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Abstract

A positive domestic-foreign interest rate differential predicts that the domestic currency will
appreciate in the future. So, on average, positive profits can be made by borrowing in low-interest-
rate currencies and lending in high-interest-rate currencies (a strategy known as the ‘carry trade’).
Standard theory implies that capital inflows into high-interest-rate currencies should be so large that
the positive profits from the carry trade are wiped out. The absence of inflows of such a magnitude is
one way to characterize the well-known uncovered interest rate parity (UIP) puzzle. A standard, though
controversial, resolution of the puzzle is that what limits capital inflows when domestic interest rates
are high is an objective increase in risk in the domestic currency. This explanation has been challenged
on the grounds that it is difficult to empirically detect this risk. The alternative explanation I pursue
is that agent’s beliefs are systematically distorted. This perspective receives some support from an
extended empirical literature using survey data. I construct a model of exchange rate determination
in which agents’ distorted beliefs are derived formally from the assumption that they are ambiguity
averse. In my model, agents do not know key parameters of the stochastic process driving the variables
they forecast. In the presence of parameter uncertainty, ambiguity-averse agents compute forecasts
using values of the parameters that (i) produce bad outcomes for the agent and (ii) are not implausible
in a likelihood sense. The equilibrium of my model resembles the data in that a positive interest
rate differential predicts that the domestic currency will appreciate in the future. The reason capital
inflows into high-interest-rate currencies are limited in the model is that agents tend to overstate the
probability of a future depreciation. I show that my result cannot be duplicated in a simple model with
risk aversion. In addition to providing a resolution to the UIP puzzle, the model predicts, consistent
with the data, negative skewness and excess kurtosis for carry trade payoffs and positive average payoffs
even for hedged positions. JEL Classification: D8, E4, F3, G1.
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1 Introduction

According to uncovered interest rate parity (UIP), periods when the domestic interest rate is higher

than the foreign interest rate should on average be followed by periods of domestic currency depreciation.

An implication of UIP is that a regression of realized exchange rate changes on interest rate differentials

should produce a coefficient of 1. This implication is strongly counterfactual. In practice, UIP regressions

(Fama (1984), Hansen and Hodrick (1980)) produce coefficient estimates well below 1 and sometimes even

negative.1 This anomaly is taken very seriously because the UIP equation is a property of most open

economy models. The failure, referred to as the UIP puzzle or the forward premium puzzle2, implies that

traders who borrow in low interest rate currencies and lend in high interest rate currencies (a strategy

known as the “carry trade”) make positive profits on average.

The standard approach in addressing the UIP puzzle has been to assume rational expectations

and time-varying risk premia. The rational expectations assumption implies that agents are endowed

with perfect knowledge about the true data generating process (DGP). The time-varying risk-premia

interpretation views the positive profits from the carry trade strategy as a compensation for risk. This

approach to the UIP puzzle has been criticized in two ways: survey evidence has been used to cast doubt

on the rational expectations assumption3 and other empirical research challenges the risk implications of

the analysis.4 In this paper, I follow a conjecture in the literature that the key to understanding the UIP

puzzle lies in departing from the rational expectations assumption.5 I pursue this conjecture formally,

using the assumption that agents are not endowed with the complete knowledge of the true DGP and

that they confront this uncertainty with ambiguity aversion.6 I model ambiguity aversion along the lines

of the maxmin expected utility (or multiple priors) preferences as in Gilboa and Schmeidler (1989).

The model has several types of agents. The decision problem of a subset of the agents (I call them
1Among recent studies see Burnside et al. (2008), Chinn and Frankel (2002), Chinn and Meredith (2005), Flood and Rose

(1996), Gourinchas and Tornell (2004), Mark and Wu (1998), Sarno (2005) and Verdelhan (2006).
2Under covered interest rate parity the interest rate differential equals the forward discount. The UIP puzzle can then be

restated as the empirical observation that currencies at a forward discount tend to appreciate.
3For example, Froot and Frankel (1989), Chinn and Frankel (2002) and Bacchetta et al. (2008) decompose predictable

excess returns into their currency risk premium and expectational error components. They find that almost all of the returns

can be attributed to the latter.
4See Engel (1996) and Lewis (1995) for surveys on this research. See Burnside et al. (2008) for a recent empirical analysis.

These criticisms are by no means definitive as there is a recent theoretical literature, including for example Alvarez et al.

(2008), Bansal and Shaliastovich (2007) and Farhi and Gabaix (2008) and reviewed in Appendix A, that argues that the

typical empirical exercises are unable by construction to capture the underlying time-variation in risk.
5Eichenbaum and Evans (1995), Froot and Thaler (1990), Gourinchas and Tornell (2004) and Lyons (2001) argue that

models where agents are slow to respond to news may explain the UIP puzzle. Bacchetta and van Wincoop (2008) offer

a formalization of such a mechanism based on rational inattention. For details on the theoretical literature on distorted

expectations and UIP see Appendix A.
6Lars Hansen and Thomas Sargent have introduced ambiguity aversion in the form of robust control in the macro-finance

literature. For a thorough treatment of robust control see Hansen and Sargent (2008). For applications of robust control to

exchange rate puzzles see Benigno (2007), Li and Tornell (2007) and Tornell (2003).
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‘agents’) is modeled explicitly, and the behavior of the others (‘liquidity traders’) is taken as given. The

supply of domestic and foreign bonds is fixed in domestic and foreign currency units, respectively. The

liquidity traders adjust their demand for bonds to satisfy the market clearing condition. Agents are all

identical and live for two periods.7 The representative agent begins the first period with no endowment.

She buys and sells bonds in different currencies in order to maximize a negative exponential utility function

of second period wealth. The problem of the agent is complicated by the fact that she is uncertain about

a subset of the parameters in her environment. The only source of randomness in the environment is

the domestic/foreign interest rate differential. I model this as an exogenous stochastic process, which is

the sum of unobserved persistent and transitory components. As a result, the agent must solve a signal

extraction problem when she wants to adjust her forecasts in response to a disturbance.

I follow and extend the setup in Epstein and Schneider (2007, 2008) by assuming that the agent does

not know the variances of the innovations in the temporary and persistent components and she allows

for the possibility that those variances change over time. As a result, the decision problem of the agent

requires taking a stand on the parameter values of the model, as well as choosing a quantity of bonds to

buy and sell. Under ambiguity aversion with maxmin expected utility, the agent simultaneously chooses

a belief about the model parameter values and a decision about how many bonds to buy and sell. The

bond decision maximizes expected utility subject to the chosen belief and the budget constraint. The

belief is chosen so that, conditional on the agent’s bond decision, expected utility is minimized subject

to a particular constraint. The constraint is that the agent only considers an exogenously-specified finite

set of values for the variances. I choose this set so that, in equilibrium, the variance parameters selected

by the agent are not implausible in a likelihood ratio sense.

The main result of this paper is that ambiguity aversion has the potential to resolve the UIP puzzle.

For the benchmark calibration, a higher domestic interest rate differential predicts a future appreciation of

the domestic currency. Numerical simulations show that in large samples the UIP regression coefficient is

negative and statistically significant. The key intuition for this can be explained by analyzing an impulse

response experiment. In this experiment the economy starts from the steady state in which the interest

rate differential equals to zero. At some date t there is an observed increase in the domestic interest rate

and there are no other shocks following period t. Suppose that this increase is the result of a probabilistic

combination of a persistent and temporary shocks whose magnitudes satisfy the signal to noise ratio from

the true DGP. First, consider the case of rational expectations. The agent is then endowed with the

perfect knowledge of this signal to noise ratio and correctly estimates the hidden persistent state and

forecasts the future exchange rate. The rational expectations solutions would imply, as in the Dornbusch

(1976) model of overshooting, a demand of domestic bonds that is large enough to create an immediate

appreciation at date t and then a path of depreciation from period t+ 1 onwards.

In contrast to the rational expectations assumption, in my model the agent is not certain about the

probability that the increase in period t is the result of a temporary or a persistent shock. In equilibrium
7The agents in my model resemble those in Bacchetta and van Wincoop (2008), except that there they investigate rational

inattention and I assume ambiguity aversion.
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the agent borrows in the foreign interest rate and lends in the higher domestic interest rate. Next period

the agent repays her debt by converting the investment proceeds back into foreign currency. From the

investor’s perspective, the worse-case scenarios are those in which the domestic currency depreciates.

The agent uses the correct equilibrium relations and realizes that a large domestic depreciation occurs

next period if the true shock is a temporary one. This happens because if the true shock is indeed

temporary, next period the agent will demand less of the domestic bond. Hence, the concern about

a future depreciation translates into the agent being worried that the true shock is temporary. The

ambiguity averse agent places then more probability, compared to the true DGP, on the observed increase

in the differential to be caused by the temporary shock. Under this belief, the agent at time t will demand

less of domestic bonds than under the rational expectations rule.

Because the agent underestimates the hidden state by placing too much probability on the temporary

shock compared to the true DGP, in period t+ 1 she will perceive on average positive innovations about

the hidden persistent state. Under her subjective beliefs these innovations are unexpected good news that

at time t+ 1 increase the estimate of the hidden state compared to the rational expectations case. This

updating effect creates the possibility that in period t+1 the agent finds it optimal to invest even more in

the domestic bond because the higher estimate raises the present value of future payoffs of investing in the

domestic bond. The increased demand will drive up the value of the domestic currency contributing to

an appreciation between period t and t+ 1. This type of impulse response corresponds to the empirically

documented delayed overshooting puzzle8 in which following a positive shock to the domestic interest

rate the domestic currency experiences a gradual appreciation for several periods instead of a path of

depreciation as the UIP under rational expectations implies.9

More generally, when the agent is considering investing in the higher domestic interest rate she is

concerned about a domestic currency depreciation and consequently about the estimate of the hidden

state being low. Under this worst-case scenario she will choose to believe that it is more likely that the

observed increases in the domestic differential have been generated by temporary shocks (low precision

of signals) and decreases by persistent shocks (high precision of signals). In this sense, she underreacts

to good news and overreacts to bad news. The intuition for the impulse response carries over when

simulating the model with temporary and persistent shocks drawn every period from the true DGP.

The above intuition also applies for the case when the foreign interest rate is higher than the domestic

rate. The agent then invests in the foreign bond and is concerned about a foreign currency depreciation.

In that case, good news is an increase in the foreign rate. The same mechanism delivers the possibility

of a gradual appreciation of the foreign currency subsequent to a positive shock to the foreign rate of

interest. This highlights that the worst-case scenario is a function of the investment position.
8See Eichenbaum and Evans (1995), Faust and Rogers (2003), Grilli and Roubini (1996) and Scholl and Uhlig (2006).
9This intuition is related to Gourinchas and Tornell (2004) who show that if, for some unspecified reason, the agent

systematically underreacts to signals about the time-varying hidden-state of the interest rate differential this can explain the

UIP and delayed overshooting puzzle. The main difference from their paper is that I formally investigate the optimality of

such distorted beliefs.
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The explanation for the UIP puzzle proposed in this paper relies on placing some structure on the

type of uncertainty that the agent is concerned about. The agent receives signals of uncertain precision

about a time-varying hidden state but otherwise she trusts the other elements of her representation of

the DGP.10 Because of the structured uncertainty, the equilibrium distorted belief is not equivalent to the

belief generated by simply increasing the risk aversion and using the rational expectations assumption.11

The model is calibrated to data for eight developed countries which suggests a high degree of

persistence of the hidden state and a relatively large signal to noise ratio for the true DGP. In the

benchmark specification I impose some restrictions on the frequency and magnitudes of the distortions that

the agent is considering so that the equilibrium distorted sequence of variances is difficult to distinguish

statistically from the true DGP based on a likelihood comparison. Eliminating these constraints would

qualitatively maintain the same intuition and generate stronger quantitative results at the expense of

the agent seeming less interested in the statistical plausibility of her distorted beliefs. Studying other

calibrations, I find that the UIP regression coefficient becomes positive, even though smaller than 1, if

the true DGP is characterized by a significantly less persistent hidden state or much larger temporary

shocks than the benchmark specification.

Besides providing an explanation for the UIP puzzle, the theory for exchange rate determination

proposed in this paper has several implications for the carry trade. First, directly related to the resolution

to the UIP puzzle, the benchmark calibration produces, as in the data, positive average payoffs for the

carry trade strategy. Compared to the empirical evidence, the model implied payoffs are smaller and less

variable. The model generates positive average payoffs because in equilibrium the subjective probability

distribution differs from the objective one by overpredicting bad events and underpredicting good events.

The underprediction is related to the dynamic interaction of the distorted beliefs and the true DGP that

produces in equilibrium a more frequent occurrence of exchange rate realizations that benefit ex-post

the carry trade strategy. This is in contrast with models that rely on peso events in which the agent

overpredicts a large bad state that does not happen in a small sample. The peso problem interpretation

views the positive ex-post payoffs as a manifestation of the lack of occurrence of this rare event.12

10The intuition still holds if the time-varying unobserved state is not the persistent component but the autocorrelation

coefficient of the observed interest rate differential. In that case, the agent is concerned that this coefficient is low and

interprets signals that imply a low estimate as reflecting a shock to the time-varying parameter and signals that imply a high

estimate as temporary shocks to the differential. See Section 5.5 for details on the time-varying parameter case.
11This is in contrast to unstructured uncertainty, for which, as shown for example in Strzalecki (2007), Barillas et al.

(2008), the multiplier preferences used in Hansen and Sargent (2008) are equivalent to a higher risk aversion expected utility.

The unstructured uncertainty places no restriction on the nature or location of possible misspecifications, except that the

“distance” from the reference model is bounded by some cost function (in their model the relative entropy). A similar

argument regarding unstructured uncertainty and robust filtering is made in Li and Tornell (2007). There is a literature

on optimal monetary policy under structured uncertainty including, for example, Brock et al. (2007), Cogley and Sargent

(2005), Giannoni (2007), Levin and Williams (2003) and Woodford (2006).
12See Farhi and Gabaix (2008) for an example of a rare-disaster explanation of the UIP puzzle. Their model is a theory

of time-varying risk premia generated by rare events which can occur in small samples. For models addressing the UIP

failure that rely on the typical interpretation of the peso event, i.e. one which does not happen in the sample, see Engel and

Hamilton (1989), Evans and Lewis (1995) and Lewis (1989). A more detailed review is presented in Appendix A.
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Second, in the model hedged positions can deliver positive mean payoffs. This is an important result

because a recent empirical literature finds that even when the carry trade’s downside risk is eliminated

by using options, the hedged strategy generates positive payoffs.13 The difficulty in generating this result

is related to the intuition that buying insurance against the downside risk produces on average negative

payoffs that decrease the payoff of the hedged strategy. My model also implies this type of loss because

of the overprediction of bad events. However, in my model this negative payoff does not completely offset

the positive payoff of the unhedged carry trade. The reason is related to the more frequent occurrence

of good states for the carry trade strategy under the objective probability distribution than under the

equilibrium distorted beliefs. This is contrast to models in which peso events are associated with large

losses from the carry trade strategy that do not occur in the sample but otherwise, for the non-peso events,

the subjective and the probability distributions coincide. In those models, buying insurance completely

eliminates the gains from the unhedged strategy.14The theory presented in this paper is also consistent

with recent empirical findings about the conditional time-variation of risk-neutral moments for currency

trading.15

Third, the model implies that carry trade payoffs are characterized by negative skewness and excess

kurtosis. This is consistent with the data as recent evidence suggests that high interest rate currencies

tend to appreciate slowly but depreciate suddenly.16 In my model, the gradual appreciation arises from

the slow incorporation of good news about the high interest rate currency. However, when this interest

rate decreases compared to the market’s expectation, it produces a relatively sudden depreciation because

agents respond quickly to this type of news. The excess kurtosis is a manifestation of the diminished

reaction to good news. The asymmetric response to news is also consistent with the high frequency

reaction of exchange rates to fundamentals documented in Andersen et al. (2003).

The remainder of the paper is organized as follows. Section 2 describes and discusses the model.

Section 3 presents a rational expectations version of the model to be contrasted to the ambiguity averse

version studied in Section 4. Section 5 describes the model implications for exchange rate determination

and discusses alternative specifications. Section 6 concludes. In the Appendix I review some of the

relevant theoretical literature and provide details on some of the model’s equations.
13See Burnside et al. (2008) and Jurek (2008).
14Burnside et al. (2008) point out that the rare event could be a large loss from the strategy or a very high marginal utility

when an otherwise small loss happens. In the first case we should expect to see zero payoffs for the hedged carry trade. This

implication is rejected by the empirical evidence on the profitability of the hedged carry trade. They then conclude that it

must be the extremely high marginal utility that characterizes such a negative event.
15See Jurek (2008) for an empirical analysis of risk-neutral moments.
16Traders describe this situation for the high interest rate currency as “exchange rates go up by the stairs and down by

the elevator” (see Brunnermeier et al. (2008)).
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2 Model

2.1 Basic Setup

The basic setup is a typical one good, two-country, dynamic general equilibrium model of exchange rate

determination. The focus is to keep the model as simple as possible while retaining the key ingredients

needed to highlight the role of ambiguity aversion and signal extraction.

There are overlapping generations (OLG) of investors who each live 2 periods, derive utility from

end-of-life wealth and are born with zero endowment. There is one good for which purchasing power

parity holds pt = p∗t + st, where pt is the log of price level of the good in the Home country and st the

log of the nominal exchange rate defined as the price of the Home currency per unit of Foreign currency

(FCU). Foreign country variables are indicated with a star. There are one-period nominal bonds in both

currencies issued by the respective governments. Domestic and foreign bonds are in fixed supply in the

domestic and foreign currency respectively.

The Home and Foreign nominal interest rates are it and i∗t respectively. The driving exogenous force is

the process for the interest rate differential rt = it−i∗t . The true DGP can be described using a state-space

model:

rt = H ′xt + σV vt (1)

xt = Fxt−1 + σUut

The shocks ut and vt are white noises. Thus, at time t the observable differential is the sum of a hidden

unobservable persistent (xt) and a temporary component (vt). The agent entertains that the true DGP

lies in a set of models (i.e. probability distributions over outcomes). The specific assumptions about the

subjective beliefs of the agents regarding this process are covered in the next section.

Investors born at time t have a CARA utility over end-of-life wealth, Wt+1, with a rate of absolute

risk-aversion of γ.

V = max
bt

min
P̃∈Λ

EP̃t [− exp(−γWt+1)|It] (2)

where It is the information available at time t and bt is the amount of foreign bonds invested. Agents have

a zero endowment and pursue a zero-cost investment strategy: borrowing in one currency and lending

in another. Since PPP holds, Foreign and Home investors face the same real returns and therefore will

choose the same portfolio.

