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Abstract

This paper proposes a generalized speci�cation for the panel data

model with random e¤ects and �rst-order spatially autocorrelated

residuals that encompasses two previously suggested speci�cations.

The �rst one is described in Anselin�s (1988) book and the second one

by Kapoor, Kelejian, and Prucha (2007). Our encompassing speci�ca-

tion allows us to test for these models as restricted speci�cations. In

particular, we derive three LM and LR tests that restrict our general-

ized model to obtain (i) the Anselin model, (ii) the Kapoor, Kelejian,
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and Prucha model, and (iii) the simple random e¤ects model that

ignores the spatial correlation in the residuals. We derive the large

sample distributions of the three LM tests. For two of these three

tests, we obtain closed form solutions. Our Monte Carlo results show

that the suggested tests are powerful in testing for these restricted

speci�cations even in small and medium sized samples.

JEL classi�cation: C23; C12

Keywords: Panel data; Spatially autocorrelated residuals; maximum-

likelihood estimation
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1 Introduction

The recent literature on spatial panels distinguishes between two di¤erent

spatial autoregressive error processes. One speci�cation assumes that spa-

tial correlation occurs only in the remainder error term, whereas no spatial

correlation takes place in the individual e¤ects (see Anselin, 1988, Baltagi,

Song, and Koh, 2003, and Anselin, Le Gallo, and Jayet, 2006; henceforth

referred to as the Anselin model). Another speci�cation assumes that the

same spatial error process applies to both the individual and remainder error

components (see Kapoor, Kelejian, and Prucha, 2007; henceforth referred to

as the KKP model).

While the two data generating processes look similar, they imply di¤erent

spatial spillover mechanisms. For example, consider the question of �rm pro-

ductivity using panel data. Besides the deterministic components, �rms di¤er

also with respect to their unobserved know-how or their managerial ability to

organize production processes e¢ ciently. At least over a short time period,

this managerial ability may be time-invariant. Beyond that there are inno-

vations that vary from period to period like random �rm-speci�c technology

shocks, capacity utilization shocks, etc. Under this scenario, it seems rea-

sonable to assume that �rm productivity may be spatially correlated due to

spillovers. Such spillovers can occur, e.g., through information �ows (trans-

mission of process technologies) embodied in worker �ows between �rms at

local labor markets or through input-output channels (technology require-

ments and interdependence of capacity utilization). Whereas the Anselin

model assumes that spillovers are inherently time-varying, the KKP process

assumes the spillovers to be time-invariant as well as time-variant. For ex-
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ample, �rms located in the neighborhood of highly productive �rms may get

time-invariant permanent spillovers a¤ecting their productivity in addition to

the time-variant spillovers as in the Anselin model. While the Anselin model

seems restrictive in that it does not allow permanent spillovers through the

individual �rm e¤ects, the KKP approach is restrictive in the sense that it

does not allow for a di¤erential intensity of spillovers of the permanent and

transitory shocks.

This paper introduces a generalized spatial panel model which encom-

passes these two models and allows for spatial correlation in the individual

and remainder error components that may have di¤erent spatial autoregres-

sive parameters. We derive the maximum likelihood estimator (MLE) for

this more general spatial panel model when the individual e¤ects are as-

sumed to be random. This in turn allows us to test the restrictions on our

generalized model to obtain (i) the Anselin model, (ii) the Kapoor, Kelejian,

and Prucha model, and (iii) a simple random e¤ects model that ignores the

spatial correlation in the residuals. We derive the corresponding LM and LR

tests for these three hypotheses and we compare their size and power perfor-

mance using Monte Carlo experiments. Moreover, we derive the asymptotic

distribution of the proposed LM tests.

2 A Generalized Model

Econometric models for panel data with spatial error processes have been

proposed by Anselin (1988), Baltagi, Song, and Koh (2003), Kapoor, Kele-

jian, and Prucha (2007) and Anselin, Le Gallo, and Jayet (2006), to mention
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a few. A generalized spatial panel data model that encompasses these previ-

ous speci�cations is given as follows:1

yt = Xt� + ut; t = 1; :::; T

ut = u1 + u2t

u1 = �1Wu1 + �

u2t = �2Wu2t + �t;

where the (N �1) vector yt includes the observations on the dependent vari-

able at time t, with N denoting the number of unique cross-sectional units.

The non-stochastic (N �K) matrix Xt gives the observations at time t for a

set of K exogenous variables, including the constant. � is the corresponding

(K � 1) parameter vector. The disturbance term follows an error compo-

nent model which involves the sum of two disturbances. The (N � 1) vector

of random variables u1 captures the time-invariant unit-speci�c e¤ects and

therefore has no time subscript. The (N � 1) vector of the remainder distur-

bances u2t varies with time. Both u1 and u2t are spatially correlated with

the same spatial weights matrix W, but with di¤erent spatial autocorrela-

tion parameters �1 and �2, respectively. The (N �N) spatial weights matrix

W has zero diagonal elements and its entries are typically declining with

distance. We further assume that the row and column sums of W are uni-

formly bounded in absolute value and that �r is bounded in absolute value,

i.e., j�rj < �max for r = 1; 2, where �max is the largest absolute value of

1To avoid index cluttering, we suppress the subscript indicating that the elements of

the spatial weights matrix may depend on N and that the dependent variable and the

disturbances form triangular arrays.
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the eigenvalues ofW. Hence, the spatial weights matrix may be either row

normalized or maximum row normalized (see Kelejian and Prucha, 2007).

Further, the matrices IN � �rW are assumed be non-singular.

The elements of � are assumed to be independent across i = 1; :::; N , and

identically distributed as N(0; �2�). The elements of �t are assumed to be

independent across i and t and identically distributed as N(0; �2�). Also, the

elements of � and �t are assumed to be independent of each other. Appendix

B provides a more detailed set of assumptions.

Stacking the cross-sections over time yields

y = X� + u (1)

u = Z�u1 + u2

u1 = �1Wu1 + �

u2 = �2(IT
W)u2 + �,

where y = [y01; :::;y
0
T ]
0; X = [X0

1; :::;X
0
T ]
0; etc., so that the faster index is i

and the slower index is t: The unit-speci�c errors u1 are repeated in all time

periods using the (NT �N) selector matrix Z� = �T 
 IN . �T is a vector of

ones of dimension T and IN is an identity matrix of dimension N .

This model encompasses both the KKP model, which assumes that �1 =

�2, and the Anselin model, which assumes that �1 = 0. If �1 = �2 = 0,

i.e., there is no spatial correlation, this model reduces to the familiar random

e¤ects (RE) panel data model; see Baltagi (2005).

Let A = (IN � �1W) and B = (IN � �2W); then, under the present
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assumptions we have

u1 = A�1� � N(0; �2�(A0A)�1) (2)

u2 = (IT 
B�1)� � N(0; �2�(IT 
 (B0B)�1).

The variance-covariance matrix of the spatial random e¤ects panel data

model is given by


u = E(uu0) = E[(Z�u1 + u2)(Z�u1 + u2)
0] (3)

= �2�(JT 
 (A0A)�1) + �2�(IT 
 (B0B)�1)

= JT 
 [T�2�(A0A)�1 + �2�(B
0B)�1] + �2�(ET 
 (B0B)�1) = �2��u.

This uses the fact that E[u1u02] = 0 since � and � are assumed to be

independent. Note that Z�Z0� = JT 
 IN , where JT is a matrix of ones

of dimension T . Let ET = IT � JT , where JT = JT=T is the averaging

matrix, the last equality replaces JT by TJT and IT by ET + JT . It is

easy to show that the inverse of the (NT � NT ) matrix 
u can be ob-

tained from the inverse of matrices of smaller dimension (N �N) as follows:


�1
u = (JT
(T�2�(A0A)�1+�2�(B

0B)�1)�1)+ 1
�2�
(ET
B0B) = 1

�2�
��1u , where

��1u = (JT 
 (T
�2�
�2�
(A0A)�1 + (B0B)�1)�1) + (ET 
B0B).

Also, det[
u] = det[T�2�(A
0A)�1 + �2�(B

0B)�1] det[�2�(B
0B)�1]T�1. Under

the assumption of normality of the disturbances, the log-likelihood function

of the general model is given by

L(�;�) = �NT
2
ln 2� � 1

2
ln det[T�2�(A

0A)�1 + �2�(B
0B)�1]

�T�1
2
ln det[�2�(B

0B)�1]� 1
2
(y �X�)0
�1u (y �X�), (4)

7



where � =(�2� ; �
2
�; �1; �2). The maximum likelihood estimates are obtained

by maximizing the log-likelihood function numerically using a constrained

quasi-Newton method with the constraints as implied by our assumptions.2

The hypotheses under consideration in this paper are the following:

(1) HA
0 : �1 = �2 = 0, and the alternative H

A
1 is that at least one compo-

nent is not zero. The restricted model is the standard random e¤ects (RE)

panel data model with no spatial correlation, see Baltagi (2005).

(2) HB
0 : �1 = 0; and the alternative is H

B
1 : �1 6= 0. The restricted model

is the Anselin (1988) spatial panel model with random e¤ects. In fact, the

restricted log-likelihood function reduces to the one considered by Anselin

(1988, p.154).

(3) HC
0 : �1 = �2 = � and the alternative is H

C
1 : �1 6= �2: The restricted

model is the KKP spatial panel model with random e¤ects.

In the next subsections, we derive the corresponding LM tests for these

hypotheses and we compare their performance with the corresponding LR

tests using Monte Carlo experiments.3 Appendix A describes some general

results used to derive the score and information matrix for these alternative

models; Appendix B proves the consistency of the ML estimates of the general

model; while Appendices C-E provide the derivations of the large sample

2The numerical maximization procedure can be simpli�ed, if one concentrates the likeli-

hood with respect to � and �2� . However, our optimization for the Monte Carlo simulation

using MATLAB were quite fast using the constrained quasi-Newton method. Appendix F

describes some details on the numerical optimization procedure.
3LM tests for spatial models are surveyed in Anselin (1988, 2001) and Anselin and

Bera (1998), to mention a few. For a joint test for the absence of spatial correlation and

random e¤ects in a panel data model, see Baltagi, Song, and Koh (2003).
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distributions of these LM tests.

2.1 LM and LR Tests for HA
0 : �1 = �2 = 0

The ML estimates under HA
0 are labeled by a tilde and the corresponding

restricted parameter vector is indexed by A. The joint LM test statistic for

the null hypothesis of no spatial correlation, HA
0 : �1 = �2 = 0, is derived in

Appendix C and it is given by

LMA =
1

2bAe�41 eG2A + 1
2bA(T�1)e�4�fM2

A; (5)

where e�21 = Te�2� + e�2� ; bA = tr[(W0 +W)2]; eGA = eu0[JT 
 (W0 +W)]eu; andfMA = eu0[ET 
 (W0 +W)]eu. In this case, eu = y �Xe� denotes the vector
of the estimated residuals under HA

0 . The restricted model is the simple

random e¤ects (RE) panel data model without any spatial autocorrelation.

