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Abstract

Volatility risk premia compensate agents for holding assets whose payoffs correlate with times of high return variation.

This paper takes a structural approach to explain the cross-section of volatility risk premia of stocks using a Lucas or-

chard with heterogeneous beliefs, stochastic macro-economic uncertainty, and default risk. I study two manifestations of

uncertainty, namely (i) agents’ disagreement and (ii) time-varying volatility of fundamental growth rates. The paper shows

that while the former source of risk accounts for the level of the risk premia, the latter mainly affects the higher order

moments of the risk premium distribution. Together with uncertainty, default risk associated with levered trees implies

a non-monotonic equilibrium link between stock returns and volatility which allows for positive or negative risk premia.

Calibrating the economy, I show that the model accounts for predictability of excess stock returns and corporate credit

spreads. I construct volatility risk premia from option and stock prices and document that in the time-series, volatility risk

premia of individual stocks can be positive or negative, and switch sign rather often. In the cross-section, they are only

weakly related to traditional risk factors. I then test the model predictions and find that empirical proxies for investors’

uncertainty about expected growth rates and macro-economic uncertainty are priced risk factors that convey information

over and above those contained in other standard factors to explain these risk premia. In line with the model predictions,

I present predictability evidence of individual volatility risk premia for stock excess returns and corporate credit spreads.
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Volatility risk premia compensate investors for holding assets whose payoffs are correlated with times of high return

variation. While most of the recent literature has focused on the index volatility risk premium, this paper studies

individual volatility risk premia in the cross-section of stocks both theoretically and empirically. I develop an economy

with multiple assets where each firm is subject to default. The profitability of each firm is unknown and has to be

learned. I allow two rational manifestations of uncertainty, (i) agents’ disagreement about the future profitability of

firms and a business-cycle indicator, and (ii) time-varying volatility of fundamental growth rates to have a bearing on

risk premia in equilibrium. My results show that the interplay between leverage and the two sources of uncertainty

add a crucial component to the understanding of both the time-series and cross-section of individual volatility risk

premia.

Empirically, volatility risk premia of firms with low leverage display a different behavior than those of firms with

high leverage. Figure 1 documents this fact. The upper left panel plots the average volatility risk premium, proxied

by the difference between the model-free implied volatility calculated from option prices and the realized volatility

calculated from stock returns, for the 5th leverage percentile of all firms in the S&P 500 index. The lower left panel

depicts the average volatility risk premium for the 95th leverage percentile. There are several observations. First,

both volatility risk premia display a counter-cyclical behavior and the volatility risk premium of the high leverage

firms tends to be more counter-cyclical than the one of the low leverage firms. This is indicated by the larger increase

of the risk premium in periods of financial or economic crisis. For instance, the average change in the volatility risk

premium of high leverage firms in crisis periods is 30%, opposed to a 11% increase for low leverage firms. Second,

the average volatility risk premium of low leverage firms turns negative more often than high leverage firms.1 This is

confirmed in the right panel of Figure 1 where I depict the boxplot of volatility risk premia for low and high leverage

firms: Low leverage firms display a more negatively skewed distribution than high leverage firms. The skewness is

-1.32 which is more than 50% more negative than for the high leverage firms. Moreover, the median volatility risk

premium of the low and high leverage firms is 0.0049 and 0.0192, respectively. Running a simple t-test reveals that

I can reject the null hypothesis of zero difference between the two means.

[Insert Figure 1 approximately here.]

The counter-cyclical nature of the market volatility risk premium has prompted a number of researchers to examine

the impact of economic uncertainty on the volatility risk premium. Drechsler and Yaron (2008), Drechsler (2008), and

Bollerslev, Tauchen, and Zhou (2009) study time-varying economic uncertainty under the assumption of recursive

preferences in a consumption-based model. In such an economy, absent an explicit link between the innovations

in consumption and volatility, one must endow agents with a preference for early resolution of uncertainty and a

stochastic volatility of consumption growth volatility, in order to replicate the distinct empirical features of the

volatility risk premium and its higher order moments. In such a framework, however, the volatility risk premium can

only be positive, as agents require a higher premium for holding the risk. While the volatility risk premium for the

1In the time-series, I find that in 18% of all observations the volatility risk premium turns negative, while for high leverage firms the
volatility risk premium is negative 10% of the time.
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market is indeed positive most of the time, it does switch signs over time and interestingly, these periods of negative

risk premia tend to coincide with times of economic or financial crises.2 On the individual stock level, as outlined

before, I find that volatility risk premia tend to be negative more often.3

Surprisingly little research has been undertaken to understand the economic drivers of volatility risk premia of

individual stocks. This paper seeks to fill this gap and studies the cross-section of volatility risk premia from an

asset pricing perspective. In a partial information economy with multiple assets and agents, I propose a structural

explanation for the differential behavior of volatility risk premia in the cross-section of stocks, based on the role

of stochastic macro-economic uncertainty and heterogeneity in beliefs. I study a Lucas’ orchard economy, in which

rational investors update their beliefs according to Bayes’ Law and where claims to trees are subject to default

risk. The growth rate of the firms’ cash flow streams and a business cycle indicator are unknown to all agents

in the economy. In order to implement optimal portfolio choices, these growth rates have to be estimated and

investors disagree on them. In addition, I assume that these expected growth rates carry a volatility which follows a

two-state Markov switching process. The intuition borrows from the long-run risk literature, which emphasizes the

importance of a time-varying conditional volatility of consumption growth. In equilibrium, when belief heterogeneity

and macro-economic uncertainty vary over time, they drive a substantial fraction of the volatility of asset returns.

The interaction between leverage, belief heterogeneity, and uncertainty allows for both positive and negative volatility

risk premia. For low leverage firms with high uncertainty, the volatility risk premium can be negative, whereas for

high leverage firms, the risk premium tends to be positive. I study these model implications theoretically within a

calibrated model and link them directly to the differential empirical pricing patterns of individual options.

My approach departs from the existing literature in two important aspects. First, I study the cross-section of

individual volatility risk premia in a multi tree economy, which poses a more challenging quest than understanding

the index volatility risk premium itself due to the large dispersion of the volatility risk premia in the cross-section of

stocks. Second, I distinguish between two manifestations of uncertainty: (i) The uncertainty induced by fundamental

values (the stochastic volatility of the expected growth rate of cash flows and a business cycle indicator) and (ii) its

heterogeneous perception by the agents. While both carry the label uncertainty, I allow for two distinct channels

through which uncertainty is reflected in risk premia. The former enters into the stochastic discount factor by affecting

the moments of the distribution of the disagreement. The higher the macro-economic uncertainty, the higher the

first and second moments of the disagreement. In addition, I show that for explaining the cross-sectional pattern of

volatility risk premia, both specifications contribute distinct parts. While the subjective uncertainty quantitatively

fits well the level, the macro-economic uncertainty accounts for higher order moments of the volatility risk premia

such as volatility, skewness, and kurtosis.

2In the period from January 1996 to September 2008, the volatility risk premium of the S&P 500 was negative five times. Note that
the points of a strongly negative market volatility risk premium usually occur during times of economic or financial crises. For instance,
one striking drop in the index volatility risk premium was in spring 2000, right after the NASDAQ bubble burst. Similarly, since the
start of the economic crisis in 2007, the market volatility risk premium has turned negative three times.

3This finding is inline with Bakshi, Kapadia, and Madan (2003) and Carr and Wu (2009) who document a large dispersion in variance
risk premia of individual stocks and more importantly, a more positively skewed return distribution.
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The more specific features of the model are as follows: The growth volatility of fundamentals and agents’ disagree-

ment are time-varying and are allowed to affect the volatility risk premia via the stochastic discount factor. A higher

disagreement on future cash flows induces a higher volatility and negative skewness for medium to high leveraged

firms. For firms with low leverage, it is possible that the risk-neutral skewness turns positive. The economic reason

is due to the different sensitivities of the default option embedded in stock returns: For low leverage companies, this

option is far out-of-the-money and its value is more sensitive to changes in skewness. For high leverage companies,

the default option is closer to be in-the-money and the opposite holds. In my economy, agents have time-separable

utility and the diffusions of the fundamental process and the consumption growth volatility are assumed indepen-

dent. In an economy without disagreement, under these assumptions, the difference between the risk-neutral and

physical expected volatility would be equal to zero. If disagreement is a priced risk factor, the wedge is entirely

driven by agents’ uncertainty and the time-varying macro-economic risk. Calibrating the model, I confirm several

of the empirical findings. Both disagreement and realized conditional consumption growth volatility matter in their

implications for volatility risk premia, and I find the first source to dominate. Shutting down the stochastic volatility

of cash flow growth, the level of volatility risk premia is mainly explained by the difference in beliefs. However,

higher order moments, such as the persistence, skewness, and kurtosis of the risk premia are driven, to a large

extent, by economic uncertainty. A simulation exercise shows that the model is able to replicate the predictability

of stock excess returns and corporate credit spreads. Moreover, the estimated coefficients correspond in sign and

size to their empirical counterparts. This paper is a first step towards a unified study of agents’ (disagreement) and

macro-economic uncertainty, and I hope to give credence to the hypothesis that both subjective agents’ uncertainty

and realized objective uncertainty could matter for volatility risk premia of stocks.

To empirically test the model predictions, I construct model-free measures of volatility risk premia (see Carr and

Madan, 1998 and Britten-Jones and Neuberger, 2000) and risk-neutral skewness (Bakshi, Kapadia, and Madan, 2003)

from stock option prices using data from January 1996 to September 2008. Following Hamilton (1989), I estimate a

Markov chain process for the second moment of consumption growth to get a measure of the conditional volatility of

fundamentals. In addition, I build a forward-looking measure of disagreement about future cash flows of firms based

on forecasts of corporate earnings. The separation of the two uncertainty channels has an empirical appeal. By

its forward-looking construction, disagreement captures perceptions of risk looming on investors’ horizon. Thus, it

conveys information over and above the one contained in the conditional volatility of consumption which is estimated

using historical data.

I document two results which are, to the best of my knowledge, new to the literature. First, simple panel regressions

reveal that both disagreement and the conditional volatility of consumption matter for volatility risk premia and

outperform the explanatory content of other factors known to affect these risk premia. For instance, a one standard

deviation change in firm-specific disagreement increases the volatility risk premium by 0.5%, which corresponds to one

third of the average volatility risk premium in the cross-section of stocks. A slightly smaller change is induced by the

conditional volatility of consumption growth. Disagreement and time-varying consumption growth volatility account

for 12% of the variation of volatility risk premia in the cross-section. The empirical assessment also reveals that the

3



impact of uncertainty on the volatility risk premia can be positive or negative depending on the leverage level. For

low leverage firms, the impact is negative, whereas for medium to high leverage firms the estimated coefficients are

positive. The stability and strength of these results is particularly noteworthy given the sample period I consider:

Using data from 1996 to 2008, I capture interesting periods during which volatility risk premia reverse signs and as

such turn out to be more difficult to explain. I also find that the volatility risk premia of cyclical stocks are more

exposed to uncertainty than non-cyclical stocks. For instance, the estimated coefficient for uncertainty on cyclical

stocks is twice as large as for non-cyclical ones.

Second, I present evidence that the volatility risk premium contains forecasting power for both the cross-section of

stock excess returns and corporate credit spreads. Similar to previous results in the literature for the index volatility

risk premium, I find that predictability of the stock excess returns is strongest in the short run: The predictive

power of the individual volatility risk premia is strongest at a horizon of eight months and then steadily declines.

An analogue pattern is found for corporate credit spreads.

Understanding the differential pricing of options and their embedded volatility risk premia in the cross-section is

important, as the joint behavior of derivative and equity markets may help to improve our general understanding of

the dynamics of asset prices. This has become particularly apparent in the past few months: While almost all asset

classes have experienced major drawdowns, trading volume of VIX futures has increased fivefold during the crisis

relative to its volume at inception in 2006.4

A traditional way to lock-in the implicit volatility risk premium is by forming delta-hedged short straddle or strangle

portfolios. These strategies are becoming increasingly popular, especially in the aftermath of the 2008 credit crisis

as volatility increased to exceptionally high levels.5 In Figure 2, I plot the annualized returns and Sharpe ratios

for five common option trading strategies and three benchmark indices in the period January 1996 to September

2007.6 Naked call overwriting and the short index put strategy outperform the equity indices in terms of risk-return

relationship: The average Sharpe ratio of the indices is around 0.4 while the call overwriting (short put) yields a

Sharpe ratio of 0.55 (0.7). The most successful strategy is the short variance swap strategy on the index, which

yields an average Sharpe ratio of 1.64.

Now, imagine a näıve investor who writes at-the-money, 1% out-of-the money, and 5% out-of-the-money straddles

on all options on stocks in the S&P 500, independent of their cheapness. During this period, the investor would

have earned an annualized return of 8.4% with a Sharpe ratio of 0.5. If one were confident about the existence of a

large volatility risk premium, then an alternative strategy can be developed by forming a long-short factor mimicking

portfolio. In this portfolio, the agent is long the (cheapest) stocks which have the largest negative volatility risk

4Short volatility option strategies not only represent an attractive diversification strategy in bear markets due to the high negative
correlation between the market index and any plain vanilla option strategy, but empirical studies also show these strategies perform
exceptionally well in crisis periods. For example, after the tech bubble burst in 2000, the S&P 500 declined by 45% over the years
September 2000 to September 2002. At the same time, a short variance swap strategy on the same index went up by more than 40%
with a lower standard deviation (see e.g. Grant, Gregory, and Lui, 2007).

5Other papers that study trading strategies which use the volatility risk premium as a trading signal are Goyal and Saretto (2009)
(plain vanilla option strategies) and DeMiguel, Plyakha, Uppal, and Vilkov (2009) (hedge fund strategies).

6I acknowledge that Sharpe ratios can be highly misleading when analyzing derivatives (see Goetzmann, Ingersoll, Spiegel, and Welch,
2007). To comply with the majority of the most recent derivatives literature, however, I rely on Sharpe ratios as a performance measure.
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premium and short the stocks with the largest positive (most expensive) volatility risk premium. With respect to

the previous strategy, a potential advantage of this portfolio is that, since it is long-short, it can be constructed not

to be exposed to average changes in volatility but only to cross-sectional differences in the risk premium. Applying

this method, I find that this zero cost trading strategy yields a return of 21% and a Sharpe ratio of 1.66. I also

find that for a CRRA investor, independent of the level of risk aversion, the certainty equivalent of the sophisticated

strategy is always higher than the one of the näıve short straddle strategy.

[Insert Figure 2 approximately here.]

The remainder of the paper is organized as follows. Section I. introduces a general equilibrium model with multiple

trees and agents, which is solved for prices and risk premia, and investigates quantitatively the implications of the

model for the cross-section of volatility risk premia. Section II. describes the data. Section III. tests the model

predictions. Finally, Section IV. concludes the paper.

Literature Review:

The paper contributes to several strands of the literature. First, I give an economic rationale for the non-monotonic

relationship between leverage and the implied volatility skew of options: The default option in stocks coupled with

the uncertainty renders the implied volatility smile positive or negative depending on the level of leverage. Second,

I study two different sources of uncertainty: Agents’ disagreement and macro-economic uncertainty as proxied by

the stochastic growth rate volatility of cash flows. While both sources of risk have been shown to play an important

role in explaining volatility risk premia in the literature, this is the first paper to unify both approaches. Third, the

solution technique for the multi-asset economy is different from the literature. The conditional density of the state

variables is recovered through Fourier inversion of the conditional characteristic function, which is in closed-form.

This differs from an approach of replacing the moment-generating function with an integral of exponential functions

or a modeling via the share process. Lastly, my paper contributes to the literature studying heterogeneous beliefs

and asset prices. In my economy, learning on the expected growth rate of cash flows is through a nonlinear filter

due to the Markov switching growth volatility. One attractive feature of non-linear filtering is that the a posteriori

uncertainty remains stochastic, unlike in models with deterministic decay. While the literature has focused mainly

on a Markovian structure for the expected growth rate of dividends itself, this is the first paper to study a switching

growth rate volatility.

The notion that leverage should impact on the implied volatility of options goes back to Geske (1979) and Toft

and Prucyk (1997). The idea is that as the value of the firm’s assets declines, the firm becomes more levered

and the volatility of equity increases. Their models feature firm’s assets with a constant variance processes, but

explicitly account for the impact of risky debt on the dynamics of the firm’s equity. By incorporating the option-like

characteristics of levered equity, this branch of literature introduces a natural negative relationship between stock

prices and volatility.7 More recently, Geske and Zhou (2008) study the impact of leverage on the pricing of individual

7The relationship between leverage and stock returns has prompted a plethora of literature using dynamic capital structure models.
The empirical evidence, however, is mixed. See Gomes and Schmid (2008) for an excellent summary and extension of the literature.
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options. They find that leverage significantly impacts on the return distribution. Moreover, leverage reduces pricing

errors by 60% with respect to other option pricing models without leverage. Engle and Mistry (2008) and Hong,

Wang, and Yu (2008) find that financially unconstrained firms have more positively skewed daily returns and that

more importantly, lower leverage implies a more positively skewed return distribution.

Equilibrium models with multiple trees have been studied in the literature before. Menzly, Santos, and Veronesi

(2004) and Santos and Veronesi (2009) study a multi-asset economy with external habit and derive closed-form

solutions for prices in equilibrium. Pavlova and Rigobon (2007) study a two country two good economy with demand

shocks and log-linear preferences. Cochrane, Longstaff, and Santa-Clara (2008) study a Lucas (1978) economy with

two trees and its implications for stock returns, correlations, and the equity risk premium. Both papers provide

closed-form solutions for the case of i.i.d. trees and log utility. A different approach is taken by Martin (2009)

and Chen and Joslin (2009), who replace the moment generating function with an integral of exponential functions

and show that under certain forward measures (Esscher transforms), closed-form solutions can be obtained. Martin

(2009) then extends the analysis of Cochrane, Longstaff, and Santa-Clara (2008) to multiple trees, Poisson jumps in

the dividend process, and general power utility. He shows that his model is able to replicate many salient features

of asset returns, such as momentum, mean-reversion, contagion, fight-to-quality, the value-growth effect, and excess

volatility. Chen and Joslin (2009) generalize the method in Martin (2009) and allow for a general class of non-linear

transforms of affine jump-diffusions. They apply their method to a series of applications like credit risk, multiple

trees, and heterogeneous beliefs economies. My paper differs from the previous ones in several aspects. First, none

of these papers studies the impact of uncertainty or disagreement in a multi-tree economy on volatility risk premia.

Second, the solution technique taken here is different from the previous ones. Pavlova and Rigobon (2007) and

Cochrane, Longstaff, and Santa-Clara (2008) can derive solutions for the case of i.i.d. dividends and log utility as

the density function for other cases is not known. The solution technique proceeds in two steps: I first solve for

the posterior density of the state variables via a nonlinear filter and then can derive the Fourier transform. The

conditional density of the state variables is then recovered through Fourier inversion of the conditional characteristic

function which can be found in closed-form. In particular, I show that the parameters driving the state variables can

be summarized as a system of matrix Riccati equations, which in turn can be linearized and solved very conveniently.