The set Λ comprises the alternative subjective probability distribution available to the agent. They

decide which of the the distributions (models) in the set Λ to use in forming their subjective beliefs about

the future exchange rate. I postpone the discussion about the optimization over these beliefs to the next

sections, noting that the optimal choice for bt is made under the subjective probability distribution P̃ .

The amount bt is expressed in domestic currency (USD). To illustrate the investment position suppose

that bt is positive. That means that the agent has borrowed bt in the domestic currency and obtains bt 1
St

FCU units, where St = est . This amount is then invested in foreign bonds and generates bt 1
St

exp(i∗t )
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of FCU units at time t + 1. However, at the same time the agent has to repay the interest rate bearing

borrowed amount of bt exp(it) expressed in USD. Thus, the agent has to exchange back the time t + 1

proceeds from FCU into USD and obtains bt
St+1

St
exp(i∗t ). The net end-of-life is then a function of the

amount of bonds invested and the excess return:

Wt+1 = bt[exp(st+1 − st + i∗t )− exp(it)]

To close the model I specify a Foreign bond market clearing condition similar to Bacchetta and van

Wincoop (2008). There is a fixed supply B of Foreign bonds in the Foreign currency. In steady state the

investor holds no assets since she has zero endowment. The steady state amount of bonds is held every

period by some unspecified traders. They can be interpreted as liquidity traders that have a constant

bond demand. The real supply of Foreign bonds is Be−p
∗
t = Best where the Home price level is normalized

at 1. I also normalize the steady state log exchange rate to sSS = 0. The market clearing condition for

Foreign bonds is then:

bt = Best −B (3)

where B is the steady state amount of Foreign bonds. Following Bacchetta and van Wincoop (2008) I

also set B = 0.5, corresponding to a two-country setup with half of the assets supplied domestically and

the other half by the rest of the world. By log-linearizing the RHS of (3) around steady state I get the

market clearing condition17:

bt = .5st (4)

2.2 Model uncertainty

The key departure from the standard framework of rational expectations is that I drop the assumption that

the shock processes are random variables with known probability distributions. The agent will entertain

various possibilities for the data generating process (DGP). She will choose, given the constraints, an

optimally distorted distribution for the exogenous process. I will refer to this distribution as the distorted

model. The objective probability distribution (the true DGP) is assumed to be the constant volatility

state-space representation for the exogenous process rt defined in (1). As in the model of multiple priors

(or MaxMin Expected Utility) of Gilboa and Schmeidler (1989), the agent chooses beliefs about the

stochastic process that induce the lowest expected utility under that subjective probability distribution.

The minimization is constrained by a particular set of possible distortions because otherwise the agent

would select infinitely pessimistic probability distributions. Besides beliefs, the agent also selects actions

that, under these worse-case scenario beliefs, maximize expected utility.

In the present context the maximizing choice is over the amount of foreign bonds that the agents is

deciding to hold, while the minimization is over elements of the set Λ that the agent entertains as possible.
17Bacchetta and van Wincoop (2008) analyze an alternative model with constant relative risk aversion in which agents are

born with an endowment of one good and decide what fraction of it to invest in the foreign bond. The same equilibrium

conditions are obtained as in this model except that those conditions are expressed in deviations from steady state.
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Abusing notation let P̃ also denote the arg min for the problem in (2). Thus, for future reference P̃ is the

optimal subjective probability distribution over the exogenous process for the interest rate differential.

The set Λ dictates how I constrain the problem of choosing an optimally distorted model. The type

of uncertainty that I investigate is similar to Epstein and Schneider (2007), except that here I consider

time-varying hidden states, while their model analyzes a constant hidden parameter. The agent believes

that the standard deviation of the temporary shock is potentially time-varying and is drawn every period

from a set Υ. Typical of ambiguity aversion frameworks, the agent’s uncertainty manifests in her cautious

approach of not placing probabilities on this set. Every period she thinks that any draw can be made out

of this set. The agent trusts the remaining elements of the representation in (1).18

Thus the agent uses the following state-space representation:

rt = H ′xt + σV,tvt (5)

xt = Fxt−1 + σUut

where vt and ut are white noises and σV,t are draws from the set Υ.

The information set is It = {rt−s, s = 0, ..., t}. Using different realizations for the σV,s for various

dates s ≤ t will imply different posteriors about the hidden state xt and the future distribution for rt+j ,

j > 0. In equation (2) the unknown variable at time t is the realized exchange rate next period. This

endogenous variable will depend in equilibrium on the probability distribution for the exogenous interest

rate differential. Thus in choosing the optimal belief P̃ the agent will imagine what could be the worst-case

realizations for σV,s for the data that she observes.

This minimization then becomes selecting a sequence of

σtV = {σV,s, s ≤ t : σV,s ∈ Υ} (6)

in the product space Υt : Υ×Υ...Υ. As in Epstein and Schneider (2007), the agent interprets this sequence

as a “theory” of how the data was generated.

For simplicity, I consider the case in which the set Υ contains only three elements: σLV < σV < σHV .

As in Epstein and Schneider (2007), to control how different is the distorted model from the true DGP, I

include the value σV in the set Υ. This does not necessarily imply that this is a priori known. If the agent

uses maximum likelihood for a constant volatility model, her point estimate would be asymptotically σV .

I will refer to the sequence σtV = {σV,s = σV , s ≤ t} as the reference model, or reference sequence. The

set Υ contains a lower and a higher value than σV to allow for the possibility that for some dates s

the realization σV,s induces a higher or lower precision of the signal about the hidden state. Given the

structure of the model, the worse-case choice is monotonic in the values of the set Υ. Thus, it suffices to

consider only the lower and upper bounds of this set.

The type of structured uncertainty I consider implies that the minimization in (2) is reduced to

selecting a distorted sequence of the form (6). The optimization in (2) then becomes:

V = max
bt

min
σ∗V (rt)∈σt

V

EP̃t [− exp(−γWt+1)|It] (7)

18In Section 5.1 and 5.5 I discuss alternative specifications, including time-varying parameters.
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where P̃ still denotes the subjective probability distribution implied by the known elements of the DGP

and the distorted optimal sequence σ∗V (rt). The latter is a function of time t information which is

represented by the history of observables rt.

2.3 Statistical constraint on possible distortions

An important question that arises in this setup is how easy is it to distinguish statistically the optimal

distorted sequence from the reference one. The robust control literature approaches this problem by using

the multiplier preferences in which the distorted model is effectively constrained by a measure of relative

entropy to be in some distance of the reference model.19 The ambiguity aversion models also constrain

the minimization by imposing some cost function on this distance.20 Without some sort of penalty for

choosing an alternative model, the agent would select an infinitely pessimistic belief.

I also impose this constraint to avoid the situation in which the implied distorted sequence results in a

very unlikely interpretation of the data compared to the true reference model. To quantify the statistical

distance between the two models I use a comparison between the log-likelihood of a sample {rt} computed

under the reference sequence (LDGP (rt)) and under the distorted optimal sequence (LDist(rt)). The metric

is the probability of model detection error which measures in this case how often LDGP (rt) is smaller

than LDist(rt).21 Hence, this shows how likely it is that the distorted sequence, treated as deterministic,

produces a higher likelihood than the constant volatility model based on σV .

Given the set Υ and the desired level of error detection probability, it effectively restricts the elements

in the sequence σtV to be different from the reference model only for a constant number n of dates.

Treating Υ and the level of error detection probability as parameters it amounts to solving for the closest

integer n. For example if n = 2, as in the main parameterization, it means that the agent is in fact

choosing only two dates where to be concerned that the realizations of σV,t are different than σV .

This approach amounts to setting an average statistical performance of the distorted model. At each

time t, LDist(rt) can be larger or smaller than LDGP (rt), but on average it is higher than the latter with

the selected fixed detection error probability (for example in the main parameterization, this is set to

0.17). An alternative, employed in Epstein and Schneider (2007) would be to fix a significance level for

the likelihood ratio test which holds every period so that LDist(rt) is lower than LDGP (rt) every period

by some fixed amount, and allow the number of dates n to vary by period. Similar intuition and results

are obtained.22 I choose to work with the first alternative for computational reasons and also to capture

the idea that the distorted model is not always performing worse. Sometimes the distorted model looks
19See Anderson et al. (2003) and Hansen and Sargent (2008).
20See Klibanoff et al. (2005) and Maccheroni et al. (2006) among others.
21This comparison is close to the detection error probability suggested in Hansen and Sargent (2008). The difference here

is that I only consider the error probability when the reference model is the true DGP.
22For the same set Υ as in the benchmark case, agents constrained by a significance level of 0.05 or 0.1 will be able to

distort the variance only for a small number of times, i.e. n usually belongs to {1, 2, 3}.
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even more plausible statistically than the reference model. Clearly, the detection error probability is not

directly a measure of the level of the agent’s uncertainty aversion but only a tool to assess its statistical

plausibility.23

The optimization over the distorted sequence can be thought of selecting an order out of possible

permutations. Let P (t, n) denote the number of possible permutations where t is the number of elements

available for selection and n is the number of elements to be selected. This order controls the dates at

which the agent is entertaining values of the realized standard deviation that are different than σV . After

selecting this order the rest of the sequence consists of elements equal to σV . As P (t, n) = t!/(t− n)! this

number of possible permutations increases significantly with the sample size. The solution described in

Section 4.1 shows that the effective number is in fact the choose function of t and n : tCn = t!/(n!(t−n)!).

When the agent considers distorting a date she will choose low precision of the signal if that date’s

innovation is good news for her investment and high precision if it is bad news. However, even this

number becomes increasingly large as t increases. When the model is solved numerically, as described

in Section 4.2, I will make the further assumption that the agent considers only distortions to the dates

t, ..., t−m+ 1 .That reduces the number of possible sequences to mCn. In Section 5.1 I discuss the extent

to which this affects the results.

It is important to emphasize that I impose the restriction on the distorted sequence to be different

only for few dates from the reference model purely for reasons related to statistical plausibility. The

same intuition applies if the agent is not constraint by this consideration. In that case, as in Epstein and

Schneider (2008) the agent would interpret all past innovations that are good news as low precision signals

and bad news as high precision signals. Given the set Υ that I consider in the benchmark parameterization

such a sequence of signals would look very unlikely compared with the reference model. I then allow the

agent to restrict attention only to a number of dates so that the two competing sequences have similar

likelihoods.

2.4 Discussion of the setup

In this section I discuss some of the modeling choices. First, I assume a preference over wealth and take

exogenous the interest rate differential. I want to capture the agents’ uncertainty about the evolution

of this process which endogenously determines the exchange rate. In order to have uncertainty over the

interest rate differential, I cannot simply use a model in which the differential is an endogenous variable.

For example, in a classic CAPM model the inverse of the interest rate is the expected stochastic discount

factor driven by the exogenous process for consumption. It is thus an endogenous variable that reflects

the evolution of this expectation. In that case, it is hard to argue that the agents are not sure how this

process occurs since it is reflecting their endogenous choices.
23For a discussion on how to recover in general ambiguity aversion from experiments see Strzalecki (2007). For a GMM

estimation of the ambiguity aversion parameter for the multiplier preferences see Benigno (2007) and Kleshchelski and

Vincent (2007).
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To move away from this modeling implication, I could use a monetary model in which the government

sets the interest rate, as in a Taylor rule.24 In that model, one could imagine scenarios in which agents are

uncertain about the way that the interest rate is set.25 For example, the agents would need to distinguish

between persistent shifts in the inflation target from transitory disturbances to the policy rule. Erceg and

Levin (2003) study such a setup and use rational expectations by endowing the agents with the true DGP.

Naturally, if agents act under the true distribution there is no room for systematically distorted beliefs

to explain the UIP puzzle. In an ambiguity aversion model, agents are not endowed with this knowledge

and are concerned about time-variation in the relative size of the persistent and transitory shock. The

optimal gain is time-varying to reflect such concerns.26

The type of uncertainty and the constraint on the set of possible distorted models is relatively new

in the literature. I extend the model in Epstein and Schneider (2007, 2008) by considering a setup

with ambiguous signals about time-varying hidden states. The reference model is a state-space constant

volatility while the distorted one is a stochastic volatility representation of the data. The latter is different

from a typical stochastic volatility in which the probabilities of drawing the realizations for the time-

varying standard deviations are known and Bayesian inference occurs. Here the agent is not willing to

place these probabilities, but rather, as the max min principle dictates27, will choose these probabilities

to be either 1 or 0.28

Note that the distorted model is not a constant volatility model with a different value for the standard

deviation of the shocks than the reference model. Although this possibility is implicitly nested in my

setup, the optimal choice will likely be different due to two reasons: the distance constraint will typically

eliminate such a possibility and even if not, it is still the case that sequences with time variation might

induce a lower utility for the agent. The fact that the likelihood comparison will be strong evidence

against such a model is related to the idea that distortions in variances are easier to detect in the data.

Within the model’s setup the distorted sequence is identical to the reference one, except for a few dates

in the observable data. Such a sequence would then be harder to ignore based on statistical significance.

Whether I assume uncertainty about the realizations for the variances of the observable shock or

the trend shock is intuitively innocuous. The driving force is the agent’s evaluation of the expected
24See Engel et al. (2007) for a discussion and summary of evidence that news about economic fundamentals tend to be

incorporated into the exchange rate market as predicted by an evolution of the interest rate determined through a Taylor

rule.
25Such a possibility is raised by the debate over the stability of the Taylor rule and the literature on US time-varying

monetary shocks versus rules. See for example Clarida et al. (2000) and Sims and Zha (2006) for a discussion.
26For more examples of models with the private-sector using econometric approaches to learn (such as discounted least-

squares) about the interest rate rule see the references in Evans and Honkapohja (2001).
27The “maxmin” preference, as for example in Gilboa and Schmeidler (1989), corresponds to an infinite level of uncertainty

aversion as the agent chooses the worst-case scenario from a set of distributions. For smoothed ambiguity aversion models

see Klibanoff et al. (2005), in which the agent does not choose the minimum of the set but rather weighs more the worse

distributions.
28A more complicated version of the setup could be to have stochastic volatility with known probabilities of the draws as

the reference model. The distorted set will then refer to the unwillingness of the agent to trust those probabilities. As above,

she will then place time-varying probabilities on these draws. Similar intuition would then apply.
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utility will be the expected return and much less the variance of the return. This is definitely the case

with a risk neutral agent, but even in this setup with risk aversion, expected returns drive most of the

portfolio decision. Expected returns are affected by the estimate for the hidden state which in turn

depends on the time-varying signal to noise ratios. This means that it is not the specific place in which I

assume uncertainty, the observation or state equation, that is important but the relative strength in the

information contained in them. This avoids a problem that Li and Tornell (2007) have where they assume

uncertainty only about the observation shock. There they need the assumption because the distortion only

affects the variance of the returns. Uncertainty about the state equation will then manifest in choosing a

higher variance for the persistent shock. This in turn generates a higher Kalman gain than the reference

model which will imply overreaction to any type of news. In that case the model’s implications move

even further away from rational expectations in explaining the puzzles.

As Hansen and Sargent (2007b) argue, when the agent only cares about the present or future value

of the hidden state, a more relevant situation is that of no commitment to previous distortions. My

model also investigates such a case. However, different from my setup they consider unstructured

(global) uncertainty. This type of uncertainty places no restriction on the nature or location of possible

misspecification. The distorted model can be any probability distribution, as long as the “distance”

from the reference model is bounded by some cost function (in their model the relative entropy). The

typical approach in macroeconomics and finance has been to include this entropy directly into the utility

function as a cost function whose relative importance is controlled by a Lagrange multiplier on the relative

entropy constraint. Importantly, as discussed for example in Strzalecki (2007), Barillas et al. (2008), these

multiplier preferences are observationally equivalent to a higher risk aversion expected utility. In Appendix

C I present some details for this equivalence in my model. As I show in Section 3, in my setup higher

risk aversion combined with rational expectations does not provide an explanation for the puzzles. I then

conclude that this type of uncertainty is not suited in this model for addressing the empirical findings.

2.5 Equilibrium concept

I consider an equilibrium concept analogous to a fully revealing rational expectations equilibrium, in which

the price reveals all the information available to agents. Let {rt} denote the history of observed interest

rate differentials up to time t, {rs}s=0,...t. Denote by σ∗V (rt) the optimal sequence σtV of {σV,s, s ≤ t :

σV,s ∈ Υ} chosen by the agent at time t based on data {rt} to reflect her belief in an alternative time-

varying model. Let f (rt+1) denote the time-invariant function that controls the conjecture about how

next period’s exchange rate responds to the history {rt+1}

st+1 = f(rt+1)

For a reminder, equation (7) is the optimization problem faced by the agent that involves both a

maximizing choice over bonds and minimizing solution for the distorted model.
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Definition 1 An equilibrium will consist of a conjecture f(rt+1), an exchange rate function s(rt), a bond

demand function, b(rt) and an optimal distorted sequence σ∗V (rt) for {rt}, t = 0, 1, ...∞ such that agents

at time t use the distorted model implied by the sequence of variances σ∗V (rt) for the state-space defined in

(5) to form a subjective probability distribution over rt+1 = {rt, rt+1} and f(rt+1) and satisfy the following

equilibrium conditions:

1.Optimality: given s(rt), σ∗V (rt) and f(rt+1), the demand for bonds b(rt) is the optimal solution for

the max problem in (7).

2.Optimality: given s(rt), b(rt) and f(rt+1), the distorted sequence σ∗V (rt) is the optimal solution for

the min problem in (7).

3.Market clearing: given b(rt), σ∗V (rt) and f(rt+1), the exchange rate s(rt) satisfies the market clearing

condition in (4).

4. Consistency of beliefs: s(rt) = f(rt).

Notice that the consistency of beliefs imposes that the agent uses the correct equilibrium relation

between the exchange rate and the exogenous sequence of interest rate differentials in forming her

subjective probability distribution. At time t the unknown realization is rt+1 whose variation affects

st+1 by the equilibrium relation. The rational expectations assumption imposes one model for the

distribution of rt+1. The uncertainty averse agent surrounds this reference distribution by a set of possible

distributions which are indexed by the sequences σtV defined in (6). Each sequence σtV implies a subjective

probability distribution over the future realizations of st+1. The sequence σ∗V (rt) and demand b(rt) are a

Nash equilibrium in the zero-sum game between the minimizing and maximizing agent.

