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Abstract

I develop and estimate a dynamic general equilibrium model with imperfectly informed �rms in
the sense of Woodford (2002). The model has two aggregate shocks: a monetary policy shock and
a technology shock. Firms observe idiosyncratic noisy signals about these shocks and face strategic
complementarities in price setting. In this environment, agents�"forecasting the forecasts of others"
can produce realistic dynamics of model variables, with associated highly persistent real e¤ects of
monetary shocks and delayed e¤ects of such shocks on in�ation. The paper provides a full Bayesian
analysis of the model, revealing that it can capture the persistent propagation of monetary shocks
only by predicting that �rms acquire less information about monetary policy than about technology.
To investigate the plausibility of this �nding, I augment the model to allow �rms to optimally
choose how much information to acquire about the two shocks, subject to an information-processing
constraint à la Sims (2003). This constraint sets the rate at which �rms can substitute pieces of
information about the two shocks. I �nd that, in the estimated model, �rms�marginal value of the
information about monetary policy shocks is much higher than that about technology shocks. Hence,
I argue that the estimated model predicts that �rms acquire implausibly too little information about
monetary policy.
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Matthieu Darracq Pariès, Max Kryshko, Bartosz Maćkowiak, Kristo¤er Nimark, Ricardo Reis, and Mirko
Wiederholt for very helpful comments. I would also thank participants at the Midwest Macro Meetings
2008, the Annual Congress of the European Economic Association 2008, the PENN Macro and Econometric
Lunches, 2009 North American Summer Meeting of the Econometric Society, SED Annual Meeting 2009,
and the 2009 European Meeting of the Econometric Society. Of course, all errors are my own.

2Correspondence to: Leonardo Melosi, University of Pennsylvania, Department of Economics, 160 McNeil,
3718 Locust Walk, Philadelphia, PA 19104-6297, USA. Email: lmelosi@sas.upenn.edu.



1 Introduction

A number of in�uential empirical studies of the U.S. economy have documented that money

disturbances have highly persistent real e¤ects and delayed impacts on in�ation (Christiano,

Eichenbaum, and Evans, 1999, Stock and Watson, 2001). The conventional approach to

explaining this evidence relies upon sticky-price models (e.g., Galí and Gertler, 1999, Eichen-

baum and Fisher, 2004, Christiano, Eichenbaum, and Evans 2005, and Smets and Wouters,

2007). These models can generally account for the highly persistent e¤ects of monetary

shocks only with su¢ ciently large costs of price adjustment. Such sizable costs imply a

frequency of price adjustments that is inconsistent with some evidence from the micro-data

on price changes (Bils and Klenow, 2004).3

Woodford (2002) proposes an alternative modeling approach: imperfect-common-knowledge

models. In his price-setting model, monopolistic producers set their prices under limited

information and strategic complementarities. Firms observe idiosyncratic noisy signals re-

garding the state of monetary policy and solve a signal-extraction problem in order to keep

track of the model variables. Since the signal is noisy, �rms do not immediately learn of the

occurrence of monetary disturbances. As a result, the price level fails to adjust enough to

entirely neutralize the real e¤ects of nominal shocks. Moreover, because of the idiosyncratic

nature of the signals, in the aftermath of a shock, �rms are also uncertain about what

other �rms know that other �rms know...that other �rms know about that shock. Owing to

strategic complementarities in price-setting, a problem of forecasting the forecasts of others

of the type envisioned by Townsend (1983b) arises. This feature of the model has been

shown to amplify the persistence in economic �uctuations (Townsend, 1983a, 1983b, Hell-

wig, 2002, Adam, 2008, Angeletos and La�O, 2008, and Lorenzoni, forthcoming A) and in

the propagation of monetary disturbances to real variables and prices (Phelps, 1970, Adam,

3A modelling solution that preserves sticky prices and is not in con�ict with micro-data on price-setting
is developed by Altig, Christiano, Eichenbaum, and Linde, 2005.
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2007, Gorodnichenko, 2008, and Lorenzoni, forthcoming B).4 Moreover, it is worth empha-

sizing that in this model prices adjust frequently, but move only gradually to their complete

information levels. Thus the resolution proposed by Woodford (2002) is appealing in that

it can potentially explain sluggish adjustments of macro variables without necessarily being

in discord with the micro evidence on price changes.

This paper addresses two questions. The �rst question is: can a version of the imperfect-

common-knowledge model (ICKM) account for the persistent e¤ects of monetary shocks we

observe in the data? The answer to this question is yes but with one caveat. To get this an-

swer, the paper proceeds by constructing a dynamic stochastic general equilibrium (DSGE)

model with two shocks: a monetary policy shock and an aggregate technology shock. Firms

receive one idiosyncratic noisy signal about each of these two shocks and face strategic com-

plementarities in price-setting. The signal-extraction problem and the price-setting problem

are similar to Woodford (2002). I estimate the ICKM and a vector autoregressive model

(VAR) through Bayesian methods. I consider the impulse response functions (IRFs) implied

by this statistical model as an accurate description of the propagation of monetary shocks

in the data. From a Bayesian perspective, this conjecture is sensible because the VAR turns

out to dominate the ICKM in terms of time series �t (Schorfheide, 2000). I then compare

the IRFs of output and in�ation to a monetary shock implied by the ICKM to those im-

plied by the VAR. I �nd that the ICKM successfully captures the sluggish and hump-shaped

response of output and in�ation to monetary shocks implied by the VAR. Moreover, the

estimated signal-to-noise ratio of monetary policy is smaller than that of technology by a

factor of six. The reason is that the ICKM generates highly sluggish responses to monetary

shocks only if �rms acquire so little information about monetary policy.

This �nding raises the second question: is it plausible that �rms acquire so little infor-

mation about monetary policy? The answer to this question is no. I reach this conclusion

4See Mankiw and Reis (2002a, 2002b, 2006, 2007), and Reis (2006a, 2006b, 2009) for models with
information frictions that do not feature imperfect common knowledge but can generate sizable persistence.
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by augmenting the model so as to allow �rms to optimally choose the signal-to-noise ratios,

subject to a constraint. This constraint is commonly used in the literature of rational inat-

tention (Sims, 2003) and sets the rate at which �rms can substitute pieces of information

between the two shocks. I �nd that the �rms�marginal value of the information about

monetary shocks is much higher than that about technology shocks in the estimated model.

Furthermore, when I solve for the optimal signal-to-noise ratios, �rms �nd it optimal to

acquire more information about monetary shocks than about technology shocks. These re-

sults suggest that the signal-to-noise ratio relative to monetary policy is implausibly small

in the estimated ICKM.

This paper departs from Woodford (2002) in several respects. My empirical strategy

is likelihood-based, while Woodford (2002) calibrates the parameters of his model. This is

the �rst paper that obtains likelihood-based estimates for the parameters of an ICKM à la

Woodford (2002). This empirical approach is motivated by the aim of countering the lack

of empirical guidance in selecting the size of information frictions, which strongly in�uences

the persistence in this type of models. Furthermore, Woodford (2002) closes his model by

specifying an exogenous stochastic process that drives the nominal output.5 I develop a

micro-founded demand side of the economy so that the resulting general equilibrium model

is isomorphic to Woodford�s partial equilibrium model. This feature is desirable as it allows

me to apply the same method as in Woodford (2002) to solve my model. This solution

method is fast and robust. Hence, I can evaluate the likelihood at several points of the

parameter space and get accurate estimates of parameters. Finally, Woodford�s model has

one rather than two shocks. Having an additional shock allows me to get around the problem

of stochastic singularity when I evaluate the likelihood.

Finally, the paper investigates what the imperfect-common-knowledge mechanism of

generating persistence adds to or takes away from a more popular mechanism based on

5This approach is common in the macroeconomic literature of incomplete information. Examples are
Lucas (1972),Mankiw and Reis (2002b), and Reis (2006b).
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Calvo sticky prices (Calvo, 1983). To this end, I consider a model (henceforth, Calvo

model) that di¤ers from the ICKM in two main respects: (1) �rms are perfectly informed,

and (2) �rms can re-optimize their prices only at random periods, as in Calvo (1983). I

estimate the Calvo model through Bayesian techniques. First, I �nd that, unlike the ICKM

and the VAR, the Calvo model fails to generate hump-shaped responses of output and

in�ation to monetary shocks. Second, the ICKM �ts the data moderately better than the

Calvo model.

This paper is related to the literature of rational inattention (Sims, 2003, 2006, Luo,

2008, Paciello, 2008, Van Nieuwerburgh and Veldkamp, 2008, Woodford, 2008, Máckowiak,

Moench, and Wiederholt 2009, and Máckowiak and Wiederholt, 2009a, 2009b). Máckowiak

and Wiederholt (2009b) introduce a model in which �rms optimally decide how much atten-

tion to pay to aggregate and idiosyncratic conditions, subject to a constraint on information

�ows. When they calibrate their model to match the average absolute size of price changes

observed in the micro-data, they �nd that nominal shocks have sizable and persistent real

e¤ects.

The remainder of the paper proceeds as follows. Section 2 presents the ICKM and the

Calvo model. Section 3 shows the Bayesian analysis of these two models and provides an

answer to the �rst question of the paper. I address the second question of the paper in

section 4. In section 5, I conclude.

2 The Model Economy

This section is organized as follows. First, I introduce the maintained assumptions of

the ICKM. Second, I show the problems of agents in the model. Third, I discuss how

to detrend and log-linearize the model around the deterministic steady state equilibrium.