This circumvents the curse of dimensionality problem usually encountered in the literature, see e.g. Dumas, Kurshev,

and Uppal (2009). Martin (2009) and Chen and Joslin (2009) solve very elegantly for asset prices by replacing the

moment generating function with an integral of exponential functions for which closed-form solutions are known. In

particular, this method allows the authors to solve for a high dimensional state space.

The literature aiming at giving a structural explanation for the emergence of volatility risk premia is sparse. Motivated

by the empirical results in Bollen and Whaley (2004), who show that changes in implied volatility are related to

signed option volume, Gârleanu, Pedersen, and Poteshman (2009) study the link between the level of end user option

demand and the level and overall shape of implied volatility curves. They document that end users tend to have a

net long index option position and a short equity-option position, thus helping to explain the relative expensiveness
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of index options.8 They also show a strong downward skew in the net demand of index but not equity options, which

helps to explain the difference in the shapes of their overall implied volatility curves. Their framework is effective

in explaining the steeper slope of index options due to the excess demand for out-of-the-money puts, but less so in

differentiating the pricing of individual options in the cross-section.

Previous papers have studied the impact of uncertainty on the market volatility risk premium, mostly in settings

with recursive preferences. Bansal and Shaliastovich (2008) introduce learning into a long-run risk model, in which

asset prices require a premium for jump risk. Shaliastovich (2008) sets up a similar economy, where the unobservable

expected growth of consumption has to be learned from a cross-section of signals. The quality of these signals

generates an uncertainty which is modeled to contain large positive shocks. Fluctuating confidence risk affects the

equilibrium asset prices and since out-of-the-money puts hedge jump risk in confidence, they appear expensive relative

to models with no jump risk. Further, endogenous negative jumps in equilibrium prices due to the positive jumps

in uncertainty generate a negatively skewed and heavy-tailed unconditional distribution of returns. Eraker (2008)

studies an equilibrium with long-run risk and a highly persistent volatility process. Drechsler and Yaron (2008) add

infrequent but potentially large spikes in the level of volatility together with infrequent jumps in the small, persistent

component of consumption and dividend growth. While volatility shocks from a standard long-run risk model have

a sufficiently large market price of risk to generate a variance risk premium, second and third moments of the

variance risk premium together with the short-horizon predictability of stock returns is generated in a setting with

non-Gaussian shocks. Zhou (2009) links the time-variation of the market volatility risk premium to the stochastic

volatility of volatility of consumption growth in a model with recursive preferences. The literature studying the

volatility risk premium with recursive preferences typically interprets the wedge between the risk-neutral expected

and physical volatility as a proxy for the aggregate risk aversion (see e.g. Bollerslev, Gibson, and Zhou, 2009) or

economic uncertainty (see e.g. Drechsler, 2008, Drechsler and Yaron, 2008, and Bollerslev, Tauchen, and Zhou,

2009). It is challenging to extend this reasoning to a multi asset framework in such a setting. First, in these model,

stochastic risk aversion or economic uncertainty is a latent process whereas my model allows me to empirically pin

down uncertainty. Second, it is difficult to align a negative risk premium with aggregate risk aversion or economic

uncertainty as in this case it lacks an intuition.

Finally, previous papers have studied learning through a non-linear filter in an endowment economy. David (2008)

constructs a general equilibrium economy with two groups of investors who have heterogeneous beliefs about the

state of the economy. Imperfect risk-sharing implies that less risk averse agents trade more aggressively and demand

a higher risk premium. A calibrated model fits the equity premium and replicates the distinct features of the time-

variation in consumption growth moments. Chen and Pakoš (2008) and Pakoš (2008) model an economy with a

representative agent who has recursive preferences. The expected growth rate of consumption follows a two-state

Markov chain and using observations on aggregate consumption, dividend, and a signal, the investor builds beliefs

about the growth rates being in one state or another. The authors then show that persistency of the consumption

growth rate, together with a preference for early resolution generates an uncertainty premium which is large enough

8These findings are also complemented by the recent work of Lakonishok, Lee, Pearson, and Poteshman (2007) who document that
for both individual equity calls and puts end users are more short than long.
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to account for various features of asset prices. My paper departs from these papers along several dimensions. First,

in my economy, agents do not build beliefs about the probability of switching itself but investors learn about the

expected growth rate. Second, none of the papers distinguishes between a subjective (agent-driven) uncertainty and

objective (macro-economic) uncertainty. Third, these papers do not study the cross-section of volatility risk premia.

I. The Economy with Macroeconomic Uncertainty and Heterogeneous Beliefs

A. The Model

I extend the standard single-asset Lucas-tree pure-exchange framework to the case with multiple assets and two

investors. The economy has infinite horizon [0,∞) and uncertainty is represented by a filtered probability space

(Ω,ℱ , {ℱt}, P ) on which is defined a standard Brownian motion:

W =
(
WA1

,WA2
,Wz,W�A1

,W�A2
,W�z

,W��A1

,W��A2

,W��z

)
′

. All stochastic processes are assumed adapted to

{ℱt; t ∈ [0,∞)}, the augmented filtration generated by the Brownian motion W . There are two firms in the economy,

which produce their perishable good. Cash flows of firm i = 1, 2 have the following dynamics:

d logAi(t) = �Ai
(t)dt+ �Ai

dWAi
(t),

where �Ai
∈ ℝ+ is the cash flow volatility of firm i. Cash flows are observable, but their expected growth rate �Ai

(t)

is not and has to be estimated given the available information. The dynamics of �Ai
(t) is given by:

d�Ai
(t) = (a0Ai

+ a1Ai
�Ai

(t)) dt+ ��Ai
dW�Ai

(t),

where a0Ai
∈ ℝ is the growth rate of expected cash flow growth, a1Ai

< 0 is the mean-reversion parameter. Parameter

��Ai
(t) ∈ ℝ+ measures the uncertainty about the individual growth rate of firm i cash flows. The dynamics of ��Ai

follow a hidden Markov chain with two states ��Ai
> ��Ai

, with a transition matrix for the time interval (t, t+ dt)

given by:

ℙ(dt) =

⎡

⎣ 1− �dt �dt

�dt 1− �dt

⎤

⎦ . (1)

The Brownians WAi
and W�Ai

are assumed to be independent. This explicitly rules out any correlation between the

return and the volatility due to statistical correlation.

In order to estimate the dividend growth rates, investors make also use of information produced by a market-

wide indicator z(t) of the aggregate growth rate in the economy. The market-wide indicator z(t) has the following

dynamics:

dz(t) = (�A1
�A1

(t) + �A2
�A2

(t) + ��z(t)) dt+ �zdWz(t),

d�z(t) = (a0z + a1z�z(t)) dt+ ��z
(t)dW�z

(t),
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where �z(t) ∈ ℝ+ is a signal precision parameter and is given b The market-wide signal z(t) is an unbiased estimator

of �A1
�A1

(t) + �A2
�A2

(t) + ��z(t) and is therefore linked to the growth rate of both firms in the economy. For

� = 0, it produces unbiased estimates of a linear combination of firms’ growth rates. If additionally �A1
= �A2

, it

is an unbiased indicator of the actual aggregate growth rate in the economy. When � ∕= 0, signal z(t) is biased by

another unobservable variable �z(t), which is completely independent of cash flows. Hence, the relative importance

of parameters �A1
, �A2

, and � determines to which extent the information provided by z(t) is contaminated by an

orthogonal market-wide component not directly related to expected dividend growth. Parameter ��z
∈ ℝ+ measures

the market-wide uncertainty about �z(t) itself, and it further controls the degree of uncertainty with which z(t) can

be interpreted as an aggregate indicator of economic growth. If � ∕= 0 and ��z
is large, shocks to z(t) are interpreted

as an evidence of a change in expected cash flows and the highly volatile orthogonal market-wide component �z(t).

Therefore, on average, a change in z(t) will tend to generate large revisions of agents’ estimates of the market-wide

component �z(t) and a larger degree of disagreement across investors. If ��z
= 0, any change in the expected growth

rate of z(t) derives from a change in dividend growth rates and �z(t) can be treated by investors as deterministic.

Finally, a0z is the long-term growth rate of the expected change in �z(t) and a1z < 0 its mean-reversion parameter.

B. Macroeconomic Uncertainty and Disagreement

I consider a simple specification for the uncertainty and disagreement in my economy. Investors update their beliefs

based on the available information using Bayes’ Law. Differences in their posteriors can arise either from a difference

in agents’ priors, a difference in some subjective parameter of the dynamics of cash flows and the market-wide

indicator or a stochastic volatility of the cash flow growth. In the latter situation, agents learn through a nonlinear

filter which renders the disagreement truly stochastic even asymptotically. I follow this assumption when I derive

the testable predictions of my model. The assumption of independent Brownian motions WAi
and W�Ai

and the

independence of the Markov chain with the fundamentals makes the learning dynamics tractable as in this case, the

posterior distribution of the expected growth rates is a mixture of the Markov chain and the conditionally Gaussian

growth rate dynamics.

Given the filtered volatilities, the model implied state dynamics is conditionally Gaussian at the steady-state of

the posterior mean. Therefore, in this case, the Bayesian updating rule of each agent can be derived by standard

filtering methods and the heterogeneity in beliefs is fully summarized by the differences in posterior means mi(t) and

variance-covariance matrices (t) across agents.

Let mn(t) :=
(
mn

A1
(t),mn

A2
(t),mn

z (t)
)
′

:= En
(
(�A1

(t), �A2
(t), �z(t))

′ ∣ℱY
t

)
where ℱY

t := ℱA1,A2,z
t is the information

generated by cash flows and the market-wide signal up to time t, and En(⋅) denotes expectation with respect to

the subjective probability of investor n = A,B. n(t) := En
(
(�(t)−mn(t)) (�(t)−mn(t))

′ ∣ℱY
t

)
is the posterior

variance-covariance matrix of agent n.
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To specify the disagreement process in my economy, let the state vector be Y (t) = (logA1(t), logA2(t), z(t)), b(t) =

diag(��A1
(t), ��A2

(t), ��z
(t)) and the following parameters be fixed: a0 = (a0A1

, a0A2
, a0z)

′

, a1 = diag (a1A1
, a1A2

, a1z),

B = diag(�A1
, �A2

, �z), and

A =

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

�A1
�A2

�

⎞
⎟⎟⎟⎠ .

The time-dependence and boundedness of b(t) leads to a non-linear filtering problem. Stratonovich (1959, 1960) and

Kushner (1967) present solutions to the non-linear case. However, except for some special cases (see Beneš, 1981),

the evolution of the conditional distribution cannot be captures by that of a finite set of parameters. Conditions

under which one can recapture the Markovian structure concern the efficiency of the representation of the historical

information through the conditional moments. If the posterior distributions are fully described by a finite number of

moments and if these moments can be updated recursively, one can identify a state vector solution. When the filter

is not compact, that is the posterior distribution cannot be described by a finite number of moments but rather by

infinitely many moments one might want to use an approximation. Since the underlying dynamics of the growth

rate volatilities follow a finite state Markov chain, non-linear filtering becomes efficient via the Wonham (1964) filter

which has been used in the literature before, see e.g. David (2008), Pakoš (2008), and Chen and Pakoš (2008).

The posterior beliefs of agent A are as follows:

dmA(t) = (a0 + a1m
A(t))dt + A(t)A′B−1dWA

Y (t), (2)

dA(t)/dt = a1
A(t) + A(t)a′1 + b(t)b(t)

′

(t)A′(BB′)−1AA(t), (3)

with initial conditions mA(0) = mA
0 and A(0)v = A

0 , where dWA
Y (t) := B−1

((
dY (t)−AmA(t)

)
dt
)
is the in-

novation process induced by investor A’s belief and filtration.9 The time-varying parameter b(t) impacts on the

distribution of mA(t) indirectly, by influencing the Riccati differential equation for A(t).

Note that since cash flow growth rates �Ai
and the signal growth rate �z are unobservable, the true parameter

value for b(t) cannot be recovered from the quadratic variations of observable variables, even if one would sample at

asymptotically high frequency. This implies that, at least in this setting, disagreement does not necessarily entail

irrational agents.

Finally, to complete the specification of the disagreement structure in my economy, I finally define the disagreement

dynamics implied by the learning dynamics of agent B. This process is the key state variable driving all equilibrium

quantities. In my economy, it is defined by the following three dimensional process:

Ψ(t) :=

⎛
⎜⎜⎜⎝

ΨA1
(t)

ΨA2
(t)

Ψz(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(
mA

A1
(t)−mB

A1
(t)
)
/�A1

(
mA

A2
(t)−mB

A2
(t)
)
/�A2

(
mA

z (t)−mB
z (t)

)
/�z

⎞
⎟⎟⎟⎠ .

9A formal proof of this result can be found in Liptser and Shiryaev (2000).
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The first two components of Ψ(t) measure the disagreement about the expected growth rates of future cash flows. The

third component captures the disagreement about the market-wide indicator z(t). Since the market-wide uncertainty

parameter ��z
influences the subjective dynamics of each individual belief, it also has implications for the stochastic

properties of the disagreement process itself. The dynamics for Ψ(t) follows after a standard application of Itô’s

Lemma:

dΨ(t) = B−1
(
a1B + B(t)A′B−1

)
Ψ(t)dt+B−1(A(t)− B(t))A′B−1dWA

Y (t), (4)

with initial conditions Ψ(0) = Ψ0 and B(0) = B
0 . The average level and the heterogeneity of the subjective

uncertainty parameters across agents are linked to the steady state distribution of the joint disagreement dynamics

(4). This feature implies a natural link between the latent market-wide uncertainty and the stochastic properties of the

heterogeneity in beliefs, like for instance, the level of the conditional dependence between the dividend disagreement

processes ΨA1
(t) and ΨA2

(t). A sufficient degree of dependence between ΨA1
(t) and ΨA2

(t) can naturally motivate

a large degree of commonality in beliefs as the one found in my data.10

C. Investors’ Preferences and Equilibrium

There are two investors in the economy with different subjective beliefs, but identical in all other aspects, such

as preferences, endowments, and risk aversion. They maximize the life-time expected power utility subject to the

relevant budget constraint:

V n = sup
cn
A1

,cn
A2

En

(∫
∞

0

e−�t

(
cnA1

(t)1−

1− 
+

cnA2
(t)1−

1− 

)
dt
∣∣∣ ℱY

0

)
, (5)

where cnAi
(t) is the consumption of agent n of good i,  > 0 is the relative risk aversion coefficient, and � ≥ 0 is the

time preference parameter. I assume time-separable utility functions. This not only simplifies the computation of the

equilibrium, but also interpretations, since I can sum over individual beliefs without making any further assumptions

on aggregation. Agents can trade in the risk-free bond, the firms’ stocks, and additionally on options written on the

stocks. I denote by r(t) the risk-free rate of the zero-coupon bond, assumed in zero net supply, by Si(t) the stock

price of firm i, assumed in positive net supply, by Oi(t) the price of a European option on the stock i, assumed in

zero net supply, and by Bd
i (t) the price of the defaultable bond, also assumed in zero net supply. Vi(t) denotes the

firm value of firm i in my economy.

Definition 1 (Equilibrium). An equilibrium consists of a unique stochastic discount factor such that (I) given

equilibrium prices, all agents in the economy solve the optimization problem (5), subject to their budget constraint.

(II) Good and financial markets clear.

The equilibrium is solved using the martingale approach, originally developed by Cox and Huang (1989). The

extension to the case with heterogenous beliefs is due, among others, to Cuoco and He (1994), Karatzas and Shreve

10Buraschi, Trojani, and Vedolin (2009) study in more detail co-movement patterns of the belief processes.
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(1998), and Basak and Cuoco (1998). In this extension, the utility function of the representative agent is a weighted

average of the utility functions of the individual agents. Different than in a standard setting, however, the relative

weight �(t) is stochastic and a function of the heterogeneity in beliefs across agents. Thus, differences in beliefs

affect real allocation of resources and equilibrium prices. Let �n(t) be the stochastic discount factor of agent n, the

price of any contingent claim in equilibrium can be computed from the expectation of the contingent claim payoffs

weighted by �n(t). In my economy, from the market clearing assumption and the optimality conditions (5), closed

form expressions for �A(t) and �B(t) in terms of exogenous variables follow with standard methods:

�A(t) =
e−�t

yA
A1(t)

−
(
1 + �(t)1/

)
, �B(t) =

e−�t

yB
A1(t)

−
(
1 + �(t)1/

)
�(t)−1, (6)

where yA and yB are the Lagrange multipliers in the (static) budget constraint of agent A and B, respectively. The

stochastic discount factor of each agent is equal to the product of two terms, the first is the standard homogeneous

economy term which is proportional to the equilibrium marginal utility of consumption, the second is a function of

weighting process �(t). The dynamics of the weighting process �(t) := yA�
A(t)/

(
yB�

B(t)
)
is:

d�(t)

�(t)
= −

(
2∑

i=1

ΨAi
(t)dWA

Ai
(t) +

(
2∑

i=1

�Ai
ΨAi

(t)
�Ai

�z
+ �Ψz(t)

)
dWA

z (t)

)
. (7)

Due to the separability assumption on agents’ utility function individual state prices �n(t) can be expressed as

functions only of A1(t) and �(t) (or equivalently A2(t) and �(t)). The equilibrium relative price of good 1 and good

2 is p(t) = (A2(t)/A1(t))
−

.

The dynamics of the weighting factor �(t) depends on perceived shocks to cash flows (WA
A1

(t) and WA
A2

(t), re-

spectively) and the market-wide indicator (Wz(t)). The market-wide shocks impact on �(t) proportionally to the

disagreement about cash flows and the market-wide signal (ΨA1
(t), ΨA2

(t), Ψz(t)), the relative precision of market-

wide and firm-specific shocks (�Ai
/�z , i = 1, 2), and the informativeness of the market-wide signal for estimating

dividend growth (coefficients �A1
and �A2

). The state price volatility is stochastic and increasing in both ΨAi
(t),

i = 1, 2, and Ψz(t). The difference in the agent-specific �n(t) reflects the different consumption plans of the two

agents in the economy which are necessary to induce market clearing ex-ante. Assume, for illustration purposes,

that investor A is optimistic about future cash flows of both firms. Then, in equilibrium, investor B will select a

relatively higher consumption in states of low cash flows of either firm 1 or 2. Therefore, the relative consumption

share in this economy is stochastic and its cyclical behavior is reflected by the the stochastic weight �(t).

To finance her consumption plan, the pessimistic investor needs to buy financial protection, e.g., put options, from

the more optimistic agent. This excess demand increases the price of securities with negative exposure to cash flow

shocks. In this way, part of the risk embedded in bad cash flow states is transferred from the pessimist to the optimist.

Ex post, if a negative state occurs, the more optimistic agent is hit twice: First, because the aggregate endowment

is lower, second, as a consequence of the protection agreement which makes her consumption share lower in those

states. Ex ante, the more optimistic agent is compensated by a premium for having entered the insurance contract
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with the pessimist. This premium is increasing in the degree of disagreement among agents about the probability of

future bad cash flow states.