3 Rational expectations model solution

Before presenting the solution to the model, I first solve the rational expectations version which will

serve as a contrast for the ambiguity aversion model. By definition, in the rational expectations case the

subjective and the objective probability distributions coincide, i.e. P =P̃ . Thus the agent fully trusts her

model which also turns out to be the DGP. For ease of notation, I denote by Et(X) ≡ EPt (X), where P

is the true probability distribution. The DGP is given by the constant volatility state space described in

(1). The optimization problem is

V = max
bt

Et[− exp(−γWt+1)|It]

where the log excess return qt+1 = st+1−st−rt and bt is the amount of foreign bonds demanded expressed

in domestic currency. Appendix B shows that the FOC is

bt =
Et(qt+1)

γV art(qt+1)
(8)
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The market clearing condition states that bt = .5st. Combining the demand and the supply equation I

get the equilibrium condition for the exchange rate:

st =
Et(st+1 − rt)

1 + .5γV art(st+1)
(9)

I call (9) the UIP condition in the rational expectations version of the model. If γ = 0 it implies the usual

risk-neutral version st = Et(st+1− rt). With γ > 0 it takes into account a risk premium, given the utility

function, coming from the variance of the excess return.

To solve the model, I take the usual approach of a guess and verify method in which the agents are

endowed with a guess about the law of motion of the exchange rate. Intuitively, solving for the exchange

rate means iterating forward on the UIP equation and forming expectations about future differentials.

Given the Gaussian and linear setup the optimal filter for the state-space in (1) is the usual Kalman

Filter.

Let x̂m,n = E(xm|In) and Σm,n = E[(xm − E(xm|In))(xm − E(xm|In)′] denote the estimate and the

MSE of the hidden state for time m given information at time n. As shown in Hamilton (1992) the

estimates are updated according to the following recursion:

x̂t,t = Fx̂t−1,t−1 +Kt(yt −H ′Fx̂t−1,t−1) (10)

Σt,t = (I −KtH
′)(FΣt−1,t−1F

′ + σUσ
′
U ) (11)

Kt = (FΣt−1,t−1F
′ + σUσ

′
U )H[H ′(FΣt−1,t−1F

′ + σUσ
′
U )H + σ2

V ]−1 (12)

where Kt is the Kalman gain.

Based on these estimates let the guess about the exchange rate be

st = Γx̂t,t + δrt (13)

For simplicity, I assume convergence on the Kalman gain and the variance matrix Σt,t Thus, I have

Σt,t ≡ Σ and KRE
t = K for all t. Then, as detailed in Appendix B and denoting the time-invariant

conditional variance V ar(st+1|It) by σ2 the solution is

δ = − 1
1 + .5γσ2

(14)

Γ = − 1
1 + .5γσ2

H ′F [(1 + .5γσ2)I − F ]−1 (15)

σ2 = (ΓK + δ)(ΓK + δ)′V ar(rt+1|It) (16)

with V ar(rt+1|It) = H ′FΣF ′H +H ′σUσ
′
UH + σ2

V .

To gain intuition, suppose that the state evolution is an AR(1), i.e. F = ρ. Then, denoting by

c = (1 + .5γσ2), the coefficients become δ = −1
c and Γ = − ρ

c(c−ρ) . This highlights the “asset” view of

the exchange rate. The exchange rate st is the negative of the present discounted sum of the interest

rate differential. Since the interest rate differential is highly persistent Γ will by typically a large negative
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number. It shows that st reacts strongly to the estimate of the hidden state x̂t,t, because this estimate is

the best forecast for future interest rates.

The UIP regression is

st+1 − st = βrt + εt+1

In this rational expectations model the dependent variable is

st+1 − st = Γ(ρ− 1)x̂t,t + ΓK(rt+1 − ρx̂t,t) + δ(ρx̂t,t + ρξt + σUut+1 + σV vt+1 − rt) (17)

where ξt = xt − x̂t,t with ξt˜N(0,Σ) and independent of time t information.

Then taking expectations of (17) I get

Et(st+1)− st = x̂t,t
ρ(1− c)
c(c− ρ)

+
1
c
rt

where I make use of the rational expectations assumption that Et(εt+1|It) = 0. Since cov(x̂t,t, rt) =

Kvar(rt), the UIP coefficient is

β̂ = K
ρ(1− c)
c(c− ρ)

+
1
c

Since c > 1, to get a lower bound on β̂ I set K = 1 so that β̂
L

= 1−ρ
c−ρ < 1. The reason for β̂

L
< 1 is the

existence of a rational expectations risk premium in this model. For the risk neutral case, γ = 0, c = 1

and β̂
L

= 1.

To investigate the magnitude of β̂
L

under risk aversion, I report below some simple calculations based

on the data. The data is explained in a later section. I estimate an AR(1) process for the interest

rate differential. Table 1 reports the estimated standard deviation of the shock to the forward discount,

the AR(1) coefficient and the empirical standard deviation of the exchange rate. I compute the implied

standard deviation for the rational expectations model as above by varying the risk aversion parameter

γ.

Using the data for stdt(rt+1) and ρ, I substitute them in (14),(15),(16) where K is also set to 1. The

conclusion that emerges is that with a low level of risk aversion the reaction of the exchange rate to the

interest rate (equal in this case to Γ + δ) is large and can generate significant variability in the exchange

rate. This latter point has been made by Engel and West (2004) and Engel et al. (2007) who also show

that when ρ is close to 1, “beating a random walk” in forecasting is too strong a criterion for accepting

an exchange rate model. They conclude that typically these models should have low forecasting power for

the interest rate differential in predicting the exchange rate change. With a low risk aversion, the model

implied β̂
L

is smaller than 1, but very close to it. As γ is increased, β̂
L

decreases, but this happens at the

cost of reducing the impact of the interest rate on the exchange rate. I view this as a negative implication

because it delivers a lower volatility of the exchange rate and a higher explanatory power for the interest

rate differential. Even when γ = 500, the model implied β̂
L

equals around 0.5. Note also that β̂
L

cannot

be negative and in order to bring it down to 0 an extremely large level of risk aversion is required. In fact

this coefficient would then be 0 because the exchange rate would be basically constant.
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This highlights why a model of unstructured uncertainty, like the multiplier preferences discussed

in Section 2.4 and analyzed in Appendix C, does not fare well in this setup. That type of model is

equivalent to a rational expectations framework but with higher risk aversion. This is not a solution to

the forward premium puzzles because it fails to generate a negative UIP regression coefficient. Driving

the coefficient to 0 from above requires appealing to enormous levels of risk aversion. Moreover, this high

risk aversion would imply a minuscule response of the exchange rate to the interest rate to the point that

the former is flat. Without appealing to noise as driving the exchange rate, that implication is certainly

counter-productive.

4 The Distorted Expectations Model Solution

The main equations involved in solving the distorted expectations model are the optimization problem

(7), the subjective state space representation (5) and the market clearing condition (4). As in the rational

expectations case I substitute out logWt+1 by its first order approximation btqt+1 and obtain the FOC

for the maximization problem as:

EP̃t [qt+1 exp(−γbtqt+1)] = 0 (18)

The FOC (18) can be rewritten as

st = EP̃t

[
st+1

W−γt+1

EP̃t W
−γ
t+1

]
− rt (19)

µt+1 = exp(−γb(rt)qt+1) (20)

where µt+1 is the marginal utility for the end-of-life wealth W (rt, st+1) = b(rt)[st+1 − s(rt)− rt].
Equation (19) is also useful for thinking about the risk neutral measure versus the objective measure. It

is worth emphasizing that the former differs from the latter due to two factors: risk premia and uncertainty

premia. The relevant expectation in (19) can be rewritten as EP̃t
[
dP̃N

dP̃
st+1

]
where P̃N is the risk neutral

measure and dP̃N

dP̃
is the corresponding Radom-Nikodym derivative. The uncertainty premia is summarized

by the difference between the distorted and the reference model, EP̃N
t [st+1] = EPt

[
dP̃N

dP̃

dP̃
dP st+1

]
. As I

argued before, the risk premia corrections, i.e. dP̃N

dP̃
, do not account in this model for the empirical

puzzles. The key mechanism is going through dP̃
dP , with P̃ being distorted from the objective measure P.

4.1 The optimal distorted expectations

In presenting the solution I use the constraints on the sequence σV (rt) described in Section 2.3, which

derive from the requirement that the distorted sequence is statistically plausible. There I argue that this

implies that the agent is statistically forced to be concerned only about a constant number n of dates
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being different than σV . For computational reasons, in Section 2.3 I also introduce a truncation on the

possible distorted sequences that effectively means that the agent is concerned that only n out of the last

m observations were generated by time varying volatilities.

Note that for a given deterministic sequence σV (rt) = {σV,s, s = 0, ...t} selected in (7) the usual

recursive Kalman Filter applies. Thus, after this sequence has been optimally chosen by the agent at

date t, the recursive filter uses the data from 0 to t to form estimates of the hidden state and their MSE.

As shown in Hamilton (1992) the estimates are updated according to the recursion in (10), (11). The

difference with the constant volatility case is that the Kalman gain now incorporates the time-varying

volatilities σ2
V,t:

Kt = (FΣt−1,t−1F
′ + σUσ

′
U )H[H ′(FΣt−1,t−1F

′ + σUσ
′
U )H + σ2

V,t]
−1

The above notation is not fully satisfactory because it does not keep track of the dependence of the

solution σV (rt) on the time t that is obtained. To correct that I make use of the following notation: σV,(t),s
is the value for the standard deviation of the observation shock that was believed at time t to happen

at time s. The subscript t in parentheses refers to the period in which the minimization takes place and

the subscript s to the period of the optimally chosen object of choice, i.e. in the sequence σV (rt) in the

definition of the equilibrium.

Such a notation is necessary to underline that the belief is an action taken at date t and thus a function

of date t information. There is the possibility that the belief about the realization of the variance at date

s to be different at dates t − 1 and t. This can be interpreted as an update, although not Bayesian in

nature.

To keep track of this notation and filtering problem I denote by:

Itj = {rs, H, F, σU , σV,(t),s, s = 0, ..., j} the information set that the filtering problem has at time j by

treating as known the sequence σV,(t),s, s = 0, ..., j. This sequence is optimally selected at date t. Thus,

x̂ti,j = E(xi|Itj)

Σt
i,j = E[(xti − x̂ti,j)(xti − x̂ti,j)′|Itj ]

Kt
i = (FΣt

i−1,i−1F
′ + σUσ

′
U )H[H ′(FΣt

i−1,i−1F
′ + σUσ

′
U )H + σ2

V,(t),i]
−1 (21)

Thus x̂ti,j is the estimate of the hidden state for time i based on the sample 0, ..., j by treating as

known the sequence σV,(t),s, s = 0, ..., j. This sequence is chosen at date t. Kt
i is the Kalman gain to

be applied at time i by using the known realization of σ2
V,(t),i.This value is an element of the sequence

σV,(t),s, s = 0, ..., j.

In order to solve the problem in (7) and (18) I endow the agent with a guess about the relationship

between the future exchange rate and the estimates for exogenous process. Similar to the RE case, I will

restrict attention to linear function. Let this guess be

st+1 = Γx̂t+1
t+1,t+1 + δrt+1 (22)
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Note the fact that x̂t+1
t+1,t+1 is the estimate obtained by the date t + 1 agent which uses the time t + 1

distorted sequence σV (rt+1).

For the minimization in (7) the agent needs to understand how the expected utility under the distorted

model depends on σV (rt). For every possible σV (rt) the agent computes the implied estimates and relevant

state variables at time t+ 1. In comparing these cases, the agent is using the guess in (22).

To understand the solution we could imagine an approximation of the per period felicity function in

(7) to U = − exp(−γEP̃t Wt+1 + γ2V arP̃t Wt+1). As done in the solution to the portfolio choice problem,

up to a second order, Wt+1 = btqt+1.

Thus, EP̃t Wt+1 = bt(EP̃t (st+1) − st − rt) and V arP̃t Wt+1 = b2tV ar
P̃
t st+1. Given the guess in (22) and

the Kalman filtering formulas

st+1 = Γ(I −Kt+1
t+1H

′)Fx̂t+1
t,t + (ΓKt+1

t+1 + δ)rt+1 (23)

The sequence σV (rt) does not affect the estimates x̂t+1
t,t ,K

t+1
t+1 since these are formed based on the optimal

choice of the time t+ 1 agent.

4.1.1 Effect of higher observational noise on expected excess returns

Using (23), the exchange rate for the next period st+1 is monotonic in the realization of the interest rate

differential rt+1. More specifically, in equilibrium it is a decreasing function of rt+1. The direction of the

monotonicity is controlled by (ΓKt+1
t+1 + δ) where Γ, δ are to be determined in equilibrium. As expected,

the same intuition about these parameters holds as in the RE case. A positive realization for rt+1 will

translate into an appreciation of the domestic currency because the domestic interest rate is higher than

the foreign one. Thus, in equilibrium (ΓKt+1
t+1 + δ) is a negative number. By this result, EP̃t (st+1) is also

decreasing in EP̃t (rt+1).

The expected interest rate differential is given by the hidden state estimate EP̃t (rt+1) = H ′Fx̂tt,t.

This is clearly increasing in the innovation rt − H ′Fx̂tt−1,t−1. In turn, the estimate x̂tt,t is updated by

incorporating this innovation using the gain Kt
t . The latter is decreasing in the variance of the observation

shock σ2
V,(t),t. Intuitively, more noise in the measurement equation implies less information for updating

the hidden state estimate. Combining these two monotonicity results, the estimate x̂tt,t is increasing in

the gain if the innovation is positive. On the other hand, if (rt − Fx̂tt−1,t−1) < 0 then x̂tt,t is decreased by

having a larger gain Kt
t .

By construction, expected excess return EP̃t Wt+1 is monotonic in EP̃t (st+1). The sign is given by the

position taken in foreign bonds bt. If the agent decides in equilibrium to invest in domestic bonds and

take advantage of a higher domestic rate by borrowing from abroad, i.e. bt < 0, then a higher value for

EP̃t (st+1) will hurt her.

Proposition 1 Expected excess return, EP̃t Wt+1 is monotonic in σ2
V,(t),t. The monotonicity is given by

the sign of bt(rt −H ′Fx̂tt−1,t−1).

19



Proof. By combining the sign of the partial derivatives involved in ∂EP̃
t Wt+1

∂σ2
V,(t),t

. For details, see Appendix

D.

The impact of σ2
V,(t),t on utility through the effect on the expected excess returns is given by the

following intuitive mechanism. Suppose in equilibrium the agent invests in domestic bonds. She is then

worried about a depreciation of the domestic currency, which in equilibrium happens if the estimated

hidden state of the differential x̂tt,t is lower, but still positive. The variance σ2
V,(t),t affects the gain Kt

t . To

get a lower estimate x̂tt,t the variance σ2
V,(t),t is increased if the innovation (rt−Fx̂tt−1,t−1) is positive and

is decreased if the innovation is negative.

4.1.2 Effect of higher observational noise on expected variance of excess returns

The variance of excess returns is given by V arP̃t Wt+1 = b2tV ar
P̃
t st+1. In turn, using the conjecture (23)and

taking as given x̂t+1
t,t ,K

t+1
t+1

V arP̃t st+1 = (ΓKt+1
t+1 + δ)(ΓKt+1

t+1 + δ)′(V arP̃t rt+1) (24)

By the filtering formulas

V arP̃t rt+1 = H ′FΣt
t,tF

′H +H ′σUσ
′
UH + EP̃t (σ2

V,t+1) (25)

In Appendix D.1 I discuss the object EP̃t σ
2
V,t+1 and conclude that it is equal to (σHV )2 n

t +(σV )2(1− n
t ).

When t is large then this expectation becomes σ2
V .

Proposition 2 The expected variance of excess return, V arP̃t Wt+1 is increasing in σ2
V,(t),t.

Proof. The variance V arP̃t Wt+1 is increasing in the conditional variance of the differential rt+1. By

(25) the latter is increasing in σ2
V,(t),t through the effect on P tt,t. For details see Appendix D.

Intuitively, more noise in the observation shocks translates directly into a higher variance of the

estimates Σt
t,t. By choosing higher values of σV in the sequence σV (rt) she will increase the expected

variance of the differential V arP̃t rt+1 because
∂P t

t,t

∂σ2
V,(t),t

> 0.

The overall effect of σ2
V,(t),t on the utility Vt is then coming through two channels. One is the positive

relationship between σ2
V,(t),t and the variance of the returns as in (24). As shown above, σ2

V,(t),t also

influences Vt through the expected returns. The total partial derivative is then

∂Vt
∂σ2

V,(t),t

=
∂Vt

∂EP̃t rt+1

∂EP̃t rt+1

∂σV,(t),t
+

∂Vt

∂V arP̃t rt+1

∂V arP̃t rt+1

∂σV,(t),t

The sign of this derivative is :

sign(
∂Vt

∂σ2
V,(t),t

) = sign(bt)sign(rt − Fx̂tt−1,t−1)− sign(
∂V arP̃t rt+1

∂σ2
V,(t),t

)
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From (25) the sign(∂V ar
P̃
t rt+1

∂σ2
V,(t),t

) is positive. Thus, if the sign of [bt(rt − Fx̂tt−1,t−1)] is negative the two

effects align because higher variance σ2
V,(t),t will imply lower expected excess returns. However, if the

sign is positive the two directions are competing. To analyze this situation I show in Appendix C that in

this setup the probability that the effect through the expected returns to dominate the one through the

variance is almost equal to 1. I conclude that in this model the effect of σV (rt) on utility goes through

its effect on expected returns.

The position bt dictates in what direction is the agent pessimistic. If, for example, bt > 0 she invests

in foreign currency and is worried about a domestic appreciation. This will happen in equilibrium if the

foreign rate is higher than the domestic one. Then the agent fears that the estimate of the hidden state of

the domestic interest rate differential is higher, although still negative. To make this estimate higher, the

optimal sequence σ∗V (rt) involves choosing high values for σ2
V,(t),s when the innovations rt−s−Fx̂tt−s−1,t−s−1

are negative and low values when these innovations are positive. The decision rule for choosing a distorted

σV,(t),s is:

σV,(t),s = σHV if bt(rs − Fx̂ts−1,s−1) < 0 (26)

σV,(t),s = σLV if bt(rs − Fx̂ts−1,s−1) > 0

In Section 2.3 I introduced the restriction that the agent only considers n dates out of the last m to

be different from the reference model. Out of these possible sequences, the intuition given by (26) shows

on what type of sequences the agent restricts attention because they affect negatively her utility. The

number of such possible sequences is the choose function of m and n : mCn = m!/(n!(m − n)!). Out of

these relevant sequences the agent chooses the one that minimizes the estimate of the hidden state. If for

example m = n, as in the benchmark parameterization, nCn = 1 and the decision rule in (26) implies the

existence of only one such sequence. In the definition of the equilibrium I denoted by σ∗V (rt) the solution

to this minimization problem. This decision rule is taking bt as given. The solution for this is similar to

the RE case, except that the subjective probability distribution for the future excess return is the one

implied by the optimal choice for σ∗V (rt) found above.