Fourth, I analyze the source of persistence in the log-linearized ICKM. Fifth, I brie�y discuss
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the challenges one faces when solving models with imperfect common knowledge. Sixth,

I describe how to modify the ICKM so that the information frictions are replaced with

nominal rigidities à la Calvo (1983).

2.1 Maintained Assumptions

The economy is populated by perfectly competitive �nal-good producers (or, more brie�y,

producers), households, a �nancial intermediary, a monetary authority (or central bank),

and a continuum (0; 1) of intermediate-good �rms (or, more brie�y, �rms). Households

derive utility from consumption and disutility from supplying labor to �rms. Furthermore,

households face a cash-in-advance (CIA) constraint, requiring that they must have su¢ -

cient cash available before they can buy consumption goods. Firms set the prices of their

intermediate goods in a monopolistic competitive market. Firms do not bear any cost when

they change their prices and do not accumulate capital. Furthermore, there are two shocks:

an aggregate technology shock and a monetary policy shock.

The information structure of the model can be summarized as follows. First, all infor-

mation is publicly available to every agent. Second, �rms cannot attend perfectly to all

available information. Third, �rms face limitations on the overall amount of information

they can process. As in Woodford (2002), information-processing frictions are modelled

by assuming that �rms do not observe past and current realizations of any model vari-

ables. They solely observe signals about the two shocks. For tractability, it is assumed that

the other agents (i.e., �nal-good producers, households, the �nancial intermediary, and the

monetary authority) perfectly observe the past and the current realizations of all the model

variables.

At the beginning of period t, the households inherit the entire money stock of the econ-

omy, Mt�1. Shocks and signals realize. Households decide how much money Dt to deposit

at the �nancial intermediary after observing current-period innovations to technology and

monetary shocks. These deposits yield interest at a rate of Rt�1. The �nancial intermediary
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receives households�deposits and a monetary injection from the monetary authority, which

it lends to �rms at a �xed fee � . The �rms observe signals, set prices, hire labor service from

households, and then produce. They use the liquidity facilities provided by the �nancial

intermediary at the �xed fee � so as to pay wages WtHt, where Wt is the nominal hourly

wage, and Ht is hours worked. Households�cash balance increases to Mt�1 �Dt +WtHt.

The CIA constraint requires that households pay for all consumption purchases with the

accumulated cash balances. Firms sell their goods to producers that integrate them into

a �nal good that they sell to households. Firms also pay back their loans, Li;t. Finally,

households receive back their deposits inclusive of interest and dividends from both �rms,

�t, and the �nancial intermediary, �bt .

2.2 Final-Good Producers

The representative �nal-good producer combines a continuum of intermediate goods, Yi;t,

by using the technology:

Yt =

�Z 1

0
(Yi;t)

��1
� di

� �
��1

where Yt is the amount of the �nal good produced at time t, the parameter � represents

the elasticity of demand for each intermediate good and is assumed to be strictly larger

than one. The producer takes the input prices, Pi;t, and output price, Pt, as given. Pro�t

maximization implies that the demand for intermediate goods is:

Yi;t =

�
Pi;t
Pt

���
Yt

where the competitive price of the �nal good, Pt, is given by

Pt =

�Z
(Pi;t)

1�� di

� 1
1��

: (1)
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2.3 The Representative Household

The representative household derives utility from consuming the �nal good, Ct, and disu-

tility from hours worked, Ht, and maximizes

max
fCt;Ht;Mt;Dtg

Et
1X
s=0

�s

"
lnCt+s � �

H1+�
t+s

1 + �

#
(2)

such that

PtCt �Mt�1 �Dt +WtHt (3)

0 � Dt (4)

Mt = (Mt�1 +WtHt �Dt � PtCt) +RtDt +�t +�bt (5)

where � is the discount factor, � > 0 is the Frisch labor elasticity, and � is a parameter

that a¤ects the marginal utility of leisure.

The �rst constraint is the CIA constraint requiring that the household has to hold money

up-front to �nance its consumption. The second constraint prevents households from bor-

rowing from the �nancial intermediary. The third constraint is the Dixit-Stiglitz aggregator

of consumption varieties. The fourth constraint is the law of motion of households�money

holdings.

2.4 The Financial Intermediary

The �nancial intermediary solves the trivial static problem:

max
fLt;Dtg

(1�Rt)Dt +Xt + � � I fLt > 0g (6)

such that

Lt � Xt +Dt (7)
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where Lt is the aggregate amount of liquidity supplied to �rms Lt =
R
Li;tdi,Xt =Mt+1�Mt

is the monetary injection, I f�g is an indicator function that has the value one if the statement

within curly brackets is true. � is a �xed fee the intermediary receives from �rms.

The �nancial intermediary lends cash to �rms so that they can pay wages before house-

holds consume. This timing assumption allows households to use the cash from their cur-

rent labor income to �nance current consumption. This feature of the model makes the

labor supply depend only on current variables and substantially simpli�es the �rms�signal-

extraction problem. Replacing the �xed fee � with an equilibrium interest rate would intro-

duce forward-looking variables in the problem of �rms and would unnecessarily complicate

the signal-extraction problem.

2.5 The Monetary Authority

The monetary authority lets the money stock Mt grow at rate

� lnMt = (1� �m)M0 + �m� lnMt�1 + �m"m;t (8)

with "m;t v N (0; 1) and where � stands for the �rst-di¤erence operator, the degree of

smoothness in conducting monetary policy �m is such that �m 2 [0; 1). M0 is a parameter

that represents the long-run average growth rate of money.

Equation (8) can be interpreted as a simple monetary policy rule without feedbacks.

The innovations "m;t capture unexpected changes in the growth rate of money. Finally, it

is useful to denote:

mt � lnMt �M0 � t (9)

Finally, market clearing for the monetary market requires that:

lnMt = lnYt + lnPt (10)
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2.6 Intermediate-Good Firms

The expected value of intermediate-good �rm i�s pro�t conditional on the history of signals

observed by �rm i at time t, zti, is given by:

E
�
�tQt (Pi;tYi;t �WtNi;t � �I fLi;tg) jzti

�
(11)

where Qt is the time 0 value of one unit of the numeraire in period t to the representative

household. Yi;t is the amount of intermediate goods i demanded by the �nal-good producers

at time t (see section 2.2):

Yi;t =

�
Pi;t
Pt

���
Yt (12)

Ni;t is the labor input demanded by �rm i at time t. The production function is

Yi;t = AtN
�
i;t (13)

where � 2 (0; 1) and At is the level of technology that follows an exogenous process:

lnAt = A0 + lnAt�1 + �a"a;t (14)

"a;t v N (0; 1). The technology shocks, "a;t, are assumed to be orthogonal to monetary

shocks, "m;t, at all leads and lags. I denote the loans of �rm i at time t as Li;t. Firms

borrow liquidity from the �nancial intermediary in order to pay their nominal labor costs:

Li;t =WtNi;t (15)

They are charged with a �xed fee � for this service. Similar to Woodford (2002), �rm i�s

signals are de�ned as:
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zi;t =

264 mt

at

375+
264 ~�m 0

0 ~�a

375 ei;t (16)

where zi;t � [zm;i;t; za;i;t]0, at � lnAt �A0 � t, ei;t � [em;i;t; ea;i;t]0 and ei;t
iidv N (0; I2). Note

that at and mt are the exogenous state variables of the model and the signal noises em;i;t

and ea;i;t are assumed to be iid across �rms and time. Furthermore, I assume that the two

signals are orthogonal. This may be considered a strong assumption. After all, �rms might

learn about the state of monetary policy mt from observing the signals concerning the state

of technology at (i.e., za;i;t). I �nd, however, that relaxing this assumption of orthogonality

of signals does not substantially a¤ect the main predictions of the estimated model.

In every period t, �rms observe the history of their signals, zti, and choose their prices,

Pi;t, so as to maximize their expected current pro�ts (11) subject to equations (12)-(16) by

taking the stochastic discount factor, Qt, and the nominal wage, Wt, as exogenous. The

equilibrium laws of motion of all model variables are assumed to be common knowledge

among �rms.

I will log-linearize the price-setting equation around the deterministic steady state to

simplify the signal-extraction issues. Furthermore, it is important to emphasize that I

assume that at time 0 �rms are endowed with an in�nite sequence of signals, that is zti =

fzi;�gt�=�1. This assumption simpli�es the analysis in that �rms will have the same Kalman

gain matrix in their signal-extraction problem. Furthermore, this matrix can be shown to

be time-invariant. This assumption makes the task of solving the model easier.

2.7 Detrending, Log-Linear Approximation

In the two models, the exogenous processes (8) and (14) induce both a deterministic and a

stochastic trend to all endogenous variables, except labor. I will detrend the non-stationary

variables before log-linearizing the models. It is useful to de�ne the stationary variables as

follows:
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yt �
Yt
At
; pi;t �

Pi;t
Pt

(17)

In order to log-linearize the model, I take the following steps. First, I derive the price-

setting equation by solving �rms� problem (11)-(16). Second, I transform the variables

according to the de�nitions (17). Third, I log-linearize the resulting price-setting equation

around the deterministic steady state. Fourth, I aggregate the log-linearized price-setting

equation across �rms and obtain the law of motion of price level. Fifth, the law of motion

of real output can be easily obtained from combining the law of motion of price level and

equation (10).

