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1 Introduction

In this paper we build and estimate a simultaneous model of earnings. The model consists of

equations for transitions into and out of employment, an equation for job to job mobility, a wage

equation, an hours equation, and an earnings equation. The model features both observed and

unobserved permanent heterogeneity, job speci�c wage and hours components, a persistent compo-

nent that a¤ects the wage of a worker in all jobs, state dependence in employment and job mobility,

tenure and experience e¤ects, and measurement error.

We have three main goals. The �rst is to advance the literature in labor economics on how

employment, hours, wages, and earnings are determined over a career. We examine the e¤ects of

education, race, experience, job tenure and unobserved heterogeneity, employment shocks, shocks

to general skills, and draws of new job opportunities o¤ering di¤erent hours and wages. We trace

out the response of wages, hours, and earnings to the various shocks and determine the channels

through which they operate. Our analysis has implications for a number of long-standing questions

in labor economics. For example, we provide estimates of the relative importance of general skill

accumulation, job shopping, and job tenure for career wage growth and quantify the speci�c channels

through which an exogenous employment shock a¤ects the path of wage rates, hours, and earnings.

We study the e¤ects of shocks on the future variance of earnings changes as well as on the average

path.

Our second goal is to provide a comprehensive account of what causes inequality in earnings at

a point in time and over the lifetime. We measure the contribution of each of the various shocks,

permanent unobserved heterogeneity, and education to the variance in earnings, wages, and hours

over the course of a career.

Our third goal is to provide a richer model of earnings for use in studies of consumption and

saving as well as in dynamic stochastic general-equilibrium models that are a cornerstone of modern

macroeconomics and public �nance. Such models have been used to study the distribution of wealth,

the costs of business cycles, asset pricing, and other important questions.1 The quantitative

implications of the calibrated theoretical models used in these lines of research depend on certain

key features of the earnings process, such as the degree of earnings uncertainty and the persistence

of earnings innovations.2

Almost all of the existing structural studies base their modeling and calibration choices for the

1Examples include Huggett (1996), Krusell & Smith (1998), Castañeda, Díaz-Giménez, & Ríos-Rull (2003),
Storesletten, Telmer, & Yaron (2004a)) on consumptions and wealth, Imrohoroglu (1989), Krusell & Smith (1999),
Storesletten, Telmer, & Yaron (2001a) on the costs of business cycles, and Telmer (1993), Heaton & Lucas (1996),
Krusell & Smith (1997), Storesletten, Telmer, & Yaron (2007) on asset pricing.

2See, for example, Deaton (1991), Aiyagari (1994), Krusell and Smith (1997), Guvenen (2007), and the discussion
in Blundell, Pistaferri and Preston (2008).
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earnings process on the large empirical literature on univariate statistical models.3 Much has

been learned about the statistical properties of career earnings from this work. However, with

only one indicator, univariate models, no matter how richly speci�ed, cannot identify the various

sources of earnings �uctuations, their relative importance, their dynamic behavior, or the economics

underlying how labor market outcomes are determined. Without such information, it is di¢ cult

to think about the potential welfare consequences of speci�c sources of variation or of policies such

as unemployment insurance, employment regulations, wage subsidies, or earned income tax credits

that insure against particular types of shocks to income. Furthermore, the innovations in the

univariate representation of a multivariate time series process may be aggregates of current and

past shocks in the multivariate representation. This will lead to mistakes in characterizing what

the surprises to the agent are even under the assumption that the agent�s information set is the

same as the econometrician�s.

Only a few studies of earnings dynamics have considered multivariate models. These include

Abowd and Card�s (1987, 1989) analyses of hours and earnings, and Altonji, Martins, and Siow�s

(2002) second order vector moving average model of the �rst di¤erence in family income, earnings,

hours, wages, and unemployment. Altonji, Martins and Siow�s use of their model to study con-

sumption and labor supply behavior and decompose the variance of innovations in the marginal

utility of income into various sources is not entirely successful, but it does illustrate the potential

that a multivariate model of the income process provides. The models that we consider, in con-

trast to those mentioned above, incorporate discrete events such as job changes, employment loss,

interactions between job changes and wages, and e¤ects of these discrete events on the variance of

wage and hours shocks.4

There are two distinct paths that one might take in formulating a multivariate model of earnings.

The �rst approach is the development of a statistical model of the process with little attention to

an underlying theory of household decisions and constraints. This approach is in the spirit of the

literature on univariate earnings processes, but the absence of theory limits what one can learn

about how earnings are determined. The second approach is to develop a model that is based on

lifetime utility maximization. Grounding the model of the income process in a utility maximization

framework provides a foundation for using the results to analyze policies when earnings are partially

endogenous. The main disadvantage is the di¢ culty of specifying and estimating a model that

incorporates labor supply choices, job search decisions, hours constraints, voluntary separations,

3Key early contributions include Lillard and Willis (1978), Lillard and Weiss (1979), Hause (1980), MaCurdy
(1982). More recent contribution include Baker (1997), Geweke and Keane (2000), Haider (2001), Baker and Solon
(2003), Guvenen (2007), and Meghir and Pistaferri (2004). The latter paper introduces ARCH shocks.

4A number of recent studies provide structural models of wage rates, job mobility, and employment dynamics,
including Barlevy (2008), Buchinsky et al (2008), and Bagger et al (2007), who provide references to a few additional
studies. Wolpin (1992) is an early e¤ort. We discuss the evidence below.
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and involuntary job changes. Indeed, we do not know of any papers that have studied work hours

and employment using a lifecycle utility maximization model that incorporates job speci�c hours

constraints, let alone job mobility decisions.5 Estimation of a structural model that is as rich as the

one that we work with would require solving an intertemporal model of job search, labor supply (in

the presence of hours constraints), and savings as part of the estimation strategy and is probably

out of reach at the present time from a computational point of view. Low, Meghir, and Pistaferri

(2008) take a major step in this direction by studying earnings risk and social insurance in the

context of an intertemporal model of consumption, employment participation, wages, and mobility.

They work with a simpler model of the earnings process than we do, but are able to measure welfare

costs of the risk associated with innovations in the persistent wage component, an employer speci�c

wage component, and job loss and unemployment. We view our study as complementary to theirs.

Although our model falls short of a fully speci�ed behavior model, the equations can be viewed

as approximations to the decision rules relating choices to state variables that would arise in a

structural model based on lifetime utility maximization. The parameters of the rules depend

on an underlying set of "deep" parameters that characterize consumption preferences, job search

technology, etc. The class of models that we consider is rich enough to address a number of

core behavior questions in labor economics, but tractable enough (at least the simpler versions)

to be used in place of univariate income models that dominate the literature on savings, portfolio

choice, etc. Furthermore, it provides a natural path along which to extend the analysis to include

other important economic risks that individuals face, including changes in family structure through

marriage, divorce, and the death of a spouse.

We estimate the model using data on male household heads from the Panel Study of Income

Dynamics. Given the presence of interactions among discrete and continuous variables, unob-

served heterogeneity and state dependence in multiple equations, measurement error, and a highly

unbalanced sample, conventional maximum likelihood and method of moments approaches are not

feasible. For this reason, we use indirect inference (I-I), which is one of a family of simulation based

approaches to estimation that involve comparing the distribution of arti�cial data generated from

the structural model at a given set of parameter values to features of the actual data.6 A compli-

cation arises in our case because our model includes discrete as well as continuous variables. With

discrete variables, the simulated values of moments of the arti�cial data are not continuous in model

parameters, which makes gradient based numerical optimization methods problematic. Given our

5Ham and Reilly (2002) is part of a literature that tests for hours restrictions in an intertemporal labor supply and
consumption framework using Euler equations and within period marginal rate of substitution conditions. Blundell
and MaCurdy (1999) survey the labor supply literature.

6 The method was introduced, under a di¤erent name, in Smith (1990, 1993) and extended by Gourieroux,
Monfort, and Renault (1993) and Gallant and Tauchen (1996). It is closely related to the simulated method of
moments.
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model size, derivative-free methods are also unattractive. Consequently, we use a smoothed version

of the procedure suggested by Keane and Smith (2003). Estimation of our model is not straight-

forward, and a secondary contribution of our research is to explore the feasibility and performance

of I-I in large models with a mix of discrete and continuous variables.7

There are too many results to concisely summarize, but a few deserve emphasis. First, edu-

cation, race, and the two forms of unobserved permanent heterogeneity play an important role in

employment transitions and job changes. Second, in keeping with a large literature on the labor

supply of male household heads, wages have only a small (negative) e¤ect on employment and on

annual work hours. Third, even after accounting for unobserved individual heterogeneity and job

speci�c heterogeneity, we �nd a strong negative tenure e¤ect on job mobility. Fourth, job changes

are induced by high outside o¤ers and deterred by the job speci�c wage component of the current

job.

Fifth, unemployment at the survey date is associated with a large decline of .62 log points in

annual earnings. About 60 percent of the reduction is due to work hours, which recover almost

completely after one year. The other 40 percent is due to a decline of .25 in the log hourly wage rate.

Lost tenure and a drop in the job-speci�c wage component contribute .064 and .027, respectively,

to the wage reduction. The wage recovers by about .10 after 1 period and more slowly after that.

Sixth, wages do not contain a randomwalk component but are highly persistent. The persistence

is the combined e¤ect of permanent heterogeneity, the job speci�c wage component, and strong

persistence in a stochastic component representing the value of the worker�s general skills.

Seventh, shocks leading to unemployment or to job changes have large e¤ects on the variance as

well as the mean of earnings changes. Eighth, job shopping, the accumulation of tenure, and the

growth in general skills account for log wage increases of .111, .122, and .580, respectively, over the

�rst thirty years in the labor market.

Finally, job mobility and unemployment play a key role in the variance of career earnings. Job

speci�c hours and wage components, unemployment shocks, and job shocks together account for

36.7%, 48.2%, and 46.8% of the variance in lifetime earnings, wages, and hours, respectively. Job

speci�c wage shocks are more important than job speci�c hours shocks for earnings. Job speci�c

wage shocks dominate for wages, with employment shocks also playing a substantial role. For

hours, job speci�c hours shocks dominate. Education accounts for about 1/3 of the variance in

lifetime earnings and wages but makes little di¤erence for hours. In our full sample, unobserved

permanent heterogeneity accounts for about 11% of the variance in earnings and about 46% of the

variance of hours but matters little for wages, although this breakdown is somewhat sensitive to

the model and sample used.

