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Abstract

Modeling heteroscedasticity in semiparametric regression can improve the ef-
ficiency of the estimator of the parametric component in the regression function,
and is important for inference problems such as plug-in bandwidth selection and
the construction of confidence intervals. However, the literature on exploring het-
eroscedasticity in a semiparametric setting is rather limited. Existing work is mostly
restricted to the partially linear mean regression model with a fully nonparametric
variance structure. The nonparametric modeling of heteroscedasticity is hampered
by the curse of dimensionality in practice. Moreover, the approaches used in exist-
ing work need to assume smooth objective functions, therefore exclude the emerging
important class of semiparametric quantile regression models.

To overcome these drawbacks, we propose a general semiparametric location-
dispersion regression framework, which enriches the currently available semipara-
metric regression models. With our general framework, we do not need to impose
a special semiparametric form for the location or dispersion function. Rather, we
provide easy to check sufficient conditions such that the asymptotic normality the-
ory we establish is valid for many commonly used semiparametric structures, for
instance, the partially linear structure and single-index structure. Our theory per-
mits non-smooth location or dispersion functions, thus allows for semiparametric
quantile heteroscedastic regression. We demonstrate the proposed method via sim-
ulations and the analysis of a real data set.
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1 Introduction

The problem of heteroscedasticity frequently arises when applying regression analysis

to data from a wide variety of disciplines. For example, heteroscedastic regression has

seen important applications in immunoassays validation (Davidian, Carroll and Smith,

1988), environmetrics (Holst et al., 1996), pharmacokinetics (Mesnil et al., 1998), off-line

quality control (Chan and Mak, 2001), finance (Tsui and Ho, 2004), analysis of protein

expressions in protein arrays (Tabus et al., 2006), among others. Traditionally, modeling

heteroscedasticity is restricted to modeling a nonconstant variance function in a mean

regression model. In this paper, we broaden the scope of heteroscedasticity by consider-

ing modeling and estimation of a nonconstant dispersion function in a general location-

dispersion regression model. More specifically, we assume that the relation between a

response variable Y and a covariate vector X is given by

Y = m(X) + σ(X)ε, (1.1)

and we can write m(x) = T (F (·|x)) and σ(x) = S(F (·|x)) for some functionals T and S,

such that T (FaY+b(·|x)) = aT (FY (·|x)) + b and S(FaY+b(·|x)) = aS(FY (·|x)), for all a ≥ 0

and b ∈ R, where FaY+b(·|x) denotes the conditional distribution of aY + b given X = x

(see also Huber, 1981, p. 59, 202). In particular, for appropriate choices of T and S this

formulation allows the study of conditional mean and median regression, and of various

dispersion functions based on e.g. least squares deviation (i.e. the variance function),

median squares, least absolute or median absolute deviation. In model (1.1), we call m(·)
the regression function and the nonnegative function σ(·) the dispersion function.

We focus on the large class of semiparametric regression models where m(·) has a

semiparametric structure. That is, m(x) = m(x, α0, r0) where α0 is a finite dimensional

parameter and r0 is an infinite dimensional parameter. The main interest is often in

making inference about α0 while treating r0 as a nuisance parameter, which can only be

estimated at a slower than
√
n nonparametric rate. In the past decade, semiparametric

regression models have received extensive attention due to their flexibility to accommodate

nonlinear functional relationships. We refer to Härdle, Liang and Gao (2000), Ruppert,

Wand and Carroll (2003), Yatchew (2003), among others, for a systematic introduction

to semiparametric regression.

In semiparametric regression models, the commonly used estimation procedures in

general still yield consistent estimators for α0 even if heteroscedasticity is not accounted
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for. However, efficiency loss due to ignoring heteroscedasticity may be substantial. In the

simulations carried out in Section 5, we observe efficiency gains between 20-30% when

heteroscedasticity is incorporated in modeling and estimation. Moreover, the correctness

of the standard error formula for α0 does depend critically on the dispersion function.

Thus modeling heteroscedasticity is crucial for obtaining correct confidence intervals and

hypothesis testing results. See also Akritas and Van Keilegom (2001) and Carroll (2003)

for relevant discussions on the necessity of modeling heteroscedasticity for constructing

prediction intervals. In addition, it might be important to model the dispersion function

in order to obtain a satisfactory bandwidth for estimating the nonparametric part of

the regression function. Ruppert et al. (1997) provided such an example, where the

heteroscedasticity is severe and the variance function has to be estimated in order to

obtain a good bandwidth for estimating the derivative of the mean function.

Furthermore, it is worth mentioning that the form of the dispersion function itself is

sometimes of direct scientific interest. Downs and Rocke (1979) gave several compelling

examples where the form of heteroscedasticity provides political scientists with substantive

information that would ordinarily go undetected. In quality control engineering, the

purpose of data analysis is often to understand the variance structure so that engineers

can make improvement for variance reduction.

Most of the existing literature on modeling heteroscedasticity is concerned with para-

metric or nonparametric regression. See Davidian and Carroll (1987), Carroll and Rup-

pert (1988) and Zhao (2001) for parametric heteroscedastic regression; and Müller and

Stadtmüller (1987), Hall and Carroll (1989), Ruppert et al. (1997), Fan and Yao (1998)

and Cai and Wang (2007) for nonparametric heteroscedastic regression. For semiparamet-

ric heteroscedastic regression, Schick (1996), Liang, Härdle and Carroll (1999), Härdle,

Liang and Gao (2000, §2), Ma, Chiou and Wang (2006) have studied heteroscedastic

partially linear mean regression models, where the variance function σ2(x) is assumed to

be smooth but unknown. They estimate the variance function nonparametrically, and

then use the estimator to construct weights to achieve more efficient estimation of the

parametric component in the regression function. Härdle, Hall and Ichimura (1993) inves-

tigated heteroscedastic single-index models, so did Xia, Li and Chiou (2002); and Chiou

and Müller (2004) proposed a flexible semiparametric quasi-likelihood, which assumes

that the mean function has a multiple-index structure and the variance function has an

unknown nonparametric form.
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The aforementioned work on semiparametric heteroscedastic regression suffers from

several drawbacks. First, they all adopt a fully nonparametric model for the variance

function. This approach may be seriously limited by curse of dimensionality in practice.

Second, they only tackle specific semiparametric models. Third, their methods need to

assume a smooth objective function and do not cover the emerging important class of

semiparametric quantile regression models, see for instance He and Liang (2000), Lee

(2003), Horowitz and Lee (2005). In fact, existing study of heteroscedastic quantile re-

gression is restricted to the case where the quantile function is parametrically modeled

(Koenker and Zhao, 1994, Zhao, 2001). The last point is also relevant when one is in-

terested in robust estimation for the mean regression model in the presence of outlier

contamination.

The above concerns motivate us to propose a flexible semiparametric framework for

modeling heteroscedasticity and to develop a unified theory that applies to general semi-

parametric structures and non-smooth objective functions. In particular, we advocate to

adopt a semiparametric structure for modeling the dispersion function. This approach

avoids the rigid assumption imposed by a parametric dispersion function; at the same

time it circumvents the curse of dimensionality introduced by a nonparametric dispersion

function. In this general framework, we establish an asymptotic normality theory for es-

timating the form of heteroscedasticity by building on the work of Chen, Linton and Van

Keilegom (2003), who developed a general theory for semiparametric estimation with a

non-smooth criterion function. We discuss two different constraints for the random error

ε in (1.1): the mean zero constraint and the median zero constraint, which correspond

to mean regression and median regression (representative case of quantile regression),

respectively. We provide a set of easy to check sufficient conditions, such that the asymp-

totic normality theory is valid for many commonly used semiparametric structures, for

instance, the partially linear structure and the single-index structure. We discuss but do

not get deep into how the knowledge of heteroscedasticity can be used to construct a more

efficient weighted estimator for the parametric component of m(·).
The paper is organized as follows. In Section 2 we formally introduce the semiparamet-

ric location-dispersion model and discuss how to estimate the dispersion function. Section

3 provides generic assumptions that are applicable to general semiparametric models, and

presents the asymptotic normality theory for estimating the dispersion function. In Sec-

tion 4 we verify these generic conditions for two particular semiparametric models. The
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finite sample behavior of the proposed methods is examined in Section 5, while Section 6

is devoted to the analysis of data on gasoline consumption. In Section 7 some ideas for

future research are discussed. Finally, all proofs are collected in the Appendix.