2.8 Source of Persistence in the ICKM

Let me introduce some notation. By convention, �rm i�s expectations of order zero about

the state of monetary policy are the state itself, that is, m(0)
t (i) � mt. Firm i�s �rst-order

expectations about the state of monetary policy are denoted by m(1)
tjt (i) � E

�
mtjIit

�
. Aver-

age �rst-order expectations about the state of monetary policy can be computed as follows

m
(1)
tjt �

R
m
(1)
tjt (i) di. Firm i�s second-order expectations are �rm i�s �rst-order expectations

of the average �rst-order expectations, or more concisely m(2)
tjt (i) � E

h
m
(1)
tjt jI

i
t

i
. By rolling

this argument forward I obtain the average j-th order expectation, for any j � 0;

m
(j)
tjt �

Z
m
(j)
tjt (i) di (18)

Moreover, �rm i�s (j + 1)-th order expectations about the state of monetary policy, for any

j � 0, are:

m
(j+1)
tjt (i) � E

h
m
(j)
tjt jI

i
t

i
(19)

The speed of adjustment of variables to a shock is a¤ected by the signal-to-noise ratio

associated with that shock and the strategic complementarity in price-setting. The strate-
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gic complementarity in price-setting measures the extent to which �rms want to react to

the expected average price Pt. The degree of strategic complementarity turns out to be

determined by 1� �, where � � (� + 1)��1=
�
�
�
��1 � 1

�
+ 1
�
. See Appendix A.

In Appendix A, the law of motion of price level is:

lnPt =

24 1X
j=0

(1� �)j �
�
m
(j+1)
tjt � a(j+1)tjt

�35� ln �y +M0t�A0t (20)

where m(j)
tjt and a

(j)
tjt are the average j-th order expectations about the state of monetary

policy and technology at time t and �y is the steady-state value of the detrended output, yt.

From equation (10) and equation (20) and after straightforward manipulations, it is easy

to derive the law of motion of real output:

lnYt =

24mt �
1X
j=0

(1� �)j �m(j+1)
tjt

35+ 1X
j=0

(1� �)j �a(j+1)tjt � ln �y +A0t (21)

Note that both price level and output are a¤ected by weighted averages6 of the in�nite

hierarchy of higher-order expectations about the exogenous states.

Equation (21) shows that monetary shocks have real e¤ects as long as they are not

fully anticipated by the average higher-order expectations of �rms. More speci�cally, if

the realization of mt is common knowledge among �rms, then m
(j)
t = mt for all j and the

terms inside the square brackets cancel out. This shows that if monetary policy is common

knowledge among �rms, money is neutral in the model.

Equations (20)-(21) make it clear that the more sluggishly the weighted averages adjust

to shocks, the more persistent the e¤ects of shocks upon price and output are. The sluggish-

ness of the weighted averages to shocks depends on the speed of adjustment of higher-order

expectations. Sluggish adjustment of higher-order expectations depends on the signal-to-

noise ratios that in�uence the precision of signals.7 The more imprecise the signals are, the

6 I restrict � 2 (0; 2) so that weights (1� �)j � are absolutely summable.
7Since, in the ICKM, �rms observe two orthogonal signals, the speed of propagation may di¤er between the
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more sluggishly the average expectations of every order will respond to shocks. Thus, the

signal-to-noise ratios are a source of persistence in the model.

The strategic complementarity (i.e. 1 � �) in�uences the persistence of output and

in�ation by a¤ecting the relative weights in the weighted averages of higher-order expecta-

tions. More precisely, the larger the strategic complementarity is, the bigger the weights

of the average expectations of higher order are. The economic intuition is that the degree

of strategic complementarity a¤ects how strongly �rms want to react to prices set by other

�rms. The stronger �rms�reaction to other �rms�pricing behavior is, the more they care

about what other �rms think that other �rms think...about the exogenous state of the econ-

omy. In other words, strategic complementarity is the factor triggering the mechanism of

forecasting the forecasts of others.

It is important to emphasize that the signal structure (16) implies that signals provide

less and less information about expectations of higher and higher order. Therefore, the

higher the order of average expectations, the more sluggishly they will adjust to shocks.

Since larger strategic complementarity raises the weights associated with the average ex-

pectations of higher order in equations (20)-(21), it boosts the persistence of output and

in�ation responses to shocks. Thus, for any given degree of information incompleteness,

strategic complementarity plays a crucial role in amplifying the persistence in the propaga-

tion of shocks.

2.9 Model Solution

When one characterizes rational expectation equilibria (REE) in models with incomplete

information, a typical challenge is dealing with an in�nite-dimensional state vector (in�nite

regress)8 (Townsend, 1983b). The reason is that the laws of motion of in�nitely many higher-

order expectations have to be characterized in order to solve the model. This task is clearly

two shocks. Evidence that macroeconomic variables react at di¤erent speed to monetary and to technology
shocks is documented in Paciello (2009).

8See Nimark (2009) for a thorough explanation of this problem.

13



unmanageable. In my ICKM, this problem arises when there is strategic complementarity in

price-setting (i.e., 1�� > 0). Yet, here, this issue can be elegantly resolved as in Woodford

(2002), since it is possible to re-de�ne the state vector of the model as a weighted average

of in�nitely many higher-order expectations.9 This leads to a state space of very small

dimension. A detailed description of the method that numerically solves the model is in

Appendix B. The solution method turns out to be fast and robust so that I can evaluate

the likelihood at several points of the parameter space. This leads to accurate estimates of

model parameters.

2.10 The Calvo Model

In the Calvo model all agents (i.e., �nal-good producers, households, the �nancial intermedi-

ary, the monetary authority, the intermediate-good �rms) perfectly observe the past and cur-

rent realizations of the model variables. Moreover, the price charged by each intermediate-

good �rm is re-optimized only at random periods. The key (simplifying) assumption is that

the probability that a given �rm will optimally adjust its price within a particular period

is independent of the state of the model, the current price charged, and how long ago it

was last re-optimized. Speci�cally, only a fraction (1� �p) of �rms re-optimize their prices,

while the remaining �p fraction adjusts them to the steady-state in�ation ��. Moreover,

as standard in models with sticky prices à la Calvo, I assume that the production function

exhibits constant return to scale (i.e., � = 1). This implies that marginal costs are the same

across �rms. The problem of the �rms that are allowed to re-optimize their prices at time

t is:
9Di¤erent methods have been developed to solve dynamic models with incomplete information. Following

Townsend (1983b), the customary approach of solving this class of models is to assume that the realizations
of states at some arbitrary distant point in the past are perfectly revealed. Rondina and Walker (2009) have
challenged this approach by showing that such a truncation reveals the entire history of the realizations of
states to agents, regardless of the point of truncation. See Nimark (2008) for a truncation-based method
that preserves the recursive structure.
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max
Pi;t

Et
1X
s=0

�
�sp�

t+sQt+sjt (�
s
�Pi;t �MCt+s)Yi;t+s � � tI fLi;t > 0g

�
(22)

such that

MCt =
Wt

At
; Yi;t+s =

�
�s�Pi;t
Pt+s

���
Yt+s (23)

where Qt+sjt is the marginal utility of a unit of the numeraire at time t+ s in terms of the

utility of the representative household at time t, �� is the steady-state (gross) in�ation rate,

and MCt+s stands for the nominal marginal costs in period t+ s. The price level is given

by:

P 1��t =
h
(1� �p)P �(1��)t + �p (��Pt�1)

1��
i

(24)

In the Calvo model, the speed of adjustment of variables to shocks is determined by the

size of the Calvo parameter �p. Log-linearization and solution of the Calvo model is standard

and hence omitted. I use the routine gensys developed by Sims (2002) to numerically solve

this model.

3 Empirical Analysis

I �t the ICKM to observations on output and price level. I place a prior distribution on

parameters and conduct Bayesian inference. First, I present the data set, the measurement

equations, the prior distributions and the posterior distributions for model parameters. I

then conduct a Bayesian evaluation of whether the ICKM provides an accurate description

of the propagation mechanism of monetary shocks to output and in�ation. To do that, I

introduce a largely parameterized VAR model. I conjecture that if the response of output

and in�ation to monetary shocks implied by the ICKM is similar to the one implied by

the VAR, then the ICKM provides an accurate description of the propagation of monetary

disturbances. From a Bayesian perspective, this conjecture is sensible as long as the VAR
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model attains a higher posterior probability than the ICKM, as pointed out in Schorfheide

(2000). I verify that this is indeed true by comparing the marginal data densities of the

ICKM and the VAR.

Finally, I also estimate the Calvo model and compare the response of output and in�ation

to monetary policy shocks implied by this model with that of the ICKM. This comparison

would allow me to assess what the ICK mechanism of generating persistence adds to or

takes away from the more popular mechanism based on Calvo sticky prices.

3.1 The Data

The data are quarterly and range from the third quarter of 1954 to the fourth quarter of

2005. I use the U.S. per capita real GDP and the U.S. GDP de�ator from Haver Analytics

(Haver mnemonics are in italics). Per capita real GDP is obtained by dividing the nominal

GDP (GDP) by the population 16 years and older (LN16N ) and de�ating using the chained-

price GDP de�ator (JGDP). The GDP de�ator is given by the appropriate series (JGDP).