In fact, e�2� = eu0(ET
IN )eu
N(T�1) and e�21 = eu0(JT
IN )eu

N
. Under HA

0 , the LMA statistic

is asymptotically distributed as �22 as shown in Appendix C.

One can also derive the corresponding LR test for HA
0 : �1 = �2 = 0 as

LRA = 2(LG � LA),

using the maximized log-likelihood of the general model denoted by LG and

the maximized log-likelihood under HA
0 :

LA = �NT
2
ln 2�e�2� � N

2
ln e�21e�2� � 1

2
eu0 e
�1

u eu.
This test statistic is likewise asymptotically distributed as �22.
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2.2 LM and LR Tests for HB
0 : �1 = 0

Under HB
0 : �1 = 0, the restricted model is the spatial panel data model with

random e¤ects described in Anselin (1988). The corresponding LM test for

HB
0 is a conditional test for zero spatial correlation in the individual e¤ects,

allowing for the possibility of spatial correlation in the remainder error term,

i.e., �2 6= 0. Appendix D gives the formal derivation of this LM statistic.

In fact, under HB
0 , the information matrix is block-diagonal with the lower

block being independent of �. Let d� be the (4� 1) score vector referring to

the parameter vector � = (�2�; �
2
� ; �1; �2) and denote the 4� 4 lower block of

the information matrix by J�. The ML estimates under HB
0 are labeled by a

hat. The corresponding estimated residuals are then bu = y �Xb�. The LM
test for HB

0 makes use of the estimated score bd� = [0; 0; bd�1 ; 0]0 with
bd�1 =

@L

@�1

����
HB
0

= �1
2
Tb�2�tr[bC1C2] +

1
2
b�2�bu0(JT 
 bC1C2

bC1)bu
= 1

2
Tb�2�[(bu0 bGBbu)� bgB];

where bC1 = [Tb�2�IN + b�2�(bB0bB)�1]�1 and C2 = (W0 +W); bGB= (JT 
bC1C2
bC1), and bgB = tr[bC1C2]. An estimate of the lower (4� 4) block of the

information matrix bJ� under HB
0 is given by

bJ����
HB
0

=266666664

1
2
tr[bC32] + N(T�1)

2b�4� T
2
tr
hbC3 bC1i T b�2�

2
tr[bC3 bC1C2] b�2�

2
tr[bC3 bC1 bC5] + (T�1)

2b�2� tr[bC4]
T
2
tr
hbC3 bC1i T2

2
tr
hbC21i T2b�2�

2
tr[bC21C2] T b�2�

2
tr[bC21 bC5]

T b�2�
2
tr[bC3 bC1C2] T2b�2�

2
tr[bC21C2] T2b�4�

2
tr[(bC1C2)2] T b�2�b�2�

2
tr[bC1C2 bC1 bC5]b�2�

2
tr[bC3 bC1 bC5] + (T�1)

2b�2� tr[bC4] T b�2�
2
tr[bC21 bC5] T b�2�b�2�

2
tr[bC1C2 bC1 bC5] b�4�

2
tr[(bC1 bC5)2] + (T�1)

2
tr[bC24]

377777775
,

where bC3 = (bB0bB)�1 bC1, bC4 = (W0bB+ bB0W)(bB0bB)�1 and bC5 = (bB0bB)�1 bC4.

The LM test for HB
0 has no simple closed form representation and it is cal-
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culated as

LMB = bd0�bJ�1� bd� = bd2�1bJ�133 , (6)

where bJ�133 is the (3; 3) element of the inverse of the estimated information
matrix bJ�1� under HB

0 . This test statistic is shown to be asymptotically

distributed as �21.

In Appendix D, we follow Moulton and Randolph (1989) in deriving the

asymptotic distribution of an alternative LM test statistic based on the stan-

dardized score under HB
0 , which we denote by LM

0
B.
4 This results in an

alternative closed form expression for this LM statistic, namely,

LM 0
B =

(bu0 bGBbu�bgB)2
2bbB ; (7)

where bbB = tr[(bC1 bC2)2]. In Appendix D, we show that this test statistic is
asymptotically distributed as �21. LM

0
B is a simple and practical alternative

to LMB which performs just as well in the Monte Carlo experiments.

The corresponding LR test is based upon the maximized log-likelihood

under HB
0 :

LB = �NT
2
ln 2�b�2� � 1

2
ln det(bC1) (8)

+T�1
2
ln det(bB0bB)� 1

2
bu0 b
�1

u bu.
4Moulton and Randolph (1989, p. 687) �nd that "the asymptotic unit normal distribu-

tion poorly approximates the �nite sample distribution of the LM statistic" in the one-way

random e¤ects model. Therefore, they propose an alternative LM statistic, which is based

on the standardized score. The suggested standardization does not a¤ect the test when

exact critical values are used, but may improve the appropximation of asymptotic critical

values.
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This restricted log-likelihood is the same as that given by Anselin (1988, p.

154).

2.3 LM and LR Tests for HC
0 : �1 = �2 = �

Under HC
0 : �1 = �2 = �, the true model is the one suggested by Kapoor,

Kelejian, and Prucha (2007). In this case, B = A and the parameter esti-

mates under HC
0 are labeled by a bar. The corresponding estimated residuals

are given by u= y �X�. The score and the information matrix needed for

this test are derived in Appendix E. The joint LM test statistic for HC
0 is

given by

LMC =
T

2bC(T�1)�41
G
2

C ; (9)

with GC = u0(JT 
 F)u � �21tr[D], F =W0A +A
0
W and D = F(A

0
A)�1.

Also, bC = tr[D
2
] � (tr[D])2=N , �21 =

u0[JT
(A
0
A)]u

N
and �2� =

u0[ET
(A
0
A)]u

N(T�1) .

Under HC
0 , the LMC statistic is supposed to be asymptotically distributed

as �21. In Appendix E, we follow Moulton and Randolph (1989) in deriving

the asymptotic distribution of a slightly modi�ed LM test statistic based on

the standardized score, which we denote by LM 0
C :

LM 0
C =

1

2b
0
C�

4
1

G
2

C

with b
0
C = tr[D

2
]: The Monte Carlo simulations indicate that the normalized

LM 0
C performs nearly as well as LMC in small samples.

The LR test is based on the following maximized log-likelihood under

HC
0 :

LC = �NT
2
ln 2��2� � N

2
ln(

�21
�2�
) + T

2
ln det(A

0
A)� 1

2
u0


�1
u u.
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Kapoor, Kelejian, and Prucha (2007) consider a generalized method of

moments estimator, rather than MLE, for their spatial random e¤ects panel

data model. Nevertheless, LC is the maximized log-likelihood for the KKP

model with normal disturbances.

3 Monte Carlo Results

In the Monte Carlo analysis, we use a simple panel data model that includes

one explanatory variable and a constant (K = 2)

yit = �0 + �1xit + uit; i = 1; :::; N and t = 1; :::; T ,

where �0 = 5 and �1 = 0:5. xit is generated by xit = � i + zit, where

� i s i:i:d: U [�7:5; 7:5] and zit s i:i:d: U [�5; 5] with U [a; b] denoting the

uniform distribution on the interval [a; b]. The individual-speci�c e¤ects are

drawn from a normal distribution so that �i s i:i:d: N(0; 20�), while for

the remainder error we assume �it s i:i:d: N(0; 20(1 � �)) with 0 < � < 1.

� =
�2�

�2�+�
2
�
is the proportion of the total variance due to the heterogeneity of

the individual-speci�c e¤ects. This implies that �2� + �
2
� = 20.

We generate the spatial weights matrix by allocating observations ran-

domly on a grid of 2N squares. Consequently, as the number of observations

N increases, the number of squares in the grid grows larger, too. The prob-

ability that an observation is located on a particular coordinate is equal for

all coordinates on the grid. This results in an irregular lattice, where each

observation possesses 3 neighbors on average. The spatial weighting scheme

is based on the Queens design and the corresponding spatial weights matrix

is normalized so that each row sums to one.
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The parameters �1 and �2 vary over the set f�0:8;�0:5;�0:2; 0; 0:2; 0:5; 0:8g.

The cross-sectional and time dimensions are N = 50; 100 and T = 3; 5; 10,

respectively. Lastly, the proportion of the variance due to the random indi-

vidual e¤ects takes the values � = 0:25; 0:50; 0:75. In total, this gives 882

experiments. For each experiment, we calculate the three LM and LR tests

as derived above, using 2000 replications.5

===== Tables 1-3 =====

Table 1 reports the frequency of rejections for N = 50, T = 5, and � = 0:5

in 2000 replications. This means that �2� = �
2
� = 10. The size of each test is

denoted in bold �gures and is not statistically di¤erent from the 5% nominal

size. The only exception where the LM test might be undersized is for the

KKP model, for high absolute values of �1 and �2; both equal to 0:8. The

size adjusted power6 of the LR and LM tests is reasonably high for all three

hypotheses considered. The performance of the LM test is almost the same

as that of the LR test, except for a few cases. For HA
0 : �1 = �2 = 0; when

�1 = �0:5 and �2 = 0, the size adjusted power of the LM test is 61:4%

as compared to 64:6% for LR. At �1 = 0:5 and �2 = 0, the size adjusted

power of the LM test is 70% as compared to 66:4% for LR. Similarly, for

HB
0 : �1 = 0, when �1 = �0:5 and �2 = 0, the size adjusted power of the LM
5In a few cases, we got negative LR test statistics due to numerical imprecision. These

cases occur mainly with the Anselin model at �1 = 0. However, this happened in less than

0:5 percent of the Monte Carlo experiments. We drop the corresponding experiments in

the subsequent calculations of the size and power of the tests.
6The size corrected critical level for the test is inferred from the empirical distribution

of the test statistic in the Monte Carlo experiments, so that the rejection region under the

empirical distribution has the correct nominal size.
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test is 70:2% as compared to 72:9% for LR. At �1 = 0:5 and �2 = 0, the size

adjusted power of the LM test is 76:7% as compared to 74:6% for LR. For

HC
0 : �1 = �2 = �, when �1 = �0:5 and �2 = 0, the size adjusted power of

the LM test is 66:1% as compared to 68:5% for LR. At �1 = 0:5 and �2 = 0,

the size adjusted power of the LM test is 70:6% as compared to 65% for LR.