2 Estimation of a semiparametric dispersion function

2.1 Semiparametric location-dispersion model

We consider a general semiparametric location-dispersion model:

Y = m(X,α0, r0) + σ(X, β0, g0)ε, (2.1)

where X = (X1, . . . , Xd)
T is a d-dimensional covariate vector with compact support RX ,

α0 and β0 are finite dimensional parameters, and r0 and g0 are infinite dimensional pa-

rameters. Let (XT
i , Yi)

T = (X1i, . . . , Xdi, Yi)
T be i.i.d. copies of (XT , Y )T . The conditions

that need to be imposed on ε to make the model identifiable are given in Section 2.3

(mean regression) and Section 2.4 (median regression).

The dispersion function is assumed to have a general semiparametric structure. This

paper discusses two examples in detail (Section 4), corresponding to the exponentially

transformed partially linear structure σ(X, β0, g0) = exp(βT0 X(1) + g0(X(2))) with X =

(XT
(1), X

T
(2))

T and the single-index structure σ(X, β0, g0) = g0(βT0 X), respectively. We as-

sume that the unknown but positive function g0 belongs to some space G of uniformly

bounded functions that depend on X and β through a variable U = U(X, β), where β be-

longs to a compact set B in IR`, with ` ≥ 1 depending on the model (e.g. U(X, β) = X(2)

and U(X, β) = βTX for the above partial linear and single index structures respectively).

For any function g, the notation gβ will be used to indicate the (possible) dependence on β.

The estimator of the true g0 will in fact in many situations be a profile estimator, depend-

ing on β (see the examples in Section 4). For notational convenience we use the abbrevi-

ated notation (β, g) = (β, gβ(·)), (β, g0) = (β, g0β(·)) and (β0, g0) = (β0, g0β0(·)), whenever

no confusion is possible. Whenever needed, we will replace σ(X, β, g) by σ(X, β, gβ) or

σ(X, β, gβ(U)) to highlight the dependence of the function g on the parameter β or on

the variable U (note that this implies that the third argument of the function σ can be a

function in G or an element of IR, depending on which notation we use).

To keep the notations and presentation simple, we assume that both g0 and U are one-

dimensional. However, all the results in this paper can be extended in a straightforward
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way to the multi-dimensional case. For example, we may have g0 = (g01, . . . , g0k) for some

k ≥ 1, which allows a multiplicative model for σ of the form σ(x) =
∏d

j=1 g0j(xj).

Although we will discuss later how to use the estimated dispersion function to construct

a more efficient estimator for α0, our main interest in this paper is to establish a general

theory for estimating β0 and σ(X, β0, g0). Therefore, we will simply write m0 or m0(X)

to denote the regression function in the sequel.

2.2 A motivating example

To help understand the general estimation procedure, we start with a motivating example

given by

Y = m0(X) + exp{βT0 X(1) + g0(X(2))}ε, (2.2)

where E(ε|X) = 0, Var(ε|X) = 1 and X = (XT
(1), X(2))

T , with X(1) = (X1, . . . , Xd−1)T

and X(2) = Xd. Note that model (2.2) can also be written as

(Y −m0(X))2 = exp
{

2βT0 X(1) + 2g0(X(2))
}

+ exp
{

2βT0 X(1) + 2g0(X(2))
}

(ε2 − 1).(2.3)

Since E(ε2 − 1|X) = 0, the regression function in the new model (2.3) is equal to the

variance function in the original model (2.2). Therefore we can apply estimation tech-

niques known from the literature on semiparametric regression estimation to estimate the

variance function. In particular, rewrite (2.3) as

( Y −m0(X)

exp(βT0 X(1))

)2

= exp(2g0(X(2))) + exp(2g0(X(2)))(ε
2 − 1), (2.4)

and estimate s(x2) = exp(2g0(x2)) by kernel smoothing:

ŝβ(x2) =

∑n
i=1 K

(
x2−X(2)i

h

)(
Yi−m̂(Xi)

exp(βTX(1)i)

)2

∑n
i=1 K

(
x2−X(2)i

h

) ,

where K(·) is a kernel function, h is a smoothing parameter that tends to zero as sample

size gets large, and m̂(·) is a preliminary estimator of the regression function m0(·).
Note that (2.4) can be rewritten as

(Y −m0(X))2 = exp(2βT0 X(1))s(X(2)) + exp(2βT0 X(1))s(X(2))(ε
2 − 1).
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Thus we can estimate β0 by minimizing the following weighted least squares objective

function in β:

n−1
n∑

i=1

[(Yi −m0(Xi))
2 − exp(2βTX(1)i)s(X(2)i)]

2

exp(4β̂∗TX(1)i)s2(X(2)i)
. (2.5)

where β̂∗ is an initial estimator of β0, like e.g. the unweighted least squares estimator.

Taking the derivative of (2.5) with respect to β, then replacing s(X(2)i) and m0(Xi)

by their respective estimators, leads to the following system of equations in β:

n−1
n∑

i=1

[(Yi − m̂(Xi))
2 − exp(2βTX(1)i)ŝβ(X(2)i)

exp(4β̂∗TX(1)i)ŝ
2
β̂∗

(X(2)i)

]
exp(2βTX(1)i)ŝβ(X(2)i)X(1)i = 0. (2.6)

Finally, the variance function can be estimated by σ̂2(x) = exp(2β̂Tx1)ŝβ̂(x2). The above

procedure can be iterated until convergence, where at each step the estimator β̂∗ is up-

dated, and the estimated variance function is used to improve the estimator of m0.

The estimating equation (2.6) is obtained by the backfitting method. An alternative

approach is to first replace s(X(2)i) with the estimator ŝβ(X(2)i) in (2.5), and then take

the derivative with respect to β. One then also needs to take into account the dependence

of ŝβ(X(2)i) on β. This latter approach leads to the so-called profile estimator. We focus

our attention on backfitting type estimators in this paper, see also Remark 2.1 in Section

2.3.

2.3 Estimation of the dispersion function with zero mean errors

We assume in this subsection that E(ε|X) = 0 and Var(ε|X) = 1, in which case m0(X) =

E(Y |X) and σ2(X, β0, g0) = Var(Y |X). Similarly as in (2.3), rewrite model (2.1) as:

(Y −m0(X))2 = σ2(X, β0, g0) + σ2(X, β0, g0)(ε2 − 1).

Then, β0 is the solution of the following set of equations in β:

H(β, g0, m0, w0) = E[h(X, Y, β, g0, m0, w0)] = 0,

where w0(x) = σ−4(x, β0, g0),

h(x, y, β, g,m, w) = w(x)
[
(y −m(x))2 − σ2(x, β, g)

] ∂
∂β

σ2(x, β, g), (2.7)
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and where ∂
∂β
σ2(x, β, g) =

(
∂
∂βj
σ2(x, β, g(u(x, β)))

)
j=1,...,`

. Note that ∂
∂β
σ2(x, β, g) is in

general not only a function of β and g, but also of ∂g
∂u

, unless u = u(x, β) does not

depend on β, see for example the single-index structure discussed in Section 4. The

weight function w(x) belongs to some space W of uniformly bounded functions and could

in principle be taken as w(x) ≡ 1. However, better results are obtained in practice for

the above choice of weight function, which is motivated from efficiency considerations.

Let m̂ be an estimator of m0, which can be taken (in this first step) as the estimated

regression function under the homoscedasticity assumption. Let ĝ(u) be an appropriate

estimator of g0(u) that is differentiable with respect to u. In many situations, the estimator

ĝ depends on β, see for instance the motivating example in Section 2.2; we will therefore

denote it by ĝβ whenever the dependence on β is relevant. We estimate the weight w0(x)

by ŵ(x) = σ−4(x, β̂∗, ĝβ̂∗), where β̂∗ is (in this first step) the unweighted least squares

estimator, i.e. β̂∗ satisfies Hn(β̂∗, ĝβ̂∗, m̂, 1) = 0, where

Hn(β, g,m,w) = n−1
n∑

i=1

h(Xi, Yi, β, g,m, w),

with h(x, y, β, g,m, w) defined in (2.7). Now, define β̂ as the solution in β of the equations

Hn(β, ĝβ, m̂, ŵ) = 0. (2.8)

We estimate the variance function σ2(x, β0, g0) by σ̂2(x) = σ2(x, β̂, ĝβ̂). This procedure

can be iterated until convergence, where at each step we update the estimator β̂∗ and we

re-estimate m0 by using a weighted estimation procedure that takes the heteroscedasticity

into account via the estimated variance function.