7Other recent papers that apply I-I to panel data include Bagger et al (2007), Nagypal (2007), and Tartari (2006).
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The paper continues in section 2, where we present the earnings model. In section 3 we discuss

the data, which are drawn from the Panel Study of Income Dynamics (PSID) and in section 4 we

discuss estimation. We present the results in Section 5, beginning with a discussion of the parameter

estimates and then turning to an analysis of the �t of the model, impulse response functions to

various shocks, and variance decompositions. In Section 6, we brie�y discuss results for alternative

samples, including whites by education level. In the �nal section we summarize our main �ndings

and provide a research agenda.

2 Models of Earnings Dynamics

The main features of Model A, our main speci�cation, are as follows. Labor market transitions,

wages, and hours depend on three exogenous variables� race, education, and potential experience�

as well as on two permanent unobserved heterogeneity components. The unobserved heterogeneity

components can be labelled, loosely speaking, �innate ability�and �propensity to move�. A typical

worker enters the labor market after leaving school and receives initial draws of an employment

status shock that determines whether the worker is employed or unemployed and an autoregressive

wage component capturing part of �general productivity� that has the same value in all jobs.

The worker also receives initial draws of a job-speci�c wage component and a job-speci�c hours

component. There is state dependence in both employment and job-to-job transitions. In each

period an unemployed worker receives an unemployment transition shock and an employed worker

receives an employment transition shock. If the worker remains employed from one period to the

next, then whether the worker changes jobs depends on the draw of the job-speci�c wage component

for the new job, the current job-speci�c wage component, potential experience, job seniority, the two

permanent heterogeneity terms and an i.i.d. shock. A typical worker�s wage depends on one of the

heterogeneity terms (ability), the autoregressive general-productivity component, the job-speci�c

wage component, potential experience, and seniority. Unemployment spells have a negative e¤ect

on the autoregressive general-productivity component, and workers draw new job-speci�c wage and

hours components when they leave unemployment. Annual hours depend on employment status,

the heterogeneity terms, the wage, and a job-speci�c hours component that is identical across jobs.

Finally, earnings are determined by wages and hours.

We work with several variants of Model A as well as with a second model, which we refer to as

Model B. Model B does not include job-speci�c wage or hours components. However, it includes

an autoregressive wage component which allows both the current wage to depend on the past wage

and the variance of wage shocks to depend on whether the individual is continuing an existing job.

In the next two subsections, we de�ne notation and list the equations of Model A and then discuss

the model. We then turn to Model B.
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2.1 Model A.

A word about notation �rst. We control for economy wide e¤ects using year dummies, but leave

them implicit in most of the analysis. The subscript i; which we sometimes suppress, refers to the

individual, ti is potential years of labor market experience of i for a particular observation. We

sometimes refer to it as "time" and usually suppress the i subscript. The subscript j(t) refers to

the job that i holds at t: The notation j(t) makes explicit the fact that individuals may change

jobs. In particular, j(t) 6= j(t� 1) if i experiences a job change without being unemployed at either
t or t� 1 or if i is employed at t but was unemployed at t� 1. The  parameters refer to intercepts
and to slope coe¢ cients. For each intercept and slope parameter the superscripts identify the

dependent variable. The subscripts of slope parameters identify the explanatory variable. We

use � to denote coe¢ cients on the �xed person speci�c unobserved heterogeneity components �i
and �i; the job match heterogeneity wage component �ij(t); and the job speci�c hours component

�ij(t). The superscripts for the � parameters denote the dependent variable and the subscripts

� and � identify the heterogeneity component. We use � with appropriate subscripts to denote

autoregression coe¢ cients. The "kit are iid N(0; �2k) random variables where the superscripts k

correspond to the dependent variables.

The equations of Model A are as follows.

Employment to Employment Transition (EE)

Eit = I[
EE
0 + EEt (ti � 1) + EEt2 (ti � 1)2 + EEŵ wage

0

it + 
EE
BLACKBLACKi + 

EE
EDUCEDUCi(1)

+EEEDmin(EDi;t�1; 9) + �
EE
� �i + �

EE
� �i + "

EE
it > 0] given Ei;t�1 = 1;

where Eit is an employment dummy, I(�) is an indicator function, EDi;t�1 is lagged employment

duration and is determined recursively by EDit = Eit � (EDi;t�1 + 1), and wage
0
it is what the wage

would be in t if the individual were to continue employment in the job held at t� 1.
Unemployment to Employment Transition (UE):

Eit = I[
UE
0 + UEt (ti � 1) + UEt2 (ti � 1)2 + UEBLACKBLACKi + 

UE
EDUCEDUCi + 

UE
UDUDi;t�1(2)

+�UE� �i + �
UE
� �i + "

UE
it > 0] given Ei;t�1 = 0;

where UDi;t�1 is the number of years unemployed at the survey date and UDit = (1�Eit)�(UDi;t�1+

1):

Job Change While Employed (JC):
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JCit = I[
JC
0 + JCt (ti � 1) + JCt2 (ti � 1)2 + JCTENTENi;t�1 + JCBLACKBLACKi + 

JC
EDUCEDUCi

(3)

+��0j0(t)�
0
i;j0(t) + ��j(t�1)�i;j(t�1) + �

JC
� �i + �

JC
� �i + "

JC
it > 0] � Eit � Ei;t�1

where �i;j(t�1) is a job speci�c error component, �0i;j0(t) is a draw of the job speci�c component for

an alternative job j0(t) in t, and TENi;t�1 is employer tenure at the previous survey date, which

evolves according to

TENit = (1� JCit) � Eit � Ei;t�1 � (TENi;t�1 + 1):

Log Wages:

wagelatit = w0 + 
w
XXit + 

w
TENP (TENit) + �

w
��i + �ij(t) + !it(4)

�ij(t) = (1� Sit)�ij(t�1) + Sit�0ij0(t)(5)

�0ij0(t) = �JCJCit + ���i;j(t�1) + "
�
ij(t)(6)

!
it
= �!!i;t�1 + 

!
1�Eit(1� Eit) + 

!
1�Ei;t�1(1� Ei;t�1) + "

!
it(7)

wageit = Eit � wagelatit(8)

where wagelatit is the �latent�wage, which we de�ne below, Xit is a vector of exogenous variables

including t, BLACKi and EDUCi; P (TENit) is a fourth order polynomial in TENit, �ij(t) is

the job match speci�c wage component, !
it
is an autoregressive component of the latent wage,

Sit = (JCit+Eit(1�Ei;t�1)) is a job separation indicator that equals 1 if JC is 1 or if the individual
was unemployed in t� 1 and employed in t: The variable wageit is the actual wage rate, which we
de�ne as 0 for persons who are unemployed.

Log Annual Work Hours of the Head of Household

(9) hoursit = 
h
0 + 

h
XXit + (

h
E + �ij(t))Eit + 

h
wwage

lat
it + �

h
��i + �

h
��i + "

h
it

where �ij(t) is a job match speci�c hours component.

Log earnings

earnit = e0 + 
e
XXit + 

e
w(wage

lat
it � w0 � wXXit) + 

e
h(hoursit � h0 � hXXit) + eit(10)

eit = �eei;t�1 + "
e
it
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Error Components and Initial Conditions:

The �xed person speci�c error components �i and �i are N(0; 1), iid across i, independent of

each other, and independent of all transitory shocks and measurement errors. We parameterize the

errors of the various equations so that �i may be thought of as the �xed unobserved heterogeneity

component of wages (or �innate ability�). We also allow � to in�uence EE; UE, JC, and hours.

The factor �i is assumed to have no in�uence on wages. One may think of it as a factor that is

related to labor supply and to job and employment mobility preferences (or �propensity to move�).

We impose the sign normalizations �w� > 0 and �
JC
� > 0.

The job match hours component �ij(t) and the innovation "
�
it in �ij(t) are N(0; �

2
�) and N(0; �

2
�),

respectively. The shocks "EEit ; "
UE
it ; "

JC
it ; "

h
it; "

!
it; "

e
it are N(0; �

2
k), where k = EE;UE; JC; h; !; and e:

They are iid across i and t and independent from one another and all measurement error components

de�ned below.

The initial conditions are

Employment : Ei1 = I[b0g + �
EE
� �i + �

EE
� �i + "

EE
i1 > 0]

Wages : wagelati1 = 
w
0 + 

w
XXi1 + �

w
��i + �ij(1) + !i1

!i1 � N(0; �2!1;g)

Wage Job Match : �ij(1) � N(0; �2�1)

Earnings Error : ei1 � N(0; �2e)

Other Initial Conditions : TENi1 = 0; EDi1 = Ei1; UDi1 = 1� Ei1; JCi1 = 0:

The intercept b0g of the initial employment condition and the variance of initial wages �2!1;g
depend on the race-education group g, where the groups are de�ned by (BLACK & EDUC � 12),
(BLACK & EDUC > 12), (not BLACK & EDUC � 12), and (not BLACK & EDUC > 12).

Measurement Error and Observed Wages, Hours, and Earnings:

The observed (measured) variables are:

wage�it = Eit � (wagelatit +mw
it)(11)

hours�it = hoursit +m
h
it(12)

earn�it = earnit +m
e
it(13)

The measurement errors mw
it, m

h
it, m

e
it are N(0; �2m� ), � = w; h; e, iid across i and t; mutually

independent, and independent from all other errors components in the model.
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2.2 Discussion of Model A

The EE equation states that the latent variable that determines Eit for previously employed workers

depends on a quadratic in ti, a linear function of EDi;t�1 with a ceiling at 9 years, BLACKi, EDUCi

and the error �EE� �i + �
EE
� �i + "

EE
it . Early on we experimented with including TENi;t�1 as well as

EDi;t�1 but in simulation experiments found that we had trouble distinguishing the e¤ects of the

two. Standard labor supply models imply that employment at t should depend on the current wage

opportunity, which we proxy with wage0it. It also depends on the permanent wage heterogeneity

component �i as well as the hours preference and mobility component �i.