Table 1 also reports the large sample approximations of LMB and LMC ,

namely, LM 0
B and LM

0
C , respectively. These results indicate that the large

sample approximations are accurate for small and medium absolute values

of �1 (Anselin model) and of �1 = �2 in the KKP model. However, the tests

tend to be undersized whenever �1 or �2 is large in absolute value.

Tables 2 and 3 repeat the same experiments but now for � = 0:25 and 0:75,

respectively. These tables show that as we increase �, we increase the power

of these tests. In fact, the power of all three tests is higher, the higher the

variance of the individual-speci�c e¤ect as a proportion of the total variance.

For example, for HA
0 : �1 = �2 = 0; when �1 = �0:5 and �2 = 0, the size

adjusted power of the LM test increases from 61:4% for � = 0:5 (in Table 1)

to 68% for � = 0:75 (in Table 3), while the size adjusted power of the LR test

increases from 64:6% to 74:8%. Similarly, when �1 = 0:5 and �2 = 0, the size

adjusted power of the LM test increases from 70% for � = 0:5 to 78:4% for

� = 0:75; while the size adjusted power of the LR test increases from 66:4%

to 77:4%. For HB
0 : �1 = 0, when �1 = �0:5 and �2 = 0, the size adjusted

power of the LM test increases from 70:2% for � = 0:5 to 81% for � = 0:75;

while the size adjusted power of the LR test increases from 72:9% to 83:4%.

At �1 = 0:5 and �2 = 0, the size adjusted power of the LM test increases

from 76:7% for � = 0:5 to 86:6% for � = 0:75; while the size adjusted power
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of the LR test increases from 74:6% to 84:9% for LR. For HC
0 : �1 = �2 = �,

when �1 = �0:5 and �2 = 0, the size adjusted power of the LM test increases

from 66:1% for � = 0:5 to 73% for � = 0:75; while the size adjusted power of

the LR test increases from 68:5% to 74:8%. At �1 = 0:5 and �2 = 0, the size

adjusted power of the LM test increases from 70:6% for � = 0:5 to 80:4% for

� = 0:75; while the size adjusted power of the LR test increases from 65% to

77:3%.

Things also improve if the number of observations increases. The increase

in power is larger when we double N from 50 to 100 as compared to doubling

T from 5 to 10.7 We conclude that the three LM and LR tests perform rea-

sonably well in testing the restrictions underlying the simple random e¤ects

model without spatial correlation, the Anselin model and the KKP model in

small and medium sized samples.

Figures 1-4 plot the size adjusted power for the various hypotheses con-

sidered. In Figure 1, the pure random e¤ects model is true, whereas in Figure

2, the Anselin model is true. In Figures 3 and 4, the KKP-type model is true

with di¤erent values for the common �.

===== Figures 1-2 =====

Let us start with a comparison of the panels given in Figure 1, which

assumes that the random e¤ects model is true (�1 = �2 = 0). On the left

hand side, we plot the size adjusted power of the LM test for deviations of

7We do not include the corresponding Tables for (N = 50; T = 10) and (N = 100;

T = 5); for � = 0:25; 0:50; and 0:75, in order to save space. However, these tables

are available upon request from the authors. Below, we summarize the corresponding

information by means of size adjusted power plots.
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�1 from 0, maintaining that �2 = 0. On the right hand side it is the other

way around. Observe that the power of the LM test is higher for deviations

of �2 from 0 as compared to deviations of �1 from 0. Keep in mind that

the estimates of �2 are based on NT observations, while those of �1 rely on

only N observations. The top two panels show that the power increases for

deviations in �1 as � increases. However, for deviations in �2, the power of

the test is insensitive to �. The two panels at the center of Figure 1 illustrate

that both the size and the power of the LM test improve as the sample size

increases, especially as N becomes larger. A comparison of the two panels

at the center with those at the bottom of Figure 1 provides information on

the interaction of sample size (N , T ) and the relative importance of �. It

is obvious that for deviations of �1 from 0 (on the left), the power improves

with N , especially as � increases.

Figure 2 assumes that the Anselin-type process of the error term is the

true model (�1 = 0). One important di¤erence when compared to Figure 1

is that �2 is now a nuisance parameter. The qualitative e¤ects of an increase

in N , T , and � are similar to those in Figure 1 on the left hand side. The

right hand side panels of Figure 2 show that the size adjusted power of the

LM test is lower if �2 is high (0:5 compared to 0), especially for low � (0:25

compared to 0:75).

===== Figures 3-4 =====

Figures 3 and 4 assume that the KKP model is the true one. Note that an

assessment of the performance of the LM test is di¤erent here, since the KKP

model assumes that �1 = �2. The null hypothesis in Figure 3 is �1 = �2 = 0:2
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and the one in Figure 4 is �1 = �2 = 0:5. The major di¤erence between the

two �gures is that assuming a null that is di¤erent from �1 = �2 = 0 shifts the

size adjusted power function and renders it skewed to the right. Otherwise,

the conclusions regarding the impact of �, N , and T are qualitatively similar

to those of the random e¤ects model. A major di¤erence from the random

e¤ects model is that for the KKP model the power is lower in the �2 direction,

especially for small �.

3.1 Robustness Checks

We also assess the robustness of the proposed LM tests with respect to (i)

non-normal errors and (ii) the speci�cation of the spatial weighting matrix.

To compare the simulated power functions for normal vs. non-normal errors,

we generated the remainder error term �rst as �it s t(5) and normalized

its variance to 10. Hence, � = 0:5 holds in this case and the results are

comparable to the basic Monte Carlo set-up de�ned above. This implies that

the distribution of the remainder error exhibits heavier tails as compared to

the normal distribution but it is still symmetric. Second, we analyzed a

skewed error distribution assuming �it follows a log-normal distribution with

variance 10, i.e., �it =
p
10(e� � e0:5)=

p
e2 � e1, where � s N(0; 1). For

N = 50 and T = 5, the Monte Carlo experiments show that there are minor

changes in the size adjusted power curves under both error distributions.

This holds true for all LM tests considered. The power �gures are available

upon request from the authors.

===== Table 4 =====

18



The non-normality of the remainder error, however, does a¤ect the size

of the tests. In Table 4, we focus on the size of the LM and LR tests under

alternative distributional assumptions of the error term for N = 50, T = 5

and � = 0:5. In the �rst pair of columns we give the true parameters �1,

�2, the second pair of columns summarizes the size of the tests under the

assumption that �it s t(5), in the third pair of columns we assume that �it
follows a log-normal distribution with variance 10. It turns out that both

the LM tests and the LR tests are fairly insensitive to the chosen alternative

assumptions about the distribution of the disturbances at intermediate levels

of �1 and �2. However, the LM tests tend to be somewhat more undersized

than the LR tests, especially for �1 = �2 = 0:8. With the caveat of the

limited experiments we performed, this �nding suggests that the LM tests

considered are fairly robust to deviations from the assumption of a normally

distributed error term.

===== Figure 5 =====

Figure 5 investigates the extent to which the speci�cation of the spatial

weighting scheme matters for the size and power of the tests considered. We

generated an alternative spatial weighting matrix allowing for a more densely

populated grid. In particular, we randomly allocated the observations on the

grid so that there are 5 rather than 3 neighbors per observation on average.

As expected, the power of the tests is somewhat lower in this case, but still

big enough to detect relevant deviations from the null.
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4 Conclusions

The recent literature on �rst-order spatially autocorrelated residuals (SAR(1))

with panel data distinguishes between two data generating processes of the

error term. One process described in Anselin (1988) and Anselin, Le Gallo

and Jayet (2006) assumes that only the remainder error component is spa-

tially correlated. In an alternative process put forward by Kapoor, Kelejian,

and Prucha (2007) both the individual and remainder components of the

disturbances are characterized by the same spatial autocorrelation pattern.

This paper formulates a SAR(1) process of the residuals with panel data

that encompasses these two processes. In particular, this paper derives three

LM tests based upon the more general model, testing its restricted counter-

parts: the Anselin model, the Kapoor, Kelejian, and Prucha model, and the

random e¤ects model without spatial correlation. For the latter two tests,

closed-form expressions for the LM statistics can be obtained.

Our Monte Carlo study assesses the small sample performance of the

derived tests. We �nd that the tests are properly sized and powerful even

in relatively small samples. The LM tests are easy to calculate and their

power is reasonably high for all three tests considered. The power of these

LM tests matches that of the corresponding LR tests except in few cases. In

general, the power of the tests increases with the relative importance of the

individual e¤ects�variance as a proportion of the total variance, as well as

with increasing N and T . They are robust to non-normality of the error term

and sensitive to the speci�cation of the weight matrix. Hence, these LM and

LR tests are recommended for the applied researcher to test the restrictions

imposed by the RE model with no spatial correlation, the Anselin model,
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and the Kapoor, Kelejian, and Prucha model.
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Appendix A: Score and Information Matrix

For convenience, we reproduce the variance-covariance matrix of the gen-

eral model given in (3):


u = JT 
 [T�2�(A0A)�1 + �2�(B
0B)�1] + �2� [ET 
 (B0B)�1]


�1u = JT 
 [T�2�(A0A)�1 + �2�(B
0B)�1]�1 + 1

�2�
(ET 
B0B);

where A = (IN � �1W) and B = (IN � �2W).

Denote the vector of parameters of interest by � = (�2� ; �
2
�; �1; �2)

0. Below,

we can focus on the part of the information matrix corresponding to �. The

part of the information matrix corresponding to � can be ignored in com-

puting the LM test statistics, since the information matrix is block-diagonal

between � and �, and the �rst derivative with respect to � evaluated at the

restricted MLE is zero.

First, we drive the score and the relevant information submatrix of the

general model. These results are then used to test the three hypotheses of

interest below. Hartley and Rao (1971) and Hemmerle and Hartley (1973)

give a general useful formula that helps in obtaining the score:

@L

@�r
= �1

2
tr

�

�1
u

@
u

@�r

�
+ 1

2
u0
�

�1u

@
u

@�r

�1u

�
u; r = 1; :::; 4: (10)

Observe, that

@
u

@�2�
= JT 
 (B0B)�1 + (ET 
 (B0B)�1)= IT 
 (B0B)�1

@
u

@�2�
= JT 
 T (A0A)�1

@
u

@�1
= JT 
 T�2�(A0A)�1(W0 +W � 2�1W0W)(A0A)�1

@
u

@�2
= IT 
 �2�(B0B)�1(W0 +W � 2�2W0W)(B0B)�1:
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To derive the information submatrix we use the general di¤erentiation result

given in Harville (1977):

Jrs = E

�
� @2L

@�r�s

�
=
1

2
tr

�

�1u

@
u
@�r


�1u
@
u
@�s

�
r; s = 1; :::; 4:

Here, @L
@�r

and Jrs are evaluated at the MLE estimates.