Remark 2.1. Note that in the formula of Hn(β, ĝβ, m̂, ŵ) the derivative ∂
∂β
σ2(x, β, ĝβ)

is obtained without taking into account that ĝβ depends on β (i.e. we first calculate the

derivative ∂
∂β
σ2(x, β, g) and then plug-in g = ĝβ, thus ∂

∂β
σ2(x, β, ĝβ) = ∂

∂β
σ2(x, β, g)|g=ĝβ).

As a consequence, our general estimation procedure does not cover profile estimation

methods (where the derivative of σ2(x, β, ĝβ) takes the dependence of ĝβ on β into ac-

count). However, it is easy to extend our method to profile estimators. See Section 7 for

more details. For a comparison of the backfitting estimator and the profile estimator, we

refer to the recent paper of Van Keilegom and Carroll (2007) and the references therein.
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2.4 Estimation of the dispersion function with zero median er-

rors

Now we consider the estimation of the dispersion function when it is assumed that

med(ε|X) = 0 in model (2.1), which implies that m0(X) = med(Y |X). This can be

straightforwardly extended to general quantile regression.

For identifiability of σ(x), we need some additional assumption on the distribution

of the random error. The assumption med(|ε| |X) = 1 leads to σ(X, β0, g0) = med(|Y −
m0(X)||X) (median absolute deviation). An alternative common assumption is E(|ε||X) =

1, which leads to σ(X, β0, g0) = E(|Y −m0(X)| |X) (least absolute deviation). The second

case is technically easier to deal with than the first. We therefore concentrate on the first

case, see also Remark 3.5 in Section 3.3.

Keeping the same notations as in Section 2.3, and writing model (2.1) as

|Y −m0(X)| = σ(X, β0, g0) + σ(X, β0, g0)(|ε| − 1),

we see that β0 is the solution in β of H(β, g0, m0, w0) = E[h(X, Y, β, g0, m0, w0)] = 0,

where now w0(x) = σ−1(x, β0, g0) and

h(x, y, β, g,m, w) = w(x)
[
2I
{
|y −m(x)| − σ(x, β, g) ≥ 0

}
− 1
] ∂
∂β

σ(x, β, g).

Let m̂ and ĝ be appropriate estimators of m0 and g0, depending on the imposed model

on the regression and dispersion function. Suppose that ĝ(u) is differentiable with respect

to u. We estimate the weight function w0(x) by ŵ(x) = σ−1(x, β̂∗, ĝβ̂∗), where we define

the preliminary estimator β̂∗ as the solution of the non-weighted minimization problem:

β̂∗ = argminβ‖Hn(β, ĝβ, m̂, 1)‖, where Hn(β, g,m,w) = n−1
∑n

i=1 h(Xi, Yi, β, g,m, w),

and where ‖ · ‖ denotes the Euclidean norm. Finally, let

β̂ = argminβ‖Hn(β, ĝβ, m̂, ŵ)‖.

As before, this procedure can be iterated to improve the estimation of β0. Note that the

function h is not smooth in β and hence β̂ does not necessarily satisfy Hn(β̂, ĝβ̂, m̂, ŵ) = 0.
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3 Asymptotic results

3.1 Notations and assumptions

The following notations are needed. Let f(y|x) = F ′(y|x) be the density of Y given X = x,

and let g′(u) = ∂g(u)
∂u

for any g ∈ G. For any function g ∈ G, k ∈ K and m ∈ M (where

K and M are the spaces to which the true functions g′0 and m0 belong respectively), we

denote ‖g‖∞ = supβ∈B supx∈RX |gβ(u(x, β))|, ‖k‖∞ = supβ∈B supx∈RX |kβ(u(x, β))| and

‖m‖∞ = supx∈RX |m(x)|. Also, N(λ,G, ‖ · ‖∞) is the covering number with respect to the

norm ‖·‖∞ of the class G, i.e. the minimal number of balls of ‖·‖∞-radius λ needed to cover

G (see e.g. Van der Vaart and Wellner (1996)). Finally, RU = {u(x, β) : x ∈ RX , β ∈ B},
U0 = U(X, β0), and U0i = U(Xi, β0) (i = 1, . . . , n).

Below we list the assumptions that are needed for the asymptotic results in Subsec-

tions 3.2 and 3.3. The purpose is to provide easy-to-check sufficient conditions such that

the asymptotic results are valid for general semiparametric structures, and for both mean

and median semiparametric regression models. The A and B-conditions are on the esti-

mators ĝ and m̂ respectively, whereas all other conditions are collected under the C-list.

In Section 4 we check these generic conditions for particular models and estimators of

m0(X) and σ(X, β0, g0).

Assumptions on the estimator ĝ

(A1) ‖ĝ − g0‖∞ = oP (1), sup‖β−β0‖≤δn supx∈RX |(ĝβ − g0β)(u(x, β))| = oP (n−1/4), and the

same holds for ĝ′− g′0, where δn → 0, and where g0β(u) is such that g0β0(u) = g0(u).

(A2)
∫∞

0

√
logN(λs,H, ‖ · ‖∞) dλ < ∞, where H = G or K, and where s = 1 for mean

regression and s = 2 for median regression. Moreover, P (ĝβ ∈ G) → 1 and P (ĝ′β ∈
K)→ 1 as n tends to infinity, uniformly over all β with ‖β − β0‖ = o(1).

(A3) The estimator ĝ0 = ĝβ0 satisfies

ĝ0(u)− g0(u) = (nan)−1

n∑

i=1

K1

(u− U0i

an

)
η(Xi, Yi) + oP (n−1/2)

uniformly on {u(x, β0) : x ∈ RX}, where E[η(X, Y )|X] = 0, an → 0, na2q
n → 0, and

K1 is a symmetric and continuous density of order q ≥ 2 with compact support.
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(A4) supx∈RX |{(ĝβ − g0β) − (ĝ0 − g0)}(u(x, β))| = oP (1)‖β − β0‖ + OP (n−1/2), for all β

with ‖β − β0‖ = o(1).

Assumptions on the estimator m̂

(B1) ‖m̂−m0‖∞ = oP (n−1/4).

(B2)
∫∞

0

√
logN(λs,M, ‖ · ‖∞) dλ < ∞, where s = 1 for mean regression and s = 2 for

median regression. Moreover, P (m̂ ∈ M)→ 1 as n tends to infinity.

(B3) Uniformly in x ∈ RX ,

m̂(x)−m0(x)

= (nbn)−1
n∑

i=1

d∑

j=1

K2

(xj −Xji

bn

)
ζ1j(Xji, Yi) + n−1

n∑

i=1

ζ2(Xi, Yi) + oP (n−1/2),

where E[ζ1j(Xj, Y )|Xj] = 0 (j = 1, . . . , d), E[ζ2(X, Y )] = 0, bn → 0, nb4
n → 0, and

K2 is a symmetric and continuous density with compact support.

Other assumptions

(C1) For all δ > 0, there exists ε > 0 such that inf‖β−β0‖>δ ‖H(β, g0, m0, w0)‖ ≥ ε > 0.

(C2) Uniformly for all β ∈ B, H(β, g,m,w) is continuous with respect to the norm ‖ · ‖∞
in (g,m,w) at (g,m,w) = (g0, m0, w0), and the matrix Λ defined in Theorem 3.1

and 3.3 is of full rank.

(C3) The function (x, β, z) → σ(x, β, z) is three times continuously differentiable with

respect to z and the components of x and β, and all derivatives are uniformly

bounded on RX×B×{g(u) : g ∈ G, u ∈ RU}. Moreover, infx∈RX ,β∈B σ(x, β, g0) > 0

and supx,y f(y|x) <∞.

(C4) The function (x, β) → u(x, β) is continuously differentiable with respect to the

components of x and β, and all derivatives are uniformly bounded on RX × B.

Moreover, the function (u, β) → g0β(u) is continuously differentiable with respect

to u and the components of β and the derivatives are uniformly bounded on RU×B.
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Remark 3.1. Let Cα
M(RU ) be the set of all continuous functions g : RU → IR with

‖g‖α = max
k≤α

sup
u
|g(k)(u)|+ sup

u1,u2

|g(α)(u1)− g(α)(u2)|
|u1 − u2|α−α

≤M <∞,

where α is the largest integer strictly smaller than α. Then, by Theorem 2.7.1 in Van der

Vaart and Wellner (1996), the condition on the covering number in (A2) is satisfied if G
belongs to Cα

M(RU ) with α > 1/2 for s = 1 and α > 1 for s = 2.