D. Pricing of Financial Assets

Given the expressions for the individual state price densities �A(t) and �B(t), it is straightforward to price any

contingent claim in the economy by computing expectations of its contingent payoffs weighted by state price densities.

For simplicity, I give the relevant pricing expressions from the perspective of agent A. The equilibrium firm value

and the price of a default-free zero coupon with maturity T of firm i are given by:

Vi(t) = Ai(t)E
A
t

(∫
∞

t

e−�(u−t) �
A(u)

�A(t)

Ai(u)

Ai(t)
du

)
, Bi(t, T ) = EA

t

(
�A(T )

�A(t)

)
.

As in the Merton (1974) model, default occurs only at maturity of the corporate bonds, if the value of the assets of

the firm is less than the face value of the bond. I assume zero-bankruptcy costs. Therefore, in the event of default,

equity holders are left with a zero price of equity and the corporate bond holders share the residual firm value. To

focus on the implications of disagreement and macro-economic uncertainty, I keep the default structure as simple as

possible and do not explore more general default rules or more flexible default and liquidation procedures. In this

setting, it follows that the price of the defaultable bond is the sum of the prices of the zero-coupon bond and the

price of a short put option on the firm value and the equity is the firm value residual in excess of the price of the

corporate debt or a call option on the firm value:

BD
i (t, T ) = KBi

Bi(t, T )− EA
t

(
�A(T )

�A(t)
(KBi

− Vi(T ))
+

)
, Si(t) = EA

t

(
�A(T )

�A(t)
(Vi(T )−KBi

)
+

)
, (8)

where KBi
is the face value of the bond of firm i. To compute the expectations in the pricing expressions, I need

the joint density of A1(t), A2(t), �(t), and the contingent claim payoff, since the stochastic discount factor, �A(t), is

a function of both A1(t), A2(t) and �(t). Unfortunately, the joint distribution of Ai(t), Aj(t) and �(t) is typically

unavailable in closed-form.

In general, there exist several methods to compute the moments of the posterior distributions. The first one includes

either Monte Carlo simulations or numerical solutions of the partial differential equation which arises from the

expectations via the Feynman-Kač methodology. However, this method not only lacks accuracy but is also highly

time-consuming, especially when dealing with multi-asset economies where the state space is high dimensional.

Another one is to recover the conditional density of the state variables through Fourier inversion of the conditional

characteristic function, which is often available in closed-form. Then one can evaluate the moments directly using

this density. This is the approach taken by Heston (1993), Bates (1996), Bakshi, Cao, and Chen (1997), and

Dumas, Kurshev, and Uppal (2009). More recently, Chen and Joslin (2009) propose to take the Fourier transform
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of the moment function and to replace the moment function with an integral of exponential functions, for which the

expectations can be computed analytically through the Duffie, Pan, and Singleton (2000) approach.11

While the second method can run into curse of dimensionality due to multiple numerical integrals (see e.g. Dumas,

Kurshev, and Uppal, 2009), I can calculate the joint Laplace transform in closed-form with only one single integral

left. In order to obtain closed-form expressions, I reduce the system of ordinary differential equations for functions

AΨ, BΨ and CΨ in Lemma 1 to a system of matrix Riccati equations, which can be linearized using Radon’s Lemma

and explicitly solved. This Laplace transform can be used, in a second step, to price all securities in my economy

by Fourier Transform methods more efficiently. In this way, I can avoid a pricing approach that relies exclusively

on simulation methods, which would be highly computationally intensive if not infeasible.12 Note, however, that I

compute the joint Laplace transform of A1(t), A2(t), and �(t) in the case �A
�z

∕= �B
�z
, which admits a steady state

distribution for the relevant state variables in my model.

Lemma 1. Under the steady state distribution, the joint Laplace transform of A1(t), A2(t) and �(t) with respect to the belief

of agent A is given by:

E
A
t

((

A1(T )

A1(t)

)�A1

(

A2(T )

A2(t)

)�A2

(

�(T )

�(t)

)�)

= FmA

(

m
A
, t, T ; �A1

, �A2

)

× FΨ (Ψ, t, T ; �A1
, �A2

, �) , (9)

where

FmA (mA
, t, T ; �A1

, �A2
) = exp

(

AmA(� ) +BmA (� )mA
)

, (10)

with � = T − t and

FΨ (Ψ, t, �A1
, �A2

, �, u) = exp
(

AΨ(� ) +BΨ(� )Ψ + Ψ′

CΨ(� )Ψ
)

.

for functions AmA , BmA , AΨ, BΨ and CΨ detailed in the proof in the Appendix.

The Laplace transform in Lemma 1 is a function of mA(t) and Ψ(t). The dependence on mA(t) is exponentially

affine. The dependence on Ψ(t) is exponentially quadratic. By computing the closed–form characteristic function of

A1(t), A2(t), and �(t) I can now price the contingent claims in the economy more by Fourier inversion methods. The

spirit of this approach is similar to the one used to price derivatives in stochastic volatility models, such as Heston

(1993), Duffie, Pan, and Singleton (2000), and Carr, Geman, Madan, and Yor (2001), or in interest-rate models, such

as Chacko and Das (2002). The pricing expressions implied by the Fourier Transform approach for all contingent

claims in my economy can now be summarized. Let

G(t, T, xA1
, xA2

; Ψ) ≡
∫

∞

0

(
1 + �(T )1/

1 + �(t)1/

)
[
1

2�

∫ +∞

−∞

(
�(T )

�(t)

)
−i�

FΨ (Ψ, t, T ;x, i�)d�

]
d�(T )

�(T )
.

11For example, Martin (2009) takes the Fourier transform of a nonlinear pricing kernel where the characteristic function of the Fourier
transform is known in closed form.

12The approach taken by Chen and Joslin (2009) is, however, the way to proceed for future research, especially for estimation proposes.
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The equilibrium firm value of firm 1 is:

V1(t) := V1 (A1,mA,Ψ) = A1(t)

∫
∞

t

e−�(u−t)FmA (mA, t, u; 1− , 0)G (t, u, 1− ; Ψ) du.

Similarly, the equilibrium firm value of firm 2 is:

V2(t) := V2

(
A1, A2,m

A,Ψ
)
,

= A2(t)

∫
∞

t

e−�(u−t)FmA

(
mA, t, u;−2, 1 + 

)
G (t, u,−2, 1 + ; Ψ)du.

The equilibrium price of the corporate zero-coupon bond is:

Bi(t, T ) := Bi(t, T ;m
A,Ψ) = e−�(T−t)FmA

(
mA, t, T ;−

)
G (t, T,−; Ψ) .

The equilibrium price of the defaultable bond of firm i is:

BD
i (t, T ) := BD

(
t, T ;Ai,m

A,Ψ
)
= B(t, T )− EA

t

(
e−�(T−t)

(
Ai(t)

Ai(T )

1 + �(T )1/

1 + �(t)1/

)

(KBi
− Vi(T ))

+

)
.

The equilibrium price of equity of firm i is:

Si(t) := Si

(
t, T ;Ai,m

A,Ψ
)
,

= EA
t

(
e−�(T−t)

(
Ai(t)

Ai(T )

1 + �(T )1/

1 + �(t)1/

)

(Vi(T )−KBi
)+
)
,

From the above formulas, I obtain a semi-explicit description for the dependence of the prices of corporate bonds

and equity on economic uncertainty and the degree of disagreement about cash flows and the market-wide signal.

In the standard Merton (1974) model, the firm value volatility is constant and the risk–neutral skewness is zero. It

follows that the price of equity is increasing in the firm value volatility parameter and co-moves positively with the

value of the firm. In my economy with uncertainty and leverage, the volatility and risk-neutral skewness of the firm

value are stochastic. For firms with different degrees of leverage, I find that the price of equity can either increase or

decrease with disagreement. This is also documented in Buraschi, Trojani, and Vedolin (2008). To give an intuition

why these features can arise, I shortly sketch the main intuition. Note that the price of equity can be represented as

a portfolio consisting of a long position in the firm value Vi(t), a short position in K1 risk–less zero bonds with price

ZCB(t), and a long position in an out-of-the-money put on the firm value, with strike K1 and price P (t):

Si(t) = Vi(t)−K1 ⋅ ZCB(t) + Pi(t,K1) .

The first term, Vi, is independent of leverage and is decreasing in disagreement. The price of the zero coupon

bond can be shown to be decreasing in disagreement for a relative risk aversion parameter greater than one. Thus,

the effects of the first two components of the price of equity tend to offset each other, with the second component
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increasing proportionally to firm leverage. The last term – i.e. the price of the put option P (t,K1) – has a positive

impact on the price of equity, but the size of the effect depends significantly and in a non monotonic way on firm’s

leverage. For some regions of leverage, I find that this effect can be large enough to reverse the negative impact of

the change in the value of the firm:

dS

dΨ
+/−

=
dV

dΨ
−

−K1 ⋅
dZCB

dΨ
−

+
[

Delta: +︷ ︸︸ ︷
dP

dV
−

⋅ dV
dΨ
−

+

Vega: +︷ ︸︸ ︷
dP

d�V
+

⋅ d�V

dΨ
+

+

Skewness: +︷ ︸︸ ︷
dP

dSkV
−

⋅ dSkV
dΨ
−

]
. (11)

When leverage is high, the dominating effect on the price of equity comes from the first two terms in (11), as the

Delta, Vega, and Skewness effects on the put price are all small in relative terms. For very low leverage values, the

values of the put option and the position in the zero bond are a small fraction of firm value. Therefore, the price

of equity is dominated by the first term in (11). It follows that for high and very low leverage the value of equity

is decreasing with disagreement at the calibrated model parameters. For the intermediate leverage region, however,

the price of the embedded out-of-the-money put option can be a non–negligible fraction of the firm value, and its

sensitivity to increases in negative skewness (the last term in square brackets) is high. In particular, I find that the

last effect can be high enough to compensate the negative change of the firm value and make the price of equity

increase. Buraschi, Trojani, and Vedolin (2008) present calibrated evidence of these effects in an economy with one

firm. Similar to the findings for the firm value, the endogenous stochastic co–movement between the price and the

volatility of equity generates an asymmetric physical stock price density. However, in contrast to the unambiguously

negative sign of the skewness of firm value, the skewness of stock returns can be both positive and negative in my

model: The positive (negative) co–movement between the price and the volatility of equity tends to generate stock

returns that are positively (negatively) skewed.

E. Volatility Risk Premia in the Cross-Section

In the models of Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2008) a high variance in returns

occurs when uncertainty is high. Thus, any asset that pays off a lot in those states with high realized variance of

returns is a hedge for the uncertainty risk, which explains why the variance premium is positive in their economy.

In my economy, as a function of leverage, there exists assets that do not pay off a lot in bad states of the world. As

we have seen in the previous section, this applies for low leverage firms. The volatility risk premium in my economy

can be expressed as follows:

vp(t, t+ 1) = Covt

(
�A(t+ 1)

�A(t)
, RVi (t, t+ 1)

)
≶ 0.
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To calculate the conditional covariance between the stochastic discount factor and the realized volatility, note that

the diffusion of the stochastic discount factor can be written as follows:

d�A

�A(t)
− Et

(
d�A(t)

�A(t)

)
= − (�A1

+ (1− si(t))ΨA1
(t)) dWA

A1
(t)

− (1− si(t))

(
�A1

ΨA1
(t)

�A1

�z
+ �A2

ΨA2
(t)

�A2

�z
+ �Ψz

)
dWA

z (t).

The realized volatility is given in Appendix A. It is obvious that an analytic closed-form expression is infeasible.

However, it is straightforward, to borrow from the intuition of the risk-neutral skewness. Bakshi, Kapadia, and

Madan (2003) relate the risk-neutral skewness of the return distribution to the steepness of the implied volatility

smile and in particular find that the more negative the risk-neutral skewness, the steeper the implied volatility

smile. The optimal risk sharing between optimistic and pessimistic agents in my economy implies a lower price for

contingent claims with positive exposure to future cash flows. This price is proportional to a stochastically weighted

marginal utility of optimistic and pessimistic agents in the economy, with a weight that is a function of agents’

relative consumption share. Since agents have decreasing marginal utility and the equilibrium consumption share of

the pessimist (optimist) is larger in low (high) dividend states, the price of all states tends to be lower in the economy

with heterogeneity in beliefs. However, note that the equilibrium state price adjustment associated with low dividend

states tends to be larger than the one associated with high dividend states, which yields an endogenous negative

risk-neutral skewness of stock returns for high levered firms. In case of a high disagreement or high cash flow growth

volatility and low leverage, the opposite can occur which renders an endogenous positive risk-neutral skewness. In

my model, this asymmetry in the equilibrium risk-neutral distribution follows from the fact that the agents’ marginal

utility in the economy tends to be larger in low dividend states. It then follows that in order to reallocate a given

amount of consumption across agents in bad dividend states, a larger state price adjustment is needed. Due to the

assumption that agents have power utility, the marginal utility is convex, and hence these features also imply that

the state price of a bad aggregate dividend state is proportionally lower that the average state price of a bad dividend

of either one of the two firms in the economy.

[Insert Figure 3 approximately here.]

Figure 3 plots the volatility risk premia for different levels of leverage at different option moneyness and levels of

macro-economic uncertainty. The three different leverage bins correspond to the lower tercile (leverage below 0.05),

median tercile (leverage at 0.10), and high tercile (leverage above 0.14). The disagreement is set to 0.5 in the high

disagreement state (i.e. ΨA1
= ΨA2

= Ψz = 0.5) and 0.1 in the low disagreement state (i.e. ΨA1
= ΨA2

= Ψz = 0.1).

The cash flow growth volatility is set to 0.0029 in the low uncertainty case and 0.0041 in the high uncertainty case,

which corresponds to a two standard deviations change from the unconditional mean of the consumption growth

volatility. In the left panel, I plot the volatility risk premium for a high leverage firm. The figure displays the usual

left skewness of stocks. Increasing the disagreement from 0.1 (gray line) to 0.5 (black line) increases the volatility risk

premium of the individual firm by almost 0.5% which corresponds to a 50% increase of the at-the-money volatility
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risk premium. Interestingly, an increase in the volatility of the cash flow growth rate not only implies a shift in the

level of the volatility risk premium but also in the steepness of the smile. For instance, increasing the cash flow growth

volatility from 0.0029 (gray line) to 0.0041 (red line), induces an ascent in the slope coefficient especially in the out-

of-the-money put region. For intermediate leverage, the repercussions of a rise in both disagreement and uncertainty

are larger than for the high leverage firm. Increasing the disagreement implies a 0.5% boost in the volatility risk

premia across the whole moneyness spectrum. I note, however, that the slope is slightly smaller than for the high

leverage firm. Finally, in the right panel, I plot the volatility risk premia for a low leverage firm. As expected from

the previous results, the volatility risk premium turns negative at-the-money for almost all specifications except the

low disagreement and low uncertainty case.

F. Simulated Regressions

Since the volatility risk premium rises or decreases with uncertainty and this is directly linked to the stochastic

discount factor, volatility risk premia predict stock returns or corporate credit spreads. Firstly, I show that both

subjective and macro-economic uncertainty affect significantly the volatility risk premia in the cross-section of stocks.

To this end, I run panel regressions from the volatility risk premia of the individual firms onto the firm-specific,

common disagreement and the consumption growth volatility. The results are presented in Table 4.

[Insert Table 4 approximately here.]

All three measures of uncertainty positively impact on the volatility risk premia. In terms of adjusted R2, the

uncertainty proxies explain almost 20% of the variation in the volatility risk premia. In the second and third column,

I present regression results for low and high leverage firms. The low leverage firms are derived by fixing the leverage

to 0.05 and the high leverage firms are fixed to have a debt to equity ratio of 0.2. While the estimated coefficient for

all three uncertainty proxies is indeed negative while for the high leverage firms, the impact was consistently positive

across all leverage bins.

The volatility risk premium in my economy predicts stock returns and corporate credit spreads. The predictive

regression is:

ri(t+ 1) = �0 + �1 ×
(
volℚt (ri(t+ 1))− volℙt (ri(t+ 1))

)
+ �(t),

where

�1 =
Cov

(
ri(t+ 1) + �(t), volℚt (ri(t+ 1))− volℙt (ri(t+ 1))

)

Var
(
volℚt (ri(t+ 1))− volℙt (ri(t+ 1))

) .

And a similar expression arises from the regression of the corporate credit spread. From the previous section, we

know that the expected stock return is positively related to the volatility increase: For high leverage firms, the

expected stock return and volatility increases with a rise in uncertainty. For low leverage firms, both the expected

stock returns and volatility decrease. To test this conjecture, I present in Table 5 the predictability regressions for a

horizon of 1, 6, and 12 months.
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[Insert Table 5 approximately here.]

The volatility risk premium loads positively on the expected stock returns and corporate credit spreads at all horizons.

For the stock returns, the size of the coefficient decreases by more than 50% while for the corporate credit spreads

the size increases by almost 50%. In line with the empirical findings , the adjusted R2 for the stock return regression

display the decreasing pattern at longer horizons. For the corporate credit spreads, the adjusted R2 increases which

is contrary to what I found in the data.

II. Data

I firstly present some new empirical evidence that underscores the importance of including agents’ disagreement

and macroeconomic uncertainty when studying volatility risk premia. I then study the predictive power of the

volatility risk premium for expected stock excess returns and corporate credit spreads. The firm-specific, common

disagreement, and volatility of consumption growth explain significant portions of the volatility risk premium in the

cross-section. The three measures together explain 12% of the time variation in the volatility risk premia. Similarly,

all uncertainty measures explain on average around 8% of the time variation in the risk-neutral skewness. Volatility

risk premia predict stock excess returns and corporate credit spreads in the cross-section. The predictive power is

concentrated at shorter horizons (8 months) and then drops considerably for stock returns and remains fairly stable

for corporate credit spreads.

I merge a panel of option, stock and bond prices and firm-specific information with analysts’ forecasts of future

earnings. The time period covers January 1996 to September 2008. Appendix B summarizes the data construction

in detail.

A. Option Data

I use option information from the OptionMetrics Ivy DB database, which is the most comprehensive database

available. Individual stock options are American style and usually expire on the Saturday following the third Friday

of the contract month. Therefore, time to maturity is defined as the number of calendar days between the last

trading date and expiration date. I apply a number of data filters to circumvent the problem of large outliers.

First, I eliminate prices that violate arbitrage bounds, i.e. call prices are required not to fall outside the interval
(
Se−rd −Ke−�r, Se−�d

)
, where S is the value of the underlying asset, K is the strike price, d is the dividend yield, r

is the risk-free rate, and � is the time to maturity. Second, I eliminate all observations for which (i) the ask is lower

than the bid price, (ii) the bid is equal to zero, or (iii) the spread is lower than the minimum tick size (equal to USD

0.05 for options trading below USD 3 and USD 0.10 in any other cases). Importantly, to mitigate the impact of stale

quotes I eliminate all observations for which both the bid and the ask are equal to the one on the previous day. I

focus on short-term options which are known to be the most liquid with a time to maturity between 14 and 31 days.