Appendix B: Identi�cation and Consistency

In the sequel, we use subscript 0 to indicate true parameter values where

necessary.

Assumptions8

A1 (random e¤ects model): The model comprises unit-speci�c random

e¤ects denoted by the (N � 1) vector �. The elements of � are assumed

to be i:i:d: N(0; �2�) with 0 < c� < �2� < c� < 1. � is the vector of

remainder errors and its elements are assumed to be i:i:d: N(0; �2�) with

0 < c� < �2� < c� < 1. The elements of � and � are assumed to be

independent of each other.

A2 (spatial correlation): (i) Both u1 and u2t are spatially correlated with

the same spatial weights matrixW whose elements may depend on N . The

(N � N) spatial weights matrix W has zero diagonal elements. (ii) The

row and column sums of W are uniformly bounded in absolute value. (iii)

�r is bounded in absolute value, i.e., j�rj < 1
�max

for r = 1; 2, where �max

denotes the largest absolute value of the eigenvalues ofW. (iv) The matrices

8To avoid index cluttering, we suppress the subscript indicating that the elements of

the spatial weights matrix may depend on N and that the dependent variable and the

disturbances form triangular arrays.
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IN � �rW are non-singular and their inverses have bounded row and column

sums.

A3 (compactness of the parameter space): the parameter space� with

elements (�;�2�; �
2
� ; �1; �2) is compact. The true parameter vector (indexed

by 0) lies in the interior of �.

We note that Assumptions A1 and A2 imply that� = f(�; �1; �2)j(�2�; �2� ; �1;

�2) 2 �g with � = �2�=�2� is also compact. In the following, the elements of

� are denoted by the vector #.

A4 (identi�cation of #): For every # 6= #0:

�1
2
ln( 1

NT
tr[�u(#0)�u(#)

�1])� 1
2NT

ln[det�u(#)= det�u(#0)] < 0.

A5 (identi�cation of �): The non-random matrix X has rank K < N

and its elements are uniformly bounded constants for all N . Further, the

non-randommatrix limN!1(
1
NT
X0�u(#0)

�1X) is �nite and non-singular and

limN!1(
1
NT
�u(#0)

�1X) is �nite and has full column rank.

Consistency of the ML estimates under the general model.

In proving the consistency of MLE, we make use of the following Lemmas.

Lemma 1 Under the maintained assumptions (i) the row and column sums

of (A0A)�1 and (B0B)�1 are bounded in absolute value. (ii) The row and

column sums of �u(#) and �u(#)
�1 are bounded in absolute value.
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Proof. (i) By Assumption A2 the row and column sums of the matricesW,

A, B, A
�1
and B�1 are bounded in absolute value. Since this property is

preserved when multiplying matrices of proper dimension that have bounded

row and column sums (see Kelejian and Prucha, 2001, p. 241f), one can

conclude that the row and column sums of (A0A)�1 and (B0B)�1 are also

bounded in absolute value, say, by constants cA and cB, respectively.

(ii) The row and column sums of �u(#) are bounded in absolute value,

since j�rj < 1
�max

by Assumption A2 and � is compact by Assumption A3. To

see this, denote the typical element of �u(#) by �ij. Then, maxi
P

j �ij �

T�cA + cB < 1 and maxj
P

i �ij � T�cA + cB < 1. Since �u(#) is sym-

metric and invertible, kINT ��u(#)k < 1 (see, Horn and Johnson, 1985,

p. 301), where k�k denotes a matrix norm, e.g., the maximum column or

row sum norm. Accordingly, k�u(#)
�1k =



P1
k=0 (INT ��u(#))

�1

 �P1
k=0 kINT ��u(#)k

k = 1
1�kINT��u(#)k < 1. We conclude that the row

and column sums of �u(#)
�1 are also uniformly bounded under the present

assumptions.

Lemma 2 Under the maintained assumptions, (i) the matrices �u(#) and

�u(#)
�1 are positive de�nite. (ii) LetM(#)= X (X0�u(#)

�1X)
�1
X0�u(#)

�1,

then �u(#)
�1 (INT �M(#)) is positive de�nite.

Proof. (i) Observe that det[�u(#)] = det[T�(A
0A)�1+(B0B)�1] det[(B0B)�1]T�1

and that det[T�(A0A)�1 + (B0B)�1] � det[T�(A0A)�1] + det[(B0B)�1] > 0,

since � > 0 and (A0A)�1 as well as (B0B)�1 are positive de�nite by Assump-

tion A2 (see Abadir and Magnus, 2005, p. 215 and p. 325). Therefore,�u(#)
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and �u(#)�1 are positive de�nite.

(ii) This result holds, since �u(#) is positive de�nite and X is of full column

rank (K).

The proof of consistency of the maximum likelihood estimates under the

general model is based on the concentrated log-likelihood. Recall that the

unconcentrated log-likelihood is given by

L(�;�) = �NT
2
ln 2� � 1

2
ln det[T�2�(A

0A)�1 + �2�(B
0B)�1]

�T�1
2
ln det(�2�(B

0B)�1)� 1
2
(y �X�)0
�1

u (y �X�).

The �rst order conditions for � and �2� are given by

@L(�;�)
@�

= 1
�2�

�
X0�u(#)

�1y �X0�u(#)
�1X�(#)

�
= 0

) b�(#) = �X0�u(#)
�1X

��1
X0��1

u (#)
�1y

@L(�;�)
@�2�

= �NT
2�2�
+ 1

2�4�
u(b�(#))0�u(#)

�1u(b�(#)) = 0
) b�2�(#) = u(b�(#))0�u(#)�1u(b�(#))

NT
= y0�u(#)�1(INT�M(#))y

NT
;

where M(#)= X (X0�u(#)
�1X)

�1
X0�u(#)

�1 and u(b�(#)) = y � Xb�(#).
This uses �u(#)

�1M(#)=M(#)0�u(#)
�1=M(#)0�u(#)

�1M(#). Since the

elements of X are uniformly bounded by Assumption A5 and �u(#) is

uniformly bounded in its row and column sums by Lemma 1, it follows

that the row and column sums of M(#) are uniformly bounded. Also,

�u(#)
�1 (INT �M(#)) is positive de�nite by Lemma 2. This implies thatb�2�(#) > 0.

The concentrated log-likelihood function is then given by

Lc(#) = �NT
2
ln 2� � NT

2
ln b�2�(#)� 1

2
ln det�u(#)� NT

2
:
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To obtain the non-stochastic counterpart of Lc(#), we use

E[L(�0;�)] = �n
2
ln 2� � NT

2
ln�2� � 1

2
ln [det�u(#)]� �2v0

2�2�
tr[�(#)�1�u(#0)]

and

@E[L(�0;�)]
@�2v

= � NT
2��2�

+
�2�;0
2��4�

tr[�u(#)
�1�u(#0)] = 0

) ��2� (#) =
�2�;0
NT
tr[�u(#)

�1�u(#0)]:

Since �u(#)�1 is positive de�nite by Lemma 2, it follows that ��2� (#) > 0

and

Q(#) = max
�2�

E[L(�0;�)]

= �NT
2
ln 2� � NT

2
ln��2� (#)� 1

2
ln det�u(#)� NT

2
.

Theorem 3 Under Assumptions A1-A5, the maximum likelihood estimates

are unique and consistent.

Proof. To prove consistency, we have to show that 1
NT
(Lc(#) � Q(#))

converges uniformly to 0 in probability.

Note that 1
NT
(Lc(#)�Q(#)) = �1

2
(ln b�2�(#)� ln��2� (#)) and

u(b�(#))0�u(#)
�1u(b�(#)) = u(�0)0�u(#)�1u(�0)� u(�0)0�u(#)

�1M(#)u(�0)=

tr[�u(#)
�1(INT �M(#))u(�0)u(�0)0].

Now, limN!1E[b�2�(#)���2� (#)] = � limN!1
1
NT
E[tr[�u(#)

�1M(#)u(�0)u(�0)
0]]

= � limN!1
�2�;0
NT
tr[�u(#)

�1M(#)�u(#0)]. According to Lemma 1, the row

and column sums of�u(#)�1M(#) and�u(#0) are bounded in absolute value
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and this property is preserved under matrix multiplication. Therefore, the el-

ements of �u(#)
�1M(#)�u(#0) are uniformly bounded by some constant cM

(see also Lemma A.7 in Lee, 2004b) so that
�2�;0
NT
tr[�u(#)

�1M(#)�u(#0)] �
�2�;0
NT
KcM and limN!1

�2�;0
NT
KcM = 0. The latter follows from the fact that

�u(#)
�1M(#)�u(#0) is of rank K.

limN!1 V ar[b�2�(#)���2� (#)] = limN!1 V ar[
1
NT
tr[�u(#)

�1M(#)u(�0)u(�0)
0]] =

limN!1
2�4�;0

(NT )2
tr [(�u(#)

�1M(#)�u(#0))
2] using Lemma (A1) in Kelejian and

Prucha (2007, p. 29) and Assumption A1. As a result, limN!1
2�4�;0

(NT )2
tr[(�u(#)

�1�

M(#)�u(#0))
2] = o(1). By Chebyshev�s inequality, we conclude that b�2�(#)�

��2� (#)=op(1). Also, b�2�(#) > 0 and ��2� (#) > 0 as shown above.
Using the mean value theorem it follows that ln b�2�(#) = ln��2� (#)+b�2�(#)���2� (#)

�2�

with the constant �2�(#) lying in between �
�2
� (#) and b�2�(#) and 1

�2�(#)
<

1
��2� (#)

+ 1b�2�(#) <1. Therefore, we obtain sup#2�

2
NT
jLc(#)�Q(#)j = sup

#2�
j ln b�2�(#)

� ln��2� (#)j= sup
#2�

1
�2�(#)

��b�2�(#)� ��2� (#)�� = op(1), since b�2�(#)���2� (#)=op(1)
and 1

�2�(#)
is bounded by some positive constant.

Secondly, we have to prove the following uniqueness identi�cation condi-

tion (see Lee, 2004a). For any " > 0, lim supN!1max#2N"(#0)
1
NT
(Q(#) �

Q(#0)) < 0, where N"(#0) is the complement of an open neighborhood of

#0 of diameter ". Note, Q(#) � Q(#0) = �NT
2
[ln��2� (#) � ln��2� (#0)]�

1
2
ln[det�u(#)= det�u(#0)].

Now, ln��2� (#)� ln��2� (#0) = ln tr 1
NT
[�u(#0)�u(#)

�1]� ln 1
NT
tr[INT ] =
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ln tr 1
NT
[�u(#0)�u(#)

�1] and 1
NT
(Q(#)�Q(#0)) =�1

2
ln 1

NT
tr[�u(#0)�u(#)

�1]

� 1
2NT

ln(det�u(#)= det�u(#0)) < 0

for every # 6= #0 2 � by Assumption A4. Accordingly, we conclude that the

maximum likelihood estimator b# of #0 under the general model is unique and
consistent, since Q(#) is continuous and the parameter space is compact.

