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Marginal Treatment E¤ects - Motivation

We have seen that di¤erent evaluation parameters are an average
over parts of the distribution of impacts.

The ATE averages over the entire distribution
The ATT averages over the distribution of impacts for those who are
somehow allocated into treatment
LATE averages over the distribution of impacts for those who switch
into treatment as a result of a reform or more precisely, as a result of a
change of the value of some instrument a¤ecting decisions to
participate.

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 2 / 24



Marginal Treatment E¤ects - Motivation

We have seen that di¤erent evaluation parameters are an average
over parts of the distribution of impacts.

The ATE averages over the entire distribution

The ATT averages over the distribution of impacts for those who are
somehow allocated into treatment
LATE averages over the distribution of impacts for those who switch
into treatment as a result of a reform or more precisely, as a result of a
change of the value of some instrument a¤ecting decisions to
participate.

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 2 / 24



Marginal Treatment E¤ects - Motivation

We have seen that di¤erent evaluation parameters are an average
over parts of the distribution of impacts.

The ATE averages over the entire distribution
The ATT averages over the distribution of impacts for those who are
somehow allocated into treatment

LATE averages over the distribution of impacts for those who switch
into treatment as a result of a reform or more precisely, as a result of a
change of the value of some instrument a¤ecting decisions to
participate.

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 2 / 24



Marginal Treatment E¤ects - Motivation

We have seen that di¤erent evaluation parameters are an average
over parts of the distribution of impacts.

The ATE averages over the entire distribution
The ATT averages over the distribution of impacts for those who are
somehow allocated into treatment
LATE averages over the distribution of impacts for those who switch
into treatment as a result of a reform or more precisely, as a result of a
change of the value of some instrument a¤ecting decisions to
participate.

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 2 / 24



Marginal Treatment E¤ects - Motivation

Thus they all represent an aggregation over di¤erent margins

As such they are not comparable and they are di¢ cult to interpret
from the perspective of general

As a unifying parameter Heckman and Vytlacil (2005) de�ned the
MARGINAL TREATMENT EFFECT

This is the e¤ect of a treatment on the marginal individual entering
treatment

The marginal treatment e¤ect will provide an interpretation of several
evaluation parameters

They will provide a bridge between structural an treatment e¤ect
parameters and allow us to understand the way they are related.
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Marginal Treatment E¤ects - a De�nition

Consider a discrete treatment T .

The rule allocating to treatment may be written as

T = 1
�
vi � Z 0i γ

�
For a particular value of Z 0i γ the marginal individual is the one with
vi = Z 0i γ
Now consider the e¤ect of treatment for the ith individual
βi = Y

1
i � Y 0i

The marginal treatment e¤ect is de�ned by

MTE (Z 0i γ) = E (βi jvi = Z 0i γ)

Thus the MTE is the average impact for the marginal individual
receiving treatment among those with value of the index equal to Z 0i γ
It turns out that all parameters we have looked at can be written as
weighted averages of this parameter
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Marginal Treatment E¤ects - a simple justi�cation.

Now Suppose we think of a very simple model of College attendance
choice.

The Cost of attending is Ci = W0 + Z 0i γ+ usi where W0 is the
opportunity cost in lost earnings and Z 0i γ+ usi represents the direct
costs

The bene�ts in the simplest form are L(W 1
i �W 0

i ) where L
represents a lifecycle factor and depends on the discount rate

An individual will go to College if L(W 1
i �W 0

i ) � W0 + Z 0i γ+ usi
The marginal individual satis�es the condition
usi = L(W 1

i �W 0
i )�W0 � Z 0i γ

This shows how the allocation to treatment will depend on the
returns and why conditioning on us will give us the treatment e¤ect
for the marginal individual at a given Zi .
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Marginal Treatment E¤ects

It is convenient to rewrite the treatment model as

T = 1
�
usi � F (Z 0i γ)

�
where usi is now uniform [0,1].

This can be done by de�ning Us � F (V ) where F (�) is the
distribution function of V (lower case denotes a speci�c realisation of
the random variable in upper case). Thus
F (Z 0γ) = Pr(T = 1jZ ) = P (Z ) .
De�ne

Y0 = γ00X + U0
Y1 = γ01X + U1

Now consider the observed outcome

Y = γ00X + T (γ1 � γ0)
0X + U0 + T (U1 � U0)

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 6 / 24



Marginal Treatment E¤ects

It is convenient to rewrite the treatment model as

T = 1
�
usi � F (Z 0i γ)

�
where usi is now uniform [0,1].
This can be done by de�ning Us � F (V ) where F (�) is the
distribution function of V (lower case denotes a speci�c realisation of
the random variable in upper case). Thus
F (Z 0γ) = Pr(T = 1jZ ) = P (Z ) .