The volatility risk premium is defined as the difference between the risk-neutral and physical expectation of the return

variation. Thus, the one-month volatility risk premium, vp(t, t+1) is defined as Eℚ
t

(∫ t+1

t dri

)
−Eℙ

t

(∫ t+1

t dri

)
where
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ℚ denotes the risk-neutral measure and ri is the return of firm i. In this paper, I specify a model-free implied volatility

using a continuum of European call options.13 Let C(t, T,K) denote the price of a European call option maturing

at T with strike price K at time t, and B(t, T ) is the price of a time t zero-coupon bond with maturity T . Carr and

Madan (1998) and Britten-Jones and Neuberger (2000) show that the risk-neutral expectation of the return variance

between time t and t+ 1 can be expressed in a model-free fashion by the following expression:

IV (t, t+ 1) ≡ Eℚ
t (V ar(t, t + 1)) = 2

∫
∞

0

C (t, t+ 1,K)−max (S(t)−K, 0)

K2
dK,

which takes advantage of a continuum of calls with strikes from zero to infinity. In practice, the implied variance

must be constructed from a finite number of strikes, which turns out to be a fairly accurate approximation to the

true risk-neutral expectation of the future variance under reasonable assumptions (see Jiang and Tian, 2005). To

construct a realized variance under the physical measure, I approximate the realized variance for month t as:

RV (t, t+ 1) ≡
n∑

j=1

ri(j)
2,

where ri(j) is the stock return of firm i at time j. To measure the a model-free skewness, I use a model-free and

ex-ante measure of risk-neutral skewness given by Bakshi, Kapadia, and Madan (2003). For each stock on date

t, the skewness of the risk-neutral density of the stock return over the period [t, t+ 1] can be inferred from the

contemporaneous prices of out-of-the-money call options and put options as follows:

Skew(t, �) =
er�W (t, �) − 3�(t, �)er�V (t, �) + 2�(t, �)3

(er�V (t, �) − �(t, �)2)3/2
,

where

�(t, �) = er� − 1− er�

2
V (t, �) − er�

6
W (t, �)− er�

24
X(t, �),

and V (t, �),W (t, �), and X(t, �) are the weighted sums of out-of-the-money call option prices C(t, �,K) and put

option prices P (t, �,K) and expressions given in the Appendix A.4. The computation of the intrinsic value of higher-

moment payoffs requires options with constant maturity and I thus fix it to 28 days. Details on the Riemann integral

approximation with other related implementation issues are addressed in Jiang and Tian (2005) and Bakshi and

Madan (2006). Moreover, implementation with a finite grid of out-of-the-money calls and puts is reasonable accurate

with small approximation errors (see Dennis and Mayhew, 2002).

13There are several reasons to use the model-free implied volatility opposed to one which comes from a option pricing model, say, the
Black and Scholes (1973) model. First, the approximation seems to be fairly accurate of the true (unobservable) risk-neutral expectation
of the future return volatility than an inversion of the Black and Scholes formula for at-the-money options, see e.g. Jiang and Tian
(2005). Second, Bollerslev, Tauchen, and Zhou (2009) report much higher R2 when regressing excess market returns on the volatility
risk premium constructed from model-free measures rather than the Black and Scholes implied volatility.
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B. Stock Returns Data

Stock data is retrieved from the CRSP database. To calculate the realized volatility, I use daily stock returns from

CRSP. I calculate the realized volatility over 21-day windows, requiring that the stock has at least 15 non-zero return

observations.

C. Bond Data

The bond data is obtained from the Fixed Income Securities Database (FISD) on corporate bond characteristics and

the National Association of Insurance Commissioners (NAIC) database on bond transactions. The FISD database

contains issue and issuer-specific information for all U.S. corporate bonds. The NAIC data set contains all transactions

on these bonds by life insurance, property and casualty insurance, and health maintenance companies, as distributed

by Warga (2000). This database is an alternative to the no longer available database used by Duffee (1998), Elton,

Gruber, Agrawal, and Mann (2001), and Collin-Dufresne, Goldstein, and Martin (2001). U.S. regulations stipulate

that insurance companies must report all changes in their fixed income portfolios, including prices at which fixed

income instruments were bought and sold. Insurance companies are major investors in the fixed income market

and, according to Campbell and Taksler (2003), they hold about one-third of outstanding corporate bonds. These

data represent actual transaction data and not trader quotes or matrix prices. Initially, I eliminate all bonds with

embedded optionalities, such as callable, putable, exchangeable, convertible securities, bonds with sinking fund

provisions, non-fixed coupon bonds, and asset-backed issues. The data set contains information on the seniority level

of the bonds. I am thus able to divide our data sample into senior secured and junior subordinated bonds. I manually

delete all data entry errors. Moreover, to control for the possibility of residual errors, I windsorize our database at

the 1% and 99% level. Finally, to compute corporate bond credit spreads, I use zero-coupon yields available from

the Center for Research in Security Prices (CRSP).

D. Difference in Beliefs Proxy

To obtain a proxy of firm-specific belief disagreement, I follow the procedure in Buraschi, Trojani, and Vedolin (2008).

I use analysts’ forecasts of earnings per share from the Institutional Brokers Estimate System (I/B/E/S) database and

compute for each firm the mean absolute difference of analysts’ earning forecasts scaled by an indicator of earnings

uncertainty. In order to get a common belief disagreement factor for the index, I estimate a dynamic component

using factor analysis for the analysts’ earning forecasts. Factor analysis has mainly been implemented for forecasting

measures of macroeconomic activity and inflation (see, e.g., Stock and Watson 2002a, 2002b, 2004) and more recently

in financial applications (see Ludvigson and Ng, 2007 and 2009). Dynamic factor models allows us to escape the

limitations of existing empirical analyzes in several dimensions. If comovement between individual difference in beliefs

is strong, it makes sense to represent the overall belief disagreement in the economy by an index or a few factors, which

describe the common behavior of these variables. Using dynamic factors instead of static principal components has

two reasons. First, I want it to be dynamic. Static factor analysis allows only for a contemporaneous relation in the
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cross-section. However, empirical evidence points towards lagged effects of increases in uncertainty across different

industries. Second, I want to allow for cross-correlation among the idiosyncratic components, because orthogonality

is an unrealistic assumption in our setting. I estimate the common belief disagreement process according to Forni,

Hallin, Lippi, and Reichlin (2000). Generalized dynamic factor models are usually characterized by a large time

series dimension and a small cross section. Forni, Hallin, Lippi, and Reichlin (2000) generalize the dynamic factor

models by allowing for a limited amount of cross-correlation among the idiosyncratic components. The main idea

is that the panel of belief disagreement processes can be decomposed into the sum of two non-observable, mutually

orthogonal parts, namely the common component and the idiosyncratic component. I disregard the idiosyncratic

component, because it is the common component I am interested in. In the dynamic factor approach, the common

component results from the interaction of a small number of unobservable shocks. Since the common component is

unobservable, it has to be estimated from aggregating the disagreement proxies in the panel. The intuition is that

the aggregation will eliminate the idiosyncratic component.

I now shortly outline the estimation procedure, however, for a more thorough description the reader is referred to

the Appendix B and further technicalities can be found in Forni, Hallin, Lippi, and Reichlin (2000). The estimation

consists of two steps. In the first step, I estimate the spectral density matrix of the common and idiosyncratic

components by means of a dynamic principal component procedure. From the spectral density matrices, I can derive

the covariances of the common component by applying the Fourier transform. In a second step, I estimate the

factor space. From the covariances estimated in the first step, I estimate the generalized principal components as

linear combinations of the observable belief disagreement processes. The key idea is that these generalized principal

components14 have the smallest idiosyncratic-common variance ratio (for further technical details, see Forni, Hallin,

Lippi, and Reichlin, 2000). To estimate the common component, I weight the individual belief disagreement processes

of each firm by its market capitalization.15

E. Other Control Variables

Leverage is a natural variable to include in the regressions and it is defined as total debt divided by total asset value.

Fama and French (1992) suggest that size is a potential risk factor in the cross-section of stock returns and it is

reasonable to assume that size impacts on the cross-section of option prices. Firm size is defined as the natural log

of the firm’s market value of equity, in thousands of dollars. Firms which are highly correlated with the market are

potentially useful to hedge market risk. I therefore expect firms which are more exposed to market risk (as proxied

by the market beta) to have a more negative risk-neutral skewness. The firm’s market beta is calculated from a

regression from the stock excess returns on the market excess returns.

Following earlier work (see Hansen and Singleton, 1983), aggregate consumption is measured as the seasonally

adjusted real consumption of nondurables plus services. Consumption volatility is then estimated from a Markov

Chain as in Hamilton (1989). The state conditional volatilities are 0.423 and 0.182 for the high and low state,

14For a formal treatment of generalized eigenvalues and eigenvectors, see Wilkinson (1965).

15For robustness, I also used equal weights for the common component. The results remain quantitatively the same.
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respectively. The volatility regimes are persistent given that the probability of remaining in one state is 0.992 for

the high state and 0.973 for the low state. The filtered volatility is then calculated as:

�̂c = �(t)� + (1− �(t)) �,

where �(t) is the filtered probability of a high volatility state, � is set to 0.423 and � is equal to 0.182. Corradi, Distaso,

and Mele (2009) document a significant impact of macro-economic variables on the index volatility risk premium.

While the consumption volatility captures the macro-economic uncertainty, I construct a macroeconomic level factor

by extracting the first principal component using industrial production, housing start number, the producer price

index, non-farm employment, and the S&P 500 P/E ratio. I retrieve S&P 500 price-earnings data from the S&P

webpage, and the other macro variables I get from FRED.

Summary statistics of the main variables and different uncertainty proxies are presented in Table 1. In Panel A, I

present the 5th, median, and 95th percentile of the implied volatility, realized volatility, and risk-neutral skewness

for the years 1996 to 2008. A clear pattern is apparent. The implied and realized volatilities seem to move in lock

step. Both peak around 2000, during the dot-com bubble, then descent and regain momentum in 2007 and 2008.16

The median risk-neutral skewness is negative, which indicates a left-skewed distribution of average. It reaches its

lowest level in 2000, when the 5th percentile is around -5.2. There are some periods, where the median volatility

risk premium turns negative. For instance in the year 1998, the volatility risk premium is almost -1%. Panel B

presents the average summary statistics for the main variables together with their unconditional correlations with

the volatility risk premium and the risk-neutral skewness. To calculate the unconditional correlation, I first estimate

the correlation firm-by-firm and then average in the time-series. The average firm-specific disagreement is almost

30%, the common disagreement is 9%, and the consumption volatility is 0.35%. The consumption growth volatility

is highly persistent with a autocorrelation coefficient of 0.96. The firm-specific and common disagreement proxies

are less persistent with values of 0.45 and 0.6, respectively. The macro factor displays a very high autocorrelation of

0.96.

[Insert Table 1 approximately here.]

III. Empirical Analysis

A. Determinants of Volatility Risk Premia and Skewness in the Cross-Section

To test the impact of the volatility of consumption growth and disagreement on the volatility risk premium and

skewness, I run the following set of panel regressions:

yi(t) = �0 + �1DIBi,t + �2DIBt +

6∑

j=3

�jControl(j)i,t +

3∑

k=1

kControlt + �i,t,

16Using a different measure of the risk-neutral volatility, Conrad, Dittmar, and Ghysels (2008) find a very similar result.
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where yi(t) is the volatility risk premium and skewness of firm i, DIBi,t is the proxy of belief disagreement of

each individual firm i at time t, DIBt the common disagreement estimated from the cross-section of individual

disagreement proxies, Controli,t are leverage, firm size, and market beta of each firm i at time t, and Controlt is the

macro factor. Table 6 reports the results.

[Insert Table 6 approximately here.]

All uncertainty measures load positively on the volatility risk premium and the risk-neutral skewness and are eco-

nomically and statistically significant. For instance, a one standard deviation change in the firm specific (common)

disagreement induces a 1% (0.5%) change in the volatility risk premium, similarly, a 1% standard deviation change

in the consumption growth volatility yields a 0.4% change in the volatility risk premium. Leverage is positively cor-

related with the volatility risk premium and it is statistically significant for all specifications. The other firm-specific

factors such as the firm size or the market beta are not significant. The aggregate macro factor is significant and

loads negatively on the volatility risk premium which points towards the counter-cyclical nature of the volatility risk

premia. As already noted in the example in the introduction, leverage could be an important variable when studying

the cross-section of volatility risk premia. As outlined in the example, the low leverage firms, on average, change their

sign more often than the high leverage firms. Moreover, the average volatility risk premium of the low leverage firms is

30% lower than for the high leverage firms. To better understand the impact of leverage on the volatility risk premia,

I stratify all firms into three different leverage bins. The results are presented in the lower panel of Table 6. Low,

medium, and high indicate the lower, medium, and higher tercile of the leverage distribution across all firms. For the

low leverage firms, I notice that the sign of the slope coefficient of the firm-specific disagreement and consumption

volatility is negative, meaning that a higher idiosyncratic disagreement and consumption growth volatility implies a

lower volatility risk premium. The estimated coefficient for the common disagreement proxy remains positive across

all leverage bins, however, for the median bin, the estimated coefficient is statistically significant at the 10% level

only.

B. Predictability Regressions

Bollerslev, Tauchen, and Zhou (2009), and Zhou (2009) document the strong predictive power of the market volatility

risk premium for excess market returns and the default premium, defined as the difference between the Moody’s BAA

and AAA corporate bond spreads. Cast in a model with long-run risk, the authors find that the entire time-variation

in the variance risk premium comes from the assumption of a stochastic volatility of consumption growth volatility

and hence a higher persistency of the stochastic volatility will induce predictability in returns.

In the following, I seek to examine the cross-sectional relationship between individual volatility risk premia/risk-

neutral skewness and the cross-section of stock returns and credit spreads. To this end, I regress monthly equity

excess returns on the individual volatility risk premia:

xri(t+ ℎ) = �+ �1V olRPi(t) + �(t+ ℎ),
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where xri is the excess return of stock i or the credit spread of firm i and ℎ goes to horizon 12 months. The results

are reported in Table 7.

[Insert Table 7 approximately here.]

The degree of predictability, as measured by the adjusted R2, starts out rather low but reaches a peak at eight

months with an adjusted R2 of 8% and then drops by 50% at a horizon of one year. The size of the estimated

coefficient remains remarkably robust across all horizons. On average, a 1% deviation change in the volatility risk

premium leads to a 0.6% change in the excess stock return. The pattern for the individual volatility risk premia and

stock excess returns is similar to the ones found in Bollerslev, Tauchen, and Zhou (2009) for the index. However,

the estimated coefficients in my regressions are on average more significant than in their regression. While for the

index, the volatility risk premium has no predictive power after a horizon of six months, the estimated coefficients for

the individual volatility risk premia remain statistically significant up to one year with a t-statistic of 2.02 at the 12

month horizon. Panel B presents estimated coefficients for the credit spread predictability regressions. The estimated

coefficients are statistically significant across all horizons with t-statistics ranging from 2.02 to 5.29. Interestingly,

the predictive power of the volatility risk premium displays a very similar pattern as for the stock excess returns:

The adjusted R2 starts at 0.1 and then peaks around the eight month horizon and then tends to taper off for the

longer horizons.

Summarizing, the regressions reveal that the volatility risk premium or the difference between the risk-neutral and

physical expected variance captures an important component not only in stock but also in credit markets. The model

suggests a structural explanation for this reduced-form result.

B.1. Cyclical versus Non-Cyclical Firms

The example in the introduction has hinted that the effect of macro-economic uncertainty on the volatility risk

premium could possibly a function of the business cycle. In line with this supposition, Beber and Brandt (2008)

empirically document that cyclical stocks are more exposed to macro-economic uncertainty than non-cyclical stocks.

In the economy I posit, a higher macro-economic uncertainty should lead to a higher volatility risk premia and

therefore it is natural to expect that firms that are more exposed to the overall business cycle should also be more

affected by uncertainty. To verify this hypothesis more formally, I first test the impact of uncertainty on the volatility

risk premium for cyclical versus non-cyclical firms. I do this by running separate regressions for the two sets of firms.

I then re-run the predictability regressions for both cyclical and non-cyclical firms. To this end, I sort each firm in

industries and industries I divide into cyclical and non-cyclical ones. Industry classifications are based on Boudoukh,

Richardson, and Whitelaw (1994), who sort industries by their correlation between industry level output growth and

aggregate output growth. I label the five industries with the highest output growth beta as cyclical and the five

industries with the lowest output growth beta as non-cyclical. The results for the volatility risk premia are presented

in Table 8.
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[Insert Table 8 approximately here.]

The estimated coefficient for the uncertainty measures are highly significant for both the cyclical and non-cyclical

firms, the size of the coefficients, however, is more than twice as large for the cyclical firms than for the non-cyclical

ones. This indicates that the impact of uncertainty on the cyclical firms is larger. Within the model I study, a higher

exposure of cyclical stocks to uncertainty is natural as those firms which correlate more with the aggregate output

are more prone to higher volatility risk and therefore should also carry a higher risk premium to compensate for the

uncertainty. In Table 9, I present the estimated coefficients for the predictability regressions for both cyclical and

non-cyclical firms.

[Insert Table 9 approximately here.]

The results reveal that the predictive power of the volatility risk premium for both the stock excess returns and

corporate credit spreads is higher for cyclical stocks than for non-cyclical stocks. The estimated coefficients are

larger in absolute size and the t-statistics are on average more than twice as large. In terms of adjusted R2, the

volatility risk premium of cyclical stocks is 10% at a one year horizon, whereas for the non-cyclical stocks, the

adjusted R2 amounts to only 4%.

IV. Conclusions

This paper develops an equilibrium model with heterogeneous beliefs and stochastic macroeconomic uncertainty to

explain individual volatility risk premia in the cross-section of stocks. I develop a multi-asset Lucas (1978) economy

in which uncertainty about firms growth opportunities induces agents to disagree about expected cash flows and

a market-wide business cycle signal. The volatility of cash flow growth rates and the signal is modeled as a two-

state Markov switching process which allows time-varying macroeconomic uncertainty to have a bearing on agents’

disagreement. These features generate two sources of risk in equilibrium: Priced disagreement and macroeconomic

uncertainty risk. In equilibrium, when belief heterogeneity and macro-economic uncertainty vary over time, they

drive a substantial fraction of the volatility of asset returns. I study these model implications theoretically within a

calibrated model and link them directly to the differential empirical pricing patterns of individual options.