The UE transition probability has the same form as EE, with unemployment duration UDi;t�1

replacing EDi;t�1. Because there are relatively few multi-year unemployment spells, we exclude

UDi;t�1; restricting UEUD to 0 in most of the analysis. We experimented with speci�cations containing

the lagged latent wage rate or the expected value of the period t wage but had di¢ culty identifying

the e¤ects of these variables, perhaps because we observe relatively few unemployment spells. We

do include the wage heterogeneity component �i as well as �i:

The JC equation refers to job to job changes for workers who are employed in both t and t� 1.
In our speci�cation of the link between mobility and wages, the main distinction we draw is between

job changes from employment and job changes that involve unemployment. We believe that this

is the most important distinction for the determination of wages and annual work hours, although

it would be interesting in future work to distinguish between quits and layo¤s on the basis of self

reports

Standard job search and job matching models predict a negative coe¢ cient on �ij(t�1); since

higher values of the job match component of the current job should reduce search activity and raise

the reservation wage. In the model each worker is assigned a potential draw of �0ij0(t) based on

(6), which we discuss momentarily. Search models predict a positive coe¢ cient on �0ij0(t), but the

magnitude should depend on the probability that the worker actually receives the o¤er. That is,

the relative magnitudes of the two coe¢ cients should depend on o¤er arrival rates and need not be

equal.8 We include TENi;t�1 as well as (t� 1) because models of �rm �nanced or jointly �nanced

speci�c capital investment suggest that it will play a role, and the decline in separation rates with

TENi;t�1 in cross section data is very strong. Little is known about how much of the association

between TENi;t�1 and JCit is causal because of the di¢ culty of distinguishing state dependence

from the individual heterogeneity (� and �) and job match heterogeneity (�) in dynamic discrete

choice models, particularly when data are missing on early employment histories for most sample

8One could introduce parameters corresponding to �xed o¤er arrival rates for employed workers and for un-
employed workers into the model and add the value of �0ij0(t) into the unemployment equation. Low et al (2008)
work with such a speci�cation. In our job change equation, �ij(t�1) may reduce mobility both because it raises the
reservation wage and because it lowers search intensity.
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members. Indeed, Buchinsky et al (2008) is the only other study that we know that accounts

for both individual and job speci�c heterogeneity and deals with initial conditions problems when

estimating the e¤ects of TEN and t on job changes.9

When interpreting results for EE and JC, one must keep in mind that our employment indicator

refers to the survey date. We undoubtedly miss short spells of unemployment that fall between

surveys. Due to data limitations, we cannot tell whether a person has changed jobs between surveys

only once or multiple times. Furthermore, if a person is employed at t � 1, unemployed for part
of the year, and employed in a new job at t, we would count this as a job to job change even if,

for example, the job change is due to a layo¤ into unemployment. A relatively simple alternative

would be to make use of information on the number of weeks that the individual was unemployed

during the year. However, one would want to distinguish between short spells of unemployment

that are associated with temporary layo¤s with the strong expectation of recall and unemployment

spells due to a permanent layo¤. This is possible only at the survey date. Fortunately, earnings

depend on employment through annual work hours and the transitory error component in the hours

equation should capture the e¤ect on hours of unemployment spells of varying duration. The 25th,

50th, 75th, and 90th percentiles of hours of unemployment are 120, 680, 1200, and 1600 when

EMPit = 0 and 0, 0, 0, and 64 when EMPit = 1.10

The wage model (4) is unusual in our use of the concept of a latent wage. For employed

individuals wagelatit and the actual wage wageit are the same. For an unemployed individual wage
lat
it

captures the process for wage o¤ers that exceed i0s reservation wage. At a given point in time the

individual might not have such an o¤er. Our formulation allows us to capture in a parsimonious

way the idea that worker skills and worker speci�c demand factors evolve during an unemployment

spell. From a practical point of view, the formulation also allows us to deal with the fact that

wages are only observed for jobs that are held at the survey date.

The variable wagelatit depends on �ve components. The �rst is the regression index 
w
XXit, which

captures the e¤ects of potential experience ti; education, race, and economy wide variation (through

year dummies). Since we control for both tenure e¤ects and gains from job shopping, the e¤ect of

potential experience is a general human capital e¤ect. The second of the �ve components is tenure.

9Buchinsky et al (2008) also �nd negative e¤ects in a simultaneous model of wages, employment, and job changes.
Farber (1999) discusses models of the e¤ect of tenure on mobility and surveys the empirical evidence. He presents
evidence showing a negative e¤ect of tenure when one uses prior mobility as a control for individual heterogeneity.
10 It is conceptually straightforward to specify the model on a quarterly or monthly basis. Simulated data that

matches the periodicity, level time of aggregation, and dating within the calendar year of the various PSID variables
could be constructed from the higher frequency data from the model. One could use both measures of weeks of
unemployment over the previous calendar year and unemployment at the survey date. One would have to think
carefully about the speci�cation of shocks� few employers reset wages on a monthly or quarterly basis. One might
also wish to incorporate smoothness restrictions on distributed lags, along the lines of Altonji, Martins and Siow�s
(2002) use of Almon lags in a quarterly model. We believe that there is merit in starting with the simpler speci�cation
that we employ.

10



The third is the heterogeneity component �i. The fourth is a stochastic component !it; which

depends on !i;t�1, unemployment, and the error component "!it. The dependence of !it on the past

may re�ect persistence in the market value of the general skills of i and/or the fact that employers

base wage o¤ers on past wages. We will have more to say about the second mechanism when we

turn to model B. The �fth is the job match speci�c term �ij(t). When persons leave unemployment

or move from job to job without unemployment, they draw a new value of �ij(t): The new value

depends on �ij(t�1), a mean shift term �JC in the case of a job change without unemployment, and

the shock "�ij(t): We set 
�
JC = 0 when �ij(t�1) and �ij(t) are included in the JCt model (models A.2

and A.3 below), because in that case any shift in the mean of �ij(t) is accounted for endogenously by

the e¤ects of �ij(t�1) and �ij(t) on mobility. In standard search models with exogenous o¤er arrivals,

the job speci�c component of the o¤er, �0ij0(t) does not depend on �ij(t�1) although accepted o¤ers

�ij(t) will. In such models the correlation between accepted o¤ers �ij(t) and �ij(t�1) arises because

the reservation wage is a positive function of �ij(t�1): Nevertheless, we allow o¤ers �0ij0(t) to depend

on �ij(t�1) through the parameter �� for three main reasons. The �rst is that employers may

base o¤ers to prospective new hires in part on wages in the prior �rm, including the �rm speci�c

component. Bagger et al (2007), building on Postel-Vinay and Robin (2002) and Postel-Vinay and

Turon (2005), is one of a few recent papers in which outside �rms tailor o¤ers to surplus in the

current job. This surplus will be related to �ij(t�1) to the extent that �ij(t�1) is the worker�s portion

of a job speci�c productivity component. However, in contrast to those papers, we do not allow

the current employers to change �ij(t�1) in response to outside o¤ers. (Wages do change through

!it:) The second reason �0ij0(t) will depend on �ij(t�1) is that �ij(t�1) is not likely to be entirely job

speci�c in the presence of demand shocks a¤ecting jobs in a narrowly de�ned industry, occupation,

and region. The third is that the network available to an individual may be related to the quality

of the job that he is in. As it turns out, our estimates of �v are large� about .60.
11 We were not

successful in limited experimentation with estimating models in which the link between �ij(t) and

�ij(t�1) when JC = 1 di¤ers from the link following unemployment, although standard job search

models with exogenous layo¤s imply that it should.

The equation for hoursit includes Xit. It also includes �i, �i, and the product of the job speci�c

hours component �ij(t) and Eit:We include �ij(t) because there is strong evidence that work hours are

heavily in�uenced by a job speci�c component. This component presumably re�ects work schedules

11Industry speci�c and/or occupation speci�c human capital are not accounted for in the model and are likely to
in�uence estimates of �� more than �! given that industry and occupation changes tend to occur across employers.
They would also a¤ect the estimates of the return to seniority that we import from Altonji and Williams (2005).
See Neal (1995), Parent (2000), and Kambourov and Manovskii (2009) for somewhat con�icting evidence on the
importance of occupation speci�c, industry speci�c, and �rm speci�c human capital. Extending the model to
distinguish occupation and/or industry is conceptually straightforward but would require models of occupation and
industry transitions and attention to measurement error. We leave this to future work.
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imposed by employers.12 A new value of �ij(t)is drawn when individuals change jobs. The iid

error component "hit picks up transitory variation in straight time hours worked, overtime, multiple

job holding, and unemployment conditional on employment status at the survey. It may re�ect

temporary shifts in worker preferences as well as hours constraints.

Hours also depend on wagelatit and Eit. For most observations, wagelatit is the actual wage.

However, many individuals are unemployed at the survey date but work part of the year. We

use wagelatit as the measure of the wage the individual would typically receive. Because wage

shocks turn out to be highly persistent and because we strongly question the standard labor supply

assumption that individuals are free to adjust hours on their main job in response to short term

variation in wage rates, we think of the coe¢ cient on the latent wage as a response to a relatively

permanent wage change rather than a Frish elasticity. We stick with this interpretation even though

we control for �i in both the wage and hours equations.

Log earnings earnit depends on (residual) wagelatit and hoursit. The coe¢ cients ew and 
e
h

might di¤er from 1 for a number of reasons, including overtime, multiple job holding, bonuses and

commissions, job mobility, and the fact that for some salaried workers the wage re�ects a set work

schedule but annual hours worked may vary. We also include a �rst order autoregressive error

component eit to capture some of these factors. In previous drafts of the paper we freely estimated

ew and 
e
h and obtained values close to 1 for most speci�cations. However, for some versions of

the model it is helpful to restrict the coe¢ cients to be 1, which we do below.

We have not considered models with an ARCH error structure. However, the model implies

that the variance of wage, hours, and earnings changes are state dependent and also depend on

t: This is because the odds of a job change and an unemployment spell depend on TEN; ED,

potential experience, and �ij(t) and because job changes and unemployment spells are associated

with innovations in �ij(t) and �ij(t): The variances also depend on the permanent components of Xit

(education and race) and on the unobserved heterogeneity components �i and �i.

