.000 0.994 0.999 0.995 1.000 1.000 1.000
0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.80 0.00 0.999 0.998 0.999 0.999 0.999 0.997 1.000 0.996
0.80 020 1.000 1.000 1.000 0.998 1.000 0.988 0.984 0.977
0.80 050 1.000 1.000 0.990 0.986 0.997 0.781 0.779 0.699
0.80 0.80 1.000 1.000 0.847 0.820 0.947 0.033 0.021 0.062

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size adjusted power
of the tests.



Table 2: Monte carlo simulationsfor size and power of LM and LR tests of therandom effects, the
Anselin and the Kapoor -K elgjian-Prucha models; share of reectionsin 2000 replications

(N=50, T=5, 6°,=5, 6°,=15)

Random effects model Anselin model Kelgjian-Prucha model
Ho'™ p1=0, po=0 Ho': p1=0 H0C3 pP1=p2
p1 P2 LM LR LM LR LM LR
-0.80 -0.80 1.000 1.000 0.660 0.757 0.039 0.033
-0.80 -0.50 1.000 1.000 0.824 0.896 0.443 0.401
-0.80 -0.20 0.987 0.991 0.935 0.952 0.804 0.812
-0.80 0.00 0.896 0.923 0.950 0.963 0.940 0.953
-0.80 0.20 0.956 0.961 0.935 0.947 0.974 0.981
-0.80 0.50 1.000 1.000 0.875 0.902 0.993 0.999
-0.80 0.80 1.000 1.000 0.804 0.838 0.993 0.999
-0.50 -0.80 1.000 1.000 0.301 0.320 0.093 0.175
-0.50 -0.50 1.000 1.000 0.422 0.431 0.047 0.038
-0.50 -0.20 0.853 0.878 0.496 0.532 0.248 0.262
-0.50 0.00 0.389 0.425 0.489 0.502 0.448 0.484
-0.50 0.20 0.767 0.756 0.504 0.548 0.684 0.743
-0.50 0.50 1.000 1.000 0.378 0.419 0.865 0.920
-0.50 0.80 1.000 1.000 0.306 0.328 0.923 0.989
-0.20 -0.80 1.000 1.000 0.097 0.098 0.316 0.455
-0.20 -0.50 1.000 1.000 0.119 0.112 0.120 0.131
-0.20 -0.20 0.641 0.668 0.108 0.123 0.044 0.042
-0.20 0.00 0.100 0.111 0.126 0.129 0.123 0.125
-0.20 0.20 0.638 0.605 0.129 0.148 0.291 0.324
-0.20 0.50 1.000 1.000 0.084 0.097 0.588 0.674
-0.20 0.80 1.000 1.000 0.066 0.080 0.733 0.909
0.00 -0.80 1.000 1.000 0.049 0.057 0.457 0.659
0.00 -0.50 1.000 1.000 0.046 0.058 0.265 0.304
0.00 -0.20 0.570 0.586 0.050 0.053 0.076 0.071
0.00 0.00 0.050 0.055 0.048 0.052 0.053 0.049
0.00 0.20 0.627 0.596 0.039 0.039 0.096 0.119
0.00 0.50 1.000 1.000 0.050 0.047 0.310 0.413
0.00 0.80 1.000 1.000 0.050 0.045 0.521 0.753
0.20 -0.80 1.000 1.000 0.073 0.069 0.755 0.866
0.20 -0.50 1.000 1.000 0.104 0.081 0.585 0.613
0.20 -0.20 0.552 0.564 0.091 0.083 0.269 0.257
0.20 0.00 0.084 0.070 0.108 0.082 0.107 0.091
0.20 0.20 0.691 0.660 0.109 0.097 0.041 0.045
0.20 0.50 1.000 1.000 0.075 0.068 0.199 0.245
0.20 0.80 1.000 1.000 0.071 0.072 0.435 0.629
0.50 -0.80 1.000 1.000 0.468 0.438 0.971 0.989
0.50 -0.50 1.000 1.000 0.565 0.520 0.929 0.936
0.50 -0.20 0.772 0.765 0.586 0.571 0.790 0.754
0.50 0.00 0.505 0.482 0.579 0.557 0.535 0.492
0.50 0.20 0.886 0.873 0.541 0.524 0.252 0.197
0.50 0.50 1.000 1.000 0.325 0.351 0.039 0.053
0.50 0.80 1.000 1.000 0.182 0.193 0.236 0.322
0.80 -0.80 1.000 1.000 0.984 0.987 1.000 1.000
0.80 -0.50 1.000 1.000 0.993 0.993 1.000 1.000
0.80 -0.20 0.993 0.993 0.992 0.991 0.998 0.997
0.80 0.00 0.988 0.987 0.993 0.993 0.989 0.984
0.80 0.20 0.999 0.999 0.990 0.993 0.959 0.930
0.80 0.50 1.000 1.000 0.846 0.960 0.630 0.525
0.80 0.80 1.000 1.000 0.430 0.644 0.034 0.059

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size
adjusted power of the tests.