Remark 3.2. In condition (A1), the function g0β(u) satisfies g0β0(u) = g0(u). For specific

examples of g0β(u), we refer to Section 4, particularly (4.2) and (4.4). Note that if u(x, β)

does not depend on β (like for the partial linear model), then the conditions related to

the derivative ĝ′ and the space K (see (A1) and (A2)) can be omitted. On the other

hand, if u(x, β) does depend on β, but ∂
∂β
σ(x, β, g) is linear in g′(u(x, β)), then it can

be easily seen that the condition sup‖β−β0‖≤δn supx∈RX |(ĝ′β − g′0β)(u(x, β))| = oP (n−1/4) is

not necessary.

Remark 3.3. Note that assumption (B3) requires that the regression function estima-

tor involves at most univariate smoothing, which is the case for e.g. the partial linear,

single index or additive model for the regression function, but not for the completely

nonparametric model. It is possible to adapt this condition to allow for the completely

nonparametric case as well, but we believe that whenever a semiparametric model is as-

sumed for the variance function, it makes more sense to consider a semiparametric model

for the regression function as well.

3.2 Asymptotic results with zero mean errors

In the following theorem, we give the Bahadur representation and the asymptotic nor-

mality of the estimator β̂ under the general generic conditions given in Section 3.1, and

under the assumption that E(ε|X) = 0 and Var(ε|X) = 1. Since β0 is often associated

with important factors such as treatment effects, the estimation of β0 is sometimes of in-

dependent interest, as it tells us how the treatment affects the dispersion of the response

variable in addition to its effect on the location.

The proof is given in the Appendix. We use the notation d
dβ
σ2(x, β, gβ) to denote the

complete derivative of σ2(x, β, gβ) with respect to β, i.e.,

d

dβ
σ2(x, β, gβ)j = lim

τ→0

[
σ2
(
x, β + τej, gβ+τej(u(x, β + τej))

)
− σ2

(
x, β, gβ(u(x, β))

)]
/τ,

12



where ej has the jth entry equal to one and all the other entries equal to zero, j = 1, . . . , `.

Theorem 3.1 Assume that conditions (A1)-(A4), (B1)-(B2) and (C1)-(C4) are satisfied.

Then,

β̂ − β0 = n−1

n∑

i=1

Λ−1
{
h(Xi, Yi, β0, g0, m0, w0) + ξ(Xi, Yi)

}
+ oP (n−1/2),

and

n1/2(β̂ − β0)
d→ N(0,Ω),

where Ω = Λ−1V (Λ−1)T ,

Λ = −E
[ 1

σ4(X, β0, g0)

∂

∂β
σ2(X, β0, g0)

d

dβT
σ2(X, β0, g0)

]
,

ξ(Xi, Yi) = −E
[ 1

σ4(X, β0, g0)

∂

∂z
σ2(X, β0, z)|z=g0(U0i)

∂

∂β
σ2(X, β0, g0)

∣∣∣ U0 = U0i

]
η(Xi, Yi)fU0(U0i),

V = Var
{
h(X, Y, β0, g0, m0, w0) + ξ(X, Y )

}
,

with ∂
∂β
σ2(x, β0, g0) = ∂

∂β
σ2(x, β, g0)|β=β0, and fU0(·) the density of U0.

Note that the above theorem does not require condition (B3). This is because the

difference m̂(X) − m0(X) cancels out in the expansion of β̂ − β0. As a consequence,

the asymptotic variance of β̂ − β0 does not depend on the way we estimate the regres-

sion function m0, since usually also the function η (showing up in the representation for

ĝ − g0) does not depend on the way we estimate m0. This agrees with the completely

nonparametric case.

Based on the asymptotic results for β0, we can establish the asymptotic normality

of σ̂2(x) = σ2(x, β̂, ĝβ̂). The theorem is given below and its proof can be found in the

Appendix.

Theorem 3.2 Assume that the conditions of Theorem 3.1 hold true. Then, for any fixed

x ∈ RX ,

(nan)1/2
{
σ̂2(x)− σ2(x, β0, g0)

}
d→ N(0, v2(x)),

where

v2(x) =
[ ∂
∂z
σ2(x, β0, z)|z=g0(u(x,β0))

]2

‖K1‖2
2Var

(
η(X, Y )|U0 = u(x, β0)

)
,

and ‖K1‖2
2 =

∫
K2

1 (v)dv.
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Note that the estimator β̂ does not contribute to the asymptotic variance of σ̂2(x),

since its rate of convergence is faster than the nonparametric rate (nan)1/2.

Remark 3.4. Note that the estimation of the regression function m0 can now be updated,

by using a weighted least squares procedure, where the weights are given by the inverse

of the estimated variance function σ̂2(x) = σ2(x, β̂, ĝβ̂). This leads to more efficient

estimation of the regression function. As a special case, consider the partial linear mean

regression model. Then, Härdle, Liang and Gao (2000) (Theorem 2.1.2, page 22) showed

that whenever the estimated weights are uniformly at most oP (n−1/4) away from the true

(unknown) weights, then the variance of the estimators of the regression coefficients is

asymptotically equal to the variance of the estimator obtained by using the true weights.

In our case the weights are at a distance OP ((nan)−1/2) = oP (n−1/4) away from the true

weights, and so their result applies, provided we can show that this rate holds uniformly

in x ∈ RX . We claim that this can be shown, but the proof is long and technical and

beyond the scope of this paper. Their result could be generalized to other semiparametric

regression models, but we do not go deeper into this issue here (see also Zhao (2001) for

a similar result in the context of linear median regression). It would also be of interest to

consider the efficiency of the weighted least squares estimator relative to the unweighted

one. We illustrate this issue in the simulation section, where we will calculate the variance

of the unweighted and the weighted estimator for some specific models.

3.3 Asymptotic results with zero median errors

In Theorem 3.3 below, we give the Bahadur representation and the asymptotic normality

of the estimator for β0 under the assumption that med(ε|X) = 0 and med(|ε| |X) = 1.

The conditional density of ε given X is denoted by fε(·|X).

Theorem 3.3 Assume that conditions (A1)-(A4), (B1)-(B3) and (C1)-(C4) are satisfied.

Then,

β̂ − β0 = n−1

n∑

i=1

Λ−1
{
h(Xi, Yi, β0, g0, m0, w0) + ξ(Xi, Yi)

}
+ oP (n−1/2),

and

n1/2(β̂ − β0)
d→ N(0,Ω),
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where Ω = Λ−1V (Λ−1)T ,

Λ = −E
[ 1

σ2(X, β0, g0)
{2fε(1|X) + 2fε(−1|X)} ∂

∂β
σ(X, β0, g0)

d

dβT
σ(X, β0, g0)

]
,

ξ(Xi, Yi)

=

d∑

j=1

E
[ 1

σ2(X, β0, g0)
{−2fε(1|X) + 2fε(−1|X)} ∂

∂β
σ(X, β0, g0)

∣∣∣Xj = Xji

]
ζ1j(Xji, Yi)fXj (Xji)

+E
[ 1

σ2(X, β0, g0)
{−2fε(1|X) + 2fε(−1|X)} ∂

∂β
σ(X, β0, g0)

]
ζ2(Xi, Yi)

−E
[ 1

σ2(X, β0, g0)
{2fε(1|X) + 2fε(−1|X)} ∂

∂z
σ(X, β0, z)|z=g0(U0i)

× ∂

∂β
σ(X, β0, g0)

∣∣∣ U0 = U0i

]
η(Xi, Yi)fU0(U0i),

V = Var
{
h(X, Y, β0, g0, m0, w0) + ξ(X, Y )

}
.

Theorem 3.4 Assume that the conditions of Theorem 3.3 hold true. Then, for any fixed

x ∈ RX ,

(nan)1/2
{
σ̂(x)− σ(x, β0, g0)

}
d→ N(0, v2(x)),

where

v2(x) =
[ ∂
∂z
σ(x, β0, z)|z=g0(u(x,β0))

]2

‖K1‖2
2Var

(
η(X, Y )|U0 = u(x, β0)

)
.