3.2 Measurement Equations

Denote the U.S. per capita real GDP, and the U.S. GDP de�ator as fYt; t = 1; 2; :::Tg,

and fPt; t = 1; 2; :::Tg, respectively. The measurement equations are given by equations

(20)-(21).

The Kalman �lter can be used to evaluate the likelihood function of the models. Yet,

the �lter must be initialized and a distribution for the state vector in period t = 0 has

to be speci�ed. As far as the vector of stationary state variables is concerned, I use their

unconditional distributions. I cannot initialize the vector of non-stationary state variables

(i.e. mt; at) in the same manner, since their unconditional variance is not de�ned. I follow

the approach introduced by Chang, Doh, and Schorfheide (2007), who propose to factorize

the initial distribution as p (s1;t) p (s2;t), where s1;t and s2;t are the vector of stationary

and non-stationary variables, respectively. They suggest setting the �rst component p (s1;t)
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equal to the unconditional distribution of s1;t, whereas the second component p (s2;t) is

absorbed into the speci�cation of the prior.

3.3 Prior Distributions

Given the observables presented in section 3.1, it is easy to show that the Frisch labor

elasticity, �, the demand elasticity, �, and the technology parameter, �, cannot be separately

identi�ed in the log-linearized ICKM. Nonetheless, I can estimate the parameter � that

a¤ects the strategic complementarity in price-setting. Furthermore, the parameter, �, and

the discount factor, �; drop out when I log-linearize the ICKM10. After log-linearization,

the set of identi�able parameters in the ICKM is:

�I � (�m; A0;M0; �; �m; �a; ~�m; ~�a) (25)

Table 1a reports the prior medians and 90% credible intervals of the parameters of the

ICKM.

Since I do not have data on the degree of strategic complementarity11 and the parameter

� is very crucial for the persistence in the model (see section 2.8), I will set a broad prior

for this parameter with the aim of learning its value from the likelihood function.

Market clearing for the monetary market implies that the stock of money Mt is equal

to nominal output. See equation (10). Hence, the autoregressive parameter of monetary

policy, �m, the standard deviation of the monetary policy shock, �m, and the trend M0 can

be estimated by using presample observations of the (detrended) U.S. per capita real GDP

and the (detrended) U.S. GDP de�ator. This presample data set is obtained from Haver

Analytics and ranges from the �rst quarter of 1949 to the second quarter of 1954.

The prior of the standard deviation of the technology shock, �a, is centered at 0:007.

10See appendices A and B.
11There are studies (e.g., Rotemberg and Woodford, 1997) that quantify the degree of strategic comple-

mentarity in the U.S. However, they use a data set that is likely to be collinear to the one used in the paper.
Using such information to formulate the prior would be controversial.
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This value is the standard deviation of the Solow residual and is standard in the real-business

cycle literature (Kydland and Prescott, 1986).

In absolute terms, I set the priors for standard deviations of signal noise, ~�m, and ~�a, so

as to ensure that signals are quite informative about the business-cycle-frequency variations

of model variables.12 In relative terms, these prior speci�cations are chosen so as to make

the two signals equally informative about the corresponding exogenous state variables.13

Table 1b presents the implied prior distributions for the strategic complementarity,

1� �, and the signal-to-noise ratios, �m=~�m and �a=~�a. As discussed in section 2.8, these

parameter values crucially in�uence the persistence in the model. Note that the prior

median for 1 � � implies no strategic complementarity in price settings. However, note

that this prior is quite broad. This implies that this crucial parameter value will be mainly

learned from the likelihood. Finally, note that since the processes driving the two exogenous

states are di¤erent, the prior medians for the signal-to-noise ratios do not have to be the

same to make the �rms equally informed about the two states.

As far as the log-linearized Calvo model is concerned, the parameter set is:

�C � (�m; A0;M0; �m; �a; �p; �) (26)

In Table 1a the priors for these parameters are reported. I use the same prior distributions

for those parameters that are common to the ICKM. The prior for the Calvo parameter

�p is centered at 0:67, implying an average duration of price contracts of three quarters.

This value is regarded as consistent with the survey evidence discussed in Blinder, Canetti,

Lebow, and Rudd (1998). The prior for the discount factor � is �xed so as to match the

12We achieve that by setting the prior medians of the coherences between the process of the state variables,
in �rst di¤erence, and their corresponding signals such that these are not smaller than 0:50 at business-cycle
frequencies (3-5 years). The coherence ranges from 0 to 1 and measures the degree to which two stationary
stochastic processes are jointly in�uenced by cycles of a given frequency (Hamilton, 1994).
13 I quantify the amount of information that signals convey about the two exogenous states as in Sims

(2003). The formal de�nition of this measure is provided in section 4.1.
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long-run average real interest rate.

3.4 Posterior Distributions

Given the priors and the likelihood functions implied by the ICKM and the Calvo model, a

closed-form solution for the posterior distributions for parameters cannot be derived. How-

ever, I am able to evaluate the posteriors numerically through the random-walk Metropolis-

Hastings algorithm. How these procedures apply to macro DSGE models is exhaustively

documented by An and Schorfheide (2007). I generate 1; 000; 000 draws from the posteriors.

The posterior medians and 90% credible sets are shown in Table 2.

The coe¢ cient (1� �) controls the degree of strategic complementarity in price-setting.

As shown in section 2.8, this coe¢ cient is very important, since it a¤ects the persistence of

the impulse response functions (IRFs) of output and price level to shocks. The prior median

of strategic complementarity (1� �) was set at 0. Bayesian updating points toward more

strategic complementarity in price-setting. This ampli�es the persistence in the mechanism

of shock propagation for any �nite values of the signal-to-noise ratios. Figure 1 compares

the prior and the posterior distributions14 for the strategic complementarity (1� �). It is

apparent that the Bayesian updating clearly pushes the strategic complementarity toward

a larger value than what is conjectured in the prior. The posterior median of � is 0:41.

This estimate is plausible. This number is consistent with a Frisch labor-supply elasticity,

�, of 0:5 (Ríos-Rull, Schorfheide, Fuentes-Albero, Kryshko, and Santaeulàlia-Llopis, 2009),

a technology parameter, �, of 0:65 (Cooley and Prescott, 1995), and a mark-up of about

13% (Woodford, 2003 and Rotemberg and Woodford, 1997).

Moreover, the posterior median of the signal-to-noise ratio regarding the state of mone-

tary policy, ~�m=�m, is large relative to that associated with the state of technology, ~�a=�a.

The signal-to-noise ratio concerning the state of monetary policy is smaller by a factor of

14They are non-parametric estimates of the prior and posterior distributions based on the draws obtained
from the simulator.
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six.

As far as the Calvo model is concerned, the posterior median of the Calvo parameter

�p implies that �rms reset their prices about every two years. This frequency of price

adjustments is implausible, according to the existing microeconometric analyses on price

changes. Nonetheless, this result is not surprising. In fact, it is well-known that small-scale

DSGE models with sticky prices à la Calvo can match the persistence of the macro-data

only with price contracts of very long duration (Bils and Klenow, 2004). I might �x this

problem by setting a tighter prior for the Calvo parameter, but I �nd that this would

seriously undermine the �t of the Calvo model.

3.5 MDD-Based Comparisons

The paper addresses the question of whether the ICKM provides an accurate description

of the propagation mechanism of monetary shocks to output and in�ation. To do that, I

estimate a largely parameterized VAR model and obtain its IRFs of output and in�ation

to monetary shocks. I then compare these IRFs to those of the estimated ICKM. In this

comparison, the VAR IRFs work as a benchmark. From a Bayesian perspective, this com-

parison is sensible as long as the VAR model attains a higher posterior probability than

the ICKM, as pointed out in Schorfheide (2000). In this section, I verify that this is indeed

true by comparing the marginal data densities (MDDs) of the ICKM and the VAR (Kass

and Raftery, 1995, Schorfheide 2000, and An and Schorfheide, 2007).

Let me denote the ICKM asMI and the data used for estimation as ~Y . The MDD of

the ICKM, P
�
~Y jMI

�
, is:

P
�
~Y jMI

�
=

Z
L
�
�I j ~Y ;MI

�
p (�I jMI) d�I

where L (�) stands for the likelihood function, and p (�j�) denotes the posterior distribution,

and �I is the parameter set of the ICKM, as de�ned in section 3.3. I use Geweke�s harmonic
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mean estimator (Geweke, 1999) to approximate the MDDs of the ICKM.

I consider a VAR(4):

~Yt = �0 +�1 ~Yt�1 +�2 ~Yt�2 +�3 ~Yt�3 +�4 ~Yt�4 + �t (27)

where ~Yt = [lnYt; lnPt]
0 and �� � E (�t�0t). I �t this VAR(4) to the data set presented

in section 3:1. The Minnesota random walk prior (Doan, Litterman, and Sims, 1984) is

implemented in order to obtain a prior distribution for the VAR parameters. Moreover, I

obtain 100; 000 posterior draws through Gibbs sampling. To compute the MDD of the VAR

model, I apply the method introduced by Chib (1995).

The log of the MDDs of the VAR and that of the ICKM are reported in Table 3. The

VAR outperforms the ICKM in �tting the data. This result is not surprising, since the

ICKM is very stylized compared to this statistical model. From a Bayesian perspective,

this result legitimates the use of the VAR IRFs as a benchmark for studying whether the

estimated ICKM can accurately explain the propagation of monetary shocks.