Table 3: Monte carlo simulationsfor size and power of LM and LR tests of therandom effects, the
Anselin and the Kapoor -K elgjian-Prucha models; share of reectionsin 2000 replications

(N=50, T=5, 6°,=15, 6°,=5)

Random effects model Anselin model Kelgjian-Prucha model
Ho'™ p1=0, po=0 Ho': p1=0 H0C3 pP1=p2
p1 P2 LM LR LM LR LM LR
-0.80 -0.80 1.000 1.000 0.985 0.994 0.039 0.032
-0.80 -0.50 1.000 1.000 0.997 0.999 0.642 0.610
-0.80 -0.20 0.999 1.000 0.998 0.999 0.964 0.965
-0.80 0.00 0.986 0.995 0.997 0.998 0.995 0.996
-0.80 0.20 0.998 1.000 0.996 0.998 1.000 1.000
-0.80 0.50 1.000 1.000 0.993 0.997 1.000 1.000
-0.80 0.80 1.000 1.000 0.969 0.975 1.000 1.000
-0.50 -0.80 1.000 1.000 0.727 0.769 0.271 0.408
-0.50 -0.50 1.000 1.000 0.815 0.836 0.046 0.046
-0.50 -0.20 0.927 0.945 0.814 0.831 0.384 0.370
-0.50 0.00 0.680 0.748 0.810 0.834 0.730 0.748
-0.50 0.20 0.935 0.942 0.811 0.820 0.937 0.952
-0.50 0.50 1.000 1.000 0.755 0.777 0.999 1.000
-0.50 0.80 1.000 1.000 0.589 0.619 1.000 1.000
-0.20 -0.80 1.000 1.000 0.174 0.198 0.788 0.885
-0.20 -0.50 1.000 1.000 0.210 0.235 0.241 0.267
-0.20 -0.20 0.671 0.704 0.231 0.249 0.049 0.051
-0.20 0.00 0.163 0.189 0.236 0.256 0.176 0.192
-0.20 0.20 0.735 0.732 0.230 0.237 0.509 0.555
-0.20 0.50 1.000 1.000 0.178 0.188 0.934 0.965
-0.20 0.80 1.000 1.000 0.136 0.142 1.000 1.000
0.00 -0.80 1.000 1.000 0.042 0.053 0.951 0.978
0.00 -0.50 1.000 1.000 0.035 0.042 0.632 0.652
0.00 -0.20 0.579 0.594 0.039 0.050 0.129 0.117
0.00 0.00 0.040 0.047 0.036 0.045 0.041 0.049
0.00 0.20 0.645 0.625 0.039 0.048 0.193 0.222
0.00 0.50 1.000 1.000 0.048 0.053 0.751 0.804
0.00 0.80 1.000 1.000 0.049 0.053 0.992 0.998
0.20 -0.80 1.000 1.000 0.178 0.153 0.995 0.998
0.20 -0.50 1.000 1.000 0.182 0.170 0.915 0.921
0.20 -0.20 0.644 0.655 0.196 0.166 0.514 0.480
0.20 0.00 0.153 0.136 0.214 0.189 0.176 0.142
0.20 0.20 0.699 0.673 0.206 0.165 0.038 0.045
0.20 0.50 1.000 1.000 0.178 0.148 0.414 0.476
0.20 0.80 1.000 1.000 0.120 0.102 0.969 0.990
0.50 -0.80 1.000 1.000 0.794 0.775 1.000 1.000
0.50 -0.50 1.000 1.000 0.850 0.832 0.997 0.997
0.50 -0.20 0.938 0.937 0.860 0.845 0.950 0.944
0.50 0.00 0.784 0.774 0.866 0.849 0.804 0.773
0.50 0.20 0.955 0.950 0.860 0.839 0.452 0.386
0.50 0.50 1.000 1.000 0.828 0.811 0.040 0.056
0.50 0.80 1.000 1.000 0.635 0.639 0.660 0.786
0.80 -0.80 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000
0.80 0.00 0.999 1.000 1.000 1.000 0.999 0.999
0.80 0.20 1.000 1.000 1.000 1.000 0.991 0.981
0.80 0.50 1.000 1.000 0.999 0.999 0.805 0.728
0.80 0.80 1.000 1.000 0.988 0.994 0.032 0.063

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size
adjusted power of the tests.



Table 4: Monte carlo simulations for therobustness of the LM and LR tests of the random effects, the Ansdlin
and the Kapoor -K elgjian-Prucha models; shar e of rejectionsin 2000 replications

(N=50, T=5, 6°,=10, 6°,=10)

vit ~1(5) vi: ~lognormal (0,10)
p1 P2 LM LR LM LR

Random effects model, Hy: p1=0, p2=0 0.00 0.00 0.042 0.053 0.041 0.047
Anselin model, Hy®: p,=0 0.00 -0.80 0.055 0.066 0.045 0.055
0.00 -0.50 0.052 0.065 0.042 0.049

0.00 -0.20 0.045 0.053 0.043 0.047

0.00 0.00 0.045 0.055 0.032 0.038

0.00 0.20 0.047 0.055 0.038 0.043

0.00 050 0.045 0.047 0.048 0.050

0.00 0.80 0.050 0.049 0.039 0.040

Kapoor-K e gian-Prucha model, Ho : P1=p2 -0.80 -0.80 0.036 0.035 0.039 0.040
-0.50 -0.50 0.049 0.046 0.048 0.048

-0.20 -0.20 0.048 0.044 0.045 0.048

0.00 0.00 0.043 0.048 0.035 0.039

0.20 0.20 0.045 0.051 0.035 0.047

0.50 050 0.038 0.054 0.034 0.051

0.80 0.80 0.029 0.054 0.029 0.059




Figure 1: The power of the LM test, random effects model
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Figure 2: The power of the LM test, Anselin model
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Figure 3: The power of the LM test, KKP model - part |
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Figure 4: The power of the LM test, KKP model - part Il
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Figure 5: The power of the LM test, 3 vs 5 neighbors
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