The more specific characteristics of my model are as follows: Consumption growth volatility and disagreement are

time-varying and are allowed to impact on the volatility risk premia via the stochastic discount factor. A higher

disagreement on future cash flows induces a higher volatility and negative skewness for medium to high leveraged

firms. For firms with low leverage, it is possible that the risk-neutral skewness turns positive. The economic reason

is due to the different sensitivities of the default option embedded in stock returns: For low leverage companies, this

option is far out-of-the-money and its value is more sensitive to changes in skewness. For high leverage companies, the

default option is closer to be in-the-money and the opposite holds. In my economy, agents have time-separable utility

and the diffusions of the fundamental process and the consumption growth volatility are assumed independent. In this
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case, in an economy without disagreement, the difference between the risk-neutral and physical expected volatility

would be equal to zero. If disagreement is a priced risk factor, the wedge is entirely driven by agents’ uncertainty

and the time-varying macro-economic risk. Calibrating the model, I confirm several of the empirical findings. Both

disagreement and realized conditional consumption growth volatility matter in their implications for volatility risk

premia, and I find the first source to dominate. Shutting down the stochastic volatility of cash flow growth, I

find that the level of volatility risk premia is mainly explained by the difference in beliefs. However, higher order

moments, such as the persistence, skewness, and kurtosis of the risk premia are driven, to a large extent, by economic

uncertainty. A simulation exercise shows that the model is able to replicate the predictability of stock excess returns

and corporate credit spreads. Moreover, the estimated coefficients correspond in sign and size approximately to

their empirical counterparts. This paper is a first step towards a unified study of agents’ (disagreement) and macro-

economic uncertainty, and I hope to give credence to the hypothesis that both subjective agents’ uncertainty and

realized objective uncertainty could matter for volatility risk premia of stocks.

To empirically test the model predictions, I construct model-free measures of volatility risk premia (see Carr and

Madan, 1998 and Britten-Jones and Neuberger, 2000) and risk-neutral skewness (Bakshi, Kapadia, and Madan, 2003)

from stock option prices using data from January 1996 to September 2008. Following Hamilton (1989), I estimate a

Markov chain process for the second moment of consumption growth to get a measure of the conditional volatility of

fundamentals. In addition, I build a forward-looking measure of disagreement about future cash flows of firms based

on forecasts of corporate earnings. The separation of the two uncertainty channels has an empirical appeal. By

its forward-looking construction, disagreement captures perceptions of risk looming on investors’ horizon. Thus, it

conveys information over and above the one contained in the conditional volatility of consumption which is estimated

using historical data. In addition to the conditional volatility of consumption growth, I construct a forward-looking

measure of disagreement about future cash flows of firms based on forecasts of corporate earnings. Simple panel

regressions reveal that both disagreement and the conditional volatility of consumption matter for volatility risk

premia and outperform the explanatory content of other factors known to affect these risk premia. For instance,

a one standard deviation change in firm-specific disagreement increases the volatility risk premium by 0.5%, which

corresponds to one third of the average volatility risk premium in the cross-section of stocks. A slightly smaller

change is induced by the conditional volatility of consumption growth. Disagreement and time-varying consumption

growth account for 12% of the variation of volatility risk premia in the cross-section. I also find that the volatility

risk premia of cyclical stocks are more exposed to uncertainty than non-cyclical stocks. For instance, the estimated

coefficient for uncertainty on cyclical stocks is twice as large as for non-cyclical ones. The empirical assessment also

reveals that the impact of uncertainty on the volatility risk premia can be positive or negative depending on the

leverage level. For low leverage firms, the uncertainty proxies induce a decrease in the volatility risk premia, whereas

for high leverage firms, the effect is the opposite. I also present evidence that the volatility risk premium contains

forecasting power for both the cross-section of stock excess returns and corporate credit spreads. Similar to previous

results in the literature for the index volatility risk premium, I find that predictability of the stock excess returns is

strongest in the short run: The predictive power of the individual volatility risk premia is strongest at a horizon of

eight months and then steadily declines. An analogue pattern is found for corporate credit spreads.
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A Proofs

A.1 Learning

The disagreement dynamics in our economy follows in a straightforward way, once I can condition on the steady-state
volatility of the filtered growth rate dynamics. The dynamics of the individual beliefs are:

dmA(t) = (a0 + a1m
A(t))dt + 1(t)A′B−1dW 1

Y (t),

dmB(t) = (a0 + a1m
B(t))dt + 2(t)A′(BB′)−1(mA(t)−mB(t))dt + 2(t)A′B−1dWA

Y (t) ,

using the symmetry of B. The dynamics of Ψ(t) = B−1(mA(t)−mB(t)) follows, as:

dΨ(t) = B−1
(
a1 + 2(t)A′(BB′)−1

)
(mA(t)−mB(t))dt+B−1

(
1(t)− 2(t)

)
A′B−1dWA

Y (t)

= B−1
(
a1B + 2(t)A′B−1

)
Ψ(t)dt+B−1

(
1(t)− 2(t)

)
A′B−1dWA

Y (t),

with initial condition Ψ(0) = B−1(mA(0)−mB(0)). The solution of this stochastic differential condition is:

Ψ(t) = exp

{∫ t

0

M(s)ds

}
Ψ(0) +

∫ t

0

exp

{∫ s

0

M(u)du

}
B−1

(
1(s)− 2(s)

)
A′B−1dW 1

Y (s), (12)

where M(s) = B−1
(
a1B + B(s)A′B−1

)
. It follows that Ψ(t) is normally distributed as:

Ψ(t) ∼ N
(
e
∫

t
0
M(s)dsΨ(0),

∫ t

0

e
∫

s
0
M(u)duB−1(1(s)− B(s))A′(BB′)−1A

(
1(s)− B(s)

)′
B−1e

∫
s
0
M(u)duds

)
.

The parameter b = diag(��A1
, ��A2

, ��z
) in the dynamics for (t) impacts the distribution of m(t) directly via the

Markovian structure.

A.2 Equilibrium Quantities

For completeness, I derive all equilibrium quantities in this Appendix. The proofs follow grossly Basak (2005)?.
(i) Dynamics of the stochastic weighting process �: Itô’s Lemma applied to �(t) = �A(t)/�B(t) gives:

d�(t) =
d�A(t)

�B(t)
− �A(t)

(�A(t))
2 d�

B(t) +
1

2

2�A(t)

(�B(t))
3

(
d�B(t)

)2 − 1

(�B(t))
2 d�

B(t)d�A(t).

Since markets are complete, there exists a unique stochastic discount factor for each agent. Absence of arbitrage
implies for i = 1, 2:

d�i(t)

�i(t)
= −r(t)dt − �i(A1(t), A2(t), z(t))

′dW i
Y ,

where �i = (�iA1
(t), �iA2

(t), �iz(t))
′ is the vector of market prices of risk perceived by agent i. It then follows,

d�(t) =
�A(t)

�B(t)

d�A(t)

�A(t)
− �A(t)

�B(t)

d�B(t)

�B(t)
+

�A(t)

�B(t)

(
d�B(t)

�B(t)

)2

− 1

(�B(t))
2 d�

B(t)d�A(t),

= �(t)

(
− r(t)dt − �1A(t)dWA(t)− �1z(t)dWz(t)−

(
−r(t)dt − �2A(t)dWA(t)− �2z(t)dWz(t)

)

+
((

�2A(t)
)2

+
(
�2z(t)

)2 − �1A(t)�
2
A(t)− �1z(t)�

2
z(t)

)
dt

)
. (13)

The prices of the stock and the defaultable bond in my economy follow the dynamics:

dSi(t) = Si(t)
(
�Si

(t)dt+ �SiAi
dWAi

(t) + �SjAj
dWAk

(t) + �SizdWz(t)
)
, (14)

dBd
i (t) = BSi

i (t)

(
�
B

Si
i

(t)dt+ �
B

Si
i Ai

dWAi
(t) + �

B
Sj
j Aj

dWAj
(t) + �

B
Si
i z

dWz(t)

)
, (15)

31



where Si(t) is the price of equity and Bd
i (t) the price of the defaultable bond, and the expected growth rates �Si

(t)
and �Bd

i
(t) and the volatility coefficients �SiAi

, �
B

Si
i Ai

, �Siz and �Bd
i z

are determined in equilibrium and i ∕= j. It is

easily shown that the difference in the perceived rates of return have to satisfy the consistency condition:

�A
n (t)− �B

n (t) = �n

(
ΨA1

(t),ΨA2
(t) �A1

ΨA1
(t)

�A1

�z
+ �A2

ΨA2
(t)

�A2

�z
+ �Ψz(t)

)
′

,

where n denotes security n. The definition of market price of risk yields:

�nA1
�iA1

(t) + �nA2
�iA2

(t) + �nz�
i
z(t) = �i

n(t)− r(t).

After some simple algebra, I obtain:

�nA1
(t)
(
�AA1

(t)− �BA1

)
+ �nA2

(t)
(
�AA2

(t)− �BA2

)
+ �nz(t)

(
�Az (t)− �Bz (t)

)
= �nA1

(t)ΨA1
(t) + �nA2

(t)ΨA2
(t)

+�nz(t)

(
�A1

ΨA1
(t)

�A1

�z
+ �A2

ΨA2
(t)

�A2

�z
+ �Ψz(t)

)
.

Since this equation has to hold for any �nA(t) and �nz(t), it follows:

�1A(t)− �2A(t) = ΨA(t),

�1z(t)− �2z(t) =

(
�ΨA(t)

�A

�z
+ �Ψz(t)

)
.

By construction, I also have:

dWA(t) =
mi

A(t)− �A(t)

�A
dt+ dW i

A(t), dWz(t) =

(
�
mi

A(t)− �A(t)

�z
+ �

mi
z(t)− �z(t)

�z
+ dW i

z(t)

)
.

Therefore, after substituting in equation (13), I get:

d�(t)

�(t)
= −dW 1

A(t)ΨA(t)− �1z(t)dW
1
z (t) + �2z(t)

(
dW 1

z (t) + �ΨA(t)
�A

�z
+ �Ψz(t)

)

+
((

�1A(t)−ΨA(t)
)2

+ �2z(t)
(
�2z(t)− �1z(t)

)
− �1A(t)

(
�1A(t)−ΨA(t)

))
dt,

= −dW 1
A(t)ΨA(t)− dW 1

z (t)

(
�ΨA(t)

�A

�z
+ �Ψz(t)

)
.

(ii) Representative investor optimization and optimal consumption policies: The representative agent in
the economy faces the following optimization problem:

sup
c1(t)+c2(t)=A(t)

U(c1(t), c2(t), �(t)) =
c1(t)

1−

1− 
+ �(t)

c2(t)
1−

1− 
, (16)

where �(t) > 0. Optimality of individual consumption plans implies that the stochastic weight takes the following
form:

�(t) = u′(c1(t))/u
′(c2(t)) = y1�

A(t)/y2�
B(t),

where u′(c(t)) = c(t)−1/ is the marginal utility function, which is assumed identical across agents. The first order
condition for agent one is:

e−�tc1(t)
− = y1�

A(t).

The first order condition for agent two is:

�(t)e−�tc2(t)
− = y2�

A(t).
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The aggregate resource constraint can now be easily derived as:

(
y2�

A(t)e�t

�(t)

)−1/

+
(
y1�

A(t)e�t
)−1/

= A(t).

Thus, the solutions for the individual state price densities are:

�A(t) = e−�t 1

y1
A(t)−

(
1 + �(t)1/

)
, �B(t) = e−�t 1

y2
A(t)−

(
1 + �(t)1/

)
�(t)−1.

To solve for the optimal consumption policy of each agent, I plug in the functional forms for the individual state
price densities:

c1(t) = (y1�
A(t)e�t)−1/ = A(t)

(
1 + �(t)1/

)
−1

.

Good’s market clearing, finally implies:

c2(t) = Ai(t)− c1(t) = Ai(t)�(t)
1/
(
1 + �(t)1/

)
−1

.

A.3 Security Prices

For convenience, I express everything in terms of firm 1. However, the formulas can easily be extended to firm 2, by
making the corresponding changes and adjusting for the relative price. By definition, the risk-less zero coupon bond
price is given by:

B1(t, T ) =
1

�A(t)
EA

t

(
e−�(T−t)�A(T )

)
.

Using the expression for �A(t), I get:

B1(t, T ) = EA
t

(
e−�(T−t)

(
A1(T )

A1(t)

)
− (

1 + �(T )1/

1 + �(t)1/

)
)
. (17)

Let

G(t, T, x; ΨA1
,ΨA2

,Ψz) ≡
∫

∞

0

(
1 + �(T )1/

1 + �(t)1/

)
[

1

2�

∫ +∞

−∞

(
�(T )

�(t)

)
−i�

FΨA,Ψz
(ΨA1

,ΨA2
,Ψz, t, T ;−, i�)d�

]
d�(T )

�(T )
.

By Fourier inversion, it then follows:

B1(t, T ) = e−�(T−t)Fm1

A
(m1

A, t, T ;−)G(t, T,−; ΨA1
,ΨA2

,Ψz).

In a similar way, the firm value is:

V1(t) = EA
t

(∫
∞

t

e−�(u−t) �
A(u)

�A(t)
A(u)du

)
,

= Ai(t)E
A
t

(∫
∞

t

e−�(u−t)

(
1 + �(t)1/

1 + �(t)1/

) (
A1(u)

A1(t)

)1−

du

)
,

= A1(t)

∫
∞

t

(
e−�(u−t)Fm1

A
(m1

A, t, u; 1− )G(u, T, 1− ; ΨA1
,ΨA2

,Ψz)
)
du.
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The price of the defaultable bond is:

Bd
1 (t, T ) = K1B1(t, T )− EA

t

(
e−�(T−t) �

A(T )

�A(t)
(K1 − V1(T ))

+

)
,

= K1B1(t, T )− EA
t

(
e−�(T−t)

(
A1(T )

A1(t)

)
− (

1 + �(T )1/

1 + �(t)1/

)

(K1 − V1(T ))
+

)
,

= K1Bi(t, T )− P (t, T,K1),

where P1(t, T,K1) is the price of the put option on the firm value. Equity in my economy is a call option on the firm
value. Therefore:

S1(t) = EA
t

(
e−�(T−t) �

A(T )

�A(t)
(V1(T )− (K1 +K2))

+

)
= C1(t, T,K1 +K2).

A European call option on the equity value is derived in the following way:

O1(t, T ) = EA
t

(
e−�(T−t) �

A(T )

�A(t)
(S1(T )−Ke)

+

)
.

A.4 Risk-Neutral Skewness

Bakshi, Kapadia, and Madan (2003) show that one can express the � maturity price of a security that pays the
quadratic, cubic, and quartic return on the base security as:

V (t, �) =

∫
∞

S(t)

2 (1− ln (K/S(t)))

K2
C(t, � ;K)dK

+

∫ S(t)

0

2 (1 + ln (K/S(t)))

K2
P (t, � ;K) dK,

W (t, �) =

∫
∞

S(t)

6ln (K/S(t))− 3 (ln (K/S(t)))
2

K2
C (t, � ;K) dK

+

∫ S(t)

0

6ln (K/S(t)) + 3 (ln (K/S(t)))
2

K2
P (t, � ;K) dK,

X(t, �) =

∫
∞

S(t)

12ln (K/S(t))− 4 (ln (K/S(t)))2

K2
C (t, � ;K) dK

+

∫ S(t)

0

12ln (K/S(t)) + 4 (ln (K/S(t)))
2

K2
P (t, � ;K) dK,

where V (t, �),W (t, �), and X(t, �) are the quadratic, cubic, and quadratic contracts, respectively, and C(t, � ;K) and
P (t, � ;K) are the prices of European calls and puts written on the underlying stock S(t) with strike price K and
maturity � .

A.5 Stock Price Volatility and Volatility Risk Premia

The price of the stock satisfies a diffusion process which is given by:

dS1

S1
= �A

S1
(t)dt+ �S1A1

(t)dWA
A1

(t) + �S1A2
(t)dWA

A2
(t) + �S1z(t)dW

A
z (t).
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The diffusion term is characterized by:

dS1(t)− S1(t)�
A
S1
(t)dt =

∂S1

∂A1

(
dA1(t)− EA

t (dA1(t))
)
+

∂S1

∂mA
A1

(
dmA

A1
(t)− EA

t

(
dmA

A1

))

+
∂S1

∂ΨA1

(
dΨA1

(t)− EA
t (dΨA1

(t))
)

+
∂S1

∂ΨA2

(
dΨA2

(t)− EA
t (dΨA2

(t))
)
+

∂S1

∂Ψz

(
dΨz − EA

t (dΨz(t))
)
,

=
∂S1

∂A1
A1�A1

dWA
A1

(t)

+
∂S1

∂mA
A1

(
A
A1

�A1

dWA
A1

(t) +
A
A1A2

�A2

dWA
A2

(t) +

(
�A1

A
A1

+ �A2
A
A1A2

+ �A
A1z

�z

)
dWA

z (t)

)

+
∂S1

∂ΨA1

((
A
A1

− B
A1

�2
A1

)
dWA

A1
(t) +

(
A
A1A2

− A
A1A2

�A1
�A2

)
dWA

A2
(t)

+

(
�A1

(
A
A1

− B
A1

)
+ �A2

(
A
A1A2

− B
A1A2

)
+ �

(
A
A1z

− B
A1z

)

�A1
�z

)
dWA

z (t)

)

+
∂S1

∂ΨA2

((
A
A1A2

− B
A1A2

�A1
�A2

)
dWA

A1
(t) +

(
A
A2

− B
A2

�2
A2

)
dWA

A2
(t)

+

(
�A1

(
A
A1A2

− B
A1A2

)
+ �A2

(
A
A2

− B
A2

)
+ �

(
A
A2z

− B
A2z

)

�A2
�z

)
dWA

z (t)

)

+
∂S1

∂Ψz

((
A
A1z

− B
A1z

�A1
�z

)
dWA

A1
(t) +

(
A
A2z

− B
A2z

�A2
�z

)
dWA

A2
(t)

+

(
�A1

(
A
A1z

− B
A1z

)
+ �A2

(
A
A2z

− B
A2z

)
+ �

(
A
z − B

z

)

�2
z

)
dWA

z (t)

)

where

�S1A1
(t) =

1

S1(t)

(
∂S1

∂A1
A1�A1

+
∂S1

∂mA
A1

A
A1

�A1

+
∂S1

∂ΨA1

(
A
A1

− B
A1

�2
A1

)
+

∂S1

∂ΨA2

(
A
A1A2

− B
A1A2

�A1
�A2

)
+

∂S1

∂Ψz

(
A
A1z

− B
A1z

�A1
�z

))
,

�S1A2
(t) =

1

S1(t)

(
∂S1

∂mA
A1

A
A1A2

�A2

+
∂S1

∂ΨA1

(
A
A1A2

− B
A1A2

�A1
�A2

)
+

∂S1

∂ΨA2

(
A
A2

− B
A2

�2
A2

)
+

∂S1

∂Ψz

(
A
A2z

− B
A2z

�A2
�z

))
,

�S1z(t) =
1

S1(t)

(
∂S1

∂mA
A1

(
�A1

A
A1

+ �A2
A
A1A2

+ �A
A1z

�z

)

+
∂S1

∂ΨA1

(
�A1

(
A
A1

− B
A1

)
+ �A2

(
A
A1A2

− B
A1A2

)
+ �

(
A
A1z

− B
A1z

)

�A1
�z

)

+
∂S1

∂ΨA2

(
�A1

(
A
A1A2

− B
A1A2

)
+ �A2

(
A
A2

− B
A2

)
+ �

(
A
A2z

− B
A2z

)

�A2
�z

)

+
∂S1

∂Ψz

(
�A1

(
A
A1z

− B
A1z

)
+ �A2

(
A
A2z

− B
A2z

)
+ �

(
A
z − B

z

)

�2
z

))
.
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Using the following the derivatives,

∂S1

∂A1
=

∫
∞

t

e−�(u−t)FmA

(
mA, t, T ; �A1

, �A2

)
G (t, u, 1− ; Ψ) du,

∂S1

∂mA
A1

= A1

∫
∞

t

e−�(u−t)A (u− t)FmA

(
mA, t, T ; �A1

, �A2

)
G (t, u, 1− ; Ψ) du,

∂S1

∂Ψ
= A1

∫
∞

t

e−�(u−t) (BΨ + 2CΨ)FmA

(
mA, t, T ; �A1

, �A2

)
G (t, u, 1− ; Ψ)du,

I can easily compute the stock volatility which is given by
(
�2
S1A1

+ �2
S1A2

+ �2
S1z

)1/2
. The corresponding coefficients

for the volatility of stock 2 are:

�S2A1
(t) =

1

S2(t)

(
∂S2

∂mA
A2

(
A
A1A2

�A1

)
+

∂S2

∂ΨA1

(
A
A1

− B
A1

�2
A1

)
+

∂S2

∂ΨA2

(
A
A1A2

− B
A1A2

�A1
�A2

)
+

∂S2

∂Ψz

(
A
A1z

− B
A1z

�A1
�z

))
,

�S2A2
(t) =

1

S2(t)

(
∂S2

∂A2
A2�A2

+
∂S2

∂mA
A2

A
A2

�A2

+
∂S2

∂ΨA1

(
A
A1A2

− B
A1A2

�A1
�A2

)
+

∂S2

∂ΨA2

(
A
A2

− B
A2

�2
A2

)
+

∂S2

∂Ψz

(
A
A2z

− B
A2z

�A2
�z

))
,

�S2z(t) =
1

S2(t)

(
∂S2

∂mA
A2

(
�A1

A
A1A2

+ �A2
A
A2

+ �A
A2z

�z

)

+
∂S2

∂ΨA1

(
�A1

(
A
A1

− B
A1

)
+ �A2

(
A
A1A2

− B
A1A2

)
+ �

(
A
A1z

− B
A1z

)

�A1
�z

)

+
∂S2

∂ΨA2

(
�A1

(
A
A1A2

− B
A1A2

)
+ �

(
A
A2z

− B
A2z

)

�A2
�z

)

+
∂S2

∂Ψz

(
�A1

(
A
A1z

− B
A1z

)
+ �A2

(
A
A2z

− B
A2z

)
+ �

(
A
z − B

z

)

�2
z

))
.