Moreover, I also compute the MDD of the Calvo model and report the result in Table

3. The ICKM has a larger MDD than the Calvo model. This implies that the ICKM

�ts the data better than the Calvo model. From this result, it follows that the ICKM is

better than the Calvo model in approximating the true probability distribution of the data

generating process under the Kullback-Leibler distance (Fernández-Villaverde and Rubio-

Ramírez, 2004). It is important to emphasize that the fact that the Calvo model has one

parameter less than the ICKM is not problematic, since MDD-based comparisons penalize

models for their number of parameters.

3.6 IRF-Based Comparisons

In order to identify the monetary shock in the VAR, I use the restriction that monetary

policy has no long-run real e¤ects (e.g., Blanchard and Quah, 1989). Note that this identi-
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�cation scheme is consistent with both the ICKM and the Calvo model.

The IRFs of real output and in�ation to a monetary shock implied by the VAR, the

ICKM, and the Calvo model are plotted in Figures 2 and 3, respectively. The size of

the shock is normalized so that the reaction of variables upon impact is the same in all

models. As also found by other studies (e.g., Christiano et al., 2005), the VAR-based IRFs

document highly persistent and hump-shaped e¤ects of monetary disturbances upon output

and in�ation.

The Calvo model does not seem to be well-suited to accounting for the hump-shaped

pattern of the VAR response, whereas the ICKM appears to be successful in this respect.

Moreover, it is worthwhile noticing that the IRF of real output implied by the ICKM peaks

three quarters after the occurrence of the shock, exactly as suggested by the benchmark

VAR. On the contrary, the Calvo model predicts that the largest response of real output

arises two quarters after the occurrence of the shock.

Furthermore, the VAR IRF emphasizes the presence of delayed e¤ects of monetary

shocks on in�ation, which do not seem to be quite captured by the two DSGE models. The

IRF of in�ation implied by the VAR reaches its peak after four quarters, while, according

to the ICKM, this happens after three quarters.

The estimated ICKM - albeit very stylized - successfully captures the persistent and

hump-shaped response of output and in�ation to monetary shocks implied by the broadly

parameterized VAR. This leads me to conclude that the estimated ICKM provides an ac-

curate description of the propagation mechanism of monetary shocks.

4 A Deeper Look at the Source of Persistence in the ICKM

As discussed in section 2.8, in the ICKM, the persistence of monetary shocks depends on the

degree of strategic complementarity, (1� �), and the signal-to-noise ratio of monetary policy

�m=~�m. The larger the signal-to-noise-ratio is, the faster �rms learn about the occurrence
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of a monetary shock, and then, ceteris paribus, the greater the speed of adjustment of

variables to monetary shocks is. In section 3.4, I show that the posterior median for the

signal-to-noise ratio of monetary policy is smaller than that of technology by a factor of six

(see Table 2).

I then ask the following question: is it plausible that �rms acquire so little information

about monetary policy? To answer this question, I augment the ICKM with a signal-to-

noise schedule that is extensively used in the literature of rational inattention (Sims, 2003).

In this augmented ICKM, �rms are allowed to choose the optimal signal-to-noise ratios

concerning monetary policy and technology along that schedule. I calibrate the schedule

to include the estimated signal-to-noise ratios of the ICKM. Then I compare the �rms�

marginal value of information on monetary policy relative to technology at the optimal and

at the estimated signal-to-noise ratio. The more similar these marginal values are, the more

plausible the estimated signal-to-noise ratios in the ICKM can be regarded under the lens

of the rational-inattention theory.

In the next section I show how one can construct such a signal-to-noise schedule in the

ICKM.

4.1 Signal-to-Noise Schedule

Rational-inattention models rely on an information-theoretic measure to quantify the amount

of processed information, as proposed by Sims (2003). This measure quanti�es the reduc-

tion of uncertainty that occurs after having observed the last realization of signals. More

formally,

� � H
�
mt; atjzt�1m;i ; z

t�1
a;i

�
�H

�
mt; atjztm;i; zta;i

�
(28)

whereH (�) denotes the conditional entropy, which measures the uncertainty about a random

variable, and the history of the two signals observed by �rm i at time t is denoted by ztm;i
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and zta;i. The conditional entropy is de�ned as

H
�
mt; atjz�m;i; z�a;i

�
=

Z Z
log2

�
p
�
mtatjz�m;i; z�a;i

��
p
�
mtatjz�m;i; z�a;i

�
dmtdat

where p
�
mtjz�1;i

�
is the conditional probability density function of mt.

Since signals and exogenous states are orthogonal, one can show that equation (28) can

be re-written as

� = �m + �a (29)

where �m and �a stand for the information �ows regarding monetary policy and technology,

respectively, and are de�ned as:

�m � H
�
mtjzt�1m;i

�
�H

�
mtjztm;i

�
�a � H

�
atjzt�1a;i

�
�H

�
atjzta;i

�
Here, the unit of measurement of the information �ows �, �m, �a is the bit.

To de�ne the signal-to-noise schedule, let me introduce the mappings gm and ga that

link the signal-to-noise ratios and the information �ows as follows:

�m = gm (�m; ~�m;�) ; �a = ga (�a; ~�a) (30)

where � is a vector of autocorrelations of mt. The mapping ga can be analytically derived,

while the mapping gm can be computationally approximated. See Appendix C.

For any given �, �m, �a, and �, the signal-to-noise schedule is de�ned by equations (29)

and (30). In other words, the signal-to-noise schedule is de�ned as a set of pairs of signal-to-

noise ratios (�m=~�m; �a=~�a) that imply the same overall amount of processed information,

�.
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4.2 The Optimal Allocation of Attention

In period zero,15 �rms allocate their available attention16 by solving:

max
�m;�a

E

" 1X
t=1

�t�̂t
�
p̂�i;t; p̂t; ŷt; q̂t

�
jzti

#
; (31)

st

lnP �i;t � E
�
(1� �) lnPt + �mt � �atjzti

�
(32)

zi;t =

264 mt

at

375+
264 ~�m 0

0 ~�a

375 ei;t (33)

~�m = g
�1
m (�m; �m; �m) ; ~�a = g

�1
a (�a; �a) (34)

�m + �a = �; any t (35)

where �̂t (�) is the log-quadratic approximation of Qt�t, where �t is the period pro�t func-

tion (11), p̂�i;t = ln
�
P �i;t=Pt

�
, q̂t is the log deviations of qt = MtQt from its value at the

deterministic steady state, and ei;t
iidv N (0; I2). The model economy is assumed to be at

its deterministic steady state in period 0. Moreover, I assume that �rms have received an

in�nite sequence of signals at time 0. Note also that the mappings g�1m (�) and g�1a (�) in

equation (34) are the inverse of the functions (30). The constraint (35) is the information-

processing constraint and sets an upper-bound to the overall amount of information �rms

can process in every period t.

In this problem, �rms decide how to allocate their overall available attention, which is

15Firms are not allowed to reconsider the allocation of attention in any period after t = 0. Since �rms�
period pro�t function is quadratic and all shocks are Gaussian, it can be shown that this assumption does
not give rise to a problem of time inconsistency of �rms�policies. See Maćkowiak and Wiederholt (2009b).
16Since [1] the period pro�t function is quadratic, [2] all shocks are Gaussian and [3] �rms are assumed

to have received an in�nite sequence of signals at time t = 0, the objective function of the allocation-of-
attention problem can be shown to be the same across �rms. See Maćkowiak and Wiederholt (2009b).
Thus, every �rm will �nd it optimal to choose the same allocation of attention, (�m; �a). These three
conditions are also su¢ cient to obtain that the information �ows, �m and �a, do not vary over time in the
information-processing constraint (35).

25



quanti�ed by the parameter �, between observing monetary policy and technology. Solving

the allocation-of-attention problem (31)-(35) delivers the optimal allocation of attention

(��m; �
�
a). Note that when �rms decide how to allocate their attention, they are aware that

their choice will a¤ect their optimal price-setting policy (32) in any subsequent periods.

The marginal rate of pro�t is de�ned as:

mrp � @�=@�m
@�=@�a

where � is the sum of discounted pro�ts:

� �
1X
t=1

�t�̂t
�
p̂�i;t; p̂t; ŷt; q̂t

�
It is very simple to see that the mrp at the optimal allocation of attention (��m; �

�
a)

is equal to unity. In the estimated ICKM, however, mrp may be di¤erent from one. The

reason is that the estimated allocation of attention (�m; �a) may di¤er from the optimal one

(��m; �
�
a). In fact, when one calibrates the parameters of the ICKM by using the posterior

medians, one �nds that the mrp in the ICKM is 48:20. This number is hugely bigger than

unity. In the estimated ICKM, �rms are willing to trade more than 48 bits of information

about technology to get one bit of information about monetary policy. This number is too

big to reconcile itself to the rational-inattention theory. This result leads me to conclude

that the estimated ICKM implies that �rms acquire implausibly too little information about

monetary policy.

4.3 A Robustness Check

By using tools provided by the rational-inattention theory, I �nd that �rms acquire implau-

sibly little information about monetary policy. Now the question is: does the ICKM model

really need to make such an implausible prediction to match the persistent adjustment of
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variables to monetary shocks? To answer this question, I compare the impulse response

functions of output and in�ation to monetary shocks at the optimal allocation of attention,

(��m; �
�
a), and at the estimated allocation of attention, (�m; �a). The goal is to assess to

what extent the persistence of output and in�ation falls if �rms are allowed to optimally

choose their allocation of attention as modelled in the problem (31)-(35).