Remark 3.5. The above two theorems can be easily adapted to the case where the

dispersion function is defined by σ(x, β, g) = E(|Y −m(X)| |X = x) (i.e. E(|ε| |X) = 1).

In fact, the formulas of the matrix Λ and of the function ξ can be similarly obtained by

combining the calculations done in the proofs of Theorems 3.1 and 3.3. These calculations

show that the parameter s in condition (B2) equals 2, whereas for condition (A2) s equals

1. We omit the details.

4 Examples

In this section we consider two particular semiparametric regression models, we pro-

pose estimators under these models and verify the conditions that are required for the

asymptotic results of Section 3. The first example is a representative example for mean

regression, the second one for median regression.
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4.1 Single index mean regression model

In this first example we consider a mean regression model with a single index regression

and variance function:

Y = r0(αT0X) + g
1/2
0 (βT0 X)ε, (4.1)

where E(ε|X) = 0, E(ε2|X) = 1 and where g0 is a positive function. In order to correctly

identify the model, we assume that α01 = β01 = 1. This model has also been studied by

Xia, Tong and Li (2002), using a different estimation method. Let m̂(x) be an estimator

of the unknown regression function m0(x) = r0(αT0 x), like e.g. the estimator proposed in

Härdle, Hall and Ichimura (1993). See also Delecroix, Hristache and Patilea (2006) for

a more general class of semiparametric M -estimators of m0(x). Since the verification of

conditions (B1) and (B2) is easier than of conditions (A1) and (A2), we concentrate in

what follows on the verification of the A-conditions. First, define for any β ∈ IRd,

g0β(u) = E
(

(Y −m0(X))2|βTX = u
)
, (4.2)

and let

ĝβ(u) =
n∑

i=1

K1a(u− βTXi)∑n
j=1K1a(u− βTXj)

(Yi − m̂(Xi))
2,

where K1a(v) = K1(v/an)/an, K1 is a kernel function and an a bandwidth sequence. For

(A1), note that

ĝβ(u)− g0β(u) =
n∑

i=1

K1a(u− βTXi)∑n
j=1K1a(u− βTXj)

(Yi −m0(Xi))
2 − g0β(u)

+

n∑

i=1

K1a(u− βTXi)∑n
j=1K1a(u− βTXj)

{
(m̂(Xi)−m0(Xi))

2

−2(Yi −m0(Xi))(m̂(Xi)−m0(Xi))
}

= OP ((nan)−1/2(logn)1/2) + oP (n−1/4) = oP (n−1/4),

uniformly in u and β, provided na2
n(log n)−2 → ∞ and infβ∈B infx∈RX fβTX(βTx) > 0

(where fβTX is the density of βTX). For ĝ′β, note that ∂
∂β
σ2(x, β, g) = g′(βTx)x is linear

in g′(βTx), and hence, by Remark 3.2, we only need to show that ‖ĝ ′−g′0‖∞ = oP (1). This

can be shown using standard calculations. Next, let G = K = C
1/2+δ
M (RU) for some δ > 0.

It follows from Remark 3.1 that the condition on the covering number of G and K in (A2)
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is satisfied. Moreover, supu,β |ĝβ(u)| = supu,β |g0β(u)|+ oP (1) = OP (1) (and similarly for

ĝ′β(u)), and supβ,u1,u2
|ĝ′β(u1)− ĝ′β(u2)|/|u1−u2|1/2+δ ≤M provided na4+2δ

n (logn)−1 →∞.

Hence, P (ĝβ ∈ G)→ 1 and P (ĝ′β ∈ K)→ 1. For (A3), note that

ĝ0(u)− g0(u)

=

n∑

i=1

K1a(u− βT0 Xi)∑n
j=1K1a(u− βT0 Xj)

(Yi −m0(Xi))
2 − g0(u)

−2

n∑

i=1

K1a(u− βT0 Xi)∑n
j=1K1a(u− βT0 Xj)

(Yi −m0(Xi))(m̂(Xi)−m0(Xi)) + oP (n−1/2).

Let K1 be a kernel of order q ≥ 3. Then, the first term above can be written as

n−1
n∑

i=1

K1a(u− βT0 Xi)
{

(Yi −m0(Xi))
2 − g0(βT0 Xi)

}
f−1
βT0 X

(βT0 Xi) + o(n−1/2),

provided na6
n → 0. The second term is a degenerate V -process (with kernel depending

on n), and can be written as a degenerate U -process, plus a term of order OP ((nbn)−1) =

oP (n−1/2) provided nb2
n → ∞. The U -process can be written out using Hajek-projection

techniques, similar to the ones for regular degenerate U -statistics, which shows at the

end (after long but straightforward calculations) that this term is oP (n−1/2) provided

nanbn → ∞. Hence, (A3) holds true for η(x, y) = {(y −m0(x))2 − g0(βT0 x)}f−1
βT0 X

(βT0 x).

Finally, for (A4),

|(ĝβ − g0β − ĝ0 + g0)(βTx)| ≤
∣∣∣ ∂
∂β

[ĝβ̃ − g0β̃](βTx) (β − β0)
∣∣∣ = oP (1)‖β − β0‖,

uniformly in β and x, where β̃ is between β0 and β. It now follows that β̂ − β0 is

asymptotically normal, with mean zero and variance given in Theorem 3.1.

4.2 Partially linear median regression model

The second model we consider is a median regression model with a partially linear regres-

sion function and an exponentially transformed partially linear dispersion function :

Y = αT0 X(1) + r0(X(2)) + exp(βT0 X(1) + g0(X(2)))ε, (4.3)

where med(ε|X) = 0, E(|ε| |X) = 1, and X = (XT
(1), X(2))

T , with X(1) = (X1, . . . , Xd−1)T

and X(2) = Xd. For any β ∈ IRd−1 and for m0(x) = αT0 x1+r0(x2), let g0β(x2) = log s0β(x2),
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and ĝβ(x2) = log ŝβ(x2), where

s0β(x2) = E
( |Y −m0(X)|

exp(βTX(1))

∣∣∣X(2) = x2

)
, (4.4)

and

ŝβ(x2) =

n∑

i=1

K1a(x2 −X(2)i)∑n
j=1K1a(x2 −X(2)j)

|Yi − m̂(Xi)|
exp(βTX(1)i)

,

where m̂(x) = α̂Tx1 + r̂(x2) is an estimator of the unknown regression function m0(x),

see e.g. Härdle, Liang and Gao (2000, Chapter 2). Define

β̂ = argminβ n
−1

n∑

i=1

{ |Yi − m̂(Xi)| − exp(βTX(1)i)ŝβ(X(2)i)

exp(β̂∗TX(1)i)ŝβ̂∗(X(2)i)

}2

,

where

β̂∗ = argminβ n
−1

n∑

i=1

{
|Yi − m̂(Xi)| − exp(βTX(1)i)ŝβ(X(2)i)

}2

.

As in the previous example, we restrict attention to verifying the A-conditions. Since

u(X, β) = X(2) does not depend on β, we do not need to check the conditions related to

ĝ′ and K. Note that

|ŝβ(x2)− s0β(x2)| ≤
∣∣∣

n∑

i=1

K1a(x2 −X(2)i)∑n
j=1 K1a(x2 −X(2)j)

|Yi −m0(Xi)|
exp(βTX(1)i)

− s0β(x2)
∣∣∣

+

n∑

i=1

K1a(x2 −X(2)i)∑n
j=1K1a(x2 −X(2)j)

|m̂(Xi)−m0(Xi)|

= OP ((nan)−1/2(log n)1/2) + oP (n−1/4) = oP (n−1/4)

uniformly in x and β if na2
n(log n)−2 →∞. Hence, (A1) is satisfied, provided infx2,β s0β(x2)

> 0. For (A2) similar arguments as in the first example show that G = C1
M(RX(2)

) can be

used. Next, consider the verification of condition (A3). Using the property that for any

x, y,

|x− y| − |x| = 2(−y)ψ(x) + 2(y − x)
[
I(y > x > 0)− I(y < x < 0)

]
,

where ψ(x) = 0.5− I(x < 0), we have

ŝ0(x2)− s0(x2)

=
n∑

i=1

K1a(x2 −X(2)i)∑n
j=1 K1a(x2 −X(2)j)

|Yi − m̂(Xi)|
exp(βT0 X(1)i)

− s0(x2)

=
n∑

i=1

K1a(x2 −X(2)i)∑n
j=1 K1a(x2 −X(2)j)

exp(−βT0 X(1)i)
{
|Yi −m0(Xi)|
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−2(m̂(Xi)−m0(Xi))ψ(Yi −m0(Xi))

−2(Yi − m̂(Xi))
[
I(m̂(Xi)−m0(Xi) > Yi −m0(Xi) > 0)

−I(m̂(Xi)−m0(Xi) < Yi −m0(Xi) < 0)
]}
− s0(x2)

= A(x2) +B(x2) + C(x2)− s0(x2) (say).