A.6 Proof of Laplace Transform

I first summarize the most important filtered dynamics needed to compute the Laplace transform. Disagreement
Dynamics of firm i are:

dΨi(t) =

⎛
⎜⎜⎜⎝

(
a1i +

B
i

�2
i

)

︸ ︷︷ ︸
K1i

Ψi(t) +
B
ij

�j�i︸ ︷︷ ︸
K1j

Ψj(t) +

(
�i

B
i + �j

B
ij + �B

iz

)

�i�z︸ ︷︷ ︸
K1z

Ψz(t)

⎞
⎟⎟⎟⎠ dt

+

(
A
i − B

i

�2
i

)

︸ ︷︷ ︸
�1i

dWA
i (t) +

(
A
ij − B

ij

�i�j

)

︸ ︷︷ ︸
�1j

dWA
j (t) +

1

�i�z

(
�i

(
A
i − B

i

)
+ �j

(
A
ij − B

ij

)
+ �

(
A
iz − B

iz

))

︸ ︷︷ ︸
�1z

dWA
z (t).
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Similarly, the disagreement dynamics of firm j are given by:

dΨj(t) =

⎛
⎜⎜⎜⎜⎝

B
ij

�j�i︸ ︷︷ ︸
K2i

Ψi(t) +

(
a1j +

B
j

�2
j

)

︸ ︷︷ ︸
K2j

Ψj(t) +
�i

B
ij + �j

B
j + �B

jz

�j�z︸ ︷︷ ︸
K2z

Ψz(t)

⎞
⎟⎟⎟⎟⎠

dt

+

(
A
ij − B

ij

�i�j

)

︸ ︷︷ ︸
�2i

dWA
i (t) +

(
1
j − B

j

�2
j

)

︸ ︷︷ ︸
�2j

dWA
j (t) +

1

�j�z

(
�i

(
A
ij − B

ij

)
+ �j

(
A
j − B

j

)
+ �

(
A
jz − B

jz

))

︸ ︷︷ ︸
�2z

dWA
z (t).

The disagreement about the signal growth rate is given by:

dΨz(t) =

⎛
⎜⎜⎜⎝

B
iz

�i�z︸ ︷︷ ︸
K3i

Ψi(t) +
2
jz

�z�j︸ ︷︷ ︸
K3j

Ψj(t) +

(
a1z +

1

�2
z

(
�i

B
iz + �j

B
jz + �B

z

))

︸ ︷︷ ︸
K3z

Ψz(t)

⎞
⎟⎟⎟⎠ dt

+

(
A
iz − B

iz

�i�z

)

︸ ︷︷ ︸
�3i

dWA
i (t) +

(
A
jz − B

jz

�j�z

)

︸ ︷︷ ︸
�3j

dWA
j (t) +

1

�2
z

(
�i

(
A
iz − B

iz

)
+ �j

(
A
jz − B

jz

)
+ �

(
A
z − B

z

))

︸ ︷︷ ︸
�3z

dWA
z (t).

The growth rate of firm i is given by:

dmA
i (t) =

(
a0i + a1im

A
i (t)

)
dt+

A
i

�i︸︷︷︸
�4i

dWA
i (t) +

A
ij

�j︸︷︷︸
�4j

dWA
j (t) +

�i
A
i + �i

A
ij + �A

iz

�z︸ ︷︷ ︸
�4z

dWA
z (t).

Similarly, the growth rate of firm j is given by:

dmA
j (t) =

(
a0j + a1jm

A
j (t)

)
dt+

A
ij

�i︸︷︷︸
�5i

dWA
i (t) +

A
j

�j︸︷︷︸
�5j

dWA
j (t) +

�i
A
ij + �j

A
j + �A

jz

�z︸ ︷︷ ︸
�5z

dWA
z (t).

Finally, the fundamentals have the following dynamics:

dAi(t)/Ai(t) = mA
i (t)dt+ �i︸︷︷︸

�7i

dWi(t)
A

dAj(t)/Aj(t) = mA
j (t)dt+ �j︸︷︷︸

�7j

dWj(t)
A
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Let me collect all variables in the vector X = (Ψi,Ψj ,Ψz,mi,mj , �, Ai, Aj)
′

, and all shocks in the vector WA =(
WA

i ,WA
j ,WA

z

)
′

. I can now compactly write the dynamics of X as:

dX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
a0i
a0j
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
K0

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1i K1j K1z 0 0 0 0 0
K2i K2j K2z 0 0 0 0 0
K3i K3j K3z 0 0 0 0 0
0 0 0 0 a1i 0 0 0
0 0 0 0 0 a1j 0 0
0 0 0 0 0 0 0 0
0 0 0 0 Ai 0 0 0
0 0 0 0 0 Aj 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
K1

X(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dt+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1i �1j �1z

�2i �2j �2z

�3i �3j �3z

�4i �4j �4z

�5i �5j �5z

−��̂6i −��̂6j −��̂6z

Ai�7i 0 0
0 Aj�8j 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
S

dWA
i (t),

where hats in �̂6i, �̂6j and �̂6z shall remind us that diffusion of d�
� is a function of Ψ(t). Let me also denote those

sub-blocks (yellow ones) of K0,K1, S, which are related to Ψ(t) by:

�0 := K0(1:3) = 03×1

�1 := K1(1:3,1:3)

Σ := S(1:3,1:3).

Thus, the dynamics of Ψ(t) can be compactly written as:

dΨ(t) = (�0 + �1Ψ(t)) dt+ΣdWA
i (t).

Let mA(t) = (mA
A1

(t)mA
A2

(t)mA
z (t)), then the joint Laplace transform of X(t) is given by:

FX = A
"Ai

i A
"Aj

j ��FmAFΨ, (18)

where FmA is affine in mi and mj :

FmA = exp
(
AmA + Āi(�)mi + Āj(�)mj

)
,

and FΨi,Ψj ,Ψz
is affine-quadratic in Ψ = (Ψi,Ψj,Ψz) :

FΨi,Ψj ,Ψz
= exp(A(�) +B(�)′Ψ+Ψ′C(�)Ψ).

In matrix notation, Feynman-Kač implies:

∂F

∂t
+

∂F

∂X ′
(K0 +K1X) +

1

2
Tr

(
∂2F

∂X∂X ′
SS′

)
= 0

or
∂F

∂t
+

11∑

i=1

∂F

∂Xi
(K0(i) +K1(i, :)X) +

1

2

11∑

i,j=1

Cij
∂2F

∂Xi∂Xj
= 0,

where Cij is the ij−th element of the matrix C = SS′. My goal is to reduce the problem of solving the PDE
in FX , to solving simply the PDE in FΨi,Ψj ,Ψz

, which can be done virtually in closed form. This requires several
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adjustments to the parameters of Ψ dynamics and the constants in the respective ODEs. Specifically, I will show
that A(�), B(�), C(�) solve the following system:

∂A

∂�
= B(�)′�̄0 + Tr [C(�)ΣΣ′] +

1

2
B(�)′ΣΣ′B(�) +Ac (ODE.1) (19)

∂B

∂�

′

Ψ = B(�)′�̄1Ψ+ 2�̄′

0C(�)Ψ + 2Tr [B′(�)ΣΣ′C(�)Ψ] +B′

cΨ (ODE.2)

Tr

[
∂C

∂�

′

ΨΨ′

]
= Tr [(C(�)�̄1 + �̄′

1C(�)) ΨΨ′] + 2Tr [C(�)ΣΣ′C(�)ΨΨ′] + Tr (CcΨΨ′) (ODE.3),

where �̄0, �̄1 denote appropriately adjusted coefficients �0, �1, and Ac, Bc, Cc are the adjusted constants.

Since the adjustments involve the cross-derivatives of F with respect to X, I spell out the Hessian matrix for
completeness:

∂2

∂X∂X ′
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂2

∂Ψ2

i

∂2

∂Ψi∂Ψj

∂2

∂Ψi∂Ψz

∂2

∂Ψi∂mA2

∂2

∂Ψi∂mA2

∂2

∂Ψi∂�
∂2

∂Ψi∂A1

∂2

∂Ψi∂A2

∂2

∂Ψ2

j

∂2

∂Ψj∂Ψz

∂2

∂Ψj∂mA2

∂2

∂Ψj∂mA2

∂2

∂ΨA2
∂�

∂2

∂Ψj∂A1

∂2

∂Ψj∂A2

∂2

∂Ψ2
z

∂2

∂Ψz∂mA1

∂2

∂Ψz∂mA2

∂2

∂Ψz∂�
∂2

∂Ψz∂A1

∂2

∂Ψz∂A2

∂2

∂m2

A2

∂2

∂mA2
∂mA2

∂2

∂mA2
∂�

∂2

∂mA2
∂A1

∂2

∂mA2
∂G

∂2

∂m2

A2

∂2

∂mA2
∂�

∂2

∂mA2
∂A1

∂2

∂mA2
∂A2

∂2

∂�2

∂2

∂�∂A1

∂2

∂�∂A2

∂2

∂A2

1

∂2

∂A1∂A2

∂2

∂A2
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Types of adjustments:

1. Terms involving derivatives of the type ∂2

∂Ψi∂mj
, i = {A1, A2, z}, j = {V,G,M} adjust the vector �0 in the drift

of Ψ.

2. Terms involving derivatives of the type ∂2

∂Ψi∂A1
, ∂2

∂Ψi∂A2
, i = {A1, A2, z} adjust the vector �0 in the drift of Ψ.

3. Terms involving derivatives of the type ∂2

∂Ψi∂�
, i = {A1, A2, z} adjust the mean reversion matrix �1 in the drift

of Ψ.

4. Terms involving derivatives of the type ∂2

∂mi∂�
, i = {A1, A2} adjust the constant vector Bc in the ODE.2.

5. Terms involving derivatives of the type ∂2

∂�∂A1
, ∂2

∂�∂A2
adjust the constant vector Bc in the ODE.2.

6. Terms involving derivatives of the type ∂2

∂�2 adjust the constant matrix Cc in the ODE.3.

For all the cases above, I need to consider the structure of 1
dt

∂2

∂Xi∂Xj
⟨dXi, dXj⟩ . Below I neglect the division by 1

dt

for brevity. Let us start with the adjustments of the constant drift matrix �0.

Adjustment 1: ∂2F
∂Ψi∂mj

where i = {A1, A2, z} and j = {A1, A2}

∂2F
∂Ψi∂mA2

= ∂F
∂Ψi

ĀA1
and ⟨dΨi, dmA2

⟩ =∑i �1i�5i

∂2F
∂Ψi∂mA2

= ∂F
∂Ψi

ĀA2
and ⟨dΨi, dmA2

⟩ =∑i �1i�6i

... and ...

I need to add the following vector to �0 :

�adj1
0 =

⎛
⎜⎜⎝

ĀA1

∑
i �1i�5i + ĀA2

∑
i �1i�6i + ĀM

∑
i �1i�7i

ĀA1

∑
i �2i�5i + ĀA2

∑
i �2i�6i + ĀM

∑
i �2i�7i

ĀA1

∑
i �3i�5i + ĀA2

∑
i �3i�6i + ĀM

∑
i �3i�7i

ĀA1

∑
i �4i�5i + ĀA2

∑
i �4i�6i + ĀM

∑
i �4i�7i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�(1,:)

�(2,:)

�(3,:)

�(4,:)

⎞
⎟⎟⎠

︸ ︷︷ ︸
4×4

(
ĀA1

�′

(5,:) + ĀA2
�′

(6,:) + ĀM�′

(7,:)

)

︸ ︷︷ ︸
4×1

.
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Adjustment 2: ∂2F
∂Ψi∂I

, i = {A1, A2, z}, I = {V,G,M}

∂2F
∂Ψi∂V

= ∂F
∂Ψi

"V
V and ⟨dΨi, dV ⟩ = V �1i�9V

∂2F
∂Ψi∂G

= ∂F
∂Ψi

"G
G and ⟨dΨi, dV ⟩ = G�1j�10G

∂2F
∂Ψi∂M

= ∂F
∂ΨM

"M
M and ⟨dΨi, dV ⟩ = M�1M�11M

... and ...

Adjustment 2 adds the following vector to �0:

�adj2
0 =

⎛
⎜⎜⎝

"V �1i�9A1
+ "G�1j�10G + "M�1M�11M

"V �2V �9A1
+ "G�2G�10G + "M�2M�11M

"V �3V �9A1
+ "G�3G�10G + "M�3M�11M

0

⎞
⎟⎟⎠

︸ ︷︷ ︸
4×1

,

where 0 in the last row of �adj2
0 follows from the independence between the disagreement on the signal and V,G and

M dynamics.

Summarizing, Adj 1 and Adj 2 imply that the adjusted vector �̄0 in the drift of Ψ is:

�̄0 = �0 + �adj1
0 + �adj2

0 .

Adjustment 3 Next consider the terms that can be absorbed into the mean reversion matrix �1. Those involve
∂2F

∂Ψi∂�
, i = {A1, A2, z}.

∂2F
∂Ψi∂�

= ∂F
∂Ψi

�
� and ⟨dΨV , d�⟩ = −� [(�1i + �1z�̄A1

)Ψi + (�1j + �1z�̄G)Ψj + (�1M + �1z�̄M )ΨM + �1z�Ψz]

⇒ �adj
1(1,:) = −�

(
(�1i + �1z�̄A1

) , (�1j + �1z�̄A2
) , (�1M + �1z�̄M ) , �1z�

)
1×4

∂2F
∂Ψj∂�

= ∂F
∂Ψj

�
� and ⟨dΨG, d�⟩ = −� [(�2V + �2z�̄A1

)Ψi + (�2G + �2z�̄G)Ψj + (�2M + �2z�̄M )ΨM + �2z�Ψz]

⇒ �adj
1(2,:) = −�

(
(�2V + �2z�̄A1

) , (�2G + �2z�̄A2
) , (�2M + �2z�̄M ) , �2z�

)
1×4

∂2F
∂ΨM∂� = ∂F

∂ΨM

�
� and ⟨dΨM , d�⟩ = −� [(�3V + �3z�̄A1

)Ψi + (�3G + �3z�̄G)Ψj + (�3M + �3z�̄M )ΨM + �3z�Ψz]

⇒ �adj
1(3,:) = −�

(
(�3V + �3z�̄A1

) , (�3G + �3z�̄A2
) , (�3M + �3z�̄M ) , �3z�

)
1×4

∂2F
∂Ψz∂�

= ∂F
∂Ψz

�
� and ⟨dΨz, d�⟩ = −� [(�4V + �4z�̄A1

)Ψi + (�4G + �4z�̄G)Ψj + (�4M + �4z�̄M )ΨM + �4z�Ψz]

⇒ �adj
1(4,:) = −�

(
(�4V + �4z�̄A1

) , (�4G + �4z�̄A2
) , (�4M + �4z�̄M ) , �4z�

)
1×4

Thus,

�adj
1 = −�

⎡
⎢⎢⎣

(�1i + �1z�̄A1
) (�1G + �1z�̄A2

) (�1M + �1z�̄M ) �1z�
(�2V + �2z�̄A1

) (�2G + �2z�̄A2
) (�2M + �2z�̄M ) �2z�

(�3V + �3z�̄A1
) (�3G + �3z�̄A2

) (�3M + �3z�̄M ) �3z�
(�4V + �4z�̄A1

) (�4G + �4z�̄A2
) (�4M + �4z�̄M ) �4z�

⎤
⎥⎥⎦

︸ ︷︷ ︸
4×4

Summarizing, the adjusted mean reversion matrix in the dynamics of Ψ is given by:

�̄1 = �1 + �adj
1 .