4.2 Numerical solution procedure

The driving equilibrium relation is the no-arbitrage condition given by the FOC with respect to bt in

(18). To solve that problem the agent needs to form forecasts about the next period exchange rate. The

conjecture in (22) is that st+1 = Γx̂t+1
t+1,t+1 + δrt+1 so that forecasts of x̂t+1

t+1,t+1 and rt+1 are needed. At

time t the agent knows the equilibrium updating rule for time t+ 1:

x̂t+1
t+1,t+1 = Fx̂t+1

t,t +Kt+1
t+1 (rt+1 −H ′Fx̂t+1

t,t )

She will correctly understand the decision rule for σV (rt+1) given by (26). For every possible realization

of rt+1 she will have to solve the agent’s time t+1 problem, who will in that case face the sample (rt, rt+1).
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For the resulting x̂t+1
t+1,t+1 there will be a st+1 based on the conjecture (22). This distribution of st+1 will

imply the distribution for qt+1 = st+1 − st − rt in (18). However, because of the asymmetric responses

to innovations, normality is lost and I did not find any closed-form solution to deal with it. Hence, to

recover the distribution for st+1 I perform the procedure numerically.

I restrict attention to linear time-invariant conjectures as in (22). Suppose first the parameters Γ and

δ are known. The solution to the distorted expectations equilibrium can be summarized by the following

steps.

1. Make a guess about the sign of bt to use in (26).

2. Use (26) and call the resulting optimal sequence σ∗V (rt). Use the Kalman filter based on the

sequence σ∗V (rt) to form an estimate for x̂tt,t and Σt
t,t.

3. Draw realizations for rt+1 from N(H ′Fx̂tt,t, V ar
P̃
t rt+1), where V arP̃t rt+1 is defined in (25). Form

the sample rt+1 = (rt, rt+1). For each realization perform Steps 1 and 2 above to obtain the sequence

σ∗V (rt+1).

4. For each realization in step 3 use σ∗V (rt+1) to compute x̂t+1
t+1,t+1 and use the conjecture in (22) to

generate a realized st+1.

5. The distribution of st+1 in step 5 defines the subjective probability distribution for the agent at

time t. Use the FOC (18) to solve for s∗t .

6. If sign(s∗t ) = sign(bt) the solution is σ∗V (rt) and s∗t . If not, switch the sign in step 1.

7. If there is no convergence on the sign of s∗t and bt, the solution is assumed to be b∗t = s∗t = 0.

The last point deserves some explanation. It is related to the Nash equilibrium solution between the

minimizing and maximizing player in (7). Consider the solution for the sequence σ∗V (rt) that minimizes

the utility. This solution needs to take as given an investment position. When the guess is that the agent

would like to invest in the seemingly higher rate currency she will choose a sequence σ∗V (rt) to decrease

the estimate of the differential. If based on this worse-case scenario the solution to the portfolio choice is

to invest in the other currency it brings about a difficult situation for the agent. Initially she considers

investing in a currency but once she takes into account that the model might be misspecified and uses

the distorted model under this investment strategy her resulting estimates make her want to invest in the

other currency. If, when switching direction, the same problem happens it means that there is no Nash

equilibrium in pure strategies. I do not consider mixed strategies and instead I impose the solution in

these cases to be bt = st = 0. These are situations in which the hidden state estimate of the differential is

very close to 0 under the true DGP and the uncertain averse agent is not willing to take any side in the

strategy. For this bt the agent does not invest in any bond so any solution to σ∗V (rt) is a best response to

bt. Note that the particular assumed solution for σ∗V (rt) does not have any impact on the results since in

the calculations of excess returns only periods when bt is different from zero are considered. For future

reference I call this situation the “inaction” effect.

A concern is how to recover the parameters Γ and δ in the guess (22). The consistency of beliefs in the

definition of equilibrium (see Section 2.5) requires that the guess about the law of motion be the correct

relation on average. Because the distortions expectations model is solved numerically, this consistency
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will require some approximations. I first start by using the values for Γ and δ for the RE case. Quite

surprisingly, I find that the solution s∗t from the numerical procedure and its implied value Γx̂tt,t + δrt by

(22) are close. On average the difference is 0 in long samples. Nevertheless, one could still expect that

[s∗t − (Γx̂tt,t + δrt)]bt < 0 because the agent takes into account the asymmetric response to news for the

next period. For example, when bt < 0, that should bring the expected exchange rate slightly closer to 0.

Thus s∗t should be slightly higher than Γx̂tt,t+δrt. However, the “inaction ” effect mitigates this response.

When bt < 0 the agent realizes that in equilibrium it is very unlikely that st+1 > 0, i.e. that agents switch

their position in the carry trade next period. High realizations for rt+1 that would result under the RE in

switching positions are now most likely to be in the “inaction” region and be characterized by st+1 = 0.

A similar intuition applies for bt > 0. I find that the combined effect of these two directions is that s∗t
is close to Γx̂tt,t + δrt.Although the RE cases still works relatively well as an approximation, I look for Γ

and δ that minimize the distance between the two objects even in subsamples. I find that a reasonable

approximation is characterized by a small change compared to the RE case which makes the st respond

slightly less to the estimate x̂tt,t. It would correspond to having a slightly less persistent state.

The market clearing condition states that bt = .5st. In the rational expectations case I approximated

logWt+1 by btqt+1. Then using the normality of qt+1 I obtained the mean-variance solution in (8). In the

distorted expectations model the excess return is no longer exactly normally distributed. However, I find

that numerically the mean-variance approximation to the bond demand is very accurate. For intuition, I

present this case and by using bt = EP̃
t (qt+1)

γV arP̃
t (qt+1)

, I get

st =
EP̃t (st+1 − rt)

1 + .5γV arP̃t (st+1)
(27)

I call (27) the UIP condition in the distorted expectations version of the model.

4.3 Options and risk neutral skewness

In this section I introduce options and define the risk-neutral probability distribution. These elements are

needed for contrasting the model’s implications against the data. The asymmetric response to news that

underlies the optimality of the distorted model is generating in this model another interesting feature:

the negative skewness of the carry trade returns. This characteristic has sometimes been called “crash

risk”. Burnside et al. (2008), Brunnermeier et al. (2008) and Jurek (2008) find strong evidence of this.

Brunnermeier et al. (2008) argues that the mean profitability might be a compensation for the negative

skewness. They also note that the data suggests that the negative skewness is endogenous. It is positively

predicted by a larger interest rate differential. They argue that the sudden unwinding of the carry trade

positions causes the currency to crash. In their view, the cause is liquidity shortages. In my model, the

endogenous unwinding is caused by asymmetric response to news.

For analyzing the model implied risk-neutral SkewP̃t,t+1 I use the numerical procedure for solving the

distorted expectations model and construct the distribution of excess returns qt+1 = st+1−st−rt based on
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her distorted model. This distribution is used by the agent is solving for the optimal investment decision

and thus generate the equilibrium exchange rate. The risk neutral measure is implied by the FOC in (19):

EP̃N
t [qt+1] = EP̃t

[
dP̃N

dP̃
qt+1

]
.

In the unhedged version of the carry trade presented above, the agent’s end-of-period wealth is exposed

to both upside and downside risk. Of particular concern is the possibility of significant losses produced

by large depreciations of the investment currency, i.e. for which the interest rate is higher. To eliminate

the downside risk, an agent can use an option that provides insurance against the left tail of the returns.

A call option on the FCU will give the agent the right but not the obligation to buy foreign currency

with domestic currency (USD) at a prespecified strike price kt dollars per unit of FCU. Let C(kt) denote

the price, including the time t interest rate, of the call option with strike price kt.The net payoff in USD

from investing in this option is29:

zCt+1(kt) = max(0, st+1 − kt)− C(kt)

Similarly, a put option on the FCU gives the agent the right, but not the obligation, to sell foreign currency

for USD at a prespecified strike price kt dollars per unit of FCU. Let P (kt) denoting the price, including

the time t interest rate, of the put option with strike price kt.The net payoff in USD from investing in

this option is:

zPt+1(kt) = max(0, kt − st+1)− P (kt)

Options are priced according to the no-arbitrage conditions:

C(kt) = EP̃t

[
max(0, st+1 − kt)

µt+1

EP̃t µt+1

]
(28)

P (kt) = EP̃t

[
max(0, kt − st+1)

µt+1

EP̃t µt+1

]
(29)

where µt+1 is defined in (20).30

Options are used by the agent as protection against negative realizations. When she decides to take

advantage of the higher domestic interest rate by investing in the domestic currency, she is worried about

a pronounced depreciation of the domestic currency. In that case her downside risk is eliminated by

buying a call option on the FCU which pays when st+1 is higher than the strike price kt. Similarly, when

the agent invests in the foreign currency she buys a put option on the FCU that pays when the foreign

currency diminishes in value, i.e. when st+1 is lower than kt.

The unhedged carry trade strategy means borrowing in the low interest rate currency and investing in

the high interest rate currency. The agents in the model use this strategy in equilibrium. Their end-of-life

wealth is given by bt(st+1− st− rt). By the market clearing condition bt < 0 when st < 0. In simulations,

29The payoff should be expressed in terms of levels of the exchange rate as zC
t+1(Kt) = max(0, exp(st+1)−exp(kt))−C(Kt).

Using the approximation exp(x)− 1 ≈ x, when x is small, this becomes zC
t+1(kt) = max(0, st+1 − kt)− C(kt).

30This implies the put-call parity C(kt)− P (kt) = ft − kt. By the covered interest parity ft = st + rt.
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the coefficient of correlation between st and rt is around −0.97.31 The payoff on a dollar bet for the

unhedged carry trade strategy is:

zt+1 = rt − (st+1 − st) if bt < 0 (30)

zt+1 = (st+1 − st)− rt if bt > 0

Then I define the return to the hedged carry trade, zHt+1, as the sum of the payoff to the unhedged

carry trade and from buying an option at strike price kt corresponding to the strategy of eliminating the

downside risk :

zHt+1(kt) = zt+1 + zCt+1(kt) if bt < 0 (31)

zHt+1(kt) = zt+1 + zPt+1(kt) if bt > 0

where zt+1 is the payoff to the unhedged carry trade defined in (30)32.

4.4 Parameterization

In the benchmark case, the reference model is a state space representation with constant volatilities as

in (1). The observable is the interest rate differential rt and the state evolution is an AR(4).33 Thus

H ′ = [1 0 0 0] and F is a 4× 4 vector with only 4 unknown coefficients to reflect the transformation from

an AR(4) to a VAR (see Appendix E for details). I obtain the parameters F, σV , σU by estimating the

model in (1) on interest rate data:

rt = H ′xt + σV vt (32)

xt = Fxt−1 + σUut

The data set is obtained from Datastream and consists of daily observations for the mean of bid

and ask interbank spot exchange rates, 1-month forward exchange rates, and 1-month interest rates. All

exchange rates are quoted in FCUs per British pound. I convert daily data into nonoverlapping monthly

observations. The data set covers the period January 1976 to December 2006 for spot and forward

exchange rates and January 1981 to December 2006 for interest rates. The countries included in the data

set are listed in Table 4. This data is a subset of the one used Burnside et al. (2008) (henceforth BEKR)

where they also investigate bid-ask spreads.

Table 5 reports results for the Maximum Likelihood estimation of (32) on interest rate differential

data. First, I find a very high degree of persistence in the state evolution. The table reports values for
31The correlation is not −1 because the exchange rate depends mostly on the sign of the hidden state estimate and this

can be different from the sign of the interest rate. Moreover, due to the “inaction” effect in some cases agents choose not to

invest at all if rt is too close to 0. In these very few case I assume that the payoff to the carry trade is 0.
32By the put-call parity the hedged strategy is equivalent to buying a put option when bt < 0 and a call option when

bt > 0.
33The AR(4) was selected based on the Akaike Information Criterion. Results are available on request from the author.
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the long-run autocorellation of the hidden state, denoted by
∑
ρ, which is defined as the sum of the AR

coefficients for the transition equation. Second, I find evidence for a positive σV with some heterogeneity

in its statistical significance.34 Interestingly, when using the data for the forward discount for the period

1976-2007 all country pairs are characterized by a larger σV than the one implied by the interest rate

differential data set. These latter results seem to be driven both by the larger sample and the fact that

the forward discount data suggests that the observation shocks are even more important. This might be

an artifact of averaging over bid-ask quotes, which is done for both the interest rate and forward rate. A

priori it is not clear which variable to use, since covered interest rate parity holds in the sample.35

The benchmark parameterization is a calibrated version of (32) which averages across these different

findings. In robustness checks I also use the other available data and find that the main conclusions hold.

The results would be significantly weaker in the case in which the true σV would be several times larger

than σU . I discuss this implication in Section 5.1.

Table 2 reports the benchmark parameterization. These values imply that the steady state Kalman

weight on the innovation used to update the estimate of the current state is 0.86, 1 and 0.17 for the true

DGP, the low variance and the high variance case. Although the lower gain might seem very different

than the true DGP, note that the model does not imply that these gains are used for every period. It is

only for a few dates in a large sample that such distorted gains are employed.36

As discussed in Section 2.3 in order for the equilibrium distorted sequences of variances to be difficult

to distinguish statistically from the reference sequence I restrict the elements in the alternative sequences

considered by the agent to be different from the reference model only for a constant number n of dates.

To quantify the statistical distance between the two models I use a comparison between the log-likelihood

of a sample {rt} computed under the reference sequence (LDGP (rt)) and under the distorted optimal

sequence (LDist(rt)).

As discussed in Section 2.3 for computational reasons I need to make a restrictive assumption about

the distorted sequence so that at time t the agent considers distortions only for dates t−m+ 1 through t.

This truncation is necessary to decrease the number of possible combinations for the alternative sequences

that the agent can entertain. The benchmark parameterization is m = n. That reduces the number of

possible sequences to n!. After taking into account the intuition for incorporating good news and bad

news, as in (26), the agent obtains the optimal sequence. The reason that m is chosen to be a small

number is the very intensive computational burden that occurs in steps 1-4 of the numerical procedure

explained in Section 4.2 for obtaining the subjective distribution of the future values of the exchange
34Performing a similar exercise, Gourinchas and Tornell (2004) find that there is no evidence of a positive σV in the

interest rate differential data they analyze. There the sample is 1986-1996. I find that by including earlier data, which is

characterized by more sudden movements, the evidence becomes stronger in favor of a positive σV .
35See Burnside et al. (2008) for a thorough analysis of this data. Their data set is wider in coverage and they find that

there is no evidence of CIP failure once accounting for bid-ask spreads.
36Also note that when a distortion is occurring the Kalman gain does not instantly adjust to the steady gain but it evolves

according to the deterministic chosen sequence of variances. With time-varying volatilities in the observation equation, such

adjustments are nevertheless quick.
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rate. There, a large number of draws are made out of the subjective distribution for future interest rate

differential and for each of these the corresponding optimal distorted sequence needs to be solved for. If

there is a large number of such sequences this computation becomes increasingly complex. In Section 5.1

I discuss the small extent to which this affects the results.

Table 3 reports some statistics for the likelihood comparison LDist(rt) − LDGP (rt) for various

cases. Column (1) reports the mean and the standard deviation of this difference for the benchmark

parameterization in which m = n = 2. It also shows that for about 17% of cases LDGP (rt) is smaller than

LDist(rt). This statistic is referred to as the probability of model detection error. Column (2) reports

these values for the case in which n = 2 and m = 10. The results are very similar to the benchmark

specification with the LDist(rt) being slightly higher on average in this case. Column (3) considers the

situations in which there is no restriction on the number of periods for which the agent distorts the

sequence so that any previous period characterized by good news is attached a low precision of signals

and bad news a high precision of signals. In this case n = t and the difference LDGP (rt) − LDist(rt) is

increasing with the sample size. For T = 300 the average difference accross simulations is around 170 log

points. Thus, such a distorted sequence would result in an extremely unlikely interpretation of the data.

For this reason, I restrict n to be a small number.

The parameters δ,Γ, σ2 that characterize the solution to the rational expectations model are given

by equations (14), (15) and (16) respectively. As mentioned in Section 4.2 for the distorted expectations

model I need to use a numerical approach to finding the equilibrium. I find that a good approximation

is that the δ,Γ, σ2 can be computed using the same equations but with a slightly less persistence in

the state-equation. Thus, I compute these parameters for an F̃ that differs from F above in its first

component: F̃ (1, 1) = 1.538. The intuition why the numerical procedure delivers such a result is that in

the distorted expectations model the exchange rate in fact responds less to the same state variables as in

the rational expectations case. This response is controlled by the persistence of the state equations. A

larger maximal eigenvalue for F produces a larger eigenvalue for Γ.

For the absolute risk aversion parameter γ I use in the benchmark parameterization a value of 10. A

higher value allows for risk aversion to play a slightly larger role, given the known extreme sensitivity of

portfolio choice to expected excess returns in this setup. In fact, I find in robustness checks that as long

as γ is in a standard range the main results are insensitive to its value.

5 Results

In this section I present the main implications that the distorted expectations model has for exchange

rate puzzles. Figure 1 and 2 illustrate the exchange rate path and the estimate of the hidden state of the

domestic interest rate differential under the distorted expectations model and the rational expectations

(RE). For comparison the same exogenous driving process is used but the estimates are computed under

the different model solutions. When the agent is investing in the foreign bond, i.e. bt > 0 and st > 0 ,
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she is concerned that the negative estimate of the hidden state is in fact less negative than what the

reference model would imply. Her investment position will reflect her pessimistic assessment of the future

distribution and she will invest less compared to the RE model. Thus 0 < st < sREt and 0 > st > sREt

where sREt denotes the exchange rate under RE.

Figures 1 and 2 also show that the exchange rate under ambiguity is reacting asymmetrically to news.

When for example bt < 0 the domestic currency appreciates more gradually while depreciating suddenly

compared to its RE version. This is consistent with the description that for the high interest rate

(investment) currency “exchange rates go up by the stairs and down by the elevator” (see Brunnermeier

et al. (2008), henceforth BNP). To investigate this asymmetric response further, Table 8 computes

correlations between the exchange rate under ambiguity and under RE. The unconditional correlation

in levels is very high while in first differences is lower. Columns (3) and (4) indicate that conditional on

states in which the investment currency tends to appreciate the correlation in first differences is much

weaker than in states in which the investment currency is depreciating. Similarly, for the estimate of

hidden states, Table 9 shows that the correlation between the estimate in first difference under ambiguity

and under RE is much weaker when the interest rate of the investment currency tends to increase compared

to states in which this interest rate decreases.