Lastly, b�(b#) is identi�ed by Assumption A5. Speci�cally, we have � 1
NT
X0�u(b#)�1X��1

p!
�
1
NT
X0�u(#0)

�1X
��1

and 1
NT
X0��1

u (
b#)�1u(b#) p! 0, since b# p! #0.

Hence, plim
N!1

b�(b#) = �0+ plimN!1

��
1
NT
X0�u(b#)�1X��1 1

NT
X0��1

u (
b#)�1u(b#)�=

�0 under Assumption A5.

Appendix C: LM Test for random e¤ects

Below, Theorems 7-9 derive the asymptotic distribution of the LM tests.

The following three Lemmas are useful in proving these theorems.

Lemma 4 Let � � N(0; �2�IN) and � � N(0; �2�(IT 
 IN)) and assume

that Assumptions A1-A2 hold. Consider the quadratic form Qb = (Z�A�1�+

(IT
B�1)�)0
�
JT 
H

�
(Z�A

�1�+(IT
B�1)�); where H is a non-stochastic

symmetric N�N matrix with uniformly bounded row and column sums. Then

E[Qb] = T�
2
�tr[H(A

0A)�1]+�2�tr[H(B
0B)�1], V ar[Qb] = 2fT 2�4�tr[(H(A0A)�1)2]+

2T�2��
2
�tr[H(A

0A)�1H(B0B)�1]+ �4�tr[(H(B
0B)�1)2]g and

Qb�T�2�tr[H(A0A)�1]��2�tr[H(B0B)�1]p
2fT 2�4�tr[(H(A0A)�1)2]+2T�2��

2
�tr[H(A

0A)�1H(B0B)�1]+�4�tr[(H(B
0B)�1)2]g

d! N(0; 1):
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Proof. Inserting Z� = (�T 
 IN) gives

A0�1Z0�
�
JT 
H

�
Z�A

�1 = A0�1(�0T 
 IN)
�
JT 
H

�
(�T 
 IN)A�1

= TA0�1HA�1

A0�1Z0�
�
JT 
H

�
(IT 
B�1) = A0�1(�0T 
HB�1)

(IT 
B�1)0
�
JT 
H

�
(IT 
B�1) =

�
JT 
B0�1HB�1

�
Let L1= A0�1HA�1, L2= A0�1HB�1, L3= B0�1HB�1, and � =(�0;� 01; :::;�

0
T )
0.

Then, we obtain

Qb = �
0Lb� = �

0

26666664
TL1 L2 :: L2

L02
1
T
L3 ::

1
T
L3

:: :: :: ::

L02
1
T
L3 ::

1
T
L3

37777775 �

= T�0L1�+
TX
t=1

� 0tL
0
2�+

TX
t=1

�0L2�t +
1
T

 
TX
t=1

� 0t

!
L3

 
TX
t=1

�t

!
:

Now


� = E[��
0] =

26666664
�2�IN 0 :: 0

0 �2�IN :: 0

:: :: ::: ::

0 0 :: �2�IN

37777775 ;

since E[��0] = �2�IN ; E[��
0
t] = E[���

0
t] =0 for � 6= t and E[�t� 0t] = �2�IN .
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Using Lemma A1 of Kelejian and Prucha (2007, p. 29), we have

E[Qb] = tr[Lb
�]

= tr

26666664
T�2�L1 �2�L2 :: �2�L2

�2�L
0
2

1
T
�2�L3 ::

1
T
�2�L3

:: :: ::

�2�L
0
2

1
T
�2�L3 ::

1
T
�2�L3

37777775
= T�2�tr[L1]+�

2
�tr[L3] = T�

2
�tr[H(A

0A)�1]+�2�tr[H(B
0B)�1];

since tr[A0�1HA�1] = tr[H(A0A)�1], tr[B0�1HB�1] = tr[H(B0B)�1], and

V ar[Qb] = 2tr[Lb
�Lb
�] =

2tr

26666664
T�2�L1 �2�L2 :: �2�L2

�2�L
0
2

1
T
�2�L3 ::

1
T
�2�L3

:: :: ::

�2�L
0
2

1
T
�2�L3 ::

1
T
�2�L3

37777775

2

=

2tr

26666664
T 2�4�L

2
1+T�

2
��

2
�L2L

0
2 T�

2
��

2
�L1L2+�

4
�L2L3 :: T�

2
��

2
�L1L2+�

4
�L2L3

T�4�L
0
2L1 + �

2
��

2
�L3L

0
2 �2��

2
�L

0
2L2+

1
T
�4�L

2
3 :: �2��

2
�L

0
2L2+

1
T
�4�L

2
3

:: :: ::

T�4�L
0
2L1 + �

2
��

2
�L3L

0
2 �2��

2
�L

0
2L2+

1
T
�4�L

2
3 :: �2��

2
�L

0
2L2+

1
T
�4�L

2
3

37777775 ;

which reduces to

V ar[Qb] = 2(T
2�4�tr[L

2
1] + 2T�

2
��

2
�tr[L

0

2L2] + �
4
�tr[L

2
3])

= 2(T 2�4�tr[(H(A
0A)�1)2] + 2T�2��

2
�tr[H(A

0A)�1H(B0B)�1]

+�4�tr[(H(B
0B)�1)2]):
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Since the row and column sums of A, B, (A0A)�1, (B0B)�1 and H are uni-

formly bounded, so are those of L1; L2; L3 and Lb: Furthermore, since the

elements of � are independent and normally distributed by Assumption A1

and Qb = �
0Lb� =

1
2
�0(L0b + Lb)�, the assumptions of the central limit the-

orem for linear quadratic forms given as Theorem 1 in Kelejian and Prucha

(2001, p. 227) are ful�lled and
Qb�T�2�tr[H(A0A)�1]��2�tr[H(B0B)�1]p

2fT 2�4�tr[(H(A0A)�1)2]+2T�2��
2
�tr[H(A

0A)�1H(B0B)�1]+�4�tr[(H(B
0B)�1)2]g

d! N(0; 1):

Lemma 5 Let � � N(0; �2�IN) and � � N(0; �2�(IT 
 IN)) and assume that

Assumptions A1-A2 hold. Consider the quadratic form Qw = (Z�� + (IT 


IN)�)
0 (ET 
H) (Z��+(IT 
 IN)�); where H is a non-stochastic symmetric

N�N matrix with uniformly bounded row and column sums. Then, E[Qw] =

�2�(T � 1)tr[H], V ar[Qw] = 2�4�(T � 1)tr[H2] and Qw��2�(T�1)tr[H]
�2�

p
2(T�1)tr[H2]

d! N(0; 1):

Proof. Inserting Z� = (�T 
 IN) and using �0TET = ET �T =0 gives

Z0� (ET 
H)Z� = 0

Z0� (ET 
H) (IT 
 IN) = 0

(IT 
 IN)0 (ET 
H) (IT 
 IN) = ET 
H

and

Qw = �
0(ET 
H)�

=

TX
t=1

� 0tH�t � 1
T

 
TX
t=1

� 0t

!
H

 
TX
t=1

�t

!
:

Next, E[� 0(ET
H)�] = tr[(ET
H)�2�INT ] = �2�(T�1)tr[H]; and V ar[� 0(ET


H)�]=2�4�(T � 1)tr[H2]. Theorem 1 in Kelejian and Prucha (2001) can be
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directly applied, since the elements of � are independent and the row and

column sums of H are bounded in absolute value: Qw��
2
�(T�1)tr[H]

�2�

p
2(T�1)tr[H2]

d! N(0; 1):

Lemma 6 Assume u s N(0;
u), where 
u = �
2
1(JT 
 IN) + �2�(ET 
 IN).

Then GA = u0
�
JT 
 (W0 +W)

�
u and MA = u0 (ET 
 (W0 +W))u are

independent.

Proof. By Theorem (viii) in Rao (1973, p. 188), a necessary and su¢ -

cient condition for the independence ofGA andMA is
u
�
JT 
 (W0 +W)

�

u�

(ET 
 (W0 +W))
u = 0: Now 
u
�
JT 
 (W0 +W)

�
= �21(JT 
(W0+W))

and (ET 
 (W0 +W))
u = �
2
� (ET 
 (W0 +W)). Therefore,


u
�
JT 
 (W0 +W)

�

u (ET 
 (W0 +W))
u

= �21(JT 
 (W0 +W))[�21(JT 
 IN) + �2�(ET 
 IN)]�2� (ET 
 (W0 +W))

= �41(JT 
 (W0 +W))�2� (ET 
 (W0 +W)) = 0;

since JTET = 0.

Next, this Appendix derives the LM test for the null hypothesis HA
0 :

�1 = �2 = 0, i.e., that there is no spatial correlation in the error term. The

joint LM test for the null hypothesis of no spatial correlation in model (1)

tests HA
0 : �1 = �2 = 0. The LM statistic is given by

LMA = eD0
�
eJ�1� eD�; (11)

where eD� = (@L=@�)(e�) is a 4 � 1 vector of partial derivatives of the log-
likelihood function with respect to the elements of �, evaluated at the re-

stricted MLE, e�. eJ� = E[�@2L=@�@�0](e�) is the part of the information
matrix corresponding to �, also evaluated at the restricted MLE, e�.
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Under HA
0 : �1 = �2 = 0, B = A = IN . Using the general formulas given

above, the score under HA
0 is determined as

@L

@�2�

����
HA
0

= � N
2�21
� N(T�1)

2�2�
+ 1

2
u0
h
( 1
�41
JT +

1
�4�
ET )
 IN

i
u

@L

@�2�

����
HA
0

= �NT
2�21
+ 1

2�41
u0(JT 
 IN)u

@L

@�1

����
HA
0

=
�2�
2�41
u0 [JT 
 (W0 +W)]u

@L

@�2

����
HA
0

= 1
2
u0
h
(�

2
�

�41
JT +

1
�2�
ET )
 (W0 +W)

i
u

and

J�jHA
0
=

26666664

N
2�41
+ N(T�1)

2�4�

NT
2�41

0 0

NT
2�41

NT 2

2�41
0 0

0 0
T 2�4�
2�41

bA
T�2��

2
�

2�41
bA

0 0
T�2��

2
�

2�41
bA

�
�4�
2�41
+ (T�1)

2

�
bA

37777775 ;

where bA = tr [(W0 +W)2]. The score with respect to each element of �

evaluated at the restricted MLE e� under HA
0 with eu = y �Xe� is given by

eD� =

26666664
0

0
Te�2�
2e�41 eu0 �JT 
 (W0 +W)

� eu
1
2
eu0 h(e�2�e�41JT + 1e�2�ET )
 (W0 +W)

i eu

37777775 :

The determinant of the submatrix eJ�1;�2 is determined as
det

�eJ�1;�2���
HA
0

�
=
�
bA
2

�2 T 2(T�1)e�4�e�41
and its inverse is

eJ�1�1;�2���HA
0

= 2
bA

1
T 2(T�1)e�4�

24 (T � 1)e�41 + e�4� �Te�2�e�2�
�Te�2�e�2� T 2e�4�

35 :
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De�ning

eGA = eu0 �JT 
 (W0 +W)
� eufMA = eu0 [ET 
 (W0 +W)] eu,

we have

LMA = eD0
�
eJ0�1� eD� =

1
2bAe�41 eG2A + 1

2bA(T�1)e�4�fM2
A:

Theorem 7 (LMA) Suppose Assumptions A1 - A5 hold and HA
0 : �1 = �2 =

0 is true. Then, LMA =
1

2bAe�41 eG2A+ 1
2bA(T�1)e�4�fM2

A is asymptotically distributed

as �22.