Adjustment 4: ∂2F
∂mi∂�

, i = {V,G,M}

∂2F
∂mA2

∂� =
�ĀA1

� F and ⟨dmA2
, d�⟩ = −� [(�4i + �5z�̄A1

)Ψi + (�5G + �5z�̄A2
)Ψj + (�5M + �5z�̄M )ΨM + (�5z�)Ψz]

∂2F
∂mA2

∂� =
�ĀA2

� F and ⟨dmA2
, d�⟩ = −� [(�6V + �6z�̄A1

)Ψi + (�6G + �6z�̄A2
)Ψj + (�6M + �6z�̄M )ΨM + (�6z�)Ψz]

∂2F
∂mM∂� = �ĀM

� F and ⟨dmM , d�⟩ = −� [(�7V + �7z�̄A1
)Ψi + (�7G + �7z�̄A2

)Ψj + (�7M + �7z�̄M ) ΨM + (�7z�) Ψz]
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Since these equations do not involve any derivatives of the type ∂
∂Ψi

, but do involve linear terms in Ψi, I realize that
they adjust the constant Bc in ODE.2:

Badj1
c = −�

⎛
⎜⎜⎝

[
ĀA1

(�4i + �5z�̄A1
) + ĀA2

(�6V + �6z�̄A1
) + ĀM (�7V + �7z�̄A1

)
]

[
ĀA1

(�5G + �5z�̄A2
) + ĀA2

(�6G + �6z�̄A2
) + ĀM (�7G + �7z�̄A2

)
]

[
ĀA1

(�5M + �5z�̄M ) + ĀA2
(�6M + �6z�̄M ) + ĀM (�7M + �7z�̄M )

]
[
ĀA1

(�5z�) + ĀA2
(�6z�) + ĀM (�7z�)

]

⎞
⎟⎟⎠

Adjustment 5: The same logic applies to the derivatives of the form: ∂2F
∂�∂I , I = {V,G,M}

∂2F
∂�∂V = �"V

�V F and ⟨d�, dV ⟩ = −�V �9A1
Ψi

∂2F
∂�∂G = �"G

�G F and ⟨d�, dG⟩ = −�G�10GΨj

Thus the second adjustment to Bc is:

Badj2
c = −�

⎛
⎜⎜⎝

"V �9A1

"G�10G

"M�11M

0

⎞
⎟⎟⎠

Summarizing, the constant vector in ODE.2 is given by:

Bc = Badj1
c +Badj2

c

Adjustment 6:

1
2
∂2F
∂�2 = 1

2
�(�−1)F

�2

⟨d�, d�⟩ = �2
(
�̂2
8V + �̂2

8G + �̂2
8M + �̂2

8z

)
= Tr

⎡
⎢⎢⎣

⎛
⎜⎜⎝

(1 + �̄2
A1

) �̄A1
�̄A2

�̄V �̄M �̄A1
�

�̄A1
�̄A2

(1 + �̄2
A2

) �̄G�̄M �̄A2
�

�̄A1
�̄M �̄A2

�̄M (1 + �̄2
M ) �̄M�

�̄A1
� �̄A2

� �̄M� �2

⎞
⎟⎟⎠ΨΨ′

⎤
⎥⎥⎦

Thus, the adjustment of the constant matrix in ODE.3 is given by:

Cc =
1

2
�(�− 1)

⎛
⎜⎜⎝

(1 + �̄2
A1

) �̄A1
�̄A2

�̄A1
�̄M �̄A1

�
�̄A1

�̄A2
(1 + �̄2

A2
) �̄A2

�̄M �̄A2
�

�̄A1
�̄M �̄A2

�̄M (1 + �̄2
M ) �̄M�

�̄A1
� �̄A2

� �̄M� �2

⎞
⎟⎟⎠

I can now obtain the coefficients A(�), B(�), C(�) by solving the system:

∂A

∂�
= B(�)′�̄0 + Tr [C(�)ΣΣ′] +

1

2
B′(�)ΣΣ′B(�) +Ac (ODE.1) (20)

∂B

∂�

′

= B(�)′�̄1 + 2�̄′

0C(�) + 2B′(�)ΣΣ′C(�) +B′

c (ODE.2) (21)

∂C

∂�
= C(�)�̄1 + �̄′

1C(�) + 2C(�)ΣΣ′C(�) + Cc (ODE.3),

where A(0) = 0, B(0) = 0, C(0) = 0.

Last equation (ODE.3) can be solved in closed form by matrix Riccati linearization:

C(�) = F22(�)
−1F21(�),
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where (
F11(�) F12(�)
F21(�) F22(�)

)
= exp

[
�

(
�̄1 −2ΣΣ′

Cc −�̄1

)]
.

Given C(�), I can obtain the solution for ODE.2 in closed form. First, for tractability, I re-write ODE.2 as:

∂B

∂�
= �̃1B(�) + �̃0,

where

�̃1 = �̄1 + 2C(�)ΣΣ′

�̃0 = 2C(�)�̄0 +Bc.

The solution for B(�) is follows as (see e.g. Laub, 2005):

B(�) =

∫ �

0

e�̃1(�−s)�̃0ds.

This matrix integral admits an explicit solution (see Thm.1 in van Loan, 1978). Defining the following auxiliary
matrix

Caux =

(
�̃1 �̃0

04×1 01×1

)
,

B(�) is represented as the upper right subblock of the following matrix exponential

exp (�Caux) =

(
F1(�) B(�)
0 F2(�)

)
.

This is the correct solution if �̃0, �̃1 are not time dependent. However, alternatively, the system can be solved
numerically (and efficiently) using, e.g., the Runge-Kutta method.

I can proceed in an analogous way to obtain the coefficients in

FmA2
,mA2

,mM
= eC̄(�)+ĀA1

(�)mA2
+ĀA2

(�)mA2
+ĀM (�)mM = eC̄(�)+Ā(�)′m

where m = (mA2
,mA2

,mM )
′

. Let J = (V,G,M)
′

, W̄ = (WV ,WG,WM ).

dm =

⎡
⎢⎢⎢⎢⎢⎣

⎛

⎝
a0i
a0j
a0M

⎞

⎠

︸ ︷︷ ︸
l0

+

⎛

⎝
a1i 0 0
0 a1j 0
0 0 a1M

⎞

⎠

︸ ︷︷ ︸
l1

m

⎤
⎥⎥⎥⎥⎥⎦
dt+

⎛

⎝
�4i �5G �5M

�6V �6G �6M

�7V �7G �7M

⎞

⎠

︸ ︷︷ ︸
L

dW̄

dJ =

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎝

0
0
0

⎞
⎠

︸ ︷︷ ︸
�0

+

⎛
⎝

V 0 0
0 G 0
0 0 M

⎞
⎠

︸ ︷︷ ︸
�1

J

⎤
⎥⎥⎥⎥⎥⎦
dt+

⎛
⎝

V �9A1
0 0

0 G�10G 0
0 0 M�11M

⎞
⎠

︸ ︷︷ ︸
Λ

dW̄

Our goal is to reduce the problem of solving PDE in FX , to solving just the PDE in Fm, which can be done virtually
in closed form:

∂Fm

∂t
+

∂Fm

∂m′
(l0 + l1m)︸ ︷︷ ︸

�m

+
1

2
Tr

[
∂2Fm

∂m∂m′
LL′

]
= 0.
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Which can be solved in two ODEs:

∂Ā

∂�

′

m = Ā(�)′ l̄1m+ Ācm (ODE.1.1)

∂C̄

∂�
= Ā(�)′ l̄0 +

1

2
Ā(�)LL′Ā(�) + C̄c (ODE.1.2)

To this end, I apply the following adjustments:

1. Terms involving derivatives of the type ∂
∂J , J = {A1, A2} adjust the constant vector in ODE.1.1.

2. Terms involving derivatives of the type ∂2

∂mi∂I
, i = {A1, A2}, I = {A1, A2} adjust the vector l0 in the drift of

m.

3. Terms involving derivatives of the type ∂2

∂Ji∂Jj
, J = {A1, A2} adjust the constant in ODE.1.2.

Adjustment 1: ∂F
∂J , J = {A1, A2}

∂F
∂V = "V

V F and �V = V mA2

∂F
∂G = "G

G F and �G = GmA2

∂F
∂G = "G

G F and �M = MmM

Adjustment 1 adds the following vector to the constant Āc in ODE.1.1:

Āadj1
c =

⎛
⎝

"V
"G
"M

⎞
⎠ .

Āc = Āadj1
c .

Adjustment 2: ∂2F
∂mi∂Jj

∂2F
∂mA2

∂V = ∂F
∂mA2

"V
V = ĀA1

"V
V F and ⟨dmA2

, dV ⟩ = V �9A1
�4i

∂2F
∂mA2

∂G = ∂F
∂mA2

"G
G = ĀA1

"G
G F and ⟨dmA2

, dG⟩ = V �10G�4i

∂2F
∂mA2

∂M = ∂F
∂mA2

"M
M = ĀA1

"M
M F and ⟨dmA2

, dM⟩ = V �11M�4i

... ...

Adjustment 2 adds the following vector to l0

ladj10 =

⎛
⎝

"V �9A1
�4i + "G�10G�5G + "M�11M�5M

"V �9A1
�6V + "G�10G�6G + "M�11M�6M

"V �9A1
�7V + "G�10G�7G + "M�11M�7M

⎞
⎠

=

(
A
i "V + A

ij"G
A
ij"V + 1

G"G

)

l̄0 = l0 + ladj10 .

Adjustment 3 ∂2F
∂Ji∂Jj

, J = {A1, A2}, i.e. 12
∑

ij
∂2F

∂Ji∂Jj
Cij =

1
2Tr

(
∂2F

∂J∂J′
ΛΛ′

)

∂2F
∂V 2 = "V ("V −1)

V 2 and ⟨dV ⟩ = V 2�2
9A1

∂2F
∂V ∂G = "V "G

V G and ⟨dV, dG⟩ = 0
∂2F

∂V ∂M = "V "M
V M and ⟨dV, dM⟩ = 0

... ...
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C̄c =
1

2
Tr

[(
"A1

("A1
− 1) "A1

"G
"A1

"A2
"A2

("A2
− 1)

)(
�2
9A1

0
0 �2

10G

)]

=
1

2

[
"A1

("A1
− 1)�2

9A1
+ "A2

("A2
− 1)�2

10G

]

The system of ODEs (1.1–1.2) can now be solved explicitly:

∂Ā

∂�

′

= Ā(�)′ l̄1 + Āc (ODE.1.1)

∂C̄

∂�
= Ā(�)′ l̄0 +

1

2
Ā(�)LL′Ā(�) + C̄c (ODE.1.2)

It is easy to see that since l1 is a diagonal matrix, the equations in ODE.1.1 are uncoupled, i.e. can be solved
explicitly element-by-element.

∂Āi

∂�
= Āi(�)l1,ii + Āc,i, Āi(0) = 0

Āi(�) = − Āc,i

l1,ii

(
1− el1,ii�

)
.

Given this solution ODE.1.2. is obtained by direct integration.
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B Data Appendix

The data runs from January 1996 to September 2008 (153 observations). I use a monthly frequency throughout the
paper.

B.1 Options Data

Options data is from OptionMetrics, LLC. I apply a series of filters

1. I eliminate prices that violate arbitrage bounds, i.e. call prices are required not to fall outside the interval(
Se−rd −Ke−�r, Se−�d

)
, where S is the spot price, K is the strike price, d is the dividend yield, r is the

risk-free rate, and � is the time to maturity.

2. I eliminate all observations for which (i) the ask is lower than the bid price, (ii) the bid is equal to zero, or
(iii) the spread is lower than the minimum tick size (equal to USD 0.05 for options trading below USD 3 and
USD 0.10 in any other cases).

3. To mitigate the impact of stale quotes I eliminate from the sample all observations for which both the bid and
the ask are equal to the one on the previous day.

4. I focus on short-term options which are known to be the most liquid with a time to maturity between 14 and
31 days.

Moneyness of a call (put) option is defined as the ratio of strike price to stock price (stock price to strike price).17

B.2 Stock Data

Monthly stock data is from CRSP.

B.3 Corporate Bond Data

Bond data is from the Fixed Income Securities Database (FISD) on corporate bond characteristics and the Na-
tional Association of Insurance Commissioners (NAIC) database on bond transactions. Corporate bond spreads are
calculated using the corresponding zero-coupon yield available from CRSP.

B.4 Firm-Specific Information

Leverage is defined as book value of debt (Compustat item 9 and 34) divided by total asset value (Compustat item
6). The stock’s market beta is calculated from a regression of the stocks excess return on the market excess return
using historical returns over a 180 day window18. Firm size is defined as the natural log of the firm’s market value
of equity, in thousands of dollars. Data is from Compustat.

B.5 Macroeconomic Variables:

Monthly data on real nondurable and services consumption is from the Bureau of Economic Analysis. Expenditures
are in 2000 dollars. Monthly consumption growth is defined as the log-differenced real consumption per capita.
Following Granger and Newbold (1986), I construct a smoothed consumption series by using an exponential moving
average. Consumption volatility is constructed by estimating a GARCH(1,1) on the consumption growth series. I
retrieve S&P 500 price-earnings data from the S&P webpage, and the other macro variables we get from FRED.

17There are several alternative ways to measure moneyness. For instance, Bollen and Whaley (2004) use the Black and Scholes delta
to measure moneyness, Ni (2007) and Carr and Wu (2009) use the total volatility adjusted strike to stock price ratio.

18The choice of a relatively short window size is in line with Lewellen and Nagel (2006).
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B.6 Disagreement Measures

Firm Specific Disagreement:

To construct a proxy of disagreement about future cash flows, I collect analysts’ earning forecasts from the Institu-
tional Brokers Estimate System (I/B/E/S) database. In particular, I use the unadjusted Forecast Detail database
which provides forecast data unadjusted for stock splits. I then calculate for each firm, for each month, the mean
absolute difference of all forecasts made.

Common Disagreement:

When the number of belief disagreement processes, N is very large, an estimation of the common factor via the
Likelihood function is computational infeasible (see Ludvigson and Ng, 2007). This high dimensionality has motivated
the work on alternative methods to estimate dynamic factor models. Chamberlain and Rothschild (1983) and
Connor and Korajczyk (1986) show that if n goes to infinity, the factors are estimated consistently using principal
components, see Brillinger’s (2001) dynamic principal components. The theory of applying this theory, based on
frequency domain methods is developed by Forni, Hallin, Lippi, and Reichlin (2000). In the following, we briefly
summarize the estimation procedure, for technical details and a more rigorous presentation the reader is referred to
Forni, Hallin, Lippi, and Reichlin (2000).

The estimation procedure is derived in two steps. The first step consists of estimating the spectral density matrix
and the covariances of the common components. We start by estimating the spectral density matrix Σ(!) of D(t) =
(D1t, D2t, ⋅ ⋅ ⋅ , DNt)

′. The estimation of Σ(!) is obtained by using a Bartlett lag-window size of M = 2. We use a
heuristic rule, which sets the window size equal to round(

√
T/4), see Forni, Hallin, Lippi, and Reichlin (2000). The

estimation is done via the discrete Fourier transform:

Σ̂D (!) =
1

2�

M∑

k=−M

wkΓ̂k exp(−i!k),

where Γ̂k denotes the sample autocovariance matrices, and wk = 1− ∣k∣/(M + 1) the weights.

We then perform the dynamic principal component decomposition (see Brillinger, 2001). For each frequency of the
grid, we compute the eigenvalues and eigenvectors of Σ̂(!). By ordering the eigenvalues in descending order for each

frequency and collecting values correspondingly to different frequencies, the eigenvalues, �̂j and eigenvectors, Uj(!),

are obtained. The eigenvalue �̂j can be interpreted as the spectral density of the j-the principal component. To
determine the optimal number of common factors, we study the contribution of the j-th principal component to the
total variance:

cj =

∫ �

−�

�̂j(!)d!/

N∑

j=1

∫ �

−�

�̂j(!)d!.

Forni, Hallin, Lippi, and Reichlin (2000) show that there exist a linkage between the number of common factors and
the eigenvalues of the spectral density matrix. In practice, however, there does not exist a formal testing procedure to
distinguish between very slowly diverging eigenvalue and a bounded one, therefore, we follow the heuristic procedure
applied by Cristadoro, Forni, Reichlin, and Veronese (2005), by imposing the criteria that the dynamic common
factors should account for a certain percentage of the total variability in the data across all frequencies, and the
number of dynamic common factors is set equal to the number of largest dynamic eigenvalues that together capture
this variance ratio. In our case, the number of common components is set to q = 2. Let Λq(!) be a diagonal
matrix, having as elements the eigenvalues, �1(!), ⋅ ⋅ ⋅ , �q(!) and let U(!) be the [n× q] matrix of the eigenvectors,
U1(!), ⋅ ⋅ ⋅ , Uq(!). Then the estimate of the spectral density matrix of the common components, &(t) = (&1t ⋅ ⋅ ⋅ &Nt)

′

:

Σ̂&(!) = U(!)Λ(!)Ũ(!),

where the tilde denotes a conjugate. The spectral density of the idiosyncratic component is obtained as the difference
of the spectral density matrices of the common component and the D.

The second step consists of estimating the factor space. Given the estimated covariance matrices in the first step,
we can now estimate the factors as a linear combination of the observable variables, Djt, j = 1, ⋅ ⋅ ⋅ , N . To this
end, we take the first r generalized principal components of the estimated spectral density matrix of the common
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components, Γ̂& with respect to the diagonal matrix having on the diagonal the variances of the idiosyncratic com-
ponents. Estimates of the common components are derived by projecting the common components on the space
spanned by the first r generalized principal components. To this end, we compute the generalized eigenvalues, �j ,

solving det(Γ̂D(0) − zΓ̂& = 0 along with the generalized eigenvectors, Vj , satisfying VjΓ̂D(0) = �jVjΓ̂&(0). Then we
take the eigenvectors corresponding to the largest r eigenvalues. The estimtaed factors are then Vjt = V ′

jΨjt. To
determine the number of static factors, r, we rely on Forni, Hallin, Lippi, and Reichlin (2005), who propose to use
r = q(k + 1).19 Using the generalized principal components and the covariances estimated previously, we can now
estimate the common component Ψ̄t. The estimate of Ψ̄t is given by:

Ψ̄t+ℎ = V̂D(ℎ)V
(
V ′Γ̂(0)V

)
−1

V ′Ψt.