De�ne
Y0 = γ00X + U0
Y1 = γ01X + U1

Now consider the observed outcome

Y = γ00X + T (γ1 � γ0)
0X + U0 + T (U1 � U0)

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 6 / 24



Marginal Treatment E¤ects

It is convenient to rewrite the treatment model as

T = 1
�
usi � F (Z 0i γ)

�
where usi is now uniform [0,1].
This can be done by de�ning Us � F (V ) where F (�) is the
distribution function of V (lower case denotes a speci�c realisation of
the random variable in upper case). Thus
F (Z 0γ) = Pr(T = 1jZ ) = P (Z ) .
De�ne

Y0 = γ00X + U0
Y1 = γ01X + U1

Now consider the observed outcome

Y = γ00X + T (γ1 � γ0)
0X + U0 + T (U1 � U0)

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 6 / 24



Marginal Treatment E¤ects

It is convenient to rewrite the treatment model as

T = 1
�
usi � F (Z 0i γ)

�
where usi is now uniform [0,1].
This can be done by de�ning Us � F (V ) where F (�) is the
distribution function of V (lower case denotes a speci�c realisation of
the random variable in upper case). Thus
F (Z 0γ) = Pr(T = 1jZ ) = P (Z ) .
De�ne

Y0 = γ00X + U0
Y1 = γ01X + U1

Now consider the observed outcome

Y = γ00X + T (γ1 � γ0)
0X + U0 + T (U1 � U0)

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 6 / 24



Marginal Treatment E¤ects

We are now going to think of the probability of assignment to
treatment P(Z ) as an instrument.

Assume that
(U0,U1,Us ) ?? P(Z )jX

We will also make the assumption that given X P(Z ) has continuous
support in the open interval (0,1): this means that the excluded
variables Z vary su¢ ciently for any �xed value of X to make the
treatment assignment probability vary anywhere between 0 and 1.
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Marginal Treatment E¤ects - Local Instrumental Variables

Now take the expected value of the outcome given the instrument
P(Z ) = p and X .

E (Y jX ,P(Z ) = p) =

γ00X + p(γ1 � γ0)
0X + E [T (U1 � U0)jX ,P(Z ) = p]

Now note that T = 1 over the interval for us = [0, p] and zero for
higher values of us and us is uniform

E [T (U1 � U0)jP(Z ) = p,X ]

=
R +∞
�∞

R p
0 (U1 � U0)f ((U1 � U0)jUs = us )dusd(U1 � U0)
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Marginal Treatment E¤ects - Local Instrumental Variables

We can now write the marginal treatment e¤ect as

∆MTE (p) = ∂E (Y jX ,P (Z )=p)
∂p =

(γ1 � γ0)
0X +

R +∞
�∞ (U1 � U0)f ((U1 � U0)jUs = p)d(U1 � U0)

(γ1 � γ0)
0X + E (U1 � U0jUs = p)

E (U1 � U0jUs = p) is the average unobserved gain of treatment for
those whose unobserved characteristics make them indi¤erent
between treatment or not at P(Z ) = p.
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Marginal Treatment E¤ects - Local Instrumental Variables

The above process suggests an estimation procedure:

Estimate the nonparametric regression of the outcome variable Y on
X and on P(Z ).This can be achieved by �tting Y on polynomials of
X and P(Z ).

Di¤erentiate the result with respect to P(Z )

If P(Z ) indeed varies from (0, 1), i.e. has full support, then it will be
possible to estimate the marginal treatment e¤ect
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Marginal Treatment E¤ects and evaluation parameters

We can now de�ne all parameters of interest as a function of the MTE

Averaging over all marginal individuals we obtain

ATE (X ) =
Z ∞

�∞
∆MTE (p)dp

(γ1 � γ0)
0X +

Z ∞

�∞
E (U1 � U0jus )dus

= (γ1 � γ0)
0X
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Marginal Treatment E¤ects and evaluation parameters

Now consider LATE. Here for any given X P(Z ) takes two values, say
P(Z ) = b(X ) or P(Z ) = a(X ) with say a > b. So lets think of
a(X )� b(X ) as the policy induced change in the treatment
probability for someone with characteristics X .