In terms of other conditional relationships I find that a higher domestic interest rate differential: 1)

does not predict on average a larger domestic currency depreciation. The UIP regression coefficient is on

average negative, not significantly different from zero in small samples, but significantly negative in large

samples; 2) predicts a positive excess return from the unhedged carry trade strategy; 3) predicts a positive

excess return from the hedged carry trade strategy; 4) predicts a negatively skewed excess return for the

unhedged carry trade strategy; 5) is associated with a more negative risk-neutral skewness of expected

excess returns; 6) is followed by a gradual appreciation of the domestic currency.

5.1 The UIP puzzle and positive unhedged carry trade returns

In the distorted expectations model a risk adjusted version of UIP holds ex-ante and the expected excess

returns under the risk neutral measure are zero (see (19)). The UIP regression is:

st+1 − st = βrt + εt+1 (33)

In the distorted model, with µt+1 = exp(−γbtqt+1) denoting the marginal utility and λt+1 = µt+1

EP̃
t µt+1

,

the expected exchange rate difference equals

EP̃t (st+1)− st = EP̃t (st+1)− EP̃t [st+1λt+1] + rt

If the true DGP is the distorted model then EP̃t (εt+1|It) = 0 and

β̂ = 1 +
cov(cov(st+1λt+1), rt)

var(rt)
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The message of the time-varying risk premia story is that the term cov(cov(st+1λt+1),rt)
var(rt)

cannot deliver

a significantly β̂ < 1. If the true DGP is the distorted model, the results established for the rational

expectations apply here too except that the log excess return is not normally distributed. However, as I

presented before, I find numerically that the mean variance result is a very good approximation for the

optimal bond solution which delivers

EP̃t (st+1)− st = EP̃t (st+1)− EP̃t (st+1 − rt)
1 + .5γV arP̃t (st+1)

As explained at length in the RE case, the conditional variance V arP̃t (st+1) has a very small effect in

obtaining a coefficient smaller than 1. In the distorted expectations model, the same result applies, with

the observation that V arP̃t (st+1) is even slightly lower given the implied smaller response of the exchange

rate to the fundamentals. For reasonable values of γ the lower bound on β̂ would be also around 0.999.

Hence in presenting the results I will make use of the fact that the 1 + .5γV arP̃t (st+1) is approximately

equal to 1. The fact that in my setup the covariance term is almost zero is consistent with findings that

study currency risk-premia, reviewed in Sections 1 and A. In a richer environment the ambiguity aversion

theory presented in this paper can be incorporated into models that take more seriously the risk premia

corrections. With the covariances becoming effectively zero the risk neutral UIP implies that β̂ = 1 since

EP̃t (st+1)− st = rt

If the DGP is different from the distribution implied P̃ the coefficient β̂ can be significantly lower

than 1. The focus of this paper is to show that a model with ambiguous precision of signals about a

time-varying hidden state can provide an explanation for a negative β̂ .

Table 6 presents the estimated β̂ for the model implied UIP regression in (33) in 1000 repeated samples

of T = 300 and 500 repeated samples of T = 3000. Column (1) is the benchmark specification and shows

that, for small T , the model is generating a negative average β̂, even if not significant statistically. As

the sample size is increased and the standard errors reduce, the average and median estimate become

significant. This highlights that the results of the model are not limited to small sample and in fact are

stronger in large samples. The type of ambiguity modeled in this paper is active even as the sample size

increases.

Figure 3 and 4 are histograms of the UIP coefficients and their t-statistics significance across many

repeated samples. Figure 3 (top panel) plots the histogram of the estimated UIP coefficients on N = 1000

samples of T = 300. It shows that the vast majority of the estimates are negative. As Figure 4 (top

panel) shows these are usually not significant statistically. For the large sample of T = 3000 the bottom

panel of Figure 3 indicates the distribution of the estimates and shows that there are no positive values

obtained. Also these coefficients are significant in large samples

Column (2) of Table 6 considers a case in which the noise-to-signal ratio in the true DGP is much

higher than in the benchmark model. In that case, the estimated UIP coefficient is positive. For

that parameterization the steady state Kalman gain for the true DGP, high distorted precision and low
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distorted precision are 0.3, 0.95 and 0.03 respectively. The Kalman gain used by the agent in updating

the estimated hidden state is time-varying to reflect the optimal response of the agents to “good” and

“bad” news. This optimal time-variation implies two opposing forces on β̂: the underreaction makes the

coefficient become negative and the overreaction effect pushes it to be larger than 1. The combined effect

depends on how far apart are the distorted gains from the one implied by the true DGP. In the benchmark

case, as reported in Table 2, the true noise-to-signal ratio is small. In that case the overreaction channel

is dominated because the Kalman gain implied by σLV is closer to the reference model. Intuitively, if σV
is close to 0 any σLV < σV will make a small difference on the implied gain. However, if σHV > σV the

distorted gain can be considerably smaller. In the variant reported in Table 6.B., the gain under the

reference model is closer to the one implied by σHV , so the underreaction effect is less active. That is the

reason why the estimated UIP coefficient is positive.

Column (3) of Table 6 shows that when there is significantly less persistence in the state evolution

the model cannot account for the UIP puzzle. In Table 6.C the long run autocorrelation of the state is

0.7. The reaction of the exchange rate to the estimate of the hidden state is strongly affected by this

persistence because the present value of future payoffs to a bond is smaller following the same increase in

the interest rate. For the same interest rate differential this makes agents demand less of the bond and

the investment currency value goes up by less. As Engel and West (2004) argue, for a high persistence

of the fundamentals the exchange rate is very sensitive to changes in the present value of future payoffs.

They argue that this explains why exchange rates are hard to predict even in a model where they are

completely determined by fundamentals. A large sensitivity of the currency’s value to the hidden state

allows small distortions to the estimate to produce large deviations in the exchange rate evolution. With

significantly less persistence the model has a difficult time in explaining the UIP.

This shows that the two main features of the true DGP that are required for the theory to succeed

are relatively small temporary shocks and large persistence of the hidden state. The benchmark

parameterization is characterized by these conditions because the data strongly suggests such a calibration.

It is important to note though that Columns (2) and (3) of Table 6 show that the benchmark calibration

is in fact rather robust to changes as significant variations have to be made to it to reverse the results.

Column (4) of Table 6 presents the results for the parameterization of the model in which there are

no restrictions on the number of periods in which the agent can distort the reference sequence, i.e. n = t.

For such a case, the model implies a larger negative Fama regression coefficient both in short and large

samples. Thus, relaxing the benchmark restrictions of n < t improves the model’s ability to generate

the empirical puzzles at the cost of implying very unlikely distorted sequences compared to the reference

model. As Column (3) of Table 3 reports this case generates sequences that become increasingly less

likely as the sample size grows.

In the benchmark parameterization I also make an assumption about the number m described in

Section 2.3 and 4.4. This number effectively constrains the agent to only consider n dates out of the

last m to be different from the reference model. I investigate this assumption by solving for the optimal

distorted sequence when m = 10. As the original motivation for having a lower m suggests, I am not
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able to simulate the future distribution of exchange rates for this high m due to computational intensity.

I find that when m = 10 the optimal dates chosen by the agent are very close to time t. The model can

be simulated to investigate the UIP coefficient by using the equilibrium relation for the exchange rate in

(22). I find, as reported in Column (5) of Table 6 that for m = 10 the results are slightly weaker. As

Column (2) of Table 3 shows, the error detection probability is also relatively larger suggesting that setting

m = 2 imposes additional statistical penalty on the distorted sequence. Thus, compared to m = 10, in the

benchmark case of m = 2 the model implies that the agent is using a distorted sequence that is generating

slightly stronger results for the UIP puzzle while being slightly easier to distinguish statistically from the

reference sequence. I find this result intuitive and conclude that the benchmark specification provides

results that are robust to the assumption of m = 2.

The payoff on a dollar bet for the unhedged carry trade strategy is defined in (30). The model implied

non-annualized monthly carry trade returns are described in Table 7.A. They are characterized by a

positive mean, negative skewness and excess kurtosis. The excess returns have a positive mean because a

high interest rate differential predicts on average a zero currency depreciation or even a slight appreciation.

The average mean payoff reported in Table 7.A. is 0.0017. For the data analyzed in Table 4 the average

mean payoff for the carry trade strategy is 0.0033. This does not take into account transactions costs.

BEKR analyze a more extensive data set and find that the average payoff to the carry trade without

transactions costs across individual country pairs for the period 1976: 2007 ranges from 0.0026 when the

base currency is the GBP to 0.0042 when the base currency is the USD. With transaction costs they

report a range of 0.0015 to 0.0025. Table also shows that the average standard deviation of the model

implied unhedged carry trade payoffs is around 0.011. For the data analyzed in Table 4 the average

standard deviation is 0.03. BEKR report average values ranging from 0.028 to 0.031.

Thus, compared to empirical evidence on the unhedged carry trade payoff, my model delivers mean

returns that are around half of those computed without transaction costs and at the lower bound of the

empirical payoffs with transaction costs. The model implied average standard deviation of these payoffs

is about a third of its empirical counterpart. Naturally, the model is characterized by higher Sharpe

ratios than in the data due to the considerably lower standard deviation. The average Sharpe ratio for

the model is 0.16 while empirically BEKR find an average value around 0.1.

Figure 5 plots the histogram of the realized unhedged carry trade returns obtained for N = 1000

samples of size T = 300. The mean of these returns is positive and compared to a normal distribution

with the same mean and variance the returns are negatively skewed and have significant excess kurtosis.

5.2 Negative skewness and excess kurtosis of unhedged carry trade returns

The results reported in Table 7.A. indicate that the returns to the carry trade are on average negatively

skewed. The degree of skewness is slightly larger than the one found in the data for the carry trade

returns analyzed in Table 4. The model implies a negative skewness of -0.42 while the average for the

countries in Table 4 is -0.24. BEKR report an average for the individual country pairs of around -0.26.
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To investigate the properties of the realized skewness of excess returns I construct the following tests.

The first, more cross-sectional in nature, is similar to that of BNP. It involves checking whether periods

(countries in BNP) characterized by a higher domestic currency also experience a negative skewness in

the excess returns. To that end, I simulate the model for T = 300 and for each t collect rt and the realized

ext+1 = rt − (st+1 − st). I sort the excess returns ext+1 according to the sign of rt. Denote by ex+
t+1 the

returns when rt > 0 and by ex−t+1 when rt < 0. Consistent with the predictability of excess returns the

average of ex+
t+1 is positive and the average of ex−t+1 is negative. Importantly I find that the skewness of

ex+
t+1 is negative (-0.4) and that of ex−t+1 is positive (0.4).

A test for a time varying dimension is to simulate the model and at each date t to have N = 20000

draws from the DGP process for the date t + 1 realizations of rt+1.This is similar to the numerical

procedure used to solve the distorted model but here the draws are from the DGP and not from the

subjective distribution. Using these draws I solve the model at time t+1 and then collect the equilibrium

implied st+1. Based on these I compute the realized excess returns ext+1 = rt − (st+1 − st) and their

skewness denoted by Skewt+1. The same conclusions hold: a higher rt predicts a lower Skewt+1. Positive

rt are associated with negative Skewt+1. Table 7. C reports the results of the regression

Skewt+1 = β2rt + ξ2,t+1

The model generates a negative significant β̂2 as found empirically by Jurek (2008) who investigates

both the cross-section and the time variation and finds that in both dimensions the effect is very significant.

Consistent with the data, this implies that investing in a higher interest rate currency produces an

average positive excess return which is negatively skewed. The thicker left tail occurs because of the larger

reaction to negative innovations and smaller reaction to positive shocks the excess returns are negatively

skewed. Thus “crash risk ” in this model is endogenous and it happens when negative shocks hit an

otherwise positive estimate of the hidden state.

In this model agents at time t expect negatively skewed returns at t + 1. They understand that the

pricing at t+ 1 will involve asymmetric response to news which generates negative skewness. Given that

in this model expected excess returns are driving most of the portfolio decision skewness per se does not

seem to affect this decision. It does matter indirectly in forming expectations about the excess returns.

Excess returns under the distorted model are always expected to be negatively skewed and under

the DGP they will in fact be. Their skewness under the DGP depends on the size of the interest rate

differential. Consider the following scenario. At time t there is a high positive domestic interest rate

differential. That means that the expected exchange rate tomorrow will also have a higher absolute level,

although lower than the time t one by UIP. If the innovations rt+1−H ′Fx̂t+1
t,t in the Kalman Filter at time

t+ 1 are negative, they are incorporated with a high gain while if they are positive with a low gain. As

explained above because H ′Fx̂t+1
t,t is a downward biased estimate of the DGP Etrt+1 these innovations will

be positive on average. However, when negative they will strongly affect the estimate and the exchange

rate.

To study the properties of the agents’ expectations, Jurek (2008) computes the risk-neutral implied
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skewness from options data. In my setup that corresponds to the object SkewP̃t,t+1, defined in Section 4.3.

It is worth noting again that the essential difference between the risk-neutral and the realized probabilities

is not the risk correction from marginal utilities, but the distorted probabilities. This is at the heart of

the mechanism of the paper.

Table 7.C also reports results for the regression

SkewP̃t,t+1 = β3rt + ξ3,t+1

The model implied β̂3 is also negative and very significant. Thus there is a negative correlation between

the high interest rate differential and the skewness of the excess returns under the distorted model. Again,

this happens because agents take into account the asymmetric response to news for the next period and

thus expect a skewed distribution. This negative relation is also present when the test is cross-sectional,

as with the realized skewness. Jurek (2008) also confirms this cross-sectional implication, i.e. periods of

higher domestic rate are also characterized on average by a negative risk-neutral skewness. Interestingly,

comparing the point estimates of β̂2 and β̂3 a higher rt has a larger conditional impact on the predicted

realized skewness than on the risk-neutral skewness.

5.3 Positive hedged carry trade returns and options

The hedged carry trade is characterized by no downside risk. To measure the hedged carry trade I use

the definition in (31) and as in BEKR I use at-the-money options by setting kt = st. The results are very

similar with another interpretation of at-the-moneyness, namely kt = ft. Table 7. B. presents the results

for the hedged carry trade. The average payoff is around 0.0012 which is smaller than the payoff for the

unhedged carry trade. BEKR also find this relation in the data. The standard deviation of the hedged

carry trade is lower and the resulting Sharpe ratio is slightly higher than for the unhedged carry trade.

For intuition, take the case of the foreign currency being at a forward premium, i.e. rt > 0 and

st < 0. Buying a call option on the FCU is relatively expensive because the probability of exercising the

option is relatively large. By using the distorted model, the agent believes that there will be a more

depreciated domestic currency than what actually happens at time t + 1. This intuitively means that

buying a call option delivers losses ex-post. If one compares the average means of the payoffs, the average

loss from buying the insurance options is about 30% of the unhedged payoff consistent with findings in

Jurek (2008).37 BEKR report values that imply that the average individual country pair loss resulting

from eliminating the downside risk is about 20% of the unhedged payoff. Because these losses are not

that large the hedged carry trade still has positive average returns. There are several reasons for this.

First, there is an interesting effect that mitigates the increase in price. At the time of pricing agents

understand the equilibrium conditions and realize that next period the “inaction effect” can take place.

This effect, defined in Section 4.2, means that if the estimate of the hidden state at time t + 1 is close
37Jurek (2008) uses a more complicated version of hedging that also takes into account the delta exposure of the option.
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enough to 0, agents will choose not to invest at all and st+1 = 0. Since at time t the estimate of the

hidden state is positive agents foresee that there are innovations at time t+ 1 that are negative enough to

translate into negative estimates at time t+1. In the rational expectations world, these negative estimates

would immediately imply a st+1 > 0 and very large depreciation of the foreign currency. However, in

the present model these situations are likely to generate the “inaction effect” because agents are cautious

seeing this switch in the sign of the estimate. As such, these innovations would generate st+1 = 0 instead

of their positive rational expectations counterpart.

Second, for the cases in which the “inaction effect” is not active, the large depreciations that the

agent worries about will mostly still occur in equilibrium. When negative news arrives, it will be strongly

incorporated in the exchange rate both under the objective and subjective probability distribution. The

key difference between the agent’s ex-ante probability distribution and the realized one is that the average

exchange rate is slightly less depreciated in the latter. This lower average is caused by a slight shift of mass

of exchange rate realizations that are around the mean of the subjective distribution to values that imply

an appreciated currency. At time t + 1 the agent will receive on average positive innovations about the

interest rate which cause the exchange rate realizations to be tilted toward appreciation. However, even

under this objective distribution, when negative news arrive there is a strong reaction of the exchange

rate toward depreciation. Thus a strong negative skewness still remains under the realized distribution.

As noted in Section 5.2 a higher interest rate differential predicts a larger skewness for the realized

distribution than for the risk-neutral one.

A way to think about the reason why the model generates positive average payoffs both for unhedged

and hedged strategies is to note that the subjective probability distribution differs from the objective one

by overpredicting bad events and underpredicting good events. Buying insurance against the downside

risk produces on average losses because of the exaggeration of the probability of bad states under the

subjective probability distribution for the exchange rate realizations. However, the hedged position

delivers positive payoffs because of the more frequent occurence of the good events under the objective

probability distribution than under the equilibrium distorted beliefs.

The theory proposed here does not rely on a peso event explanation in the sense used in the literature.38

Such an event is interpreted to be one that does not materialize in the sample but is characterized by some

extreme negative effect on the agent’s utility. As BEKR point out that this extreme negative event could

be a large loss from the strategy or a very high marginal utility when an otherwise small loss happens. To

see the reasons why the peso problem can explain the positive payoffs to the unhedged carry trade notice

that ex-ante the investor has to be compensated for this negative possibility. When this event does not

happen in the sample then ex-post the payoffs look systematically positive. If the peso event is associated

with a large loss this would necessarily mean that the hedged carry trade would have zero payoffs. In

that case buying an option as insurance against downside risk should be producing systematic negative
38This explanation has been put forward by recent papers such as Farhi and Gabaix (2008) for the UIP puzzle and Barro

(2006) and Gabaix (2008) for the stock market. In their models there is a rare disaster that can happen with a small, usually

time-varying probability. See also Gourio (2008) for a discussion of rare disasters models.
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payoffs that outweigh exactly the gains from the unhedged carry trade. They then conclude that it must

be the extremely high marginal utility that characterizes such a negative event. Clearly, in my model I

cannot provide such a solution.

The peso explanation assumes that the only difference between the subjective and the objective

distribution is the rare disaster that does not materialize in the sample under the latter distribution.