19More formal information criterions include Bai and Ng (2001), Hallin and Lǐska (2007), and Alessi, Barigozzi, and Capasso (2008).
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Figure 1. Volatility Risk Premium for Low and High Leverage Firms

The upper (lower) left panel plots the average volatility risk premium defined as E
ℚ
t

(

∫ t+1

t
dri

)

− Eℙ
t

(

∫ t+1

t
dri

)

of all firms in the

S&P500 in the 5th (95th) leverage percentile. The integrated variance under the risk-neutral measure ℚ is proxied using the method in
Carr and Madan (1998) and Britten-Jones and Neuberger (2000). It is defined as:

E
ℚ
t

(∫ t+1

t

dr2i

)

= 2

∫

∞

0

C (t, t + 1, K)−max (S(t) −K,0)

K2
dK,

and the model-free implied volatility is defined as the square root of this expression. The integrated realized volatility under the physical
measure, ℙ, is the square root of the sum of squared daily log continuously compounded returns over the month. Both volatility measures
are of monthly basis and are available at the end of each observation month. Leverage is defined as the ratio of the book value of debt
and the total asset value. The average is market capitalization weighted. The shaded areas represent financial or economic crises defined
according to the NBER. The right panel depicts the boxplots of the volatility risk premia summary of low (left) and high (right) leverage
firms. The upper, middle, and lower lines indicate the upper quartile, median, and lower quartile, respectively.
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Figure 2. Trading Strategies

This figure presents annual returns and Sharpe ratios for six different option trading strategies. HFI refers to the Credit Suisse/Tremont
Hedge Fund Index. The variance swap strategies are so called Risk Equivalent Portfolios (REPs). They usually contain one risk-free asset
(LIBOR) and one short variance swap, where the amount of variance sold is such that it meets a certain risk/return objective. LowVol
stands for 5% volatility per annum, MedVol for 10% volatility per annum, and HighVol for 15% volatility per annum. BXM stands for
the CBOE S&P 500 BuyWrite Index. The data is monthly and runs from January 1996 to September 2007.
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Figure 3. Volatility Risk Premia for Different Leverage Ratios

This Figure plots the volatility risk premia, defined as the difference between the expected integrated volatility under the risk-neutral
and physical distribution for three different leverage ratios and two different levels of macro-economic uncertainty (��Ai

). Low (high) Ψ

indicates that the disagreement is set to 0.5 (0.1), i.e. ΨA1
= ΨA2

= Ψz = 0.5 (ΨA1
= ΨA2

= Ψz = 0.1). Low and high growth rate
volatility are set to 0.0029 and 0.0041, respectively. Low leverage is fixed at 0.05, medium at 0.1, and high leverage is fixed at 0.14.
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Table 1

Summary Statistics

This table reports the 5th percentile, median, and 95th percentiles of the model-free implied volatility, realized volatility, and skewness
across securities per year. The risk-neutral implied volatility is calculated as in Carr and Madan (1998) and Britten-Jones and Neuberger
(2000). The realized volatility is calculated from stock returns and finally, the risk-neutral skewness is calculated as in Bakshi, Kapadia,
and Madan (2003) using data on out-of-the-money calls and puts. The Firm Specific Disagreement is calculated from analysts’ earning
forecasts, the Common Disagreement is a dynamic factor estimated from the cross-section of firm-specific disagreement, Consumption
Growth Volatility is estimated from a two state Markov switching process on consumption growth data. Leverage is total debt over total
asset value, the Macro Factor is the first principal component using industrial production, housing start number, the producer price
index, non-farm employment, and the S&P 500 P/E ratio, the Market Beta is the slope coefficient from a regression of the firm excess
return on the market excess return, finally, Firm Size is the market value of equity. AC(1) indicates the first autocorrelation coefficient.
The time period is from January 1996 to September 2008.

Year Implied Volatility Realized Volatility Skewness

0.05 0.5 0.95 0.05 0.5 0.95 0.05 0.5 0.95

1996 10.938 25.098 45.923 9.292 23.988 44.110 -4.198 -0.583 1.193
1997 11.022 29.912 46.387 10.283 29.011 45.182 -3.138 -0.420 0.998
1998 12.928 28.726 46.373 13.288 28.928 46.927 -4.293 -0.625 0.872
1999 13.938 27.826 47.993 13.283 27.837 47.837 -4.382 -0.477 0.937
2000 15.119 25.883 48.837 16.012 26.282 48.928 -5.192 -0.638 0.682
2001 13.873 24.193 45.773 12.018 23.444 43.737 -5.018 -0.544 0.766
2002 12.728 23.877 44.298 11.327 21.336 42.311 -4.876 -0.651 0.972
2003 10.834 23.293 43.399 9.828 20.218 41.299 -4.119 -0.837 0.880
2004 11.639 23.847 42.982 10.002 20.292 40.192 -4.288 -0.921 1.018
2005 12.938 24.636 41.828 21.993 23.339 42.774 -3.930 -0.762 0.872
2006 13.938 24.474 43.938 13.382 23.933 43.998 -4.498 -0.482 1.013
2007 14.866 25.837 45.943 14.948 26.887 46.994 -4.872 -0.293 0.917
2008 18.928 28.912 47.198 19.287 27.182 46.248 -3.938 -0.318 1.198

Mean StDev AC(1) Corr Corr

VolRP Skewness

Volatility Risk Premium ×102 1.4644 1.3753 0.49 1.00 0.62
Risk-Neutral Skewness -0.2808 0.1880 0.54 0.62 1.00
Idiosyncratic Disagreement 0.2981 0.4192 0.45 0.46 0.37
Common Disagreement 0.0928 0.0384 0.65 0.44 0.21
Consumption Growth Volatility 0.4211 0.1192 0.87 0.35 0.41
Leverage 0.1024 0.1907 0.32 0.38 0.42
Macro Factor 0.0148 0.1814 0.96 0.34 0.47
Market Beta 1.0098 0.6239 0.67 0.19 0.08
Firm Size 17.9283 2.9388 0.20 -0.29 0.10
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Table 2

Choice of Parameter Values and Benchmark Values of State Variables

This table lists the parameter values used for all figures in the paper. We calibrate the model to the mean and volatility of the dividends
on the S&P 500. The average growth rate for the period 1996-2006 is 5.93% and the volatility is 3.52%. The initial values for the
conditional variances are set to their steady-state variances.

Parameters for Fundamentals

Long-term growth rate of cash flow growth a0Ai 0.01

Mean-reversion parameter of cash flow growth a1Ai -0.01

Volatility of cash flow �Ai 0.07

Volatility of cash flow growth ��Ai
0.0035

Initial level of cash flow Ai 1.00

Initial level of cash flow growth mA
Ai

0.01

Parameters for Signal

Long-term growth rate of signal a0z 0.01

Mean-reversion parameter of signal a1z -0.03

Volatility of signal �z 0.06

Agent specific Parameters

Relative risk aversion for both agents  4.00

Time Preference Parameter � 0.02
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Table 3

Calibrated Moments

This table presents moments based on 250 simulations each with 153 months of observation. The parameters for used are given in Table
2. No ��Ai

indicates that the time-varying cash flow growth volatility is shut down by setting it to a constant value. No DiB means that

all the disagreement processes are set equal to zero, i.e. ΨAi
= Ψz = 0. 0.05, 0.5, and 0.95 represent the 5th, median, and 95th quantile,

respectively. �ℙ (�ℚ) indicates the expected volatility under the physical (risk-neutral) measure.

Statistic Full Model No ��Ai
No DiB

0.05 0.5 0.95 0.05 0.5 0.95 0.05 0.5 0.95

�ℙ 2.14 10.27 17.93 2.64 8.72 10.30 2.38 8.12 9.62

�ℚ 3.28 13.31 19.28 2.92 8.98 11.84 2.39 8.13 9.64
AC(1) — �ℙ 0.78 0.89 0.98 0.69 0.73 0.84 0.67 0.70 0.84

AC(1) — �ℚ 0.69 0.78 0.83 0.65 0.69 0.86 0.69 0.70 0.84
Mean 1.12 1.20 1.39 0.27 0.42 1.02 0.03 0.10 0.12
StDev 0.47 0.84 1.23 0.25 0.56 0.74 0.10 0.18 0.22
Skewness 0.48 1.29 3.92 0.22 0.87 2.01 0.01 0.45 1.01
Kurtosis 7.92 9.29 10.29 4.28 6.39 8.82 3.91 4.32 5.01
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Table 4

Simulated Volatility Risk Premia Regressions

This table presents estimated coefficient of running the following panel regression:

V olRPi(t) = �0 + �1DIBi,t + �2DIBt + �3��c + �i,t,

where V olRPi(t) is the volatility risk premium of firm i, DIBi,t is the proxy of belief disagreement of each individual firm i at time t,

DIBt the common disagreement which I proxy as the equally weighted average from the individual DIBi,t, and ��c , the consumption
growth volatility, which is estimated from a two-state Markov switching process on the equilibrium consumption. The volatility risk
premium is calculated from simulated stock returns and option prices over 1,000 simulations of 153 months length. The second and third
column present the estimated coefficient for a low (high) leverage firm, respectively. A low (high) leverage firm is defined to have a fixed
asset to debt ratio of 0.05 (0.2). The R2 is adjusted for degrees of freedom.

Volatility Risk Premium Low Leverage High Leverage

Constant 0.001 0.002 0.002
(3.98) (4.10) (5.92)

Firm-specific DiB 0.029 -0.038 0.037
(15.98) (-1.83) (17.93)

Common DiB 0.092 -0.084 0.044
(5.93) (-4.92) (6.09)

Consumption Growth Volatility 0.363 0.482 0.519
(7.93) (6.32) (8.88)

Adjusted R2 0.34 0.23 0.41
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Table 5

Simulated Stock Excess Returns and Credit Spreads: Predictability

This table presents estimated coefficients from predictability regressions, using simulated data. The statistics are based on 250 simulations
each with the corresponding sample size as its data counterpart (153 months). The parameters for calibrating the model are given in
Table 2. Panel A reports estimated coefficients of the following regression:

ExReti(t + ℎ) = �+ �1V olRPi(t) + �(t+ ℎ),

where ExReti is the return of stock i in excess of the risk-free rate and V olRPi is the volatility risk premium of firm i, defined as
the difference between the model-free implied volatility and realized volatility. Panel B reports estimated coefficients of the following
regression:

CSi(t+ ℎ) = �+ �1V olRPi(t) + �(t+ ℎ),

where CSi is the credit spread of firm i defined as the difference between the corporate bond credit spread and the zero-coupon yield.
Robust t-Statistics following Newey and West (1987) are reported in brackets below the estimate calculated with 24 lags. The R2 is
adjusted for degrees of freedom.

Stock Excess Returns Corporate Credit Spreads

Horizon 1 6 12 1 6 12

Constant 0.021 0.023 0.019 109.983 110.323 112.938
(3.94) (2.38) (2.09) (4.48) (5.69) (5.48)

VolRP 0.291★★★ 0.191★★★ 0.102★★★ 56.938★★ 67.987★★★ 72.394★★★

(5.93) (6.83) (7.10) (5.98) (6.00) (7.37)
Adjusted R2 0.04 0.07 0.08 0.14 0.17 0.22
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Table 6

Panel Regression Analysis: Volatility Risk Premia and Skewness

This table presents estimated coefficients from the following panel regression:

yi(t) = �0 + �1DIBi,t + �2DIBt +
6

∑

j=3

�jControl(j)i,t +
3

∑

k=1

kControlt + �i,t,

where yi(t) is the volatility risk premium and skewness of firm i, DIBi,t is the proxy of belief disagreement of each individual firm i at

time t, DIBt the common disagreement estimated from the cross-section of individual disagreement proxies, Controli,t are leverage, firm
size, and market beta of each firm i at time t, and Controlt is the macro factor. The data has monthly frequency and covers the period
January 1996 to September 2008. The R2 is adjusted for degrees of freedom.

Volatility Risk Premium Risk-Neutral Skewness

Constant 0.001 0.001 0.002 -0.210 -0.339 -0.417
(5.29) (4.98) (5.38) (-2.13) (-2.02) (-1.99)

Firm-Specific DiB 0.041 0.042 0.045 0.014 0.013 0.014
(3.29) (2.98) (2.02) (4.95) (5.93) (2.93)

Common DiB 0.108 0.090 0.180 0.098 0.083 0.096
(2.22) (1.98) (2.73) (2.94) (2.84) (3.01)

Consumption Volatility 0.293 0.321 0.421 0.539 0.874 0.476
(3.02) (3.98) (2.49) (2.39) (1.98) (2.17)

Leverage 0.087 0.091 0.411 0.431
(2.03) (2.22) (4.02) (3.77)

Firm Size -0.001 0.001 0.001 0.003
(1.02) (1.08) (0.83) (0.54)

Market Beta -0.039 -0.031 -0.129 -0.102
(-1.45) (-1.21) (-1.10) (-0.97)

Macro Factor -0.219 -0.389
(-3.10) (-2.01)

Adjusted R2 0.12 0.13 0.20 0.10 0.13 0.24

Volatility Risk Premium Risk-Neutral Skewness
Low Medium High Low Medium High

Constant 0.001 0.001 -0.001 0.002 -0.398 -0.182
(3.18) (2.17) (-3.82) (2.19) (-2.48) (-3.01)

Firm-Specific DiB -0.055 0.009 0.039 -0.008 0.001 0.029
(-2.01) (1.67) (3.08) (-1.93) (2.99) (2.48)

Common DiB 0.022 0.019 0.029 0.003 0.006 0.007
(2.02) (1.64) (1.99) (3.94) (2.90) (2.74)

Consumption Volatility -1.294 1.329 1.702 -0.103 0.304 0.410
(-3.92) (4.02) (2.49) (-0.93) (1.78) (2.05)

Firm Size -0.001 0.001 0.001 -0.001 0.001 0.001
(-0.83) (0.56) (1.07) (-0.98) (0.56) (1.02)

Market Beta -0.021 -0.031 -0.042 -0.302 -0.102 -0.001
(-0.78) (-1.98) (-0.96) (-1.09) (-1.45) (-1.00)

Macro Factor -0.098 -0.293 -0.342 -0.412 -0.341 -0.356
(-1.49) (-2.02) (-3.77) (-2.01) (-2.93) (-2.09)

Adjusted R2 0.14 0.14 0.18 0.18 0.19 0.20
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Table 7

Stock Excess Returns and Credit Spreads: Predictability

Panel A reports estimated coefficients of the following regression:

ExReti(t + ℎ) = �+ �1V olRPi(t) + �(t+ ℎ),

where ExReti is the return of stock i in excess of the 1 month Libor and V olRPi is the volatility risk premium of firm i, defined as the difference between the model-free implied
volatility and realized volatility. Panel B reports estimated coefficients of the following regression:

CSi(t+ ℎ) = �+ �1V olRPi(t) + �(t+ ℎ),

where CSi is the credit spread of firm i defined as the difference between the corporate bond credit spread and the zero-coupon yield. Robust t-Statistics following Newey and West
(1987) are reported in parentheses below the estimate calculated with 24 lags. The data has monthly frequency and covers the period January 1996 to December 2007. The R2 is
adjusted for degrees of freedom.

Panel A: Stock Excess Returns

Horizon 1 2 3 4 5 6 7 8 9 10 11 12

Constant 0.024 0.014 0.019 0.023 0.027 0.020 0.022 0.024 0.028 0.019 0.025 0.031
(1.23) (1.01) (1.03) (1.28) (0.98) (0.83) (0.91) (1.02) (1.29) (0.84) (0.97) (1.02)

VolRP 0.018 0.024 0.031 0.027 0.022 0.019 0.025 0.011 0.023 0.028 0.029 0.034
(2.01) (1.87) (1.98) (1.99) (2.14) (2.48) (2.53) (2.61) (2.02) (1.77) (1.85) (2.02)

Adjusted R2 0.01 0.02 0.04 0.05 0.06 0.07 0.04 0.08 0.07 0.06 0.05 0.04

Panel B: Corporate Credit Spreads

Horizon 1 2 3 4 5 6 7 8 9 10 11 12

Constant 120.632 110.934 118.736 114.183 98.734 103.283 117.837 109.827 110.990 103.811 119.098 100.987
(5.24) (4.29) (3.94) (4.20) (2.99) (4.76) (5.07) (4.82) (3.91) (4.01) (4.92) (5.38)

VolRP 47.943 51.832 62.420 43.394 44.998 42.038 48.912 51.039 48.783 45.921 50.293 58.912
(2.48) (3.92) (4.10) (4.92) (5.01) (5.29) (4.09) (5.31) (2.02) (3.93) (3.03) (4.91)

Adjusted R2 0.10 0.09 0.12 0.14 0.16 0.20 0.21 0.22 0.19 0.20 0.19 0.18
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Table 8

Volatility Risk Premia: Cyclical versus Non-Cyclical Firms

This table presents estimated coefficient of running the following panel regression once for cyclical firms and non-cyclical firms:

V olRPi(t) = �0 + �1DIBi,t + �2DIBt +
5

∑

j=3

�jControl(j)i,t +
3

∑

k=1

kControlt + �i,t,

where V olRPi(t) is the volatility risk premium of firm i, DIBi,t is the proxy of belief disagreement of each individual firm i at time t,

DIBt the common disagreement estimated from the cross-section of individual disagreement proxies, Controli,t are leverage, firm size,
and market beta of each firm i at time t, and Controlt is the macro factor. Industry classifications are based on Boudoukh, Richardson,
and Whitelaw (1994), who sort industries by their correlation between industry level output growth and aggregate output growth. I
label the five industries with the highest output growth beta as cyclical and the five industries with the lowest output growth beta as
non-cyclical. The data has monthly frequency and covers the period January 1996 to September 2008. The R2 is adjusted for degrees of
freedom.

Cyclical Non-Cyclical

Constant 0.001 0.001
(1.39) (1.48)

Firm-Specific DiB 0.045 0.020
(3.83) (2.01)

Common DiB 0.207 0.112
(1.84) (1.73)

Consumption Growth Volatility 2.867 1.028
(4.28) (1.64)

Firm Size -0.001 0.001
(1.37) (1.42)

Market Beta -0.023 -0.031
(-1.01) (-0.65)

Macro Factor -0.421 -0.227
(-4.11) (-3.24)

Adjusted R2 0.19 0.16
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Table 9

Stock Excess Returns and Credit Spreads: Predictability of Cyclical versus Non-Cyclical Firms

Panel A reports estimated coefficients for cyclical firms of the following regression:

xri(t+ ℎ) = �+ �1V olRPi(t) + �(t+ ℎ),

where xri is the excess return of stock i or the credit spread of firm i and ℎ and V olRPi is the volatility risk premium of firm i, defined as
the difference between the model-free implied volatility and realized volatility. Panel B reports estimated coefficients for the non-cyclical
firms. Industry classifications are based on Boudoukh, Richardson, and Whitelaw (1994), who sort industries by their correlation between
industry level output growth and aggregate output growth. I label the five industries with the highest output growth beta as cyclical and
the five industries with the lowest output growth beta as non-cyclical. Robust t-Statistics following Newey and West (1987) are reported
in brackets below the estimate calculated with 24 lags. ★ denotes significance at the 10% level, ★★ denotes significance at the 5% level
and ★ ★ ★ denotes significance at the 1% level. The data has monthly frequency and covers the period January 1996 to December 2007.
The R2 is adjusted for degrees of freedom.

Panel A: Cyclical Stocks

Stock Excess Returns Corporate Credit Spreads

Horizon 1 3 6 9 12 1 3 6 9 12

Constant 0.009 0.013 0.014 0.011 0.015 105.012 102.372 106.182 112.290 117.176
(1.03) (1.27) (1.37) (1.67) (1.37) (2.81) (2.38) (3.98) (4.22) (3.87)

VolRP 0.039 0.045 0.042 0.040 0.041 45.193 44.918 50.474 51.228 50.991
(2.38) (3.94) (4.29) (5.37) (5.92) (4.93) (4.09) (5.82) (5.29) (5.92)

Adjusted R2 0.01 0.03 0.04 0.06 0.10 0.21 0.24 0.25 0.20 0.21

Panel B: Non-Cyclical Stocks

Stock Excess Returns Corporate Credit Spreads

Horizon 1 3 6 9 12 1 3 6 9 12

Constant 0.010 0.012 0.019 0.017 0.019 108.932 109.282 110.838 119.726 113.321
(1.21) (1.45) (1.03) (1.27) (1.37) (2.83) (4.27) (5.38) (4.99) (3.83)

VolRP 0.022 0.019 0.020 0.019 0.022 40.913 39.932 43.938 39.712 40.110
(1.45) (1.73) (1.65) (1.67) (1.82) (3.28) (1.87) (2.09) (2.73) (2.44)

Adjusted R2 0.01 0.01 0.03 0.03 0.04 0.12 0.13 0.14 0.17 0.14
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