First consider

A(x2)−s0(x2) = n−1
n∑

i=1

K1a(x2−X(2)i)
{ |Yi −m0(Xi)|

exp(βT0 X(1)i)
−s0(X(2)i)

}
f−1
X(2)

(X(2)i)+oP (n−1/2),

provided na4
n → 0 and K1 is a kernel of order 2. Next, note that the term B(x2) is a

degenerate V -process, because in the i.i.d. representation of m̂(Xi)−m0(Xi), each term

has mean zero, and because E(ψ(Yi −m0(Xi))|Xi) = 0. Hence, as for the first example,

we have that B(x2) = oP (n−1/2). Finally, using the notation εi = Yi − m0(Xi) and

d̂ = m̂−m0, consider

|C(x2)|

≤ 2
n∑

i=1

K1a(x2 −X(2)i)∑n
j=1 K1a(x2 −X(2)j)

exp(−βT0 X(1)i)
(
|εi|+ |d̂(Xi)|

)
I
(
|εi| < |d̂(Xi)|

)

≤ 4
n∑

i=1

K1a(x2 −X(2)i)∑n
j=1 K1a(x2 −X(2)j)

exp(−βT0 X(1)i)|d̂(Xi)|I
(
|εi| < |d̂(Xi)|

)

≤ 4 sup
x1

exp(−βT0 x1) sup
x
|d̂(x)|

(
inf
x2

fX(2)
(x2)

)−1

n−1

n∑

i=1

K1a(x2 −X(2)i)I
(
|εi| < |d̂(Xi)|

)

+oP (n−1/2),

since supx |d̂(x)| = oP (n−1/4) by (B1). Using e.g. Van der Vaart and Wellner (1996,

Section 2.11), it can be shown that the process

n−1
n∑

i=1

K1a(x2 −X(2)i)I
(
|εi| < |d(Xi)|

)
− P

(
|ε| ≤ |d(X)| |X(2) = x2

)

is OP ((nan)−1/2(logn)1/2) uniformly in x2 ∈ RX(2)
and in d = m − m0 with m ∈ M.

Hence,

n−1
n∑

i=1

K1a(x2 −X(2)i)I
(
|εi| < |d̂(Xi)|

)

= P
(
|ε| ≤ |d̂(X)| |X(2) = x2

)
+OP ((nan)−1/2(log n)1/2),
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since P (m̂ ∈ M)→ 1 by condition (B2). It now follows that

|C(x2)| = O
(

sup
x
|d̂(x)|

){
P
(
|ε| ≤ |d̂(X)| |X(2) = x2

)
+OP ((nan)−1/2(log n)1/2)

}

= oP (n−1/4)

∫
[Fε(|d̂(x)| |x)− Fε(−|d̂(x)| |x)]fX(1)

(x1)dx1 + oP (n−1/2)

= oP (n−1/4)2 sup
x,y

fε(y|x) sup
x
|d̂(x)|+ oP (n−1/2)

= oP (n−1/2).

This finishes the proof for condition (A3). It remains to check (A4), which can be done

in much the same way as in the first example.

5 A Monte-Carlo example

We generate random data from a partially linear heteroscedastic median regression model

given by

Yi = αT0 X(1)i + r0(X2i) + exp(β0X1i + g0(X2i))εi, i = 1, . . . , 400,

where Xi = (XT
(1)i, X2i)

T , X(1)i = (1, X1i)
T , α0 = (α00, α01)T = (1, 0.75)T , β0 = −2, X1i

and X2i are independent with uniform distribution on (0,1), and εi (i = 1, . . . , n) are i.i.d.

normal random variables that are independent of X1i and X2i. Furthermore, the εi are

standardized such that med(εi) = 0 and E(|εi|) = 1. We consider the following choices

for r0(x2) and g0(x2), where r0(X2) satisfies the zero median constraint in order for the

intercept to be identifiable.

Case 1: r0(x2) = 2(x2 − 0.5) and g0(x2) = 1.4− 2x2;

Case 2: r0(x2) = 2(x2 − 0.5) and g0(x2) = 1.1− 2x2
2;

Case 3: r0(x2) = exp(−x2)− exp(−0.5) and g0(x2) = 1.4− 2x2;

Case 4: r0(x2) = exp(−x2)− exp(−0.5) and g0(x2) = 1.1− 2x2
2.

The model is fitted using the backfitting algorithm described in Section 2.4. Imple-

mentation of the algorithm involves two smoothing parameters, one for estimating the

conditional median function and the other for estimating the dispersion function. For the

former, we apply the automatic smoothing parameter selection method in Yu and Jones

(1998), while for the latter, we consider smoothing parameters on the grid [0.02, 0.20] with
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step size 0.02. We choose the latter smoothing parameter by cross-validation such that

the ability to estimating the conditional median function is optimized. This approach

works well in our simulations. Alternatively, one may apply the cross-validation method

to the two smoothing parameters jointly. This is, however, much more computationally

intensive.

We report results from 500 independent simulation runs. First, we compare the un-

weighted method with the weighted method for estimating α0. The unweighted method

assumes that the dispersion function is constant; while the weighted method updates

the estimator α̂ via the weighted L1 regression where the weights are taken to be the

reciprocal of the estimated dispersion function. Table 1 displays the bias and the MSE

for estimating α00 and α01, respectively. It also reports the simulated relative efficiency

(SRE) for comparing the weighted and unweighted methods. The SRE is defined as

SRE =
MSE for estimating α0 using the unweighted method

MSE for estimating α0 using the weighted method
,

where the MSE for estimating α0 is defined as the sum of the mean squared errors for

estimating each coordinate of α0. The simulation results suggest that the weighted

method significantly improves the efficiency of estimating α0 compared with the un-

weighted method. In all four cases, we observe an efficiency gain around 20-30% when

using the weighted method.

Put Table 1 about here

Next, we consider estimating the dispersion parameter β0 when the weighted method

is used. Table 2 gives the bias and the mean squared error, which suggests that β0 is

estimated satisfactorily in all four cases.

Put Table 2 about here

Finally, we give some idea on how well we estimate the nonparametric parts of the

semiparametric model. More specifically, we consider case (4) and compare in Figure 1

the true curves of r0(x2) and g0(x2) with their respective estimates (averaged over the 500

simulation runs). The estimated curves are very close to the true curves. Results from

the other three cases are similar and not reported due to space limitation.

Put Figure 1 about here
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6 Analysis of gasoline consumption data

We illustrate the proposed method by means of a data set on gasoline consumption. The

data were collected by the National Private Vehicle Use Survey in Canada between Octo-

ber 1994 and September 1996 and contain household-based information (Yatchew, 2003).

In this analysis, we use the subset of September data which consists of 485 observations.

We are interested in estimating the median of the log of the distance traveled per month

by the household (denoted by Y = dist) based on six covariates: X1 = income (log of

the previous year’s combined annual household income before taxes which is reported

in 9 ranges), X2 = driver (log of the number of the licensed drivers in the household),

X3 = age (log of the age of driver), X4 = retire (a dummy variable for those households

whose head is over the age of 65), X5 = urban (a dummy variable for urban dwellers),

and X6 = price (log of the price of a liter of gasoline). The scatter plots of the response

variable versus each covariate are given in Figure 2.

Put Figure 2 about here

We fit a heteroscedastic partially linear median regression model, which was motivated

by a homoscedastic partially linear mean regression model by Yatchew (2003). More

specifically, we assume

dist = α01income + α02driver + α03age+ α04retire+ α05urban+ r0(price)

+ exp[β01income + β02driver + β03age+ β04retire+ β05urban+ g0(price)]ε,

i.e. Y = αT0 X(1) +r0(X(2))+exp(βT0 X(1) +g0(X(2)))ε, where X = (XT
(1), X(2))

T with X(1) =

(X1, . . . , X5)T and X(2) = X6 = price, and where r0(·) and g0(·) are two unknown smooth

functions. For identifying the model we assume that med(ε|X) = 0 and E(|ε||X) = 1.