Many studies of the income process simply ignore the presence of measurement error even though

surveys by Bound et al.(2001) and others indicate that it is substantial. Altonji et al.(2002) and

some other studies have attempted to directly estimate the variances of measurement error in wages,

hours, and earnings under a classical measurement error assumption. Here, we draw loosely upon

studies of measurement error in the PSID and other panel data sets to come up with a range of

estimates of the measurement error parameters. For most of our models our choices imply that mw
it

accounts for 35% of var(�wage�it), 25% of var(�hours�it), and 25% of var(�earn
�
it). We abstract

from measurement error in employment, which we believe is relatively unimportant, as well as in

12See Altonji and Paxson (1986) and Senesky (2005), who show that hours changes are much larger across jobs
than within jobs for both quits and layo¤s, and that one cannot account for this as a labor supply response to
di¤erences in wages, nonpecuniary job characteristics, or changes in labor supply preferences.
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the job change indicator, which we suspect is more serious. (See Altonji and Williams (1998)). Our

reported standard errors do not account for uncertainty about the measurement error parameters.13

2.3 Model B

The main di¤erences between Model A and Model B are in the wage and JC equations. The wage

equation for Model B is

wagelatit = w0 + 
w
XXit + �

!
��i + !it(14)

!
it
= �![1 + �1Sit]!i;t�1 + 

!
JCJCit + 

!
1�Et(1� Eit) + 

!
1�Et�1(1� Ei;t�1)

+[1 + �2Sit]"
!
it

!i1 � N(0; �2!1g) (initial condition).

The above wage model does not include the job speci�c wage component � but introduces

the coe¢ cients �1 and �2.
14 These allow the degree of persistence and the variance in the wage

innovation to shift with a job change or end of an unemployment spell. As noted above, our

speci�cation of state dependence in wages captures the fact that many employers use past wage

rates, along with other information, in determining wage o¤ers for new hires, as well as the fact

that previous wage rates are a reference point for incumbent workers when evaluating an o¤er. It

may also re�ect dependence between the productivity of a worker today and productivity last year.

One might expect the degree of dependence to be weaker across jobs than within jobs (�1 < 0).

The JC equation is the same as (3) with the � terms excluded. We have estimated versions

of Model B with and without wagei;t�1 in the EE and JC equations but to save space report the

version without the wagei;t�1 terms. The hours equation excludes the job speci�c hours component

�:

We use Model B for three reasons. First, it is a smaller step from univariate models of the wage

process than Model A. Second, it has proved to be easier to estimate. Finally, it is more tractable

than Model A for use in dynamic programming models of consumer behavior.15

13The assumption of normally distributed, classical measurement error runs counter to evidence that actual reports
are a mixture of correct responses and responses with error. Furthermore, Bound et al (2001) summarize evidence
that measurement error is mean reverting to some extent, with individuals smoothing shocks when they report on
economic variables. In principle, our methods can accommodate almost any measurement error assumption. We
stick with the simpler formulation for lack of hard quantitative evidence on richer measurement error speci�cations
that we can import into our model.
14In early work we experimented with allowing the e¤ect of �i to grow linearly with experience, but did not obtain

sensible results.
15Vidangos (2008) has simulated a model of optimal lifetime consumption using a family income process that

embeds a version of model B as the wage process for the household head.
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3 Data

We use the 1975-1997 waves of the PSID to assemble data that refers to the calendar years 1975-

1996. Because some observations are lost due to the use of lags, the current values of the variables

in our model range from 1978 to 1996. We include members of both the SRC strati�ed random

sample and SEO sample. The latter consists primarily of households that were low income in 1968

and substantially overrepresents blacks. We also present results for the SRC sample only. We also

include nonsample members who married PSID sample members. The sample is restricted to male

household heads. We include both single and married individuals.

Observations for a given person-year are used if the person is between age 18 and 62, was

working, temporarily laid o¤ or unemployed in a given year, was not self employed, had valid data

on education (EDUC) and had no more than 40 years of potential experience. We treat persons on

temporary layo¤ at the survey date as employed. We eliminate a small number of observations in

which the individual reports being retired, disabled, a housewife, a student, other, or "don�t know".

(See Appendix tables A1 and A2).16

Potential experience ti is ageit�max(EDUCi; 10)�5: BLACKi is one if the individual is black

and 0 otherwise. EDit is the number of years in a row that a person is employed at the survey date.

In 1975 and for persons who join the sample after 1975, we set EDit to tenure with the current

employer.17

The variable UDi;t�1 is the number of consecutive years up to t� 1 that the individual has not
been employed at the survey date. We set UDi;t�1 to 0 if the �rst time we observe i is in year t:

Few unemployment spells exceed 1 year, so the error is probably small. The wage measure wage�it
is the reported hourly wage rate at the time of the survey. It is only available for persons who are

employed or on temporary layo¤.18

Finally, we censor reported hours at 4000, add 200 to reported hours before taking logs to reduce

the impact of very low values of hours on the variation in the logarithm, and censor observed earnings

and observed wage rates (in levels, not logs) to increase by no more than 500% and decrease to no

less than 20% of their lagged values. We also censor wages to be no less than $3.50 in year 2000

16We allow persons to come out of retirement and include future observations following a retirement spell if the
individual is working, temporarily laid o¤ or unemployed. As reported in Appendix Table A1, 1.85% of the PSID
sample reports an employment status as disabled in a given year.
17An alternative would be to apply exactly the same censoring that occurs in the PSID in the simulated data. In

the simulated data EDit would be set to tenure when t in the simulated case is equal to t for the �rst value we see
in the corresponding PSID case.
18This measure is the log of the reported hourly wage at the survey date for persons paid by the hour and is based

on the salary per week, per month, or per year reported by salary workers. It is unavailable prior to 1970 and is
limited to hourly workers prior to 1976. We account for the fact that it is capped at $9.98 per hour prior to 1978 by
replacing capped values for the years 1975-1977 with predicted values constructed by Altonji and Williams (2005).
They are based on a regression of the log of the reported wage on a constant and the log of annual earnings divided
by annual hours using the sample of individuals in 1978 for whom the reported wage exceeds $9.98.
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dollars.

After observations are lost due to construction of lagged values, or missing data, we use infor-

mation on 4,632 individuals. Each individual contributes between 1 and 19 observations. The

5th, 25th, median, 75th, and 95th percentile values of the number of observations a given individ-

ual contributes are 1, 3, 6, 11, and 18 respectively (see Appendix Table A3). Of course, persons

who are present for many years contributed disproportionately to the total of 33,933 person-year

observations. The number of observations per year varies from 1,200 in 1979 to 2,007 in 1991.

The sample is highly unbalanced. As we have already noted, an advantage of simulation based

estimators such as I-I is that by incorporating the sample selection process into the simulation, one

can handle unbalanced data. We assume that observations are missing at random, although there is

reason to believe that the heterogeneity components and shocks in�uence attrition from the sample.

In principle, one could augment the model with an attrition equation. Alternatively, it would be

straightforward to simply use sample weights to reweight the PSID when evaluating the likelihood

function of the auxiliary model if suitable weights were available. However, PSID sample weights

are designed to keep the data representative of successive cross sections of the US population that

originate in the families present in the base year.19 They do not adjust for factors that alter the

US population, such as di¤erences in birth rates by race or education. Furthermore, there are no

sample weights for persons who move into PSID households through marriage. Consequently, we

do not use weights. In essence, we are assuming both that observations are missing at random and

that the model parameters do not vary across demographic groups or over time. The results are

fairly robust to restricting the analysis to the SRC sample, as we discuss in Section 6. We also

report separate results for SRC whites by education level.

In Table 1a we present the mean, standard deviation, minimum and maximum of the variables

used in our structural model. The mean of Eit is .97, so we observe relatively few unemployment

spells. Note also that the mean of EEit is .98. Given these magnitudes, even relatively large

movements in the latent variable index determining EEit have only a small e¤ect on whether EEit

is 1 or 0: In Table 1b we provide additional information about our sample, including the mean and

standard deviation for education, race, potential experience, and the calendar year.

4 Estimation Methodology

We begin with a brief overview of our estimation procedure. We then de�ne the auxiliary model

used in the estimation procedure as well as additional moment conditions that we use. Note �rst

that to reduce computational complexity, we estimate the coe¢ cients on vector Xit in equations

19See Fitzgerald, Gottschalk and Mo¢ tt (1998) for an analysis of attrition in the PSID. They conclude that at
least through 1989 the PSID is fairly representative of the US population once internal sample weights are used.
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with continuous dependent variables by �rst regressing hours�it, wage
�
it, and earn

�
it on Xit. The

vector Xit consists of a constant, years of education, BLACKi, ti, t2i , t
3
i , and a set of year dummies.

We then work with the residuals of these variables when estimating the remaining parameters by

I-I.20

4.1 Indirect inference

For clarity, we will refer to Model A (or B) above as the �structural�model, even though the models

do not express the parameters of the decision rules for EE, UE, JC, etc., in terms of preference

parameters and parameters governing job search, mobility, and exogenous layo¤s. We denote the

k �structural� parameters by �. Indirect inference involves the use of an �auxiliary� statistical

model that captures properties of the data. This auxiliary model has p � k parameters �. The

method involves simulating data from the structural model (given a hypothesized value of �) and

choosing the estimator �̂ to make the simulated data match the actual data as closely as possible

according to some criterion that involves �.

Let the observed data consist of a set of observations on N individuals in each of T time periods:

fyit; xitg, i = 1; : : : ; N , t = 1; : : : ; T , where yit is endogenous to the model and xit is exogenous.

The auxiliary model parameters � can be estimated using the observed data as the solution to:

�̂ = argmax
�
L(y;x; �);

where L(y;x; �) is the likelihood function associated with the auxiliary model, y � fyitg and
x � fxitg.
Given x and assumed values of the structural parameters �, we use the structural model to

generate M statistically independent simulated data sets f~ymit (�)g, m = 1; : : : ;M . Each of the

M simulated data sets has N individuals and is constructed using the same observations on the

exogenous variables, x. For each of the M simulated data sets, we compute ~�m(�) as

~�m(�) = argmax
�
L(~ym(�);x; �);

where the likelihood function associated with the auxiliary model is evaluated using the mth sim-

ulated data set ~ym(�) � f~ymit (�)g rather than the real data. Denote the average of the estimated
parameter vectors by ~�(�) �M�1PM

m=1
~�m(�).