Proof. First, use the residuals of the true model u = y �X�0 and de�ne

GA = u
0GAu

MA = u
0MAu;

whereGA = JT
(W0+W); andMA = ET
(W0+W): Under HA
0 (random

e¤ects model) and Assumption A1, u s N(0;
u) with 
u = �
2
1

�
JT 
 IN

�
+

�2� (ET 
 IN).

(i) We can apply Lemma 4 by setting A = B = IN so that H =(W0+W)

with tr[H] = 0; because tr[W] = 0: Hence, E[GA] = 0 and V ar[GA] = 2�41bA

with bA = tr[H2]. By Assumption A2 the row and column sums of H are

uniformly bounded, so GA
�21
p
2bA

converges in distribution to the standard nor-

mal.

(ii) Using Lemma 5 with H =(W0+W) implies that MA

�2�
p
2(T�1)bA

d! N(0; 1).
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(iii) Lemma 6 establishes the independence of GA and MA.

(iv) Given a consistent estimator of �0, say b�, and bu = y �Xb�, we have
1
NT
bu0GAbu = 1

NT
u0GAu+

2
NT
u0GAX(b���0)+ 1

NT
(b���0)0X0GAX(b���0) =

1
NT
u0GAu+op(1), since X and GA are non-stochastic matrices (see Lemma

1 in Kelejian and Prucha, 2001, p. 229) and b� = �0+op(1). Similarly,bu0MAbu = u0MAu+op(1).
p
2�41bA > 0 and

p
2�4�(T � 1)bA > 0, since

�21; �
2
� > 0 and bA > 0 by Assumptions A1 and A2. As shown in Appen-

dix B, b�21 = �21 + op(1) and b�2� = �2� + op(1). Then, Theorem 2 of Kele-

jian and Prucha (2001, p. 230) implies that
bGAp
2b�41b2A = GAp

2�41b
2
A

+ op(1) and

cMAp
2b�4�(T�1)bA = MAp

2�4�(T�1)bA
+ op(1). Furthermore, this theorem establishes

that
bGAp
2b�41b2A and

cMAp
2b�4�(T�1)bA converge in distribution to a standard normal.

Combining these results, LMA is a sum of squares of two independent

standardized quadratic forms of random variables, which are both asymp-

totically standard normal under the adopted assumptions. Hence, LMA is

asymptotically distributed as �22 under H
A
0 .

Appendix D: LM Test for the Anselin Model

This Appendix derives the LM test for the null hypothesis that the spatial

correlation follows the speci�cation described in Anselin (1988). This is given

by HB
0 : �1 = 0.

Under HB
0 : �1 = 0; A = IN and 
u = JT 
 (T�2�IN + �2�(B0B)�1)+

�2�(ET 
 (B0B)�1), 
�1u = JT 
 (T�2�IN + �2�(B0B)�1)�1+ 1
�2�
(ET 
 (B0B)).

Using the general formulas for the score and the information submatrix given
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above, we get

@L

@�2�

����
HB
0

= �1
2
tr[(T�2�B

0B+ �2�IN)
�1]� N(T�1)

2�2�

+1
2
u0[JT 
 (T�2�B0B+ �2�IN)�1(T�2�IN + �2�B0B)�1

+ 1
�4�
(ET 
B0B)]u

@L

@�2�

����
HB
0

= �1
2
T tr[(T�2�IN + �

2
�B

0B)�1]

+1
2
u0[JT 
 (T�2�IN + �2�B0B)�2]u

@L

@�1

����
HB
0

= �1
2
T�2� tr[(T�

2
�IN + �

2
�(B

0B)�1)�1(W0 +W)]

+1
2
�2�u

0[JT 
 (T�2�IN + �2�(B0B)�1)�1(W0 +W)(T�2�IN + �
2
�(B

0B)�1)�1]u

@L

@�2

����
HB
0

= �1
2
�2� tr[(T�

2
�IN + �

2
�B

0B)�1(B0B)�1(W0B+B0W)(B0B)�1]

� (T�1)
2
tr[(W0B+B0W)(B0B)�1]

+1
2
u0[�2�JT 
 (T�2�IN + �2�(B0B)�1)�1(B0B)�1(W0B+B0W)(B0B)�1

(T�2�IN + �
2
�(B

0B)�1)�1 + 1
�2�
(ET 
 (W0B+B0W))]u

and the elements of the information matrix are determined as

J11jHB
0
= 1

2
tr
�
(T�2�B

0B+ �2�IN)
�1�2 + N(T�1)

2�4�

J12jHB
0
= T

2
tr
�
(T�2�B

0B+ �2�IN)
�1(T�2�IN + �

2
�(B

0B)�1)�1
�

J13jHB
0
=

T�2�
2
tr[(T�2�B

0B+ �2�IN)
�1(T�2� + �

2
�(B

0B)�1)�1(W0 +W)]

J14jHB
0
= �2�

2
tr[(T�2�B

0B+ �2�IN)
�1(T�2� + �

2
�(B

0B)�1)�1

(B0B)�1(W0B+B0W)(B0B)�1] + (T�1)
2�2�

tr[(W0B+B0W)(B0B)�1]
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J22jHB
0
= T 2

2
tr
�
(T�2�IN + �

2
�(B

0B)�1)�1
�2

J23jHB
0
=

T 2�2�
2
tr[(T�2�IN + �

2
�(B

0B)�1)�2(W0 +W)]

J24jHB
0
= T�2�

2
tr[(T�2�IN + �(B

0B)�1)�2(B0B)�1(W0B+B0W)(B0B)�1]

J33jHB
0
=

T 2�4�
2
tr[((T�2�IN + �

2
�(B

0B)�1)�1(W0 +W))2]

J34jHB
0
=

T�2��
2
�

2
tr[(T�2�IN + �

2
�(B

0B)�1)�1(W0 +W)

(T�2�IN + �
2
�(B

0B)�1)�1(B0B)�1(W0B+B0W)(B0B)�1]

J44jHB
0
= �4�

2
tr[((T�2�IN + �

2
�(B

0B)�1)�1(B0B)�1(W0B+B0W)(B0B)�1)2]

+ (T�1)
2
tr[((W0B+B0W)(B0B)�1)2]:

The LM test for HB
0 makes use of the estimated score bD� = [0; 0; bd�1 ; 0]0 with

bd�1 = @L

@�1

����
HB
0

= �Tb�2�
2
tr[bC1C2] + b�2�

2
bu0(JT 
 bC1C2

bC1)bu,
where bu = y�Xb�; bC1 = (Tb�2�IN + b�2�(bB0bB)�1)�1 and C2 = (W0+W). An

estimate of the lower (4 � 4) block of the information matrix bJ� under HB
0

is given by

bJ����
HB
0

=266666664

1
2
tr[bC32] + N(T�1)

2b�4� T
2
tr
hbC3 bC1i T b�2�

2
tr[bC3 bC1C2] b�2�

2
tr[bC3 bC1 bC5] + (T�1)

2b�2� tr[bC4]
T
2
tr
hbC3 bC1i T2

2
tr
hbC21i T2b�2�

2
tr[bC21C2] T b�2�

2
tr[bC21 bC5]

T b�2�
2
tr[bC3 bC1C2] T2b�2�

2
tr[bC21C2] T2b�4�

2
tr[(bC1C2)2] T b�2�b�2�

2
tr[bC1C2 bC1 bC5]b�2�

2
tr[bC3 bC1 bC5] + (T�1)

2b�2� tr[bC4] T b�2�
2
tr[bC21 bC5] T b�2�b�2�

2
tr[bC1C2 bC1 bC5] b�4�

2
tr[(bC1 bC5)2] + (T�1)

2
tr[bC24]

377777775
,

where bC3 = (bB0bB)�1 bC1, bC4 = (W0bB+ bB0W)(bB0bB)�1 and bC5 = (bB0bB)�1 bC4.
The LM test for HB

0 does not have a simple closed form. However, an al-

ternative closed form expression for this LM statistic based on the square

of the standardized score is given by LM 0
B = (bu0 bGBbu�bgB)2

2bbB , where bGB =

JT 
 bC1C2 bC1; bgB = Tb�2�
2
tr[bC1C2] and bbB = tr[(bC1C2)2]:
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Theorem 8 (LMB) Suppose Assumptions A1 - A5 hold and HB
0 : �1 = 0 is

true. Then, LM 0
B =

(bu0 bGBbu�bgB)2
2bbB is asymptotically distributed as �21.

Proof. Using the residuals and the parameters of the true model under

HB
0 , the score is given by

d�1 =
1
2
T�2�GB,

where GB = (u0GBu� gB) and GB= (JT 
C1C2C1), using C1 = (T�2�IN +

�2�(B
0B)�1)�1, C2 = (W

0 +W) and gB = tr[C1C2].

(i) Under HB
0 A = IN and we can apply Lemma 4 setting H = C1C2C1 so

thatE[u0GBu] = T�
2
�tr[H]+ �

2
�tr[H(B

0B)�1] = T�2�tr[C1C2C1]+ �
2
�tr[C1C2C1(B

0B)�1] =

tr[C1C2C1(T�
2
�IN+ �

2
�(B

0B)�1)] = tr[C1C2] = gB:Observe, T�2�H+�
2
�H(B

0B)�1 =

C1C2.

V ar[u0GBu] = 2(T
2�4�tr[H

2]+2T�2��
2
�tr[H

2(B0B)�1]+�4�tr[(H(B
0B)�1)2]):

and tr[(T�2�H+�
2
�H(B

0B)�1)2] = tr[T 2�4�H
2+2T�2��

2
�H

2(B0B)�1+�4�(H(B
0B)�1)2]

= tr[(C1C2)
2]. Hence, by Lemma 4 GB

�21
p
2bB

with bB = tr[(C1C2)
2] converges

in distribution to the standard normal.