I will �rst compute the estimated information �ows, (�m; �a), and the estimated overall

amount of information processed, �, in the ICKM. Given the mappings in (30) and the

prior (posterior) draws for the parameter of the ICKM, �I , I approximate the moments

of the prior (posterior) distribution for the information �ows �m and �a through standard

Monte Carlo methods. Table 4 shows the prior and posterior medians for those parameters

and their 90% credible intervals in the estimated ICKM. The posterior medians of �m and

�a are 0:10 bits and 0:45 bits, respectively. The posterior median of the overall amount

of information processed by �rms per quarter, �, is 0:55 bits.17 Figure 4 compares the

prior and the posterior distributions18 of the fraction of the overall �rms�attention paid to

the technology shocks, that is, �a= (�m + �a). This graphical comparison emphasizes that,

starting from a very agnostic prior for the allocation of attention, the posterior distribution

attributes a large portion of �rms�attention to technology (the posterior median is about

82%). Hence, according to the data, the adjustment of output and in�ation to monetary

shocks is rather slow, as con�rmed by the IRFs in Figures 2 and 3. Furthermore, in Figure

4 the posterior appears to be far tighter than the prior, suggesting that the data are quite

informative about the proportion of overall attention paid to technology: �a= (�m + �a).

Now I have to solve the problem (31)-(35) for the optimal allocation of attention (��m; �
�
a).

Yet, I need �rst to pin down the information-processing constraint (35). To do that, I need

to �x one degree of freedom: the size of the parameter �. I calibrate the value of this

17This is obtained by using the prior and posterior draws for �m and �a as long as equation (29).
18They are non-parametric estimates of the prior and posterior distributions based on the draws obtained

from the simulator.
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parameter by using its estimated value in Table 4, that is � = 0:55 bits. I then solve19 the

problem (31)-(35) for the optimal allocation of attention and obtain that ��m is equal to

0:33 and ��a is equal to 0:22. These �ndings show that the estimated allocation of attention

(�m; �a) (see Table 4) is very di¤erent from the optimal one (��m; �
�
a). The optimal allocation

of attention implies that �rms pay more attention to monetary policy than to technology.

Figures 5-6 show the IRFs of output and in�ation to a monetary shock implied by the

ICKM at the estimated allocation of attention (EAA) and at the optimal allocation of

attention (OAA). These �gures also show the same IRFs implied by the benchmark VAR,

analyzed in section 3. Output and in�ation adjust very fast to monetary policy shocks

at the optimal allocation of attention. This is not consistent with what is documented

by the VAR. Hence, I conclude that the ICKM requires that �rms acquire implausibly

little information about monetary policy in order to generate the persistent propagation of

monetary disturbances that is found in the data.

5 Concluding Remarks

I develop a DSGE model with imperfect common knowledge in the sense of Woodford (2002).

The model features two aggregate shocks: a monetary policy shock and a technology shock.

I obtain Bayesian estimates for the model parameters. I �nd that even though the model is

very stylized, its impulse response functions of real output and in�ation to a monetary policy

shock closely match those implied by a largely parameterized VAR. Quite remarkably for

such a stylized model, output and in�ation react in a hump-shaped and persistent fashion

to monetary shocks, as is widely documented by other in�uential empirical studies (e.g.,

19The optimal allocation of attention can be computed in four steps. First, I guess the values of the
information �ows �m and �a and use the mappings in (34) to obtain the implied noise variances, ~�m and ~�a.
Second, given this guess, I numerically characterize the law of motion of the price level exactly as I do when
solving the ICKM (see section 2.9). Third, I numerically solve the problem (31)-(35) to obtain the optimal
allocation of attention, k�m and ��a. Fourth, I check whether k�!� ��!� �k < ", for vectors �!� � (�m; �a)0 and�!� � � (��m; ��a)0, with " > 0 and small. If this criterion is not satis�ed, I do another loop by setting the guess�!� = �!� �. Otherwise, stop.

28



Christiano et al., 1999).

Nonetheless, I argue that the estimated model predicts that �rms acquire little informa-

tion about monetary policy shocks to an extent that is not plausible. I draw this conclusion

from evaluating a simpli�ed rational-inattention model à la Sims (2003). This model is

an imperfect-common-knowledge model in which �rms are allowed to choose the optimal

information �ows about the two shocks along a schedule that is commonly used in the liter-

ature of rational inattention. I show that the marginal value of information about monetary

policy is much higher than that about technology at the point on the schedule predicted by

the estimated imperfect-common-knowledge model. Furthermore, I �nd that the imperfect-

common-knowledge model requires that �rms acquire implausibly little information about

monetary policy to generate the persistent propagation of monetary disturbances observed

in the data. This result calls for further research on the substitution rate of information

that �rms actually face when they allocate their attention.

Yet I believe that it would be wrong to conclude that imperfect-common-knowledge mod-

els à la Woodford (2002) have no chance to generate persistent adjustments of model vari-

ables under plausible parameterizations. There is margin to modify the standard imperfect-

common-knowledge model so as to make its predictions on �rms�allocation of attention

among shocks plausible and, at the same time, to retain the persistent propagation of

monetary shocks. This is also left for future research.
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Tables and Figures

Table 1a: Prior distributions
Name Range Density Median 90% Interval
�m [0; 1) Beta 0:50 [0:18; 0:83]
A0 R Normal 0:00 [�0:41; 0:41]
M0 R Normal 0:00 [�0:41; 0:41]
� R+ Gamma 1:00 [0:24; 1:74]

100�m R+ InvGamma 1:6 [0:44; 12:82]
100�a R+ InvGamma 0:7 [0:51; 0:87]
100~�m R+ InvGamma 5:02 [2:11; 7:92]
100~�a R+ InvGamma 1:07 [0:24; 1:87]

�p [0; 1) Beta 0:67 [0:37; 0:99]
� [0; 1) Beta 0:99 [0:98; 0:99]

Table 1b: Implied prior distributions (ICKM)
Name ICKM

Median 90% Interval
1� � strategic complementarity 0:00 [�0:50; 0:63]
�m=~�m signal-to-noise ratio MP 0:56 [0:06; 3:64]
�a=~�a signal-to-noise ratio tech. 0:95 [0:10; 1:80]
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Table 2: Posterior distributions
ICKM Calvo Model

Name Median 90% Interval Median 90% Interval
�m 0:34 [0:24; 0:45] 0:24 [0:15; 0:33]
100A0 0:45 [0:36; 0:55] 0:43 [0:11; 0:74]
100M0 1:34 [1:18; 1:49] 1:34 [1:20; 1:48]
� 0:41 [0:06; 0:77] 0:80 [0:13; 1:58]

100�m 0:88 [0:81; 0:91] 0:89 [0:82; 0:97]
100�a 0:86 [0:70; 1:02] 2:66 [2:04; 3:36]
100~�m 9:75 [4:40; 15:01] � �
100~�a 1:45 [0:60; 2:31] � �
�p � � 0:88 [0:82; 0:94]
� � � 0:99 [0:99; 0:99]

1� � 0:64 [0:25; 0:93] � �
�m=~�m 0:10 [0:04; 0:15] � �
�a=~�a 0:63 [0:33; 0:96] � �
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Table 3: Logarithms of Marginal Data Densities (MDDs)
Models

ICKM Calvo VAR(4)
log MDD 1547:01 1529:38 1727:04

Table 4: Implied prior and posterior distributions
Prior

Variables Descriptions Median 90% Interval
�m information �ow MP 0:52 [0:07; 2:51]
�a information �ow tech. 0:67 [0:12; 1:23]
� = �m + �a overall level of attention 1:28 [0:29; 3:20]
�a

�m+�a
allocation of attention to tech. 0:53 [0:11; 0:82]

Posterior
Variables Descriptions Median 90% Interval
�m information �ow MP 0:10 [0:05; 0:18]
�a information �ow tech. 0:45 [0:22; 0:79]
� = �m + �a overall level of attention 0:55 [0:27; 0:94]
�a

�m+�a
allocation of attention to tech. 0:82 [0:76; 0:87]
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Appendix

A Law of motion of price and output in the ICKM

The �rst-order necessary condition20 of the price-setting problem (11)-(16) in the ICKM is:

Ei;t

"
�Qt

 
Yi;t � �P it

�
Pi;t
Pt

����1
Yt
Pt
+ ��

Wt

At

�
Yi;t
At

���1�
Pi;t
Pt

����1
Yt
Pt

!#
= 0

Use the equation (12) to write:

Ei;t

24�Qt
0@�Pi;t

Pt

���
Yt � �P it

�
Pi;t
Pt

����1
Yt
Pt
+ ���1

Wt

At

 
1

At

�
Pi;t
Pt

���
Yt

!��1�1�
Pi;t
Pt

����1
Yt
Pt

1A35 = 0
From the solution to the representative household�s problem (2)-(5), the labor supply can be easily
shown to be Wt=Pt = �YtH

�
t . Substituting this result into the equation above yields:

Ei;t

24�Qt
0@(1� �)�Pi;t

Pt

���
Yt + ��

�1�YtH
�
t

At

 
1

At

�
Pi;t
Pt

���
Yt

!��1�1�
Pi;t
Pt

����1
Yt

1A35 = 0
De�ne the stationary variables:

yt �
Yt
At
; yi;t �

Yi;t
At

; pi;t =
Pi;t
Pt
; ht = Ht (36)

With this notation, I can rewrite the price-setting equation as:

(1� �)Ei;t
h
�QtYtp

��
i;t

�
1 + ���1�yth

�
t

�
p��i;t yt

���1�1
p�1i;t

�i
= 0

It is easy to show that the expression within the round brackets is zero at the deterministic symmetric
steady-state. Hence, when one takes the log-linear approximation of the equation above around the
deterministic symmetric steady-state, one does not need to care about what is outside those brackets.
Hence the price-setting condition can be approximated as follows:

0 = Ei;t
h
�ĥt �

�
�
�
��1 � 1

�
+ 1
�
p̂i;t + �

�1ŷt

i
Note also that from the production function ĥi;t = �

�1ŷi;t and hence21 ĥt = �
�1ŷt. By substituting,

this results into the equation above, one obtains:

0 = Ei;t
�
(� + 1)��1ŷt �

�
�
�
��1 � 1

�
+ 1
�
p̂i;t
�

20Note the slight change in notation from the main text. We denote E
�
�jzti
�
= Ei;t.