20Note that we include the constants w0 ; 
h
0 ; and 

e
0 in the wage, hours and earnings models even though we also

include a constant when construct hours, wage, and earnings residuals. Our reported standard errors do not account
for �rst stage estimation of the X parameters. We doubt that adjustment would make much di¤erence because the
estimated standard errors for the elements of X are small. Also, note that the coe¢ cients on the experience pro�le
of wages capture not only the e¤ects of general human capital and age but also average growth in �j(t) and tenure
with t. When we estimate Model A.3 by indirect inference, we include a quadratic in experience in the equation for
the wage to account for this. We did not include these terms in models A.1, A.2 and B.1, which exclude tenure from
the wage equation.

16



I-I generates an estimate �̂ of the structural parameters by choosing � to minimize the distance

between �̂ and ~�(�) according to some metric.21 As described in Keane and Smith (2003) and

elsewhere, there are (at least) three possible ways to specify such a metric. Here we choose �̂ to

minimize the di¤erence between the constrained and unconstrained values of the likelihood function

of the auxiliary model evaluated using the observed data. In particular, we calculate

�̂ = argmin
�
[L(y;x; �̂)� L(y;x; ~�(�))]:

Gourieroux, Monfort, and Renault (1993) show that �̂ is a consistent and asymptotically normal

estimate of the true parameter vector �0. The reason is that as N becomes large holding M

and T �xed, ~�(�̂) and �̂ both converge to the same �pseudo�true value �0 = h(�0) where h is a

nonstochastic function.

Accommodating missing data in I-I is straightforward: after generating a complete set of simu-

lated data, one simply omits observations in the same way in which they are omitted in the observed

data. As we have already discussed, we assume that the pattern of missing data is exogenous. In

the simulated data, we simply omit observations according to the same pattern. In some cases, it

is convenient to estimate auxiliary models in which missing observations are replaced with some ar-

bitrary value (such as 0). In such circumstances, the same principle applies: use the same arbitrary

values in both the simulated and observed data sets.

In our structural model, the observed data y consists of both continuous and discrete random

variables. Discrete random variables complicate the calculation of �̂ because the objective function

(i.e., the di¤erence between the constrained and unconstrained values of the likelihood) is discon-

tinuous in the structural parameters �. Discontinuities arise when applying I-I to discrete choice

models because any simulated choice ~ymit (�) is discontinuous in � (holding �xed the set of random

draws used to generate simulated data from the structural model). Consequently, the estimated

set of auxiliary parameters ~�(�) is discontinuous in �. The non-di¤erentiability of the objective

function in the presence of discrete variables prevents the use of gradient-based numerical optimiza-

tion algorithms to maximize the objective function and requires instead the use of much slower

algorithms such as simulated annealing or the simplex method.

To circumvent these di¢ culties, we use Keane and Smith�s (2003) modi�cation to I-I, which they

call generalized indirect inference. Suppose that the simulated value of a binary variable ~ymit equals

1 if a simulated latent utility ~umit (�) is positive and equals 0 otherwise. Rather than use ~y
m
it (�) when

computing ~�(�), we use a continuous function g(~umit (�);�) of the latent utility. The function g is

chosen so that as the smoothing parameter � goes to 0, g(~umit (�);�) converges to ~y
m
it (�). Letting

21When generating simulated data sets, the seed in the pseudorandom number generator is �xed so that the draws
of the random innovations are the same for di¤erent values of �.
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� go to 0 as the observed sample size goes to in�nity ensures that ~�(�0) converges to �0, thereby

delivering consistency of the I-I estimator of �0. Our choice of g is

g(~umit (�);�) =
exp(~umit (�)=�)

1 + exp(~umit (�)=�)
:

Because the latent utility is a continuous and smooth function of the structural parameters �, g is

a smooth function of �. Moreover, as � goes to 0, g goes to 1 if the latent utility is positive and to

0 otherwise.

When the structural model contains additional variables that depend on current and lagged

values of indicator variables ~ymit , these additional variables will also be discontinuous in �. In our

structural model, for instance, variables such as employment duration and job tenure depend on

the history of indicator variables such as employment status and job changes. Since employment

duration and tenure are discontinuous in �, they also contribute to creating a discontinuous objective

function in the estimation process. Our smoothing strategy, however, ensures that all these variables

will also be continuous in �, provided that they depend continuously on ~ymit . In other words,

replacing the indicator functions by their continuous approximations g(~umit (�);�) ensures that all

other variables that depend on � through g(~umit (�);�) are continuous. Care must be taken in

choosing �, because approximation error in indicator functions for a particular year accumulate in

the approximate functions for employment duration and tenure.

We searched for a combination of the smoothing parameter � and the number of simulations M

that generates su¢ cient smoothness in the objective function, while keeping bias small and compu-

tation time manageable. The larger these parameters are, the smoother the objective function will

be, but large values of � introduce bias and large values of M increase computation time. Based

upon simulation experiments, we chose a small value of �, .05, which is large enough to smooth the

objective surface su¢ ciently given our choice of 20 for M . Our simulation experiments as well as

the parametric bootstrap results reported below indicate that the associated bias in the estimates

is small for almost all of our parameters.

We use a parametric bootstrap procedure to conduct inference. Given consistent estimates of

the structural parameters, we repeatedly generate �arti�cial�observed data sets from the structural

model, estimate the parameters of the structural model for each such data set, and then calculate

the standard deviations of the parameter estimates across the data sets. These standard deviations

serve as our estimates of the standard errors of the structural parameter estimates associated with

the actual observed data.22 Standard errors of functions of model parameters, such as the impulse

response functions and variance decompositions are constructed as the standard deviation across

parametric bootstrap replications.

22As a check, we also computed standard errors using a nonparametric bootstrap procedure based on resampling
from the PSID for some speci�cations. We used 100 replications and obtained similar results.
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4.2 The Auxiliary Model

Our auxiliary model consists of a system of seemingly unrelated regressions (SUR) with 7 equations

and 25 covariates that are common to all 7 equations. We implement the model under the as-

sumption that the errors follow a multivariate normal distribution with an unrestricted covariance

matrix. One may write the system as

(15) Yit = Zit�+ uit; uit � N(0;�); uit iid over i and t;

where

Yit = [Eit � Ei;t�1; Eit � (1� Ei;t�1); JCit � Eit � Ei;t�1; wage�it; hours�it; earn�it; ln(1 + wage�it2)]0;

and

Zit = [Const; (ti � 1); (ti � 1)2; BLACKi; EDUCi; EDi;t�1; UDi;t�1; TENi;t�1;(16)

Ei;t�1 � Ei;t�2; Ei;t�2 � Ei;t�3; Ei;t�1 � (1� Ei;t�2); Ei;t�2 � (1� Ei;t�3);

JCi;t�1 � Ei;t�1 � Ei;t�2; JCi;t�2 � Ei;t�2 � Ei;t�3;

wage�i;t�1; wage
�
i;t�2; hours

�
i;t�1; hours

�
i;t�2; earn

�
i;t�1; earn

�
i;t�2;

wage�i;t�1 � (ti � 1); wage�i;t�1 � (ti � 1)2; wage�i;t�1 � JCit; wage�i;t�2 � JCi;t�1; wage�i;t�2 � Ei;t�1]0

Since � has 25 � 7 elements and � is a 7 � 7 covariance matrix with 28 unique elements,
the auxiliary model has 203 parameters. In contrast, Model A.3 has only 46 parameters that we

estimate by I-I (not counting the measurement error parameters, tenure coe¢ cients, and �!): As

we discuss momentarily, a few of the 46 parameters are estimated all or in part using additional

moment conditions rather than exclusively by I-I. Consequently, the number of features of the data

used to �t the structural model greatly exceeds the number of parameters.

In estimating the model we use the likelihood function that corresponds to (15). Note that the

assumption uit � N(0;�) with uit iid over i and t is false for several reasons, including the fact

that Y contains binary variables and that both wage�it and ln(1+wage
�
it
2) appear. However, the fact

that we use a misspeci�ed likelihood a¤ects the e¢ ciency of our procedure rather than consistency.

Our choice of what to include in the auxiliary model is as much a matter of art as science, but

is motivated by the following principles. First, we use a common set of right-hand-side variables in

the seven equations of the auxiliary model to avoid having to iterate between � and � to maximize
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the likelihood function. The disadvantage, however, is that we do not tailor the right-hand-side

variables to the particular dependent variable. As a result, the auxiliary model probably contains

more parameters than are needed to describe the data. Furthermore, we are restricted in our ability

to add additional right-hand-side variables to particular equations, such as additional interactions

between (ti� 1) and other lagged variables, because the total number of variables would get out of
hand. Although it would be useful to explore di¤erentiating the equations of the auxiliary model

in future work, our simulations indicate that most of our parameters are quite well determined by

the auxiliary model that we have chosen.

The second principle is to include variables that appear as explanatory variables in the structural

model. This accounts for the presence of (ti�1), (ti�1)2, EDUCi; BLACKi; EDi;t�1;and TENi;t�1.

We also include UDi;t�1 even though we constrain UEit to equal 0: Since the model is dynamic and

includes state dependence terms in most equations, we include two lags of each dependent variable

except ln(1 + wage�it
2). The lags help distinguish between state dependence and heterogeneity.

Finally, we include the interaction terms wage�i;t�1 � (ti � 1), wage�i;t�1 � (ti � 1)2, wage�i;t�1 � JCit,
wage�i;t�2 � JCi;t�1; and wage�i;t�2 � Ei;t�1 to help capture any nonstationarity in wages.
One disadvantage of our choice for (16) is that the �rst three observations for each individual

are lost due to lags. This makes it di¢ cult to identify parameters of the models for the initial

wage and employment status. It also makes it di¢ cult to identify changes with experience in the

variance of shocks at the beginning of a career. In principle, one could add additional equations

with 0, 1, or 2 lags to the auxiliary model to accommodate observations with missing data. The

cost would be a more complex auxiliary model. (Alternatively, one can set values of missing lags

to 0 in both the simulated and actual data.) In simulation experiments we did not �nd that adding

such equations helped a great deal with identi�cation of model parameters. In the next section,

we discuss use of the variance of wages when t � 5 for each race-education group to help identify
parameters of the initial condition for wages. We also discuss the initial condition for employment.