The smoothing parameters are selected using the approach described in Section 5. The

smoothing parameter for estimating the conditional median function is 0.02 and that for

estimating the dispersion function is 0.05.

Table 3 summarizes the estimated coefficients in the parametric parts of the conditional

median function and the dispersion function. It is not surprising that households with

larger income and more drivers tend to have higher median value of dist, and that retired

people and urban dwellers tend to drive less. Table 3 also contains the standard errors

of the α̂j’s and β̂j’s. These are obtained using a model-based resampling procedure.

More specifically, we estimate the parametric and nonparametric components in the above
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model and obtain α̂, β̂, r̂ and ĝ. We then generate a bootstrap sample (i = 1, . . . , n): Y ∗i =
∑5

j=1 α̂jXji + r̂(X6i) + exp(
∑5

j=1 β̂jXji + ĝ(X6i))ε
∗
i , where the ε∗i satisfy the constraints

med(ε∗i |Xi) = 0 and E(|ε∗i ||Xi) = 1 (we use a normal distribution in the simulations). For

each bootstrap sample, we re-estimate the αj’s and the βj’s. The standard errors are then

calculated from these estimators based on 200 bootstrap samples. The results in Table 3

suggest that income, driver, retire and urban have significant effects on the conditional

median function. Moreover, driver exhibits a significant effect on the dispersion function.

Put Table 3 about here

Figure 3 displays the estimated nonparametric components. The plots indicate that

for the majority of values of price, increased price is associated with reduced conditional

median of dist. However, for the lowest and highest values of price, the effect of price

on dist seems to be reversed. A similar pattern is observed for the effect of price on the

dispersion function. Note however that for small and large values of price, the date are

rather sparse, as can be seen from Figure 2.

Put Figure 3 about here

7 Discussion

Although the scope of this paper is quite general and the paper covers a broad range of

models and estimation methods, a number of issues are still open. We discuss them here

briefly.

First, as already mentioned in Section 2 (see Remark 2.1), the paper does not cover

profile estimation methods. Profile estimators are obtained by replacing in the defini-

tion of h(x, y, β, gβ, m, w) the partial derivative ∂
∂β
σ2(x, β, gβ) by the complete derivative

d
dβ
σ2(x, β, gβ), i.e. profile estimators take into account that gβ also depends on β. See

Van Keilegom and Carroll (2007) for a detailed analysis of the pros and cons of profiling

versus backfitting, the latter being studied in this paper. In order to adapt the paper to

profile estimators, we need an estimator of
∂gβ
∂β

, which can be
∂ĝβ
∂β

if ĝβ is differentiable

with respect to β, otherwise we first need to smooth it (which requires the introduction

of a new smoothing parameter), and then differentiate it. The so-obtained estimator of

β will be asymptotically normal, provided the estimator of
∂gβ
∂β

satisfies conditions (A1)-

(A2) with ĝβ or ĝ′β replaced by
∂ĝβ
∂β

, in addition to the conditions already imposed for the
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backfitting estimator.

Another issue that needs closer investigation, but which is outside the scope of the

present paper, is the choice of the criterion function h. For partially linear heteroscedastic

regression models, Ma, Chiou and Wang (2006) investigated the criterion function that

leads to an efficient estimator of the regression function. The choice of the criterion func-

tion for estimating in an efficient way the dispersion function in a general semiparametric

regression model has not been studied so far.

Finally, we like to mention that it would be interesting to study in more detail the

estimation of the mean or median using weighted least squares with weights equal to the

inverse of the estimated variance function. The simulations in Section 5 suggest that the

efficiency gain is quite substantial. A theoretical analysis of the relative efficiency needs

to be carried out to confirm these empirical findings.

Appendix: Proofs

Proof of Theorem 3.1. We will make use of Theorem 2 in Chen, Linton and Van

Keilegom (2003) (CLV hereafter), which gives generic conditions under which β̂ is asymp-

totically normal. First of all, we need to show that β̂ − β0 = oP (1). For this, we verify

the conditions of Theorem 1 in CLV. Condition (1.1) holds by definition of β̂, while the

second and third condition are guaranteed by assumptions (C1) and (C2). For condition

(1.4) we use assumptions (A1) and (B1) for the estimators ĝ and m̂, whereas for ŵ more

work is needed. In fact, one should first consider the current proof in the case where

w ≡ 1. In that case the function w is not a nuisance function and redoing the whole proof

with w ≡ 1, we get at the end that β̂∗ − β0 = OP (n−1/2) and ‖ŵ − w0‖∞ = oP (n−1/4).

Finally, condition (1.5) is very similar to condition (2.5) of Theorem 2 of CLV, and we

will verify both conditions below. So, the conditions of Theorem 1 are verified, up to

condition (1.5) which we postpone to later. Next, we verify conditions (2.1)–(2.6) of The-

orem 2 in CLV. Condition (2.1) is, as for condition (1.1), valid by construction of the

estimator β̂. For condition (2.2), first note that since U = U(X, β) depends in general on

β, the criterion function h does not only depend on the nuisance functions gβ, m and w,

but also on g′β(u) =
∂gβ(u)

∂u
. Therefore, from now on we will denote H(β, gβ, m, w, g

′
β) to

stress the dependence on g′β. Similar, whenever it is necessary to stress the dependence
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of ∂
∂β
σ2(x, β, gβ) on g′β, we will write σ2

β(x, β, gβ, g
′
β). We need to calculate the matrix

d

dβT
H(β, g0β, m0, w0, g

′
0β)

= E
[
− w0(X)

∂

∂β
σ2(X, β, g0β)

d

dβT
σ2(X, β, g0β)

+w0(X)
{
σ2(X, β0, g0)− σ2(X, β, g0β)

} d

dβT
∂

∂β
σ2(X, β, g0β)

]
.

Note that when β = β0, the second term above equals zero and we find the matrix Λ in

that case. Hence, (2.2) follows from conditions (C2) and (C3). Next, for (2.3) note that

for β in a neighborhood of β0, the functional derivative of H(β, g0β, m0, w0, g
′
0β) in the

direction [g − g0, m−m0, w − w0, k − g′0] for an arbitrary quadruple (g,m,w, k), equals

Γ(β, g0, m0, w0, g
′
0)[g − g0, m−m0, w − w0, k − g′0]

= lim
τ→0

1

τ

[
H(β, g0β + τ(gβ − g0β), m0 + τ(m−m0), w0 + τ(w − w0), g′0β + τ(kβ − g′0β))

−H(β, g0β, m0, w0, g
′
0β)
]

= E
[
(w − w0)(X)

{
σ2(X, β0, g0)− σ2(X, β, g0β)

} ∂

∂β
σ2(X, β, g0β)

]

−2E
[
w0(X){Y −m0(X)}(m−m0)(X)

∂

∂β
σ2(X, β, g0β)

]

−E
[
w0(X)

∂

∂z
σ2(X, β, z)|z=g0β(U)(gβ − g0β)(U)

∂

∂β
σ2(X, β, g0β)

]

+E
[
w0(X)

{
σ2(X, β0, g0)− σ2(X, β, g0β)

}{ ∂

∂z1
σ2
β(X, β, z1, g

′
0β)|z1=g0β(U)(gβ − g0β)(U)

+
∂

∂z2
σ2
β(X, β, g0β, z2)|z2=g′0β(U)(kβ − g′0β)(U)

}]
.

Note that the second term above equals zero. Hence, the first part of (2.3) follows easily

from condition (C3) and (C4). For the second part, note that it follows from the proof of

Theorem 2 in CLV that it suffices to show that

‖Γ(β, g0, m0, w0, g
′
0)[ĝ − g0, m̂−m0, ŵ − w0, ĝ

′ − g′0]

−Γ(β0, g0, m0, w0, g
′
0)[ĝ − g0, m̂−m0, ŵ − w0, ĝ

′ − g′0]‖ = oP (1)‖β − β0‖+OP (n−1/2)

for all β with ‖β − β0‖ = o(1), and this follows easily from conditions (A1) and (A4).