(ii) As a result, we obtain var[d�1 ] =
1
4
T 2�4�V ar[u

0GBu] =
1
2
T 2�4�bB. Hence,

the square of the standardized score statistic is given by LM 0
B =

1
2
T 2�4�G

2
B

1
2
T 2�4�bB

=

G2B
2bB
. By analogy to the arguments in the proof of Theorem 7, we conclude

that the quadratic form
bGBp
2bbB converges in distribution towards a standard

normal under HB
0 . Hence, LM

0
B is asymptotically distributed as �

2
1 under

HB
0 .
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Appendix E: LM Test for the KKP Model

To derive the asymptotic distribution of the LM test for HC
0 , it proves useful

to re-parameterize the model so that �1 = �2+� and to test H
B
0 : � = 0 vs.

HB
1 : � 6= 0, i.e., that the spatial panel correlation follows the speci�cation

proposed by KKP.

Under HC
0 , B = A, 
u = (�

2
1JT + �

2
�ET )
 (A0A)�1 and 
�1

u = ( 1
�21
JT +

1
�2�
ET ) 
 (A0A). Using the general formulas for the score and for the infor-

mation matrix given above, we get

@L

@�2�

����
HC
0

= � N
2�21
� N(T�1)

2�2�
+ 1

2
u0[( 1

�41
JT +

1
�4�
ET )
A0A]u

@L

@�2�

����
HC
0

= �NT
2�21
+ 1

2
u0[ T

�41
(JT 
A0A)]u

@L

@�

����
HC
0

= �T�2�
2�21
tr[D] + 1

2
u0(

T�2�
�41
JT 
 F)u

@L

@�2

����
HC
0

= �T�2�
2�21
tr[D] + 1

2
u0(
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 F]u;

where F =W0A +A0W and D = F(A0A)�1. The elements of the relevant

part of the information matrix are
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37777775 :

The restricted MLE estimates under HC
0 are labeled by a bar. In fact, this

gives the MLE version of the KKP model and u = y �X�. The score with
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respect to each element of � evaluated at the restricted MLE � is given by

D� =

26666664
0

0
T�2�
2�41
[��21tr[D] + u0(JT 
 F)u]

0

37777775 :

Using dC = tr[D] and eC = tr[D
2
], the lower (4� 4) block of the estimated

information matrix evaluated at the restricted MLE � is given by

J� =
1
2�41

26666664
NT

24 (T�1)�41+�4�
T�4�

1

1 T

35 TdC
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M21 M22

35 :
To derive the lower right block of the inverse J

�1
� , we employ the formula for

the partitioned inverse so that J
�1
�;�2

= 2�41(M22 �M21M
�1
11M12)

�1:
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using jM11j = NT (T�1)�
4
1

�4�
:

M22 �M21M
�1
11M12 = TeC
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35 ;
where bC = eC � d

2

C=N . De�ning GC = u
0(JT 
F)u� �21tr[D] the resulting

LM statistic for HC
0 is given by

LMC = D
0
�J
�1
� D� =

T
2bC(T�1)�41

G
2

C :

Theorem 9 (LMC) Suppose Assumptions A1 - A5 hold and Hc
0: �1 = �2 =

� is true. Let F = (W0A+A
0
W); D = F(A

0
A)�1 and GC = u0(JT 
F)u�

�21tr[D]. Then, LM
0
C =

1

2b
0
C�

4
1

G
2

C with b
0
C = eC = tr[D

2
] is asymptotically

distributed as �21.

Proof. De�ne GC = (JT 
F) and gC = �21tr[D] so that the score under

Hc
0 is given by d� =

1
2
u0(

T�2�
�41
JT 
 F)u �

T�2�
2�21
tr[D] =

T�2�
2�41

(u0GCu� gC) =
T�2�
2�41
GC : Note that �rst, we use the true residuals and the true parameters

under Hc
0.

(i) We can apply Lemma 4 with H = F and A = B to obtain:

E[u0(JT 
 F)u] = T�2�tr[F(A0A)�1]+�2�tr[F(A
0A)�1] = �21tr[D] = gC and

V ar[u0(JT
F)u] = 2(T 2�4�tr[(F(A0A)�1)2]+ 2T�2��
2
�tr[F(A

0A)�1F(A0A)�1]+
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�4�tr[(F(A
0A)�1)2] = 2�41tr[D

2] = 2�41b
0
C . SinceW is uniformly bounded and

j�j�max < 1, we conclude that the elements of D are also uniformly bounded

in absolute value and that GC��21tr[D]p
2�41b

0
C

converges in distribution to the stan-

dard normal.

(ii) By analogy to the arguments in the proof of Theorem 7, we conclude that

the quadratic form GC

�21

p
2b
0
C

converges in distribution to N(0; 1) and LM 0
C is

asymptotically distributed as �21 under H
C
0 .

Note that the standardized LM 0
C in the proof di¤ers from the formula

for LMC in the text which relies on the normalization T�1
T
bC�

4
1, with bC =

tr[D
2
]� tr[D]2=N:

Appendix F: Numerical optimization

We use the constrained quasi-Newton method involving the constraints

�2� > 0, �2� > 0, �1 < �1 < 1 and �1 < �2 < 1 to estimate the para-

meters of the four models (the unrestricted model and the three restricted

ones: random e¤ects, Anselin, and KKP). The quasi-Newton method calcu-

lates the gradient of the log-likelihood numerically. We use the optimization

routine fmincon available from Matlab which uses the sequential quadratic

programming method. This method guarantees super-linear convergence by

accumulating second order information regarding the Kuhn-Tucker equations

using a quasi-Newton updating procedure. An estimate of the Hessian of the

Lagrangian is updated at each iteration using the BFGS formula. All tests

are based on the analytically derived formulas for both the gradient and the

information matrix, using the estimated parameters.
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(N=50, T=5, σ2
μ=10, σ2

ν=10)

H0
A: ρ1=0, ρ2=0 H0

B: ρ1=0
ρ1 ρ2 LMA LRA LMB LMB

' LRB LMC LMC' LRC

-0.80 -0.80 1.000 1.000 0.938 0.924 0.964 0.039 0.028 0.041
-0.80 -0.50 1.000 1.000 0.985 0.973 0.992 0.590 0.580 0.565
-0.80 -0.20 0.997 0.998 0.989 0.988 0.991 0.919 0.927 0.922
-0.80 0.00 0.979 0.982 0.989 0.992 0.991 0.982 0.993 0.985
-0.80 0.20 0.997 0.997 0.989 0.989 0.993 0.999 0.999 0.999
-0.80 0.50 1.000 1.000 0.972 0.975 0.977 1.000 1.000 1.000
-0.80 0.80 1.000 1.000 0.925 0.936 0.938 1.000 1.000 1.000
-0.50 -0.80 1.000 1.000 0.562 0.570 0.595 0.172 0.135 0.307
-0.50 -0.50 1.000 1.000 0.692 0.687 0.711 0.046 0.046 0.046
-0.50 -0.20 0.913 0.925 0.727 0.752 0.742 0.318 0.315 0.324
-0.50 0.00 0.614 0.646 0.702 0.698 0.729 0.661 0.645 0.685
-0.50 0.20 0.888 0.886 0.690 0.710 0.724 0.868 0.867 0.894
-0.50 0.50 1.000 1.000 0.613 0.610 0.632 0.985 0.980 0.992
-0.50 0.80 1.000 1.000 0.430 0.445 0.450 0.999 0.998 1.000
-0.20 -0.80 1.000 1.000 0.144 0.138 0.153 0.643 0.615 0.755
-0.20 -0.50 1.000 1.000 0.175 0.157 0.183 0.209 0.228 0.231
-0.20 -0.20 0.663 0.669 0.164 0.200 0.167 0.042 0.035 0.045
-0.20 0.00 0.130 0.139 0.158 0.166 0.169 0.157 0.183 0.171
-0.20 0.20 0.696 0.660 0.186 0.187 0.203 0.453 0.466 0.499
-0.20 0.50 1.000 1.000 0.131 0.158 0.142 0.863 0.864 0.910
-0.20 0.80 1.000 1.000 0.095 0.114 0.097 0.976 0.965 0.996
0.00 -0.80 1.000 1.000 0.043 0.025 0.058 0.822 0.814 0.899
0.00 -0.50 1.000 1.000 0.043 0.037 0.055 0.501 0.485 0.509
0.00 -0.20 0.582 0.574 0.045 0.038 0.059 0.106 0.109 0.099
0.00 0.00 0.043 0.053 0.049 0.048 0.058 0.054 0.045 0.059
0.00 0.20 0.646 0.602 0.042 0.041 0.047 0.133 0.154 0.154
0.00 0.50 1.000 1.000 0.049 0.028 0.051 0.595 0.583 0.672
0.00 0.80 1.000 1.000 0.050 0.017 0.053 0.898 0.881 0.962
0.20 -0.80 1.000 1.000 0.117 0.116 0.092 0.962 0.952 0.983
0.20 -0.50 1.000 1.000 0.147 0.139 0.126 0.818 0.830 0.827
0.20 -0.20 0.605 0.593 0.174 0.163 0.142 0.402 0.407 0.382
0.20 0.00 0.130 0.110 0.148 0.141 0.125 0.131 0.154 0.111
0.20 0.20 0.686 0.649 0.171 0.160 0.140 0.048 0.039 0.053
0.20 0.50 1.000 1.000 0.134 0.141 0.116 0.283 0.307 0.348
0.20 0.80 1.000 1.000 0.093 0.087 0.082 0.798 0.752 0.909
0.50 -0.80 1.000 1.000 0.667 0.673 0.632 0.999 0.998 0.999
0.50 -0.50 1.000 1.000 0.761 0.743 0.728 0.989 0.992 0.988
0.50 -0.20 0.901 0.889 0.781 0.790 0.739 0.903 0.904 0.886
0.50 0.00 0.700 0.664 0.767 0.778 0.746 0.706 0.722 0.650
0.50 0.20 0.934 0.923 0.771 0.795 0.750 0.372 0.365 0.302
0.50 0.50 1.000 1.000 0.683 0.685 0.662 0.044 0.040 0.054
0.50 0.80 1.000 1.000 0.397 0.378 0.402 0.434 0.350 0.590
0.80 -0.80 1.000 1.000 0.994 0.999 0.995 1.000 1.000 1.000
0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.80 0.00 0.999 0.998 0.999 0.999 0.999 0.997 1.000 0.996
0.80 0.20 1.000 1.000 1.000 0.998 1.000 0.988 0.984 0.977
0.80 0.50 1.000 1.000 0.990 0.986 0.997 0.781 0.779 0.699
0.80 0.80 1.000 1.000 0.847 0.820 0.947 0.033 0.021 0.062

Table 1: Monte carlo simulations for size and power of LM and LR tests of the random effects, the Anselin and 
the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size adjusted power 
of the tests.