4.3 Use of Additional Moments and Other Information Sources to Iden-
tify Parameters

In the equation for initial employment we estimate the intercepts b0g as b̂0g = b̂�0g � �̂E1 where

�̂E1 =

q
(�̂
EE

� )2 + (�̂
EE

� )2 + 1 and b̂�0g is the coe¢ cient estimate from a Probit regression of Eit on a

constant estimated on PSID data for t � 5 for each of 4 groups g de�ned by race and whether the
person has more than a high school education. We use the �rst �ve years rather than simply the

�rst because we have relatively few observations for each group when t = 1.23

23As it turns out, b̂�0g is 0.918 for blacks with a high school degree or less, 1.427 for blacks with more than high
school, 1.391 for whites with high school or less, and 1.671 for whites with more than high school. We obtained
similar results for other model parameters when we constrain b̂�0g to be the same for all groups and use t � 3 to
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To identify �!1, we use the fact that model A implies that the variance of the observed (residual)

wage, wres�i1; of an employed individual from race-education group g is

V ar(wres�i1; g) � V ar(wage�i1 � w0 � wXXi1) = �
2
�1 + (�

w
� )
2 + �2!1g + �

2
mw:

Because of sample size considerations we estimate V ar(wres�i1; g) as the variance of (residual) wage

observations in the PSID corresponding to t � 5. dV ar(wres�i1) equals .109 for blacks with a high
school degree or less, .124 for blacks with more than a high school degree, .109 for whites with high

school or less, and .141 for whites with more than high school. We then obtain �!1g setting it

to �2!1g = dV ar(wres�i1; g) � (�w� )2 � �2�1� �̂2mw at each iteration of the I-I procedure, where �̂
2
mw is

preset to :07952 on the basis of measurement error studies for the PSID. In Model B, �2�1 does not

appear. Estimates of other parameters are not very sensitive to constraining �2!1g to be the same

for all groups and estimating �2!1g using t � 3 rather than 5:
In the case of model A, we also use a large number of moment conditions spanning a much longer

time span than the 3 lags in our auxiliary model to identify �! and help distinguish persistence due

to !it from persistence due to �i and �ij(t). For workers who are continuously employed between

t� g and t+ j and who do not change jobs between t and t+ j;

(17) cov(wres�i;t+j � wres�it; wres�i;t�g) = (�j+g! � �g!)var(!t�gjt� g):

We approximate var(!t�gjt�g) with a constant plus a third order polynomial in t�g. We com-
pute cov̂(wres�i;t+j�wres�it; wres�i;t�g) for each j; g combination satisfying 1 � j � jmax and 1 < g �
gmax. We estimate �! and the parameters of the polynomial approximation by weighted minimum

distance using the number of sample observations used to estimate cov̂(wres�i;t+j�wres�it; wres�i;t�g)
as the weights, eliminating moments estimated using fewer than 5 observations. The point estimates

and approximate standard errors for jmax; gmax = 5, jmax; gmax = 6, jmax; gmax = 7, jmax; gmax = 8,

and jmax; gmax = 9 are .882 (.027), .919 (.020), .927 (.014), .94 (.011), and .94 (.009) respectively.

We chose :92 as our point estimate.24 For Model A.1, we obtain .913 when we ignore (17) and

freely estimate �! by I-I.

In model B we make use of an expression for the di¤erence in the variance of wage growth

conditional on JCit+Eit(1�Ei;t�1) = 1 and conditional on JCit+Eit(1�Ei;t�1) = 0 to express the
wage innovation variance shift factor �2 in terms of other parameters of the model. See Appendix

estimate it.
24The number of moments varies from 2,789 when jmax and gmax are 5 to 7,906 when jmax and gmax are 9: The

standard errors account for heteroskedasticity but not for correlation among the moments, which use overlapping
data. They are probably understated. In the case of Model A.3, equation (17) is an approximation because Model
A.3 states that employment transition probabilities depend on !t. This means that the evolution of !t depends on
the number of periods of continous employment: j + g: We doubt that this is an important problem. Setting �! to
.90 instead of .92 has little e¤ect on the variance decompositions.
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1.25 We do not use moment conditions analogous to (17) to estimate �!, although the estimate

we obtain by I-I, .95, is in the neighborhood of the above values.

Finally, when we include tenure in the wage equation (model A.3 in Table 2), we impose Altonji

and Williams�(2005) estimates of tenure polynomial P (TENit) based on PSID data for the years

1975-2001 rather than attempting to estimate it by I-I, which would have required the addition of

a number of additional variables to the auxiliary model.26

The parametric bootstrap standard errors reported below do not account for sampling error in

the above sample moments of the PSID or in the tenure parameters.

4.4 Mechanics of Estimation

Our chosen values of � = 0:05 and M = 20 yield a smooth objective function that allows the use

of fast gradient-based optimization algorithms with little evidence of bias.27 Not surprisingly given

the size and complexity of our models, the objective function displays multiple local optima with

respect to some of the parameters. We experimented extensively with di¤erent starting values to

make sure that we are �nding the global optimum. We began the process by obtaining estimates

of a series of �reduced-form equations�that correspond to the equations in the structural model.

As part of the process, we have used grid evaluations for the set of parameters that appear most

problematic, and we have used the smaller models to help us �nd good initial guesses and then build

up to more complex ones. The problem is more serious in the case of Model A.1-Model A.3 than

for Model B. This is one of the reasons that we make use of the moments (17) to help distinguish

�! from ��:

The fact that we have between 39 and 46 parameters estimated by indirect inference, the large

size of the auxiliary model, and the number of simulations make computation very time-consuming

even though we use a fast gradient based optimization algorithm. To reduce estimation time, we

exploit the highly parallelizable structure of our estimation methodology.28

25Due to an error, the condition we actually imposed di¤ers from the condition derived in Appendix 1. Re-
estimating the model using the correct condition made almost no di¤erence for the parameter estimates. We will
recompute the bootstrap standard errors and simulations for Model B in a future draft.
26The pro�le that we use corresponds to Table 6, Panel D, column 2 of their paper. It is .0272563�Ten� :0023283�

Ten2+ :00815Ten3=100� :000914Ten4=1000. The implied return to 2, 5, 10 and 20 years of tenure are .046 (.0064),
.008 (.0011), .112 (.016), and .119 (.029). It is obtained using Altonji and Shakotko�s (1987) instrumental variables
approach, which treats t as exogenous and uses the within job j variation in Tenijt; T en2ijt; T en

3
ijt, and Ten

4
ijt to

identify the e¤ects of tenure. Our �nding of a modest link between t and �ij(t) implies that Altonji and Williams�
estimates are biased downward by a small amount.
27We use a standard quasi-Newton algorithm with line search, which can additionally handle simple bounds on

the choice variables. The algorithm approximates the (inverse) Hessian by the BFGS formula, and uses an active set
strategy to account for the bounds. Gradients are computed by �nite di¤erences.
28Speci�cally, for any given value of the structural parameters, theM simulations required to evaluate the objective

function are essentially independent and can be conducted simultaneously by k di¤erent processors. Using our
parallelized computer algorithm on k �M + 1 (balanced) processors reduces computation time by a factor of about
d M
k�1 e
M , where d e is the ceiling function. All programs are written in FORTAN 90. The parallelization is implemented
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4.5 Local Identi�cation and Analysis of Estimation Bias

We have chosen the auxiliary model with an eye toward distinguishing among state dependence,

�xed heterogeneity, and transitory shocks and an eye toward establishing links across equations

in the heterogeneity components. However, one cannot easily verify that the parameters of our

model are identi�ed by matching up the parameters against sample moments. In particular, the

fact that the number of moments that play a role in the likelihood function of the auxiliary model

is much larger than the number of structural model parameters does not establish identi�cation of

any particular parameter. Consequently, we use Monte Carlo experiments extensively to establish

local identi�cation and analyze the adequacy of our auxiliary model given the sample size and

demographic structure of the available data and to check for bias. For a hypothesized vector of

parameter values, we simulate data and then verify that the parameter values that maximize the

likelihood function of the auxiliary model are close to the hypothesized values. Using a number of

model speci�cations, including ones that di¤er somewhat from the ones presented in the paper, we

informally experimented with varying parameter values to get a sense of how robust identi�cation

is to the particular values. We also used these experiments to investigate whether the objective

function has �at regions near the solution, or multiple global optima.

In general we have found that identi�cation of most of the parameters is quite robust. However,

our Monte Carlo studies also indicate that a few of the parameters are poorly determined given

the sample size. We also found local optima involving alternative combinations of subsets of the

parameters. Bringing in additional information through the moment conditions described above

solved the most serious problems. However, some of the parameters remain sensitive to changes in

the auxiliary model, and starting values must be chosen carefully. This is particularly true of the

coe¢ cients of the experience pro�les in the EE, UE and to a lesser extent, the JC equations, for

reasons that we not fully understand. In table 2 below there is also evidence of bias for some of

the parameters in these equations. Overall, however, the relatively small values of the bootstrap

standard errors in the tables below indicates that for the sample size and demographic structure

of the PSID sample, our auxiliary model is quite informative about most of the model parameters.

Furthermore, in almost all cases the means of the bootstrap replications are close to the point

estimates, indicating that the degree of bias in the procedure is small for most of our parameters.

using the Message Passing Interface (MPI). We estimate the model using 21 CPUs supplied by 11 Intel Xeon 5150
dual core processors, which reduces estimation time by a factor of 20, to between 2 to 7 hours.
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5 Empirical Results

First, we discuss the parameter estimates for Model A, with heavy emphasis on Model A.3. Model

A.3 is basically the model presented above with the duration dependence term in the UE equation

restricted to 0 and ��JC set to 0:We also present simpler versions of Model A. Model A.2 is identical

to Model A.3 except that we exclude tenure terms from the wage equation. Columns 1a-1c refer

to Model A.1, which in addition excludes wage
0
it from EE and �ij(t�1) and �0ij0(t) from JC, and

allows ��JC to be nonzero. We also brie�y discuss results for Model B, with emphasis on the wage

equation. Second, we evaluate the �t of the model by comparing means and standard deviations

of the PSID data to the corresponding values based on simulated data from the model and by

comparing simple regression relationships in actual and simulated data. Third, we present impulse

response functions. Finally, we decompose the variance of wages, hours, and earnings into the

contributions of the main types of shocks in our model. In the case of Model A.3, inference is

based on 300 bootstrap replications. Because the bootstrap procedure is very computer intensive,

we only use 100 replications for the other models.