21Log-linearizing Yt =
�R 1

0
(Yi;t)

��1
� di

� �
��1

yields ŷt =
R
ŷi;tdi.
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and then

Ei;tp̂i;t =
(� + 1)��1

�
�
��1 � 1

�
+ 1

Ei;tŷt

and more compactly, by de�ning � � (� + 1)��1=
�
�
�
��1 � 1

�
+ 1
�
,

Ei;t [p̂i;t] = �Ei;t [ŷt]

In order to take �rm i�s price Pi;t out of the expectation operator, I need to recall the de�nition
of the transformed variables in (36) and then write:

Ei;t

264lnPi;t � lnPt| {z }
p̂i;t

375 = �Ei;t
264lnYt � lnAt � ln �y| {z }

ŷt

375
or equivalently,

lnPi;t = Ei;t [� lnYt + lnPt � � lnAt]� � ln �y

Recall equation (10):
lnPt + lnYt = lnMt ) lnYt = lnMt � lnPt

and thus,
lnPi;t = Ei;t [� (lnMt � lnPt) + lnPt � � lnAt]� � ln �y

and by rearranging:

lnPi;t = Ei;t [(1� �) lnPt + � lnMt � � lnAt]� � ln �y

This price-setting equation shows that the coe¢ cient 1�� controls the strategic complementarity in
price-setting (i.e., the extent to which �rms want to react to the expected average price Ei;t (Pt)). In
order to have strategic complementarities in price-setting (i.e., �rms want to raise (cut) their prices
when the average price goes up (down) ), one needs that � � 1.

If one log-linearizes equation (1) around the deterministic steady-state, one obtains p̂t =
R
p̂i;tdi.

Hence, by integrating across �rms one obtains:

lnPt = (1� �) lnP (1)tjt + � lnM
(1)
tjt � � lnA

(1)
tjt � � ln �y

From this equation, repeatedly taking the conditional expectation and averaging across �rms yield:

lnP
(j)
tjt = (1� �) lnP

(j+1)
tjt + � lnM

(j+1)
tjt � � lnA(j+1)tjt � � ln �y

for j 2 f1; 2; : : :g. By repeatedly substituting these results into the average-price equation one
obtains:

lnPt =

1X
j=0

(1� �)j � lnM (j+1)
tjt � (1� �)j � lnA(j+1)tjt � ln �y

By recalling that I de�ned mt � lnMt �M0t and at � lnAt � A0t and that �rms know all the
model parameters, I can re-write the equation above as:

lnPt =

24 1X
j=0

(1� �)j �
�
m
(j+1)
tjt � a(j+1)tjt

�35� ln �y +M0t�A0t
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This is equation (20) in the main text. Furthermore, I can combine equations (20) and (10) to get:

lnMt � lnYt| {z }
lnPt

=

24 1X
j=0

(1� �)j �
�
m
(j+1)
tjt � a(j+1)tjt

�35� ln �y +M0t�A0t

and by re-arranging, this yields:

lnYt =

24mt �
1X
j=0

(1� �)j �m(j+1)
tjt

35+ 1X
j=0

(1� �)j �a(j+1)tjt � ln �y +A0t

which is the equation (21) in the main text.

B Solving the ICKM

In general, �nding an equilibrium in models with incomplete informations requires characterizing
in�nitely many equilibrium laws of motion, which is absolutely unmanageable. In the present model,
this issue can be elegantly resolved as in Woodford (2002). More speci�cally, I need only to keep
track of a speci�c linear combination of average expectations, appearing in equations (20)-(21).
De�ne the vector Ft as

Ft �
1X
j=1

(1� �)j�1 �X(j)
t (37)

where Xt � [mt;mt�1; at]
0 (38)

Finding an equilibrium for the ICKM requires characterizing the equilibrium law of motion of the
�nite-dimensional vector Ft. The transition equations of the ICKM can be shown to be:

byt = bpt (39)bpt = r0Xt (40)

Xt = BXt�1 + but (41)

where

Xt �
�
X0
t

... F0t

�0
, r� [�1; 0; 1; 1; 0;�1]0

B �
�
B3x3 03x3
G3x3 H3x3

�
; b =

�
b 0... d0

�0
(42)

B �

24 1 + �m ��m 0
1 0 0
0 0 1

35 ; b �

24 1 0
0 0
0 1

35 ; ut = ["m;t; "a;t]
0

ut
iidv N (0;�u) , for all t and �u =

�
�2m 0
0 �2a

�
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whereG, H, and d are matrices that are not known yet. Equation (39) stems from the log-linearized
version of equation (10), where I de�ned the log-linear deviations of the stationary output, yt, and
price, pt, from their deterministic steady-state, as ŷt and p̂t, respectively. Equation (40) can be
derived by equation (20) by simply adding lnAt� lnMt� ln �p to both sides of this equation and by
recalling that

p̂t = lnPt + lnAt � lnMt � ln �p

and
ln �p+ ln �y = 0;

because of equation (10).
Recall that the signal structure is speci�ed in equations (16). Thus, the �rms� observation

equations are
zi;t = DXt + ei;t (43)

where

D �
h
D1

... 02x3

i
and D1 =

�
1 0 0
0 0 1

�
(44)

ei;t v N (0;�e) ; iid for all t, and i; �e =
�
~�2m 0
0 ~�2a

�
(45)

Finding an equilibrium for this economy amounts to characterize the unknown matrices G, H,
and d. This requires solving the following �xed point problem. Given the conjectured law of motion
(41), optimal �rms�behaviors must exactly aggregate to the conjectured law of motion (41). Like in
Woodford (2002), the method of undetermined coe¢ cients can be used to pin down those matrices.

It is easy to see that the �rm i�s optimal estimate of the state vector evolves according the
so-termed kalman-�lter equation

Xtjt (i) = Xtjt�1 (i) + k
�
zt (i)�DXtjt�1 (i)

�
(46)

where k is the 6x2 Kalman gain matrix which is not yet speci�ed. It is easy to show that the
one-step-ahead forecast of the state vector is:

Xtjt�1 (i) = BXt�1jt�1 (i) (47)

I can plug the (47) into the (46) to get the law of motion for �rm i�s estimate of the current state
vector

Xtjt (i) = BXt�1jt�1 (i) + k
�
zt (i)�DXtjt�1 (i)

�
(48)

By integrating the (48) over �rms (i.e.
R
Xtjt (i) di � Xtjt) one gets

Xtjt = BXt�1jt�1 + kD
�
Xt �Xtjt�1

�
(49)

This result follows from the observing that on aggregate the signal noise washes out (i.e.
R
et (i) di =

0) and hence Z
zt (i) di = DXt +

Z
et (i) diZ

zt (i) di = DXt
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By using the transition equation (41) to get rid of Xt in the equation (49) I obtain

Xtjt = BXt�1jt�1 + kD
�
BXt�1 + but �Xtjt�1

�
Then by integrating the (47), which yields the average prior forecast (i.e. Xtjt�1 = BXt�1jt�1), one
notices that the above equation can be rewritten as

Xtjt = Xtjt�1 + kD
�
BXt�1 + but �Xtjt�1

�
Gathering the common terms yields

Xtjt = [I� kD]BXt�1jt�1 + kD
�
BXt�1 + but

�
(50)

which can be regarded as the law of motion for the average estimates of the current state vector.
It is convenient to de�ne the 6x3 vector ' such that

' �
�
� � I3

... (1� �) � I3
�0

Then one can note the following

'0X
(1)

t = Ft (51)

It is easy to prove that equation (51) is indeed true by working as follows

'0X
(1)

t =

�
(�) � I3

... (1� �) � I3
�
�

264 X
(1)
t

� � �
F
(1)
t

375 (52)

'0X
(1)

t = �X
(1)
t + (1� �)F(1)t

Let me introduce the following notations:

x
(k�1)
tjt � x(k)t ; 8k � 1; x(0)t � xt (53)

where xt is an arbitrary random variable. Hence I can write

'0X
(1)

t = �X
(0)
tjt + (1� �)F

(0)
tjt

Moreover, it is easy to derive an equation for Ftjt from equation (37)

F
(0)
tjt =

1X
j=1

(1� �)j�1 �X(j)
tjt

Combining the last two equations yields

'0X
(1)

t = �X
(0)
tjt + (1� �)

1X
j=1

(1� �)j�1 �X(j)
tjt
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Some easy manipulations lead to

'0X
(1)

t = (�)X
(0)
tjt +

1X
j=1

(1� �)j �X(j)
tjt

=
1X
j=1

(1� �)j�1 �X(j�1)
tjt

Now recall equation (53) to �nally write

'0X
(1)

t =
1X
j=1

(1� �)j�1 �X(j)
t

Comparing this equation with the (37) concludes the proof of (51). Now one can plug equation (50)
into equation (51) to get

Ft =
h
'0 � ekDiBXt�1jt�1 + ekD �BXt�1 + but

�
(54)

where ek � '0k. One can prove the following three facts:
FACT 1

'0B =

�
�B+(1� �)G

... ((1� �))H
�

FACT 2

DB =

�
D1B

... 02x3

�
(55)

=

�
By
... 02x3

�
where By �

�
B01 B03

�0
and Bj stands for the j-th row of B.