Random effects model Anselin model Kelejian-Prucha model
H0

C: ρ1=ρ2



(N=50, T=5, σ2
μ=5, σ2

ν=15)

ρ1 ρ2 LM LR LM LR LM LR

-0.80 -0.80 1.000 1.000 0.660 0.757 0.039 0.033
-0.80 -0.50 1.000 1.000 0.824 0.896 0.443 0.401
-0.80 -0.20 0.987 0.991 0.935 0.952 0.804 0.812
-0.80 0.00 0.896 0.923 0.950 0.963 0.940 0.953
-0.80 0.20 0.956 0.961 0.935 0.947 0.974 0.981
-0.80 0.50 1.000 1.000 0.875 0.902 0.993 0.999
-0.80 0.80 1.000 1.000 0.804 0.838 0.993 0.999
-0.50 -0.80 1.000 1.000 0.301 0.320 0.093 0.175
-0.50 -0.50 1.000 1.000 0.422 0.431 0.047 0.038
-0.50 -0.20 0.853 0.878 0.496 0.532 0.248 0.262
-0.50 0.00 0.389 0.425 0.489 0.502 0.448 0.484
-0.50 0.20 0.767 0.756 0.504 0.548 0.684 0.743
-0.50 0.50 1.000 1.000 0.378 0.419 0.865 0.920
-0.50 0.80 1.000 1.000 0.306 0.328 0.923 0.989
-0.20 -0.80 1.000 1.000 0.097 0.098 0.316 0.455
-0.20 -0.50 1.000 1.000 0.119 0.112 0.120 0.131
-0.20 -0.20 0.641 0.668 0.108 0.123 0.044 0.042
-0.20 0.00 0.100 0.111 0.126 0.129 0.123 0.125
-0.20 0.20 0.638 0.605 0.129 0.148 0.291 0.324
-0.20 0.50 1.000 1.000 0.084 0.097 0.588 0.674
-0.20 0.80 1.000 1.000 0.066 0.080 0.733 0.909
0.00 -0.80 1.000 1.000 0.049 0.057 0.457 0.659
0.00 -0.50 1.000 1.000 0.046 0.058 0.265 0.304
0.00 -0.20 0.570 0.586 0.050 0.053 0.076 0.071
0.00 0.00 0.050 0.055 0.048 0.052 0.053 0.049
0.00 0.20 0.627 0.596 0.039 0.039 0.096 0.119
0.00 0.50 1.000 1.000 0.050 0.047 0.310 0.413
0.00 0.80 1.000 1.000 0.050 0.045 0.521 0.753
0.20 -0.80 1.000 1.000 0.073 0.069 0.755 0.866
0.20 -0.50 1.000 1.000 0.104 0.081 0.585 0.613
0.20 -0.20 0.552 0.564 0.091 0.083 0.269 0.257
0.20 0.00 0.084 0.070 0.108 0.082 0.107 0.091
0.20 0.20 0.691 0.660 0.109 0.097 0.041 0.045
0.20 0.50 1.000 1.000 0.075 0.068 0.199 0.245
0.20 0.80 1.000 1.000 0.071 0.072 0.435 0.629
0.50 -0.80 1.000 1.000 0.468 0.438 0.971 0.989
0.50 -0.50 1.000 1.000 0.565 0.520 0.929 0.936
0.50 -0.20 0.772 0.765 0.586 0.571 0.790 0.754
0.50 0.00 0.505 0.482 0.579 0.557 0.535 0.492
0.50 0.20 0.886 0.873 0.541 0.524 0.252 0.197
0.50 0.50 1.000 1.000 0.325 0.351 0.039 0.053
0.50 0.80 1.000 1.000 0.182 0.193 0.236 0.322
0.80 -0.80 1.000 1.000 0.984 0.987 1.000 1.000
0.80 -0.50 1.000 1.000 0.993 0.993 1.000 1.000
0.80 -0.20 0.993 0.993 0.992 0.991 0.998 0.997
0.80 0.00 0.988 0.987 0.993 0.993 0.989 0.984
0.80 0.20 0.999 0.999 0.990 0.993 0.959 0.930
0.80 0.50 1.000 1.000 0.846 0.960 0.630 0.525
0.80 0.80 1.000 1.000 0.430 0.644 0.034 0.059

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size 
adjusted power of the tests.

Table 2: Monte carlo simulations for size and power of LM and LR tests of the random effects, the 
Anselin and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

Kelejian-Prucha model
H0

C: ρ1=ρ2H0
A: ρ1=0, ρ2=0

Random effects model Anselin model
H0

B: ρ1=0



(N=50, T=5, σ2
μ=15, σ2

ν=5)

ρ1 ρ2 LM LR LM LR LM LR

-0.80 -0.80 1.000 1.000 0.985 0.994 0.039 0.032
-0.80 -0.50 1.000 1.000 0.997 0.999 0.642 0.610
-0.80 -0.20 0.999 1.000 0.998 0.999 0.964 0.965
-0.80 0.00 0.986 0.995 0.997 0.998 0.995 0.996
-0.80 0.20 0.998 1.000 0.996 0.998 1.000 1.000
-0.80 0.50 1.000 1.000 0.993 0.997 1.000 1.000
-0.80 0.80 1.000 1.000 0.969 0.975 1.000 1.000
-0.50 -0.80 1.000 1.000 0.727 0.769 0.271 0.408
-0.50 -0.50 1.000 1.000 0.815 0.836 0.046 0.046
-0.50 -0.20 0.927 0.945 0.814 0.831 0.384 0.370
-0.50 0.00 0.680 0.748 0.810 0.834 0.730 0.748
-0.50 0.20 0.935 0.942 0.811 0.820 0.937 0.952
-0.50 0.50 1.000 1.000 0.755 0.777 0.999 1.000
-0.50 0.80 1.000 1.000 0.589 0.619 1.000 1.000
-0.20 -0.80 1.000 1.000 0.174 0.198 0.788 0.885
-0.20 -0.50 1.000 1.000 0.210 0.235 0.241 0.267
-0.20 -0.20 0.671 0.704 0.231 0.249 0.049 0.051
-0.20 0.00 0.163 0.189 0.236 0.256 0.176 0.192
-0.20 0.20 0.735 0.732 0.230 0.237 0.509 0.555
-0.20 0.50 1.000 1.000 0.178 0.188 0.934 0.965
-0.20 0.80 1.000 1.000 0.136 0.142 1.000 1.000
0.00 -0.80 1.000 1.000 0.042 0.053 0.951 0.978
0.00 -0.50 1.000 1.000 0.035 0.042 0.632 0.652
0.00 -0.20 0.579 0.594 0.039 0.050 0.129 0.117
0.00 0.00 0.040 0.047 0.036 0.045 0.041 0.049
0.00 0.20 0.645 0.625 0.039 0.048 0.193 0.222
0.00 0.50 1.000 1.000 0.048 0.053 0.751 0.804
0.00 0.80 1.000 1.000 0.049 0.053 0.992 0.998
0.20 -0.80 1.000 1.000 0.178 0.153 0.995 0.998
0.20 -0.50 1.000 1.000 0.182 0.170 0.915 0.921
0.20 -0.20 0.644 0.655 0.196 0.166 0.514 0.480
0.20 0.00 0.153 0.136 0.214 0.189 0.176 0.142
0.20 0.20 0.699 0.673 0.206 0.165 0.038 0.045
0.20 0.50 1.000 1.000 0.178 0.148 0.414 0.476
0.20 0.80 1.000 1.000 0.120 0.102 0.969 0.990
0.50 -0.80 1.000 1.000 0.794 0.775 1.000 1.000
0.50 -0.50 1.000 1.000 0.850 0.832 0.997 0.997
0.50 -0.20 0.938 0.937 0.860 0.845 0.950 0.944
0.50 0.00 0.784 0.774 0.866 0.849 0.804 0.773
0.50 0.20 0.955 0.950 0.860 0.839 0.452 0.386
0.50 0.50 1.000 1.000 0.828 0.811 0.040 0.056
0.50 0.80 1.000 1.000 0.635 0.639 0.660 0.786
0.80 -0.80 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000
0.80 0.00 0.999 1.000 1.000 1.000 0.999 0.999
0.80 0.20 1.000 1.000 1.000 1.000 0.991 0.981
0.80 0.50 1.000 1.000 0.999 0.999 0.805 0.728
0.80 0.80 1.000 1.000 0.988 0.994 0.032 0.063

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size 
adjusted power of the tests.

H0
A: ρ1=0, ρ2=0

Random effects model

Table 3: Monte carlo simulations for size and power of LM and LR tests of the random effects, the 
Anselin and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

Anselin model
H0

B: ρ1=0
Kelejian-Prucha model

H0
C: ρ1=ρ2



(N=50, T=5, σ2
μ=10, σ2

ν=10)

ρ1 ρ2 LM LR LM LR

Random effects model, H0
A: ρ1=0, ρ2=0 0.00 0.00 0.042 0.053 0.041 0.047

Anselin model, H0
B: ρ1=0 0.00 -0.80 0.055 0.066 0.045 0.055

0.00 -0.50 0.052 0.065 0.042 0.049
0.00 -0.20 0.045 0.053 0.043 0.047
0.00 0.00 0.045 0.055 0.032 0.038
0.00 0.20 0.047 0.055 0.038 0.043
0.00 0.50 0.045 0.047 0.048 0.050
0.00 0.80 0.050 0.049 0.039 0.040

Kapoor-Kelejian-Prucha model, H0
C: ρ1=ρ2 -0.80 -0.80 0.036 0.035 0.039 0.040

-0.50 -0.50 0.049 0.046 0.048 0.048
-0.20 -0.20 0.048 0.044 0.045 0.048
0.00 0.00 0.043 0.048 0.035 0.039
0.20 0.20 0.045 0.051 0.035 0.047
0.50 0.50 0.038 0.054 0.034 0.051
0.80 0.80 0.029 0.054 0.029 0.059

Table 4: Monte carlo simulations for the robustness of the LM and LR tests of the random effects, the Anselin 
and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

 νit ~ t(5) νit ~lognormal(0,10)
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Figure 1: The power of the LM test, random effects model
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Figure 2: The power of the LM test, Anselin model
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Figure 3: The power of the LM test, KKP model - part I
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Figure 4: The power of the LM test,  KKP model - part II
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Figure 5: The power of the LM test, 3 vs 5 neighbors