5.1 Parameter Estimates for Model A

Columns 3a, 3b, and 3c of Table 2 report parameter estimates, the means of the parametric

bootstrap estimates, and standard error estimates for Model A.3. Columns 2a-2c refer to Model A.2

and Columns 1a-1c refer to Model A.1. The row headings indicate the variable or error component

that the parameter estimates correspond to and also list the parameter names. The estimates are

grouped by equation, beginning with EE.

5.1.1 Employment Transitions and Job Changes

The EE coe¢ cients on t and t2 imply that the latent variable determining Eit conditional on

Ei;t�1 = 1 declines slowly with t until t is about 12 and then rises slowly. However, the di¤erence

between t = 30 and t = 0 in the latent variable is only .21, and the e¤ect on the odds of a transition

is small because the EE probability is very high. Since the value of min(EDt�1; 9) is rising rapidly

over the �rst few years in the labor market, the overall relationship between EE and t is weak. The

point estimates should be taken with a grain of salt, because the relative values of the constant, the

coe¢ cients on t and t2; and the coe¢ cient on min(EDt�1; 9) are sensitive to the exact speci�cation.

Furthermore, the bootstrap replications provide evidence of bias.

The coe¢ cient on min(EDt�1; 9) is .044 (.018), indicating modest positive duration dependence

in the odds of remaining employed. Below we show that a regression of Eit on EDi;t�1 conditional

on Ei;t�1 = 1 gives similar results in data simulated from Model A.3 and in PSID data, which
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indicates that the combined e¤ect of duration dependence and unobserved heterogeneity in the

model does a good job of matching the weak positive state dependence found in the data.

The coe¢ cient on wage
0
it is -.058 (.076). At �rst glance the negative sign would seem to be

opposite the expected sign because there is only a substitution e¤ect at 0 work hours. However,

it is probably better to think of employment at the survey date as a movement along the extensive

margin when one views labor supply from the perspective of a year. In any event, the coe¢ cient is

not statistically signi�cant and the implied e¤ect on the EE probability is small.

The UE equation is the least satisfactory equation in the model. The estimated t pro�le implies

that the exit probability declines with experience and then increases, but the standard errors are

very large. As we document below, the model does a poor job of tracking the relationship between

UE and t in the data. We experimented with models that included UDi;t�1 but had di¢ culty

estimating the duration coe¢ cient, perhaps because the overall number of unemployment spells is

small and relatively few individuals were unemployed for two or more surveys in a row. (Most

work on duration dependence in unemployment spells uses weekly, monthly or quarterly data).

Simulations reported below show that the equation without state dependence is consistent with the

negative link between UE and UDi;t�1 found in the PSID, presumably because of the important

role played by permanent heterogeneity. However it understates that relationship to some extent.

The latent variable for JC declines slightly with t over the �rst 20 years, but is strongly de-

creasing in job tenure. The coe¢ cient on TENi;t�1 is �:0673 (:0156), indicating that 10 years of
seniority shift the index determining JC by .673 standard deviations of the job change shock "JCit .

It is noteworthy that we obtain a large negative e¤ect of tenure on JC even after accounting for

unobserved person speci�c heterogeneity (� and �) and for job match heterogeneity.

The job match components �ij(t�1) and �0ij0(t) play an important role in job mobility without

unemployment, and they have signs and relative magnitudes that are consistent with the theoretical

discussion above. The coe¢ cient on �ij(t�1) is -.923 (.127). To get a sense of the magnitude, note

that the standard deviation of �ij(t�1) is .273 for a person with 10 years of experience. Consequently,

a one standard deviation increase in �ij(t�1) lowers the JC index by -.252. Since the coe¢ cient on

TEN is -.067, this is roughly equivalent to the e¤ect of 3.8 years of seniority. An increase from

0 to .273 in the value of �ij(t�1) lowers the probability of a job change for a white individual with

12 years of education, 2 years of seniority, 10 years of experience, � = 0 and � = 0 from .130 to

.084, keeping �0ij0(t) constant. The current value �
0
ij0(t) has a coe¢ cient of .594.

29 A one standard

deviation shock to �0ij0(t) raises the job change probability by 0.066.

Thus far, we have not discussed the role of race and education or the unobserved individual

29The total e¤ect of �ij(t�1) on the JC probability is .029. It is smaller than the partial e¤ect because a unit shift
in �ij(t�1) shifts the distribution of �0ij0(t) by .625.
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heterogeneity terms. BLACK has a substantial negative e¤ect on the latent variable for EE and

a substantial negative e¤ect on UE, while EDUC has a substantial positive e¤ect on both. In the

JC equation BLACK is positive, with an e¤ect that is equivalent to having about 2.5 fewer years

of tenure. EDUC does not alter JC. The coe¢ cient on the �innate ability�factor � is .443 (.094)

in the EE equation and .637 (.128) in the UE equation. Since the standard deviations of �, �,

"EEit , and "
UE
it are all 1, the factor loadings imply that � accounts for 15.6% of the error variance in

the EE equation and 27.9% in the UE equation. The productivity factor � has a coe¢ cient of -.280

(.136) in the JC equation. All three results are sensible in light of the fact that � has a positive

sign in both the wage and hours equations. In thinking about the magnitudes, keep in mind that

the factor loadings represent the partial e¤ect of the heterogeneity components in a given period

holding spell duration constant.

The mobility/hours preference component � is normalized to have a positive sign in the JC

equation. It enters the EE, UE and JC indices with coe¢ cients of -.237 (.107), .222 (.187), and

.531 (.100), respectively, and accounts for 4.5%, 3.4%, and 19.7% of the error variances of these

equations. The magnitude implies only a small e¤ect on the EE transition probability and the sign

in the EE equation is positive in the other models. The results suggest that � raises the probabilities

of transiting out of unemployment and of moving from job to job without unemployment. It has

a coe¢ cient that is essentially zero in the hours equation in the case of Model A.3 but is larger in

the other speci�cations. Across Models A.1, A.2, A.3 and B.1, the relative importance of � and �

varies somewhat.

5.1.2 The Wage Model

We begin with the parameters of the autoregressive component,

!
it
= �!!i;t�1 + 

!
1�Eit(1� Eit) + 

!
1�Ei;t�1(1� Ei;t�1) + "

!
it:

The estimated standard deviation of the initial condition !
i1
varies with race and education but

is between .248 and .306 in Model A.3. The autoregressive coe¢ cient �̂! is .92, which implies

considerable persistence but is well below unity. The shocks "!it have a standard deviation of

.095 (.003). This value strikes us as large given that we separately account for the e¤ects of job

speci�c error components. The only other study we know that allows for a persistent general wage

component, a job speci�c error term, and endogenous mobility is Low et al (2008). They obtain a

value of .104 but set �! = 1:
30 In the data, the standard deviation of wage changes for stayers is

.136 after adjusting for measurement error.

The coe¢ cients of -.1895 (.010) on (1 � Eit) and .1041 (.013) on (1 � Ei;t�1) imply that being
unemployed at the survey date has a large e¤ect on the mean of the wage that persists for some
30They do not include the (1� Eit) terms in their speci�cation.
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time, even when the value of lost tenure is held constant. As will become clear from the impulse

response functions, unemployment also leads to a loss of tenure as well as to a reduction on average

in the value of the job match component, which implies further reductions in wages.31

The coe¢ cient �w� on � is only .049 (.028), so the direct contribution of unobserved permanent

heterogeneity to the variance of wages is small once we account separately for job match hetero-

geneity. Note, however, that � also has an additional e¤ect on wages through its connection to

employment transitions and job changes. One should also keep in mind that � is net of the e¤ect

of Xit, which contains the important permanent variables EDUC and BLACK; and that the stan-

dard deviation of the initial condition !i1 is large. Almost 30 percent of the e¤ect of !i1 is still

present at t = 15: Note that the component � is much more important in Model A.1 and in Model

B.1, perhaps because there is no selective quit behavior in A.1 and B.1 does not incorporate a job

speci�c wage component at all. It is also about twice as important in the SRC sample.

The parameters of the job match component �ij(t) are quite interesting. The initial condition

�ij(1) has a standard deviation of .197 (.021) in A.3. The autoregression parameter �� is .625 (.022)

and the value of �̂� is large: .269 (.007). As we have already noted, the substantial persistence of

�ij(t) across jobs suggests that wage o¤ers are based in part on salary history, that demand shocks

may re�ect narrow occupation, industry and region and thus may not be entirely job speci�c, and/or

that the search network available to workers depends on job quality. As we shall see below, the

contribution of the job speci�c component to the variance of wages and earnings is substantial.

As we discuss in Appendix 2, one can use Model A.3 to decompose E(wageitjt); the experience
pro�le of wages, into the contributions of general human capital P (t), job mobility E(�ij(t))jt), and
accumulated job seniority wTENE(P (Tit)jt). Figure 1 graphs the components and thus addresses

the fundamental question of what accounts for wage growth over a career. Most of the return

to potential experience is due to general skill accumulation. Job shopping and the accumulation

of tenure account for 14.1 percent and 13.1 percent, respectively, of the overall growth of wages

over the �rst ten years. They account for 13.7 percent and 15.0 percent of growth over the �rst 30

years.32 Using social security records for quarterly earnings (rather than hourly wage rates) Topel

and Ward (1992) �nd larger gains from job mobility early in careers than we �nd. We suspect their

31In Models A.1 and A.2, which exclude tenure from wages, ̂!1�Eit is about -.22 and ̂
!
1�Ei;t�1 is about .10.