FACT 3

Db = D1b

=

�
1 0
0 1

�
= I (2)

Then note that the FACT 3 can be used to show that

ekDbut = ekut
The FACT 2 allows is to get the following results:

ekDBXt�1 = ekByXt�1

and ekDBXt�1jt�1 = ekByXt�1jt�1
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Then the FACT 1 can be used in order to prove the following result

'0BXt�1jt�1 = �BXt�1jt�1+(1� �)GXt�1jt�1+ (1� �)H � Ft�1jt�1

By collecting all these results one can rewrite equation (54) as follows

Ft =
h
�B+(1� �)G� ekByiXt�1jt�1+(1� �)HFt�1jt�1 + ekByXt�1 + ekut (56)

Next, I will work out the vector Ft�1 from Ft�1jt�1, since I want to rewrite equation (56) in a form
that is comparable to that conjectured in equation (41) so as I can compare my initial guess. One
should start from equation (51) to get

(1� �) � Ftjt = Ft � �Xtjt

By lagging the last equation by one period, one gets

(1� �) � Ft�1jt�1 = Ft�1 � �Xt�1jt�1 (57)

I can now plug equation (57) into equation (56) to get

Ft =
h
�B+(1� �)G� ekByiXt�1jt�1+H

�
Ft�1 � �Xt�1jt�1

�
+ ekByXt�1 + ekut

Ft =
h
�B+(1� �)G� ekBy � �HiXt�1jt�1+H � Ft�1 + ekByXt�1 + ekut (58)

Now equation (58) has the same form as the bottom rows of equation (41) because Xt�1jt�1 does
not depend on neither Xt�1 nor Ft�1. Thus I can make the following identi�cations:

G = ekBy (59)

d = ek (60)

and h
�B+(1� �)G� ekBy � �Hi !

= 0

By substituting (59) into the last equation one obtainsh
B� ekBy �Hi !

= 0

H
!
= B� ekBy (61)

which identi�es the matrix H.
The matrix k is the steady-state matrix of Kalman gains which is well-known to be equal to

k = PD0 �DPD0 +�e
��1

(62)

with the matrix P that solves the following algebraic Riccati equation

P = B
h
P�PD0 �DPD0 +�e

��1
DP

i
B
0
+ b�ub

0
(63)

and where By �
�
B01 B03

�0
and Bj stands for the j-th row of B.
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Since B and b turn out to be function of P, the ultimate goal is to �nd out the �xed-point
of a larger equation to solve for P, speci�ed solely in terms of model parameters. Computation-
ally, �nding this �xed point turns out to be fast and reliable. This makes the ICKM suitable for
estimation.

The loop to numerically �nd out a REE is the following: given a set of parameter values and
a guess for the Kalman-gain matrix k0, one has to characterize the matrices G, H, and d through
equations (59)-(61). Then one has to solve the algebraic Riccati equation (63) for P and obtain
a new Kalman-gain matrix k� through the equation (62). Then if the new Kalman-gain matrix
is su¢ ciently close to the guess, one has just found the �xed point and stops, otherwise one goes
through another loop by using the matrix k� as a new guess for the Kalman-gain matrix. Once a
�xed point is found, one can use the resulting Kalman-gain matrix to fully characterize the state-
space system of the ICKM model described in (41)-(42) through (59)-(63), which combined with
the equations (39)-(40) delivers the equilibrium dynamics of the log-deviations of real output and
in�ation.

C Information �ows

As shown in the main text, the information �ow �a is measured as follows:

�a � H
�
atjzt�1a;i

�
�H

�
atjzta;i

�
(64)

Since at and za;i;t are Gaussian, I can write:

H
�
atjzta;i

�
� 1

2
log2

�
2�e � V AR

�
atjzta;i

��
(65)

First, let me focus on the mapping

V AR
�
atjzta;i

�
= g (~�a; �a)

The mapping ga (:) can be implicitly characterized through the Kalman �lter. The standard Kalman-
equation for updating conditional variances is:

V AR
�
atjzta;i

�
= V AR

�
atjzt�1a;i

�
�

V AR
�
atjzt�1a;i

�2
V AR

�
atjzt�1a;i

�
+ ~�2a

One can show that V AR
�
atjzt�1a;i

�
= V AR

�
at�1jzt�1a;i

�
+ �2a. Plugging this result into the equation

above and some straightforward manipulations yield

V AR
�
atjzta;i

�
=

�
V AR

�
at�1jzt�1a;i

�
+ �2a

�
~�2a

V AR
�
at�1jzt�1a;i

�
+ �2a + ~�

2
a

Note that

~�2a = 0 =) V AR
�
atjzta;i

�
= 0

~�2a �! 1 =) V AR
�
atjzta;i

�
= V AR (at) �!1

where the last result follows from the fact that at follows a random walk. After manipulating a bit
I obtain the quadratic equation:
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V AR
�
atjzta;i

�2
+ V AR

�
atjzta;i

�
�2a = �

2
a~�

2
a

This admits two solutions. There exists a unique acceptable solution (V AR
�
atjzta;i

�
� 0) though,

that is

V AR
�
atjzta;i

�
=
��2a +

q
�4a + 4�

2
a~�

2
a

2

Note that I can write: q
�4a + 4�

2
a~�

2
a = 2V AR

�
atjzta;i

�
+ �2a

~�2a =

�
2V AR

�
atjzta;i

�
+ �2a

�2
4�2a

� �
2
a

4

and �nally,

~�2a =

�
2V AR

�
atjzta;i

�
+ �2a

�2
4�2a

� �
2
a

4
(66)

Now I need to �nd an expression for V AR
�
atjzta;i

�
in terms of the information �ow �a and the

variance �a.
Combining the equations (64) and (65) yields

�a = H
�
atjzt�1a;i

�
�H

�
atjzta;i

�
�a =

1

2
log2

 
V AR

�
atjzt�1i

�
V AR (atjzti)

!

Since �rms observe in�nitely many signals, V AR
�
atjzt�1i

�
= V AR (atjzti) + �a. Hence I obtain:

�a =
1

2
log2

�
V AR (atjzti) + �2a
V AR (atjzti)

�
If one inverts this equation, one obtains:

V AR
�
atjzti

�
=

�2a
22�a � 1 (67)

Plugging this result into equation (66) leads to:

�a =
1

2
log2

264 1�
~�2a
�2a
+ 1

4

� 1
2 � 1

2

+ 1

375 (68)

This is the mapping ga in equation (30).
An analytical closed-form solution for the mapping gm in equation (30) cannot be derived. I

computationally approximate this mapping. To do that, I need to compute the conditional entropies
H
�
mtjzt�1m;i

�
and H

�
mtjztm;i

�
. Since the state mt and signals zm;i;t are Gaussian, one can show that
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the conditional entropy is:

H
�
mtjz�1;i

�
=
1

2
log2

�
2�e � V AR

�
mtjz�1;i

��
(69)

Hence, I have to characterize the conditional variances of V AR
�
mtjz�1;i

�
, � 2 ft� 1; tg. Let me

de�ne the variance-covariance matrices:

Ptj� � E
h�
Xt � E

�
Xtjz�i

�� �
Xt � E

�
Xtjz�i

��0 jz�i i
for � 2 ft� 1; tg, where Xt �

�
X0
t

... F0t

�0
, Xt � [mt;mt�1; at]

0, and Ft �
P1

j=1 (1� �)
j�1

�X
(j)
t ,

as de�ned in appendix B. It is easy to see that V AR
�
mtjzt�11;i

�
= Ptjt�1 [1; 1] and V AR

�
mtjzt1;i

�
=

Ptjt [1; 1], where the numbers within square brackets denote the matrix component of interest. The
matrix Ptjt�1 is nothing but the matrix P in appendix B. See equation (63). The matrix Ptjt is
de�ned as:

Ptjt � Ptjt�1 �Ptjt�1D0 �DPtjt�1D0 +�e
��1

DPtjt�1 (70)

where the matrices D and �e have been de�ned in (44) and in (45), respectively.
Thus, after one has characterized the �xed point as discussed in appendix B, one can use the

resulting matrix P and equation (70) to pin down the conditional variances V AR
�
mtjz�1;i

�
, for

� 2 ft� 1; tg, the condition entropies H
�
mtjz�m;i

�
, for � 2 ft� 1; tg, through equation (69), and

�nally the information �ow �m � H
�
mtjzt�1m;i

�
�H

�
mtjztm;i

�
.
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