For (2.4), use condition (A1), (A2), (B1) and (B2) for the estimators ĝ, ĝ ′ and m̂. For
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ŵ, we showed above that ‖ŵ − w0‖∞ = oP (n−1/4). Choosing W = {x → σ−4(x, β, g) :

β ∈ B, g ∈ G}, it follows from assumption (A2) that P (ŵ ∈ W) → 1 as n tends to ∞.

Next, we consider (2.5). This condition can be checked by verifying the conditions of

Theorem 3 in CLV. These follow from the Lipschitz continuity of the criterion function

h, and from conditions (A2) and (B2). Moreover, using the differentiability of σ(x, β, z)

with respect to β and z, it is easily seen that the covering number of W is of the same

order as that of B×G. Finally, for condition (2.6) note that when β = β0 all terms in the

above calculation of the functional derivative cancel, except the third one. By inserting

the expansion for ĝ0 − g0 given in condition (A3) into this third term, and by using the

notation T (u) = E{w0(X) ∂
∂z
σ2(X, β0, z)|z=g0(u)

∂
∂β
σ2(X, β0, g0) |U0 = u}, we get :

Γ(β0, g0, m0, w0, g
′
0)[ĝ0 − g0, m̂−m0, ŵ − w0, ĝ

′
0 − g′0]

= −(nan)−1
n∑

i=1

E
[
w0(X)

∂

∂z
σ2(X, β0, z)|z=g0(U0)

∂

∂β
σ2(X, β0, g0)K1

(U0 − U0i

an

)]
η(Xi, Yi)

+oP (n−1/2)

= −(nan)−1
n∑

i=1

E
[
T (U0)K1

(U0 − U0i

an

)]
η(Xi, Yi) + oP (n−1/2)

= −n−1
n∑

i=1

T (U0i)fU0(U0i)η(Xi, Yi) + oP (n−1/2),

where the latter equality follows from a Taylor expansion of order q.

Proof of Theorem 3.2. Write

σ̂2(x)− σ2(x, β0, g0)

= σ2(x, β0, ĝβ̂)− σ2(x, β0, g0) +OP (n−1/2)

=
∂

∂z
σ2(x, β0, z)|z=g0(u(x,β0))

(
ĝβ̂ − g0

)(
u(x, β0)

)
{1 + oP (1)}+OP (n−1/2)

=
∂

∂z
σ2(x, β0, z)|z=g0(u(x,β0))

{
(g0β̂ − g0)− (ĝ0 − g0)

}(
u(x, β0)

)
{1 + oP (1)}+OP (n−1/2),

where the latter equality follows from condition (A4). The result now follows from the

representation for (ĝ0 − g0)(u) given in condition (A3) and from Theorem 3.1.

Proof of Theorem 3.3. The proof is quite similar to that of Theorem 3.1. We focus here

on the calculation of the derivative of H(β, g0β, m0, w0) with respect to β and with respect
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to the nuisance functions, and on the verification of condition (2.5) in Chen, Linton and

Van Keilegom (2003) (CLV). First, consider

H(β, g0β, m0, w0, g
′
0β)

= E
[
w0(X)

{
2P (|Y −m0(X)| ≥ σ(X, β, g0β) |X)− 1

} ∂

∂β
σ(X, β, g0β)

]

= E
[
w0(X)

{
1− 2F (eβ(X, 1)|X) + 2F (eβ(X,−1)|X)

} ∂

∂β
σ(X, β, g0β)

]
,

where F (y|x) = P (Y ≤ y|X = x) and eβ(x, y) = m0(x) + σ(x, β, g0β)y, and hence

d

dβT
H(β, g0β, m0, w0, g

′
0β)

= E
[
w0(X)

{
− 2f(eβ(X, 1)|X)− 2f(eβ(X,−1)|X)

} ∂

∂β
σ(X, β, g0β)

d

dβT
σ(X, β, g0β)

]

+E
[
w0(X)

{
1− 2F (eβ(X, 1)|X) + 2F (eβ(X,−1)|X)

} d

dβT
∂

∂β
σ(X, β, g0β)

]
.

When β = β0, the second term equals zero and we find the matrix Λ defined in the

statement of the theorem. On the other hand,

Γ(β, g0, m0, w0, g
′
0)[g − g0, m−m0, w − w0, k − g′0]

= E
[
(w − w0)(X)

{
1− 2F (eβ(X, 1)|X) + 2F (eβ(X,−1)|X)

} ∂

∂β
σ(X, β, g0β)

]

+E
[
w0(X)

{
− 2f(eβ(X, 1)|X) + 2f(eβ(X,−1)|X)

}
(m−m0)(X)

∂

∂β
σ(X, β, g0β)

]

+E
[
w0(X)

{
− 2f(eβ(X, 1)|X)− 2f(eβ(X,−1)|X)

} ∂

∂z
σ(X, β, z)|z=g0β(U)

×(gβ − g0β)(U)
∂

∂β
σ(X, β, g0β)

]

+E
[
w0(X)

{
1− 2F (eβ(X, 1)|X) + 2F (eβ(X,−1)|X)

}

×
{ ∂

∂z1
σβ(X, β, z1, g

′
0β)|z1=g0β(U)(gβ − g0β)(U)

+
∂

∂z2
σβ(X, β, g0β, z2)|z2=g′0β(U)(kβ − g′0β)(U)

}]
.

Note that the first and fourth term above equal zero when β = β0. Finally, we consider

the verification of condition (2.5) in CLV, for which we use Theorem 3 in that paper. To

prove condition (3.2) in that theorem, we focus on the indicator in the criterion function
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h(x, y, β, g,m, w, k), the other components (namely w(x) and ∂
∂β
σ(x, β, g)) being much

easier to deal with. Consider for any (β, g,m) (where sup∗ denotes the supremum over

all ‖β̃ − β‖ ≤ δ, ‖g̃ − g‖∞ ≤ δ, ‖m̃−m‖∞ ≤ δ),

E
[
sup∗

∣∣∣I
(
|Y −m(X)| − σ(X, β, g) ≥ 0

)
− I
(
|Y − m̃(X)| − σ(X, β̃, g̃) ≥ 0

)∣∣∣
2]

≤ sup
x

[
F
(
m(x) + σ(x, β, g) + δ + α|x

)
− F

(
m(x) + σ(x, β, g)− δ − α|x

)]

+ sup
x

[
F
(
m(x)− σ(x, β, g) + δ + α|x

)
− F

(
m(x)− σ(x, β, g)− δ − α|x

)]

≤ 4 sup
x,y

f(y|x)(δ + α),

where

α := sup∗ sup
x
|σ(x, β, g)− σ(x, β̃, g̃)| ≤ sup∗{K1‖β − β̃‖+K2‖g − g̃‖∞} ≤ (K1 +K2)δ,

for some 0 < K1, K2 <∞. Hence, condition (3.2) is satisfied for r = 2 and sj = 1/2 (using

the notation of CLV). Condition (3.3) in CLV follows easily from assumptions (A2), (B2)

and (C3), where we choose W = {x→ σ−1(x, β, g) : β ∈ B, g ∈ G}. The rest of the proof

is similar to the one of Theorem 3.1 and is therefore omitted.
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Table 1: Estimating α0: comparing unweighted and weighted methods

α̂00 (unweighted) α̂01 (unweighted) α̂00 (weighted) α̂01 (weighted) SRE for

bias MSE bias MSE bias MSE bias MSE estimating α0

Case 1 0.051 0.072 -0.065 0.079 0.035 0.062 -0.040 0.060 1.238

Case 2 0.048 0.075 -0.059 0.076 0.031 0.064 -0.035 0.056 1.258

Case 3 0.009 0.053 -0.046 0.072 -0.010 0.042 -0.019 0.053 1.312

Case 4 0.021 0.057 -0.059 0.076 0.005 0.047 -0.035 0.056 1.291

Table 2: Estimating β0

Case 1 Case 2 Case 3 Case 4

bias -0.052 -0.049 -0.040 -0.048

MSE 0.024 0.025 0.022 0.025

Table 3: Analysis of the gasoline consumption data (sd = standard error)

α0 β0

estimate sd estimate sd

income 0.351 0.099 -0.009 0.046

driver 0.662 0.087 0.245 0.108

age 0.193 0.162 -0.037 0.126

retire -0.283 0.130 0.169 0.129

urban -0.288 0.080 0.097 0.074
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Figure 1: Estimates of the functions r0(x2) and g0(x2). Solid line: true curve; dashed line:

estimated curve.
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Figure 2: Plot for the gasoline consumption data
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data
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