In states of the world when there is no peso event the two distributions completely coincide. In my

model this is not the case. First, there is no peso problem in this model in the sense that under the

subjective distribution there is no event that entails some disaster for the agent compared to the support

of the distribution. In fact, due to the “inaction effect” explained above, for some realizations that would

imply significant domestic depreciation under the rational expectations model the exchange rate in the

subjective distribution is less depreciated. Agents realize that enormous depreciations will not occur

in equilibrium if they require agents switching positions from domestic to foreign bonds. Second, the

mechanism presented here delivers a realized distribution for the exchange rates that can have a different

shape from the subjective one. Different than the peso explanation, there is no reasons to expect that any

property of these distributions is the same. Their mean differ thereby generating the ex-post profitability

of the unhedged carry trade. They are both negatively skewed and have excess kurtosis. As explained

above the model can deliver an explanation for the small losses of buying insurance against the downside

risks and implicitly for the positive payoffs of the hedged strategy because of the properties of these

distributions.

5.4 Delayed overshooting

The forward premium puzzle refers to the unconditional empirical failure of UIP. This does not necessarily

imply that a conditional version of UIP fails too. Following a positive shock to the interest rate the UIP

condition states that the domestic currency should appreciate on impact and then follow a depreciation

path. Such a mechanism can be investigated empirically by identifying the response of the exchange rate

to a monetary policy shock.

Several studies have analyzed this conditional UIP using different identification restrictions. Eichen-

baum and Evans (1995), Grilli and Roubini (1996) use short-run restrictions to identify the effect

of structural monetary policy shock on the exchange rate. They find significant evidence of delayed

overshooting: following a contractionary monetary policy shock the domestic interest rate increases

and there is a prolonged period of a domestic currency appreciation. The peak of the impact occurs

after one to three years as opposed to happening immediately as predicted by the Dornbusch (1976)

overshooting model. Faust and Rogers (2003) investigate the robustness of these identified VAR results.

They conclude that the delayed overshooting result is sensitive to the recursive identification assumptions

and that the peak of the exchange rate response is imprecisely estimated. Scholl and Uhlig (2006) uses

sign restrictions and also finds evidence for delayed overshooting. For the country pairs he analyzes the

estimated peak occurs within a year or two. Although they differ in their estimates of the length of
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the delayed overshooting effect all these identifying approaches reach a robust conclusion: following a

monetary policy shock there are significant deviations from the UIP.

As discussed in Section 1, the model presented in this paper attempts to explain the delayed

overshooting puzzle through a mechanism described in detail in Gourinchas and Tornell (2004). There

they posit that if agents act on a certain type of distorted beliefs that can explain the conditional and

unconditional UIP puzzles. The difference is that here I provide a model that explains the origin and

optimality of such beliefs.

To generate the impulse response of the exchange rate to a shock to the interest rate differential,

assume that the economy starts in steady state. Thus, rt−1 = 0, bt−1 = 0, EP̃t−1st = EPt−1st = 0. At time

t there is a positive shock to the interest rate differential. Given the setup of the model, this shock is a

decrease in the foreign interest rate but the same conclusions hold if the foreign rate is treated as constant

and the domestic rate would increase.

To allow for a clearer intuition I present the case in which the transition equation is an AR(1).

The autocorrelation coefficient is equal to the largest eigenvalue of the matrix F in the benchmark

parameterization (see Section 4.4). Thus, I use the DGP

rt = xt + σV vt (34)

xt = ρxt−1 + σUut

where ρ = 0.9718. The values for σV and σU are the same as in Section 4.4. For these values, by

applying the formulas for the rational expectations solution in (14) and (15) I find that ΓRE = −31.61

and δRE = −0.9986. As discussed in Section 4.2 and Section 4.4 for the distorted expectations solution

the parameters Γ and δ are based on a slightly lower ρ. This is to reflect that the conjecture about the

exchange rate evolution in the equilibrium with ambiguity aversion takes into account the asymmetric

response to news. In the benchmark parameterization Γ and δ are found using (14) and (15) but with a

ρ̃ = 0.9705. Then Γ = −30.28 and δ = −0.9987. Note that compared to rational expectations the agent

uses the correct ρ in forming her estimates but that the exchange rate responds less to the same estimate.

To investigate the average response to an increase in rt this experiment needs to impose that the

observed positive shock to rt is generated by a combination of a shock to the persistent and the temporary

component that corresponds to their true DGP likelihood of occurrence. Let vt = ut = 1. Then rt =

σU+σV and xt = σU . The next periods shocks are set equal to zero. The rational expectations solution is

then: sREt = ΓRE x̂REt,t +δRErt and the distorted expectations solution is st = Γx̂tt,t+δrt, where x̂REt,t is the

estimate of the hidden state xt under rational expectations and x̂tt,t is the estimate under the ambiguity

aversion model.

Figure 6 plots the dynamic response of the exchange rate to the observed increase in rt. The rational

expectations features the Dornbusch overshooting result in which the peak of the impact is at time t.

Consider the decision at time t. The agent sees the increase in the interest rate differential but she is

worried about a significant depreciation at time t + 1. In equilibrium that means she is concerned that

this rise in rt is caused by a temporary rise. She then believes that the true σV,t = σHV and acts on
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this belief by investing much less in the domestic bond than she would under rational expectations. By

underestimating the true hidden state she observes a higher than expected rt+1. Her updated estimate at

time t+ 1 is:

x̂t+1
t+1,t+1 = ρx̂t+1

t,t +Kt+1
t+1 (rt+1 − ρx̂t+1

t,t )

In this setting x̂t+1
t+1,t+1 is higher than x̂tt,t and a further appreciation occurs. Because rt − ρx̂t−1,t−1 > 0

and using the notation I introduced in Section 4.1, σV,(t+1),t = σV,(t+1),t+1 = σHV . At time t + 2 if the

agent can distort only the last 2 periods as in the benchmark specification then σV,(t+2),t = σV and

σV,(t+2),t+1 = σV,(t+2),t+2 = σHV . This corresponds to setting m = n. If m is allowed to be significantly

larger than n so that if the agent distorts 2 periods but chooses what exactly these are, then I find that

σV,(t+2),t = σV,(t+2),t+2 = σHV and σV,(t+2),t+1 = σV . If there is no restriction on n, so that the agent can

distort any period then σV,(t+2),t = σV,(t+2),t+1 = σV,(t+2),t+2 = σHV . A similar argument applies for the

future periods. Eventually the estimate of the hidden state converges to the rational expectations one.

The top plot in Figure 6 shows the evolution of st in the benchmark specification in which the agent

distorts the sequence σV (rt) only for n = 2 periods and m = n. There the peak occurs 2 periods later

than in the rational expectations model. There is a gradual appreciation until period 3 followed by a

depreciation after the estimates of the hidden state converge under the distorted and rational expectations.

Note that for all cases in Figure 6 even after converging the exchange rate under ambiguity and rational

expectations differ slightly because of the lower weight put on the estimate of the hidden state in the

former. The second plot shows the evolution under the specification of n = 2 periods but m = 10. In that

case the peak is 3 periods later. However these two specifications deliver very similar results. The bottom

plot is one in which there is no restriction on n,i.e. n = t. The agent can distort any period of the sample

she observes and in this case she does so by choosing a low precision of the signal for every period. In this

case the appreciation is much more gradual and the peak is 17 periods later than the time of the shock.

This plot also reproduces the intuition for the persistent delayed overshooting in Gourinchas and Tornell

(2004). However, as I argued in the discussion on the statistical plausibility of the distorted sequences

such a specification implies a very unlikely interpretation of the observed sample. In fact, as the sample

size increases such distorted sequences generated likelihoods that become increasingly lower than the ones

under the reference model.

The conclusion from Figure 6 is that the model can generate qualitatively the delayed overshooting

implication. The benchmark specification implies a quick peak and a short-lived deviation from UIP

because the agent is limited in distorting the time-varying precision of signals by statistical plausibility

considerations. When these are absent, the model delivers significantly longer delayed overshooting.

5.5 Time-varying parameters

In this section I analyze a setup with time-varying parameters and point out that the same intuition

applies. When the agent is ambiguous about the precision of the signals she receives about the hidden
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time-varying parameter she behaves pessimistically. Consider the setup

rt = ρtrt−1 + vt

ρt = ρt−1 + ut

where rt is the observable interest rate differential, ρt is the hidden parameter driving its persistence.

The shocks ut and vt are independent and distributed normally with standard deviations σU and time-

varying σV,t respectively. The agent entertains the possibility that these realizations are draws from the

set Υ = {σLV , σV , σHV }.
Consider a similar framework for the two country general equilibrium model but for simplicity assume

risk neutrality for the per-period felicity function. The UIP condition then states: st = EP̃t st+1−rt where

P̃ is the optimal subjective belief. Solving forward the UIP condition implies that without time-variation

or ambiguity the solution would simply be st = 1
ρ−1rt.

With time-variation the forward iteration is significantly more complicated if one is taking into

account that the agent updates her future beliefs about the parameter. However, resorting to a model of

anticipated utility (as in Sargent (1999)) eliminates this problem because then agents in fact ignore such

future updates in forecasting. Then the solution is

st = (ρ̂t − 1)−1rt (35)

where ρ̂t = EP̃t (ρt|It).This has a similar interpretation as with the temporary versus hidden components

model analyzed in the paper so far. Suppose that there is a higher observed domestic interest rate.

Agents would like to invest in the domestic currency but they are worried about a domestic currency

depreciation. In equilibrium this depreciation occurs if next period agents demand less of the domestic

bond. Under the anticipated utility assumption, agents do not forecast the updating of beliefs and are

only worried that the future observed domestic interest rate use is low. Given that they observe a high

interest rate today, they are in effect concerned that this realization is coming from a temporary shock

and that the hidden persistence parameter is low. Then the agent would tend to misperceive news in the

same as in the benchmark model: positive innovations are given low precision (high noise) while negative

innovations are seen as reflecting high precision.

For that note that EP̃t st+1 = (ρ̂t − 1)−1EP̃t rt+1 and EP̃t rt+1 = ρ̂trt. In equilibrium the agent takes as

given st so the expected returns from the carry trade strategy are: qet+1 = rt − EP̃t st+1 + st. This can be

rewritten as:

qet+1 = rt − (ρ̂t − 1)−1ρ̂trt + st

The expected returns are decreasing in ρ̂t which confirms the intuition above. For a deterministic

sequence σtV , the Kalman filter formulas for the time-varying parameters are:

ρ̂t = ρ̂t−1 +Kt(rt − ρ̂t−1rt−1)

Kt =
Pt−1rt−1

r2
t−1Pt−1 + σ2

V,t

Σt = Σt−1 −KtΣt−1rt−1 + σ2
U
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The agent guards herself against the worse outcomes and chooses high values for σ2
V,t when rt−1(rt −

ρ̂t−1rt−1) > 0 and low values when the opposite happens. This is very much similar with the decision

rule in (26). Similar to the benchmark model, the true DGP is a constant volatility sequence of σV .

Because there is underestimation of the hidden parameter on average next period the observed interest

rate differential is higher than expected. That will be perceived as positive news for the agents that invest

in the domestic bonds because it raises the present value of the payoffs on the bond. This will create

a gradual reallocation towards the domestic bonds and the possibility for an appreciation following an

increase in the domestic rate.

6 Conclusions

This paper contributes to the theoretical literature that attempts to explain the observed deviations

from UIP through systematic expectational errors. Such an approach is motivated by the empirical

literature based on survey data for the foreign exchange market that finds significant evidence against

the rational expectations assumption and the empirical research that challenges the time-varying risk

assumption.

I present a model of exchange rate determination which features signal extraction by an ambiguity

averse agent that is uncertain about the precision of the signals she receives. In deciding on the optimal

investment position the agent is estimating the time-varying hidden state of the exogenous observed

interest rate differential. In equilibrium the agent invests in the higher interest rate currency (investment

currency) by borrowing in the lower interest rate currency (funding currency). The agent entertains

the possibility that the data could have been generated by various sequences of time-varying signal to

noise ratios. Faced with uncertainty agents choose to act on pessimistic beliefs so that, compared to

the true DGP, they underestimate the hidden state of the differential between the interest rate paid by

the bonds in the investment and funding currency. Given the assumed structure of uncertainty agents

underestimate the hidden state by reacting in equilibrium asymmetrically to signals about it: they treat

positive innovations, which in equilibrium are good news for the investor, as reflecting a temporary shock,

but negative innovations, which are bad news in equilibrium, as signaling a persistent shock.

The systematic underestimation implies that agents perceive on average positive innovations in

updating the estimate. This creates the possibility of a further increased demand next period for the

investment currency and a gradual appreciation of it. Thus the model can provide an explanation for the

UIP and delayed overshooting puzzle.

I find through model simulation that the benchmark specification generates an asymptotically negative

UIP regression coefficient. In small samples the magnitude of the coefficient is similar but it is less

significant statistically. In comparative statistics exercises I find that the coefficient becomes positive,

even though smaller than 1, if the true DGP is characterized by a significantly less persistent hidden

state and larger temporary shocks. The benchmark specification also imposes constraints on the set of
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possible distortions that the agent contemplates that imply that the equilibrium subjective probability

distribution is close statistically to the objective ones. If these constraints are relaxed the same qualitative

results hold but quantitatively they become stronger.

The model provides a unified explanation for the main stylized facts of the excess currency returns:

predictability, negative skewness and excess kurtosis. Predictability is directly related to the ex-post

failure of UIP: investing in the investment currency by borrowing in the lower funding currency delivers

positive returns. The benchmark calibration implies positive but smaller and less variable excess returns

than in the data. The negative skewness is caused by the asymmetric response to news. On one hand,

when the interest rate of the investment currency decreases compared to the market’s expectation agents

respond strongly to this negative news and the investment currency depreciates more than in the rational

expectations model. On the other hand, when there is a positive innovation in this interest rate agents

underreact to this information and the currency appreciates slower. Excess kurtosis is a manifestation

of the fact that the equilibrium interaction between the subjective and objective probability distribution

implies most often small excess returns. The model also implies equilibrium positive mean payoffs for the

hedged positions due to the more frequent occurrence of good events for the investment strategy under

the objective probability distribution than under the equilibrium distorted beliefs.

The theory proposed in this paper can be extended to other situations which involve signal extrac-

tion. For example, the model of rational inattention in Bacchetta and van Wincoop (2008) delivers

underreaction to news in the foreign exchange market but symmetric responses to good and bad news.

Investigating the link between information processing under ambiguity aversion and rational inattention

seems a fruitful future direction of research. Another application could be analyzing the business cycle

property that when a boom ends, the downturn is generally sharp and short but when growth resumes,

the boom is more gradual.39 The model proposed in this paper would produce an explanation for this

observation intuitively similar to the delayed overshooting response: the boom is more gradual because

agents tend to underreact to good news which implies that under their subjective probability distribution

they continue to receive positive news for more periods than the rational expectations model predict. The

downturn is abrupt because agents tend to overreact to bad news. A model in which an ambiguity averse

agent has access to many signals about a common unobserved factor, as for example in the monetary

policy model of Bernanke and Boivin (2003), would also have interesting implications. Compared to the

rational expectations case, an ambiguity averse decision-maker that does not trust the precisions of these

signals tends to place too much probability on signals that imply a lower expected utility.
39This observation has been investigated in a rational expectations framework by Van Nieuwerburgh and Veldkamp (2006).

They argue that more (less) production generates higher (lower) precision of information. Thus when the boom ends the

precise estimates of the slowdown prompt a sudden recession. When growth resumes the low production yields noisy estimates

of recovery which makes booms more gradual than downturns.
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APPENDIX

A Review of literature

In this appendix I review some of the literature on UIP, negative skewness of returns and robust

filtering. In the literature on UIP, for my purposes, a fundamental assumption that distinguishes between

different models is the assumption of rational expectations.

The theoretical literature on non-rational expectations and UIP is relatively scarce. Froot and Thaler

(1990) and Lyons (2001) informally argue that models where agents are slow to respond to news may

explain the UIP puzzle. The intuition is that if investors respond gradually to news about a higher

domestic interest rate, there will be a continued reallocation of portfolios towards domestic bonds and an

appreciation of the domestic currency following the positive shock. Bacchetta and van Wincoop (2008)

offer a formalization of this intuition based on rational inattention. If information is costly to acquire and

to process, some investors optimally choose to be inattentive and revise their portfolios infrequently.

An alternative way to obtain a gradual response to news is to consider the case in which the observable

interest rate differential as a sum of hidden temporary and persistent components. If agents misperceive

noise to signal ratio by attributing more probability to the temporary shocks than under the true data

generating process this implies underreaction to news. Such a mechanism is discussed informally in

Eichenbaum and Evans (1995) and in depth in Gourinchas and Tornell (2004). The latter posit this

type of distortion and investigate some of its properties in exchange rate determination. Gourinchas and

Tornell (2004) find that there are levels of misperception which are consistent with survey data that can

explain the UIP puzzle. Their paper does not provide a model under which such a distortion would be

optimal.

To my best knowledge, there are two papers that investigate such optimality. First, Tornell (2003) uses

a mixed approach of optimal and robust control to show that unstructured uncertainty about the interest

rate differential can deliver such a result. To explain the forward premium puzzle, one key assumption in

his model is that the agents’ degree of uncertainty aversion is decreasing through time. If this aversion

is interpreted as a preference parameter as does the decision-theory literature it is hard to imagine why

it would be decreasing. Even if it reflects the possibility that information on a market is becoming more

precise as time passes it should imply that the puzzle should disappear in long samples. Second, Li and

Tornell (2007) analyze a case in which uncertainty about the process is only allowed to affect the variance

of the returns. In that situation, if and only if the agent is concerned about uncertainty in the observation

equation of a state-space model, it is optimal for the agent to believe that the variance of the temporary

shock is larger.

My model is related to this intuition as it analyzes ambiguity aversion for an agent that needs to

estimate a hidden state. The agent is uncertain about the variances in the model, either in the observation

or state equation. In fact, the model can be extended to uncertainty about the parameters. Independent
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of the place where this uncertainty is assumed, the key general result is that the agent will choose to

believe in a DGP that hurts her utility by making worse news for her investment strategy be more

persistent and good news more temporary. She will overreact to bad innovations and underreact to good

innovations. This still produces an explanation for the forward premium puzzle because the underreaction

effect dominates for a case in which the true DGP features temporary shocks that are relatively small.

There have been several other approaches for explaining the UIP puzzle through expectational errors.

For example, Frankel and Froot (1987) assume behavioral biases on the part of two types of investors,

“chartists” and “fundamentalists” who have different horizons for holding assets. They find that this

model can explain some of the myopic expectations apparent from survey data. Chakraborty and Evans

(2008) study a model in which agents form expectations using econometric learning instead of being

endowed with the objective probability distribution. They prove that discounted least-squares learning

can produce an asymptotic UIP coefficient of 0. In simulations they find that for small samples the

coefficient can become negative. Recently, Burnside et al. (2007) relax the assumption of frictionless

markets and use a model with microstructure frictions in which there are informed and uninformed

traders. They show that the adverse selection between market makers and traders, combined with some

assumptions on the behavior of the uninformed agent, can explain the forward premium puzzle.