All those with unobserved propensity to be assigned to treatment
such that b(X ) � us � a(X ) will now switch into treatment under
this policy

Hence LATE can be written as

LATE (X ) = 1
a(X )�b(X )

R a(X )
b(X ) ∆MTE (p)dp

(γ1 � γ0)
0X + 1

a(X )�b(X )
R a(X )
b(X ) E (U1 � U0jus )dus

The value of LATE will depend on the interval over which we
integrate, i.e. it will depend on which margin the speci�c policy tend
to shift into treatment.
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b(X ) E (U1 � U0jus )dus

The value of LATE will depend on the interval over which we
integrate, i.e. it will depend on which margin the speci�c policy tend
to shift into treatment.
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Marginal Treatment E¤ects and evaluation parameters

Heckman and Vytlacil (2005) show that every estimator can be
written as a weighted average of the MTE.

For example LATE is the average MTE with weights 1
a(X )�b(X ) in the

range (a(X ), b(X )) and zero everywhere else

Consider now the parameter Treated on the treated. This can be
written as

βTT (X ) =
Z +∞

�∞
∆MTE (p)

�
Pr(P(Z jX ) > p)
E (P (Z jX )

�
dp

Thus the higher the probability of participating the larger the weight
on the overall e¤ect
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Marginal Treatment E¤ects and evaluation parameters

Now consider the di¤erence between the IV and the OLS estimator.
In a model with homogeneous impacts if the treatment is positively
correlated with the error term then IV will be biased upwards [exercise
to show]:

One key result in Heckman and Vytlacil is that in models with
heterogeneous impacts, where selection into treatment depends on
the impact this result is no longer true:

They show this by writing IV and OLS as di¤erent weighted averages
of the MTE
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Marginal Treatment E¤ects and evaluation parameters

We drop X for simplicity of notation

For IV the weights are:
w IV (us ) = [E (P(Z )jP(Z ) > us )� E (P(Z ))] E (P (Z ))

Var (P (Z ))

For OLS the weights are wOLS (us ) = 1+
E (U1 jUS=us )h1�E (U0 jUS=us )h0

∆MTE (us )

if ∆MTE (us ) 6= 0 and zerootherwise.
In the above h1 = E (P(Z )jP(Z ) > us )/E (P(Z )) and
h0 = E (P(Z )jP(Z ) < us )/E (P(Z ))
Under monotonicity all IV weights are positive.

However, OLS weights may be negative and there is no speci�c
relationship to the IV weighs that will make one estimator larger or
smaller than the other.
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The Returns to College (Carneiro, Heckman and Vytlacil)

Object of study: Estimate the returns to College and analyse the
heterogeneity of these returns.

Data NLSY 1979

Outcome variable log wages

Conditioning variables (X ): Years of experience, Cognitive ability
(AFQT), Maternal Education, Cohort dummies, log average Earnings
in SMSA, and average unemployment rate in State.

Instruments (Z ): Presence of a four year public College in SMSA at
age 14, log average earnings in the SMSA when 17 (opportunity
cost),average unemployment rate in State.
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The Returns to College (Carneiro, Heckman and Vytlacil)
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The Returns to College (Carneiro, Heckman and Vytlacil)

Estimate a logit model for College participation on cohort dummies
and on polynomial terms of the instruments

The Probability of College attendance then is

P(Z ) � Pr(T = 1jZ ) = 1
1+ exp(�Z 0β)

The average derivatives are then simply

1
N ∑
Sample

�
∂Pr(T = 1jZ )

∂AFQT

�
=
1
N ∑
Sample

�
P(Z )(1� P(Z )) ∂Z 0β

∂AFQT

�
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The Returns to College (Carneiro, Heckman and Vytlacil)

lnw = a+ β(3.5� T ) + γ0X + u

lnw = a+ β(X )(3.5� T ) + γ0X + u

Notice: a. How the results vary by Instrumental Variable and b. How IV is
larger than OLS.
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The Returns to College (Carneiro, Heckman and Vytlacil)

Consider now the various di¤erent evaluation parameters

Costas Meghir (UCL) Marginal Treatment E¤ects January 2009 20 / 24



The Returns to College (Carneiro, Heckman and Vytlacil)

Support and identi�cation: How does the probability of going to College
di¤er between those who go to College and those who do not?
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The Returns to College (Carneiro, Heckman and Vytlacil)

Are returns Heterogeneous? - direct evidence

E (Y jX ,P(Z ) = p) =

γ00X + p(γ1 � γ0)
0X + E [T (U1 � U0)jX ,P(Z ) = p]
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The Returns to College (Carneiro, Heckman and Vytlacil)

The Marginal Treatment E¤ect by unobserved cost of College
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The Returns to College (Carneiro, Heckman and Vytlacil)

The weights implied by IV and OLS
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