The larger part of the literature addressing the UIP puzzle has maintained the assumption of rational

expectations. In such a model, there could be, broadly speaking, two explanations for the forward premium

puzzle: time-varying risk premia and rational expectational errors. The time-varying risk premia literature

is facing the challenge of producing extremely large and variable pricing kernels. As many have observed, a

representative agent model with standard utility functions cannot generate large and variable risk premia

(see Backus et al. (1993), Bekaert (1996), Canova and Marrinan (1993), Engel (1996), Lewis (1995)).

Among the recent studies, Burnside et al. (2008) document that linear stochastic discount factors built

from conventional measures of risk fail to explain the excess returns from currency speculation. They

argue that this failure reflects the absence of a statistically significant correlation between the payoffs

to the carry trade and traditional risk factors. Lustig and Verdelhan (2007) find, on the contrary, that

real aggregate consumption growth risk can explain the excess returns on currency speculation. This

disagreement prompted a debate between Burnside (2007) and Lustig and Verdelhan (2008).

Given the difficulties facing the time-varying risk premia approach, one strand of literature has

investigated non-standard utility functions combined with assumptions about the time-variation of the

data generating process. Time-variation in habit persistence is investigated in Bekaert (1996) and

Verdelhan (2006). The former assumes conditionally heteroskedastic shocks while the latter pro-cyclical

real interest rates. Bansal and Shaliastovich (2007) use Epstein-Zin preferences and rely on a perfect cross-

country correlation among shocks to the long run components of consumption growth rates to reproduce

the UIP puzzle. Using the rare disaster framework of Barro (2006), Farhi and Gabaix (2008) analyze

whether time-variation in disaster risk can explain the UIP puzzle. They express their results in terms

of a “resilience” variable which combines the effect of time-variation in the disaster probability, size of

consumption disaster and size of individual country’s productivity in the disaster. When this variable is
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mean-reverting they are able to explain the predictability of returns using a standard utility.

Another direction has been to study limited participation models which separate the consumption of

the marginal investor from the aggregate consumption. Alvarez et al. (2008) examine an endogenously

segmented asset market. In their model, higher money growth produces higher inflation which increases

the agents participation in the asset market. This, in turn, decreases risk premia and can generate the

forward premium anomaly.

In the rational expectations framework there could still be expectational errors coming from two

sources: learning about a possible past shift in the distribution or forming expectations about a future

shift. Lewis (1989) uses Bayesian learning about the probability of a past regime shift to provide an

explanation for the forward premium puzzle. However, the model could not explain the persistence of

prediction errors, since the magnitude of the error shrinks over time to zero. The second source of

errors can be coming from expectations of future events that do not materialize in the sample. This is

known as the peso problem. Kaminsky (1993) studies a model in which there are infrequent switches

from contractionary to expansionary monetary policy. She provides evidence for the USD-GBP pair for

1976-1987 that investors’ expectations are consistent with the model. Evans and Lewis (1995) show

that a reasonably calibrated regime switching model similar to Engel and Hamilton (1989) can produce

a negative coefficient in Fama regressions in small samples. These biases disappear, however, in large

samples.

The asymmetric response implied by the optimal behavior is also providing an explanation for what

has been called “currency crashes” (Brunnermeier et al. (2008)) or equivalently the negative skewness of

currency excess returns. Brunnermeier et al. (2008) argue that realized skewness is related to the rapid

unwinding of currency positions, precipitated by shocks to funding liquidity. Brunnermeier and Pedersen

(2008) show theoretically that securities that speculators invest in have a positive average return, which is

a premium for providing liquidity, and a negative skewness. The latter arises from an asymmetric response

to fundamental shocks: shocks that lead to losses are amplified when speculators hit funding constraints

and unwind their positions, further depressing prices and entering into a downward “liquidity spiral”.

Conversely, shocks that lead to speculator gains are not amplified. In a related paper, Plantin and Shin

(2008) provide a game-theoretic motivation of how strategic complementarities can endogenously generate

currency crashes. Their model is silent on the source of the UIP failure because in equilibrium there are

no premia to motivate excess returns. Veronesi (1999) provides a model of rational expectations in which

there is overreaction to bad news in good states and underreaction to good news in bad times. The key

ingredient is the assumption of two hidden states so that the conditional variance of future realizations is

affected by the current observation. For the typical Kalman filter used also in my model this conditional

variance is deterministic and converges to a steady state.

Hansen and Sargent (2008, Ch.17) study a robust estimation problem with commitment to previous

distortions in which the agent wants to minimize the estimation mean square error but is faced with

uncertainty in both the observation and transition equation. They find that the robust filter flattens

the decomposition of variances across frequencies by accepting higher variances at higher frequencies
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in exchange for lower variances for lower frequencies. This implies that a preference for robustness

increases the Kalman gain. Intuitively, the agent is more concerned about the model being misspecified

at low-frequencies. Hansen and Sargent (2005) analyze more general settings of robust estimation with

commitment.

Hansen and Sargent (2007b) study robust estimation problems without commitment. They use

multiplier preferences to analyze unstructured uncertainty. Hansen and Sargent (2007a) investigate a

setup where the hidden state comprises a discrete set of models and the agent slants pessimistically the

posterior probabilities over these models. My model also studies a robust estimation problem without

commitment but focuses on structured uncertainty. I analyze a type of uncertainty similar to Epstein

and Schneider (2007, 2008) who investigate learning under ambiguity about a constant parameter. They

show that if there is only ambiguous prior information about the parameter then with repeated signals

about the parameter this uncertainty disappears in the long run. They point out that if there is ambiguity

about the precision of the signal then the agent in the long-run is still uncertain about future realizations

of the signals. In their model agents underreact to good news and overreact to bad news. I extend that

setup to time-varying hidden states.

B Rational expectations model solution

In this section I provide some details for the rational expectations model solution. The optimization

problem is

max
bt

Et[− exp(−γbtqt+1)]

where the log excess return qt+1 = st+1−st−rt and bt is the amount of foreign bonds demanded expressed

in domestic currency. The FOC is

Et[qt+1 exp(−γbtqt+1)] = 0

Use the approximation of qt+1 ' exp(qt+1)− 1 and a second order approximation around qt+1 = 0 to the

function [exp(qt+1)− 1) exp(−γbtqt+1)] which delivers:

0 = qt+1 − γbtq2
t+1 + o(3)

where o(3) is the error term up to order 3. If, as in the RE setup, the variable qt+1 is log-normally

distributed then the third order error term equals 0. Thus, I get that the FOC implies the mean-variance

solution as in (8):

bt =
Et(qt+1)

γV art(qt+1)

Let the guess about the exchange rate be

st = Γx̂t,t + δrt

where x̂t,t = E(xt|It). The filtering notation for the RE case was introduced in Section 3. The

corresponding Kalman filter recursion correspond to equations (10), (11) and (12). For simplicity I
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assume convergence on the Kalman gain (Kt = K) and the estimate of the covariance matrix of the

hidden state (Σt,t = Σ). Then:

Et(st+1|It) = (Γ + δH ′)Fx̂t,t

V art(st+1|It) = (ΓK + δ)(ΓK + δ)′V art(rt+1|It)

where the conditional variance of the observed interest rate differential is the time invariant

V ar(rt+1|It) = H ′FΣF ′H +H ′σUσ
′
UH + σ2

V (36)

Denoting V art(st+1|It) by σ2 the UIP condition (9) states

st =
(Γ + δH ′)Fx̂t,t − rt

1 + (γσ2/2)

Now, I verify the conjecture in (9) and solve for the unknown coefficients Γ, δ:

δ = − 1
1 + (γσ2/2)

(37)

Γ = − 1
1 + (γσ2/2)

H ′F [(1 + (γσ2/2))I − F ]−1 (38)

The variance of the exchange rate is

σ2 = (ΓK + δ)(ΓK + δ)′V ar(rt+1|It)

with V ar(rt+1|It) given by (36), so there are 3 equations in 3 unknowns δ,Γ, σ2.

Table 1. Rational expectations model

Risk aversion δ Γ stdt(st+1) β̂
L

γ = 2 −0.9994 −38.14 0.0235 0.9784

γ = 10 −0.9976 −35.5 0.0219 0.9125

γ = 50 −0.992 −29.15 0.0181 0.7535

γ = 500 −0.971 −17.25 0.0109 0.455

These results refer to the discussion in Section 3 and are obtained for an AR(1) representation of the

USD-GBP interest rate differential for the period 1976-2007 for which stdt(rt+1) = 0.0006, ρ = 0.97. The

empirical standard deviation for this sample of the exchange rate is stdt(st+1) = 0.029.

C Multiplier preferences and unstructured uncertainty

The multiplier preference is the modification to the expected utility that involves solving the problem:

max
b

min
P̃∈Φ

EP̃ [U(c(b; ε))] + θR(P̃ /P ) (39)
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where U(c(b; ε)) is the utility function derived from the consumption plan c(b; ε) , with b being the control

and ε the underlying stochastic process. The parameter θ is controlling the level of uncertainty aversion

and Φ is a closed and convex set of probability measures and R(P̃ /P ) is the relative entropy of probability

measure P̃ with respect of measure P :

R(P̃ /P ) =
{∫

Ω log(dP̃dP )dP̃ if P̃ is absolutely continuous w.r.t P
∞ otherwise

}
(40)

Hansen and Sargent (2008) refer to the situation in which there is no restriction on the nature of Φ as

unstructured uncertainty. For this case, as shown for example in Strzalecki (2007) and Barillas et al.

(2008) the problem in (39) is equivalent to40:

max
b
EP [− exp(−1

θ
U(c(b; ε))]

Note that now the subjective probability distribution becomes the reference model P . Thus the problem

is restated in terms of maximizing an expected utility, under this reference model, with a higher risk

aversion.In the present case, where U(c(b; ε) = − exp(−γWt+1) using the multiplier preferences would

transform the utility to an exponential of the original utility, with the maximization being performed

under the reference model P.

max
b
EP [− exp(

1
θ

(exp(−γWt+1))]

To illustrate further these implications consider the investment problem studied in this paper under risk

neutrality and unstructured uncertainty so that U(c(b; ε) = bt(st+1 − st − rt). For simplicity, assume also

that the transition equation is an AR(1). As in Hansen and Sargent (2007b) consider the problem in

which the agent takes the process in (1) as an approximated model and she surrounds it with a set of

alternative models such as:

rt+1 = xt+1 + σV vt+1 + εVt+1

xt = Fxt−1 + σUut + εUt

The shocks εVt and εUt can have non-linear dynamics that feed back on the history of the state variables.

Thus rt+1, conditional on xt, is distributed N(Fxt + εVt+1 + εUt+1, σ
2
U + σ2

V ). Under RE, the hidden

state xt is distributed N(x̂t,t,Σt,t). In this setting, Hansen and Sargent (2007b) propose two robustness

corrections: one that distorts rt+1, conditional on xt, through the mean of (εVt+1 + εUt+1) and another that

distorts the distribution over the hidden state. Hansen and Sargent (2007b) analyze the case in which the

reference model for the hidden state is given by the Kalman Filter applied to the approximating state-

space representation (1). Hence xt is distributed as N(x̂REt,t + εt,Σt,t) where x̂REt,t is the estimate under

Kalman Filter for (1) and εt is the arbitrary unknown conditional mean distortion of the hidden state.
40The equivalence is true in a Savage setting. This result is well known in the decision theory literature. For a meaningful

distinction between the two preferences Strzalecki (2007) stresses the importance of using the Anscombe-Aumann setting,

where objective risk coexists with subjective uncertainty.
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These alternative models are constrained to be close to the approximating model by using the conditional

relative entropy defined in (40) above. After taking into account these distortions the maximization occurs

under the transformed conditional distribution

rt+1
P̃∼ N(Fx̂REt,t + Fεt + εVt+1 + εUt+1, F

2Σt,t + σ2
U + σ2

V ). (41)

Note that under the reference model

rt+1
P∼ N(Fx̂REt,t , F

2Σt,t + σ2
U + σ2

V ) (42)

The relative entropy defined in (40) for the implied distributions P̃ in (41) and P in (42) is

R(P̃ /P ) =
(Fεt + εVt+1 + εUt+1)2

2(F 2Σt,t + σ2
U + σ2

V )

Denote the overall distortion Fεt+ εVt+1 + εUt+1 by ωt+1 and use that V arPt (rt+1) = F 2Σt,t+σ2
U +σ2

V . The

multiplier preferences defined in (39) can then be applied here to maximize over bt and minimize over

ωt+1 :

max
bt

min
ωt+1

EP̃t [1 + bt(st+1 − st − rt)] + θ
ω2
t+1

2V arPt (rt+1)
(43)

To solve for an equilibrium in this setup use a guess and verify approach and conjecture that the solution

for st+1 is

st = Γx̂REt,t + δrt

with unknown coefficients Γ and δ. Then EP̃t (st+1) = ΓEP̃t (x̂REt+1,t+1) + δEP̃t (rt+1). Using the fact that the

estimate at time t+ 1 is formed by the Kalman filter updating formulas, I get:

EP̃t (st+1) = ΓF (1−K)x̂REt,t + (ΓK + δ)EP̃t rt+1

= (Γ + δ)Fx̂REt,t + (ΓK + δ)ωt+1

Replacing EP̃t (st+1) in (43) and taking the FOC with respect to ωt+1 I obtain

ωt+1 = −V ar
P
t (rt+1)
θ

bt(ΓK + δ)

In equilibrium the same market clearing condition holds and bt = .5st. The FOC with respect to bonds

requires st = EP̃t (st+1) − rt. Substituting the solution for ωt+1 and rearranging the risk-neutral UIP

condition becomes:

st = [1 + (ΓK + δ)2V ar
P
t (rt+1)
2θ

]−1[(Γ + δ)Fx̂REt,t − rt]

Using that the conditional variance of the exchange rate is V arPt (st+1) = (ΓK + δ)2V arPt (rt+1), the

following conditions are satisfied when verifying the guess for the conjecture about st :

Γ = [1 +
V arPt (st+1)

2θ
]−1(Γ + δ)F (44)

δ = −[1 +
V arPt (st+1)

2θ
]−1 (45)
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The solution to (44) and (45) is identical to the one in (38) and (37) when γ = θ−1. Hence distorting the

conditional mean of the interest rate differential process by considering unstructured uncertainty in the

multiplier preferences with the uncertainty aversion parameter θ produces the same solution as solving

the model under rational expectations and having a risk averse agent with an absolute rate of risk aversion

of θ−1.

D Distorted expectations model equations

Proposition 1. Expected excess return, EP̃t Wt+1 is monotonic in σ2
V,(t),t. The sign is given by the sign of

bt(rt −H ′Fx̂tt−1,t−1).

Proof: The Perceived Law of Motion is given by (23)

st+1 = Γx̂t+1
t+1,t+1 + δrt+1

By the Kalman filter

x̂t+1
t+1,t+1 = Fx̂t+1

t,t +Kt+1
t+1 (rt+1 −H ′Fx̂t+1

t,t )

For more intuition and easier derivation consider the example if x̂t is a vector of (1× 1)

Then, taking as given x̂t+1
t,t and noting that Kt+1

t+1 is positive, st+1 is monotone in rt+1. In equilibrium

ΓKt+1
t+1 + δ < 0, so st+1 is a decreasing function of rt+1

∂EP̃t (st+1)

∂EP̃t rt+1

< 0

For the Kalman gain

Kt
t = (FΣt

t−1,t−1F
′ + σ2

U )[FΣt
t−1,t−1F

′ + σ2
U + σ2

V,(t),t]
−1 (46)

∂Kt
t

∂σ2
V,(t),t

= −(FΣt
t−1,t−1F

′ + σ2
U )[FΣt

t−1,t−1F
′ + σ2

U + σ2
V,(t),t]

−2 < 0

¿From the Kalman Filter formulas EP̃t rt+1 = H ′Fx̂tt,t. and x̂tt,t is a function of the sequence σV (rt)

x̂tt,t = Fx̂tt−1,t−1 +Kt
t (rt −H ′Fx̂tt−1,t−1)

Combining the various partial derivatives involved I get that the effect of σV,(t),t on EP̃t Wt+1 is

∂EP̃t Wt+1

∂σ2
V,(t),t

=
∂EP̃t Wt+1

∂EP̃t st+1

∂EP̃t (st+1)

∂EP̃t rt+1

∂x̂tt,t
∂σV,(t),t

sign(
∂EP̃t Wt+1

∂σ2
V,(t),t

) = sign(bt(rt − Fx̂tt−1,t−1))

This establishes Proposition 1.
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Proposition 2. The expected variance of excess return, V arP̃t Wt+1 is increasing in σ2
V,(t),t.

Proof: The variance V arP̃t Wt+1 = b2tV ar
P̃
t st+1. In turn, using the conjecture (23) and taking as given

x̂t+1
t,t ,K

t+1
t+1

V arP̃t st+1 = (ΓKt+1
t+1 + δ)(ΓKt+1

t+1 + δ)′V arP̃t rt+1

By the Kalman filtering formulas I get

V arP̃t rt+1 = H ′FΣt
t,tF

′H +H ′σUσ
′
UH + EP̃t (σ2

V,t+1)

Use the formula in (23) for the Kalman gain and the recursion:

Σt
t,t = Σt

t,t−1 −KtH
′Σt,t−1

It is easy to see that if x̂t is a vector of (1× 1) :

∂Σt,t

∂σ2
V,(t),t

=
∂Σt,t

∂Kt

∂Kt
t

∂σ2
V,(t),t

> 0

Thus,
∂V arP̃t Wt+1

∂σ2
V,(t),s

> 0

This establishes Proposition 2.

To study the effect of σ2
V,(t),t on the utility consider the total partial derivative:

∂Vt
∂σ2

V,(t),t

=
∂Vt

∂EP̃t rt+1

∂EP̃t rt+1

∂σV,(t),t
+

∂Vt

∂V arP̃t rt+1

∂V arP̃t rt+1

∂σV,(t),t

The sign of this derivative is :

sign(
∂Vt

∂σ2
V,(t),t

) = sign(bt)sign(rt − Fx̂tt−1,t−1)− sign(
∂V arP̃t rt+1

∂σ2
V,(t),s

)

Since sign(∂V ar
P̃
t rt+1

∂σ2
V,(t),s

) > 0, if the sign of sign(bt)sign(rt − Fx̂tt−1,t−1) is also positive then the sign of
∂Vt

∂σ2
V,(t),t

is ambiguous. To study that case, compute

∂Vt
∂σ2

V,(t),t

=
∂Vt

∂EP̃t st+1

∂EP̃t st+1

∂EP̃t rt+1

∂EP̃t rt+1

∂σ2
V,(t),t

+
∂Vt

∂V arP̃t st+1

∂V arP̃t st+1

∂V arP̃t rt+1

∂V arP̃t rt+1

∂σ2
V,(t),t

= −(ΓKt+1
t+1 + δ)Fbt(rt − Fx̂tt−1,t−1)(FΣt

t−1,t−1F
′ + σ2

U )[FΣt
t−1,t−1F

′ + σ2
U + σ2

V,(t),t]
−2 +

+(1− γ)(ΓKt+1 + δ)2b2tF
2[F 2Σt

t−1,t−1 + σ2
U ]2[F 2Σt

t−1,t−1 + σ2
U + σ2

V,(t),t]
−2

By the filtering solution (rt − Fx̂tt−1,t−1) = (F 2Σt
t−1,t−1 + σ2

U + σ2
V,(t),t−1)0.5ξt, where ξt˜N(0, 1).

Pr[
∂Vt

∂σ2
V,(t),t

> 0|(btξt > 0)] = Pr[bt(rt − Fx̂tt−1,t−1) > (1− γ)(ΓKt+1 + δ)F (F 2Σt
t−1,t−1 + σ2

U )|(btξt > 0)]
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which equals

Pr btξt > (1− γ)(ΓKt+1 + δ)Fb2t (F
2Σt

t−1,t−1 + σ2
U )(F 2Σt

t−1,t−1 + σ2
U + σ2

V,(t),t−1)−0.5|(btξt > 0)]

To see more clearly the extremely low probability that the variance effect dominates imagine that there

are no observation shock. This delivers the upper bound on the probability. Then Kt+1 = 1,Σt
t−1,t−1 = 0

and σ2
V,(t),s = 0. In this case I have:

Pr(btξt > (1− γ)(Γ + δ)Fb2tσU |(btξt > 0))

If bt > 0 it becomes

Pr(ξt > (1− γ)(Γ + δ)FbtσU |(ξt > 0))

In the benchmark AR(1) simulation F = ρ = 0.97, Γ + δ = ρ
ρ−1 = −32, 1 − γ = −9, σU = 0.0006. If

bt = 1 the RHS would be a value around 0.167. The probability would then be 0.066. In simulations bt
has the same magnitude as .5st, whose standard deviation in the model is 0.03. Thus in the model, the

above probability is basically 0. A similar calculation applies for bt < 0.

D.1 Restrictions on distorted sequences

In Section 2.3 I introduce the constant n as the number of dates at which the agent is distorting a sequence

of previous variances of the observation shock. This constant can be interpreted as the number of times

the agent is willing to entertain that the variance of the observation shock differs from the reference model.

It is thus independent of the sample size. However, it can also be thought of as the probability that for

a given date this different value occurs. This probability interpretation has an important implication for

the expected value of the standard deviation at date t+ 1, EP̃t σV,t+1. Indeed,

EP̃t σV,t+1 = Pr(σV,t+1 = σHV )σHV + Pr(σV,t+1 = σLV )σLV + Pr(σV,t+1 = σV )σV

I choose to consider the case in which the agent treats the expected value about the future in a way

that is consistent with her view about the past. The agent believes that that σV,s 6= σV only for n

out of t times in the sample of observable data she has.41 Thus, in forming EtσV,t+1,the agent uses

Pr(σV,t+1 = σHV ) + Pr(σV,t+1 = σLV ) = n/t. There are many combinations of these probabilities that

satisfy this criterion. If the object matters for the utility of the agent, the uncertainty aversion principle

dictates that she would choose the value that makes her worse off. In this model, where agents dislike

the variance of the excess returns, they will choose at time t based on the sample size of t to believe that

next periods realizations for the variance σV,t+1 are equal to σV with probability 1−n/t and equal to σHV
with probability n/t.

41The only important implication that this assumption has is on the pricing of options. Allowing for EP̃
t σV,t+1 to equal

σH
V would result in extremely expensive options which we do not see in the data.
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For simplicity, I will not keep track specifically of this choice when referring to the minimization part

in (7). When this object appears in the forecast I make use of the above argument and conclude that

EP̃t σV,t+1 = σHV
n

t
+ σV

(
1− n

t

)
(47)

Because this object will have a very small influence on the results and I could directly consider the

case of t large, it is inconsequential to use EP̃t σV,t+1 = σV .

E Benchmark parameterization

The state space for the true DGP is defined in (32) as

rt = H ′xt + σV vt

xt = Fxt−1 + σUut

where rt is the observable interest rate differential, xt is a (4× 1) vector, H ′ = [1 0 0 0], σU = [σDGPU 0

0 0] and F is a (4× 4) matrix:

F =


ρ1 ρ2 ρ3 ρ4

1 0 0 0

0 1 0 0

0 0 1 0


The benchmark parameterization is:

Table 2. Benchmark specification
σV σHV σLV σDGPU ρ1 ρ2 ρ3 ρ4 γ

0.00025 0.0037 0.000166 0.0005 1.54 −0.52 −0.34 0.3 10

The implied steady state Kalman gain for the true DGP, low precision and high precision signal is

KDGP = [0.8584 0.1735 -0.0177 -0.0411]′, KH = [0.166 0.14 0.108 0.0779]′ and KL = [0.9989 0.0017

0 0]′.

As discussed in Section 2.3 to quantify the statistical distance between the two models I use a

comparison between the log-likelihood of a sample {rt} computed under the reference sequence and

under the distorted optimal sequence. To compute the log-likelihood I use the Kalman Filter. For a given

deterministic sequence σtV = {σV,s, s ≤ t} the filter generates the objects

Σs,s−1 = FΣs−1,s−1F
′ + σUσ

′
U

Ks = Σs,s−1H(H ′Σs,s−1H + σ2
V,s)
−1

x̂s,s = Fx̂s−1,s−1 +Ks(rs −H ′Fx̂s−1,s−1)

Σs,s = Σs,s−1 −KsH
′Σs,s−1
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Let Ωs denote the variance H ′Σs,s−1H + σ2
V,s. The likelihood for the observation rs conditional on the

history of observables rs−1 is:

f(rs/rs−1) = (2π)−.5 det(Ωs)−.5 exp(−.5((rs −H ′Fx̂s−1,s−1)′(Ωs)−1(rs −H ′Fx̂s−1,s−1))

The sample log likelihood is then the sum
t∑
i=1

log f(rs/rs−1). Let the log-likelihood generated by the

reference sequence σtV = {σV,s = σV , s ≤ t} be denoted by LDGP (rt) and the one generated by the

equilibrium optimal sequence σtV = σ∗V (rt) using the parameterization in Table 2 be denoted by LDist(rt).

Table 3 Likelihood comparison: LDist(rt)− LDGP (rt)
(1) (2) (3)

Mean −1.48 −1.39 −138

(0.06) (0.05) (3.2)

St.dev. 1.13 1.06 3.2

(0.03) (0.03) −
%positive 0.167 0.178 0

(0.021) (0.027) −

Table 3 reports the mean difference and the standard deviation of LDist(rt)− LDGP (rt) for a sample

of T = 300. It also reports the percent of times in which LDist(rt) − LDGP (rt) > 0. This is referred to

in the model as the detection error probability. The standard errors for each statistics accross N = 1000

simulations is reported in the parentheses. Column (1) is the benchmark specification in which m = n =

2 so that the agent distorts the reference sequence only for the last 2 periods. In Column (2) n = 2

but m = 10 so that the agent distorts 2 out of the last 10 periods. In Column (3) n = t so the agent

can distort any period in the sample. In this case the difference LDist(rt)− LDGP (rt) is increasing with

the sample size so I report the mean difference for t = T = 300: LDist(rT ) − LDGP (rT ). The standard

deviation is then computed accross the N = 1000 simulations.
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Table 4. Empirical UIP regression and carry trade returns

UIP regression Carry trade returns

Country α β R2 Mean Standard Sharpe Skewness Kurtosis

Deviation Ratio

Belgium† 0.000 −0.593 0.002 0.0067 0.033 0.203 0.003 3.94

(0.002) (0.612) (0.0022) (0.002) (0.061) (0.243) (0.46)

Canada 0.004 −0.631 0.004 0.0019 0.016 0.125 −0.500 4.38

(0.002) (0.49) (0.0009) (0.001) (0.056) (0.169) (0.50)

France† 0.000 0.092 0.000 0.0051 0.032 0.160 −0.035 3.45

(0.003) (0.705) (0.0019) (0.001) (0.062) (0.155) (0.31)

Germany† 0.003 −0.657 0.003 0.0012 0.033 0.036 −0.184 3.54

(0.002) (0.832) (0.0022) (0.002) (0.065) (0.128) (0.32)

Italy† −0.000 0.196 0.001 0.0023 0.031 0.074 −0.297 4.08

(0.001) (0.388) (0.0021) (0.002) (0.068) (0.223) (0.50)

Japan‡ 0.010 −2.405 0.026 0.0025 0.034 0.073 −0.669 4.64

(0.003) (0.667) (0.0020) (0.002) (0.058) (0.246) (0.87)

Switzerland 0.007 −1.407 0.014 0.0010 0.035 0.029 −0.229 3.74

(0.003) (0.692) (0.0020) (0.003) (0.057) (0.210) (0.46)

UK −0.002 −1.533 0.014 0.0053 0.030 0.177 −0.029 4.91

(0.002) (0.86) (0.0015) (0.003) (0.052) (0.376) (0.91)

Average 0.003 −0.85 0.008 0.0033 0.0306 0.11 −0.242 4.08

Notes: The first 3 columns report estimates of the regression of time t+ 1 exchange rate difference on

the time t forward premium: St+1/St − 1 = α+ β(Ft/St − 1) + εt+1. Both Ft and St are USD per FCU.

Heteroskedasticity-robust standard errors are in parentheses. This table reports summary statistics for

returns from implementing the standard carry trade involving the USD and the pairing foreign currency

Returns are measured in USD, per dollar bet. Monthly data is used for the sample M1:1976 to M12:2006,

except for Euro legacy countries (†) for which the data ends in M12:1998 and Japan for which data begins

on M7:1978.
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Table 5. ML estimates of a state space representation with constant volatilities

Country pair Interest rate differential Forward Discount∑
ρ σV σU

∑
ρ σV σU

Belgium† 0.965 0.19 0.56 0.89 0.77 1.23

(0.01) (0.06) (0.14) (0.04) (0.15) (0.6)

Canada 0.955 0.28 0.53 0.99 0.33 0.41

(0.01) (0.05) (0.05) (0.06) (0.032) (0.06)

France† 0.972 0.003 0.43 0.945 1.31 1.48

(0.03) (0.18) (0.11) (0.02) (0.2) (0.340

Germany† 0.979 0.001 0.45 0.987 0.12 1.2

(0.02) (0.005) (0.025) (0.02) (0.32) (0.41)

Italy† 0.969 0.08 0.23 0.972 0.21 0.35

(0.01) (0.05) (0.09) (0.03) (0.11) (0.11)

Japan 0.986 0.031 0.45 0.983 0.21 0.65

(0.06) (0.088) (0.058) (0.03) (0.061) (0.095)

Switzerland 0.978 0.0056 0.52 0.962 0.28 0.63

(0.08) (0.065) (0.022) (0.03) (0.08) (0.17)

UK 0.974 0.29 0.31 0.969 0.38 0.35

(0.02) (0.02) (0.04) (0.05) (0.03) (0.06)

Notes: The state-space representation is described in (32). The sample for the interest rate differentials

data is M1 1981-M12 2006; for the forward discount is M1 1976-M12 2006, except for Japan M7 1978-

M12 2006. The entries in the columns for the standard deviations σV , σU are reported as the estimated

values×1000. Standard errors are in parentheses. The long run autocorrelation for the hidden state is

denoted by
∑
ρ and is defined as the sum of the AR coefficients in the transition equation.
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Table 6. Model implied β̂ for the UIP regression

(1) (2) (3) (4) (5)

β̂ t
β̂

β̂ t
β̂

β̂ t
β̂

β̂ t
β̂

β̂ t
β̂

T=300 Mean -0.25 -0.81 0.37 1.27 0.34 1.1 -0.57 -1.1 -0.19 -0.68

Median -0.22 -0.76 0.32 1.24 0.28 0.95 -0.55 -0.93 -0.17 -0.65

St.dev. 0.14 0.3 0.22 0.51 0.21 0.36 0.24 0.47 0.11 0.28

T=3000 Mean -0.28 -2.14 0.54 1.75 0.48 1.58 -0.66 -2.58 -0.21 -1.71

Median -0.28 -2.14 0.52 1.72 0.47 1.55 -0.67 -2.59 -0.21 -1.71

St.dev. 0.07 0.27 0.11 0.32 0.09 0.2 0.11 0.27 0.06 0.25

Note: Table 6 reports statistics for the model implied UIP regression defined in (33) st+1 − st =

β(it − i∗t ) + εt+1. The results are extremely similar when a constant is included in the regression. The

estimated coefficient is β̂ and its t-statistic in the sample is denoted by t
β̂
. The reported values are

statistics across N = 1000 simulations for T = 300 and N = 500 for T=3000. Column (1) presents the

results for the benchmark model. Column (2) for the case when the true noise/signal ratio is σ2
V /σ

2
U = 10.

Column (3) is the case in which the long-run autocorrelation in the state equation is
∑
ρ = 0.7. Column

(4) is the case in which there is no restriction on the number of periods in which the agent can distort the

sequence of variances, i.e. n = t. Column (5) maintains the benchmark restriction of n = 2 but allows

m = 10 so that the agent distorts 2 out of the last 10 periods. See Section 5.1 for a discussion.
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Table 7. A. Model implied statistics for the unhedged carry trade returns

Mean Standard Sharpe Skewness Kurtosis

Deviation Ratio

T = 300 0.0017 0.0106 0.16 −0.421 5.37

(0.0005) (0.007) (0.047) (0.288) (0.91)

T = 3000 0.0018 0.0115 0.1565 −0.19 6.58

(0.0001) (0.00045) (0.01) (0.15) (0.68)

Table 7.B. Model implied statistics for the hedged carry trade returns

Mean Standard Sharpe Skewness Kurtosis

Deviation Ratio

T = 300 0.0012 0.0067 0.179 1.46 7.22

(0.0004) (0.0006) (0.038) (0.38) (1.81)

T = 3000 0.0012 0.0073 0.164 2.63 12.01

(0.0001) (0.00037) (0.0135) (0.17) (1.66)

Table 7.C. Model implied statistics for the “crash risk” regressions

T = 300 T = 3000

β̂2 t
β̂2

β̂3 t
β̂3

β̂2 t
β̂2

β̂3 t
β̂3

−3.1 −8.61 −0.72 −10.21 −2.96 −7.83 −0.83 −12.41

(1.21) (2.44) (0.29) (2.1) (0.89) (1.48) (0.22) (1.9)

Note. Results obtained for the benchmark version. The unhedged carry trade is defined in (30). The

hedged carry trade is defined in (31). The excess returns at time t+1 are defined as ext+1 = rt−(st+1−st).
The first regression in Table 7.C is Skewt+1 = β2rt + ξ2,t+1 where Skewt,t+1 is the time t model implied

realized skewness of time t+ 1 excess returns. The second regression is SkewP̃t,t+1 = β3rt + ξ3,t+1, where

SkewP̃t,t+1 is the time t model implied risk-neutral skewness of time t + 1 returns. The reported values

are statistics across N = 1000 simulations for T = 300 and N = 500 for T=3000. Standard errors of the

statistics across the simulations are in parentheses.
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Figure 1: Model generated exchange rate path
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Table 8 Correlations exchange rates

(1) (2) (3) (4)

0.96 0.26 0.164 0.356

(0.02) (0.04) (0.04) (0.05)

Note. Figure 1 plots the exchange rate path for a simulation of T=300. Table 8 computes

the correlation between the exchange rate under the distorted expectations (st+1) and under rational

expectations (sREt+1) for a sample of T = 3000. The first and second column are the unconditional correlation

of the exchange rate levels (Corr(st+1, s
RE
t+1)) and first difference (Corr(∆st+1,∆sREt+1)) respectively. The

third and fourth column are the conditional correlations between the exchange rate differences in states

in which the product (∆sREt+1s
RE
t+1) > 0 and (∆sREt+1s

RE
t+1) < 0 respectively. Standard errors are computed

accross N=500 simulations of samples of size T . Standard errors of the statistics across the simulations

are in parentheses. See Section 5.1
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Figure 2: Model generated estimates of hidden state
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Table 9 Correlations estimate of hidden state

(1) (2) (3) (4)

0.97 0.49 0.35 0.69

(0.02) (0.05) (0.04) (0.06)

Note. Figure 2 plots the estimate of the hidden state for the same simulation of T=300 that generated

Figure 1. Table 9 computes the correlation between the time t estimate of the time t hidden state

under the distorted expectations (x̂tt,t) and under rational expectations (x̂REt,t ) for a sample of T = 3000.

The first and second column are the unconditional correlation of the estimate levels (Corr(x̂tt,t, x̂
RE
t,t ))

and first difference (Corr(∆x̂tt,t,∆x̂
RE
t,t )) respectively. The third and fourth column are the conditional

correlations between the first difference in the estimates in states in which the product (∆x̂REt,t s
RE
t ) < 0

and (∆x̂REt,t s
RE
t ) > 0 respectively. Standard errors are computed accross N=500 simulations of samples

of size T . Standard errors of the statistics across the simulations are in parentheses.
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Figure 3: Model implied UIP coefficients
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Note: The top plot is the histogram for the model implied distribution of estimated UIP coefficients for

a small sample of T=300 based on N=1000 simulations. The bottom plot is the histogram for a large

sample of T=3000 based on N=500 simulations.
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Figure 4: Model implied t-stat significance of UIP coefficients
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Note: These plots are histograms for the model implied distribution of the t-stat significance of the

estimated UIP coefficients in Figure 3.
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Figure 5: Model generated carry trade payoffs
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Note: The top plot is the histogram for the model implied distribution of the unhedged carry trade

payoffs accross a sample size of T=300 and number of simulations of N=1000. The red line indicates the

histogram implied by a normal distribution with the same mean and standard deviation as in the model

implied distribution. The bottom plot is the histogram of the hedged carry trade payoffs for the same

simulations as the top plot. The payoffs are computed at the monthly frequency.

66



Figure 6: Delayed overshooting
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Note: These plots show the response of the exchange rate to an unanticipated decrease in the foreign

interest rate for the ambiguity aversion and rational expectations model. The same size of distortions on

the temporary shock’s variance is used for all three plots. The top plot employs the benchmark restriction

of allowing only the last two periods to be distorted. In the middle plot the agent distorts any two of

the last ten dates. In the bottom plot there are no restrictions on the number of periods in which this

distortion is optimally applied.
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