32Using the PSID Buchinsky et al (2008) estimate a simultaneous model of employment, job mobility, and wage
rates that incorporates tenure e¤ects, general experience, and job speci�c error components. They �nd a large
e¤ect of human capital accumulation and returns to seniority that are more than double the values from Altonji and
Williams (2005) that we impose but do not present estimates of the gains from job mobility. Bagger et al (2007) do
not allow for a direct e¤ect of seniority on wages such as would arise from shared investment in �rm speci�c capital
but obtain an indirect e¤ect that arises through the response of �rms to outside o¤ers. They attribute average growth
of wages within the �rm and growth of wages across �rms to job search. Using Danish matched employer/employee
data they �nd that human capital accounts for about half of all wage growth for workers with more than 12 years
of education that occurs after the �rst �ve years in the labor market. Human capital accumulation is neglibible for
less educated groups.
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estimates are overstated by the school to work transition and growth across jobs in hours worked,

while ours are understated because we miss some job changes and we do not use the �rst three

years of wages.33

5.1.3 Hours and Earnings

In the hoursit equation ̂
h
E, the e¤ect of Eit; is .413 (.008). This indicates that unemployment at

the survey date is associated with relatively long completed spells of nonemployment. Short spells

will tend to be missed given our point in time measure at annual frequencies. They will show up

in the hours component "hit. The wage elasticity is small and negative, which is consistent with a

large literature on the behavior of male household heads. The coe¢ cients on � and � are .125 and

.0145 respectively, suggesting only a modest role for individual heterogeneity (net of EDUC and

BLACK) in annual hours in a given year. However, permanent heterogeneity turns out to be quite

important over the lifetime. The importance of � relative to � varies across the speci�cations. The

standard deviation of "hit is .169, indicating substantial year to year variation in hours even when

the job speci�c component � does not change. The standard deviation of � is large� .157 (.014).

Turning to earnings, recall that the coe¢ cients ew and 
e
h are constrained to equal 1. The

earnings component eit has an autoregression coe¢ cient of .553 (.007) and the standard deviation

of the shock "eit is .211 (.002).

5.2 Estimates of Model B

Columns 4a-4c of Table 2 report estimates for Model B.1. As we noted earlier, Model B does not

contain job speci�c wage or hours components. However, it allows the autoregression coe¢ cient and

the standard deviation of wage shocks to shift when individuals change jobs or leave unemployment.

The speci�cation is closest to that of Model A.1. We had relatively little di¢ culty estimating this

model and estimate the autoregressive parameter �! by indirect inference rather than by using the

moment conditions (17), which do not apply to Model B.1 without modi�cation.

The results for Model B.1, in keeping with those for Model A, provide clear evidence that job

changes, whether with or without unemployment, involve substantial wage risk. The coe¢ cient on

lagged wages is .958 for job stayers but only .723 if the job changes. At the same time, wage

innovations have a standard deviation of .0934 (.002) for stayers but are about 3 times larger for

persons who have changed jobs ((1+2.10)*0.0934). The estimate of �w� is .151 (.012), so permanent

heterogeneity plays a more important role in Model B.1 than in A.3.34

33Model A.1 does not allow for selective quit behavior but includes the term �0JCit. The coe¢ cient ̂�0 is :042,
which indicates that on average JC increases �ij by .042. Models A.1 and A.2 exclude tenure e¤ects on wages.
34We experimented with adding the health status equation

(18) Hit = I[
H
0 + 

H
t (t� 1) + �HHi;t�1 + �H& &i + "Hit > 0]
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5.3 Evaluating the �t of the Model:

We simulate careers for 138,960 individuals using the parameter estimates for Model A.1, A.2, A.3

and Model B.1� 30 for each individual in the PSID sample. From each simulated career we select

data so that the temporal pattern, education level, and race matches that of a corresponding PSID

case. Note that in all cases the simulated variables incorporate measurement error. We examine

the �t of the model in two ways. First, we compare the means and standard deviations of the

key variables implied by the model with corresponding values from the PSID. We then turn to a

comparison of the regression relationships among key variables that are implied by the model with

those of the corresponding PSID estimates.

5.3.1 Predicted and Actual Mean and Standard Deviations of Key Variables, by
Potential Experience

Figure 2 compares the actual standard deviations of wage�it, earn
�
it and hours

�
it in the PSID to the

95 percent con�dence interval estimates of the standard deviations based on data simulated from

Model A.3. The standard error bands in the �gure re�ect both sampling error in �̂ and sampling

error due to randomness in the careers of the individuals in a particular sample.35 The bands are

tight, which means that we sometimes conclude that the PSID values are statistically di¤erent from

the model predictions even when the values are close in economic terms.

Across experience levels, the model overpredicts SD(wage�it) by about 6% (not shown) and

implies less of an increase with experience than we �nd in the actual data. We suspect that

most of the discrepancy is due to the fact that we have removed the e¤ects of education and

race from the PSID wage measure, but include them in the equations for EE, UE; and JC in

the model. Consequently, the e¤ects of race and education on wages, hours, and earnings that

to models that are very similar to A.1 and to model B, where Hit is an indicator for poor health, and is 1 for those
who answer yes to the question, �Do you have any physical or nervous condition that limits the type of work or the
amount of work you can do?�, &i captures �xed heterogeneity in health, and "Hit is an iid health shock. We added
the indicator Hit to the EE, UE, wage, and hours equations. We also added an equation for Hit to the auxiliary
model and added two lags of Hit to all equations of the auxiliary model. The heterogeneity term & accounts for
67% of the variance of the composite error term for the health latent variable. We also �nd strong state dependence
in health and (not surprisingly) that health status worsens with age. The e¤ects of health are small for EE, UE,
and for wages. Work hours are about 6% lower for people in poor health, everything else equal. The relatively small
e¤ects of health, at least as we have measured it, on employment, wages, and hours imply that health shocks account
for little of the variance in career earnings. We focus on models without the health equation for this reason. See
Vidangos (2008) for models with health and permanent disability.
35We obtain the distribution of SD(wage�it) implied by the model as follows. First,we obtain the point estimatedSD(wage�it) by using the point estimates of � for Model A.3 to simulate 30 careers for each member of the PSID.

(That is, we preserve the race, education and experience mix of the available data.) To obtain the standard deviation
ofdSD(wage�it) given the PSID sample size and demographic properties, we repeat the simulation for each of the 300
parametric boostrap estimates of � using only 1 career for each member of the PSID and then compute the standard
deviation of the 300 values of SD(wage�it): The bands we report are the point estimate dSD(wage�it) plus or minus
1.984 SD(SD(wage�it)). Other variables are handled in similar fashion. For each value of t in the table the results
are the average over t� 1, t; and t+ 1 with the exception of t = 40; which is the average for t = 39 and t = 40.
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operate indirectly through EE, UE, and JC rather than directly through wages and hours in�uence

the model predictions for SD(wage�it) but not the PSID value.
36 The values for Model A.2 (not

reported) are reasonably similar to A.3, while the values for Model B.1 in Appendix Figure A1

shows a �atter pro�le for SD(wage�it).

The sample value for SD(hours�t ) is .285, which lies a bit below the model value .293. The

model implies that SD(hours�t ) varies little with t and misses the increase when t is 40, which might

re�ect the e¤ects of partial retirement not captured by the experience pro�les in the model. The

results for Model A2 and B.1 are similar. The actual and simulated SD for earnings are 0.567 and

0.585, respectively. However, there is an erratic pattern in the data that is not matched by the

model predictions, which display a smooth hump-shape pattern with a peak around t = 20. The

error at t = 40 for earnings mirrors the error for hours and probably re�ects partial retirement.

The left panels of Figure 3 compare the PSID values and the model predictions for the mean

of Et and for the mean of JCt conditional on Et = 1 and Et�1 = 1. The PSID values lie close to

the model estimates. The overall mean for Et is .967 in the data and .960 based on the model.

Overall, the model overstates JCt by about .014 but tracks the experience pro�le fairly closely.

The upper right panel of Figure 3 reports the sample means and simulated means of EE tran-

sitions, which match reasonably well. However, the lower right panel shows that A.3 does poorly

in explaining the experience pro�le of exits from unemployment (UE). The actual and simulated

means of UE are .74 and .69, a substantial discrepancy. Furthermore, the model does not track

the experience pro�le well.37 Model B.1 does somewhat better than model A.3 despite the fact

that the EE and UE equations of A.3 and B.1 are the same (Appendix Figure A2).

Figure 4 examines the behavior of the mean of TEN , ED, and UD. The �ts for TEN and UD

are reasonably close, although the two models overpredict UD by an average of about 0.4 years.

36We could not think of an easy way to check this, but in earlier work excluding education and race from these equa-
tions, the model closely matched the standard deviations for SD(wage�it). There were still some minor discrepancies
in the experience pro�les.
37As was mentioned earlier, we experienced di¢ culty in estimating the e¤ect of t in the UE equation, by I-I, whether

or not we allow for state dependence. We also had di¢ culty with the EE equation. We are puzzled as to why. It
may be that longer lags than we use would be helpful in pinning down the parameters. For the UE speci�cation
reported in the paper we also estimated the UE equation by maximum likelihood, treating (�UE� )2 + (�UE� )2 as a
single parameter. Even though UE does not depend on duration, this is only an approximation. The problem
stems from the fact that � and � appear in both the EE and UE equations. Consequently, the distributions of
� and � conditional on Et�1 = 0 depend on t � 1, BLACK; and EDUC; and the stochastic components that
in�uence the wage. They will not have a normal distribution. In any event, the MLE estimates (standard errors)

are E�it = -.838 .121EDUC -.439BLACK +.33t=10 -.048t2=100 ; d[(�UE� )2 + (�EE� )2]:5 = :630
(.439) (.029) (.109) (.273) (.066) (:119)

(N=1065, number of individuals contributing spells=748.) The I-I estimates of the co¢ cients on BLACK and

EDUC are somewhat larger. The experience pro�les are also quite di¤erent. The I-I estimate of d[(�UE� )2 + (�EE� )2]:5

is .675, which is close to the MLE estimate. We cannot take the same approach with the EE equation due to state
dependence in that equation.
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The models overpredict ED by a substantial amount. This is probably attributable to our use of

TEN as the initial value for ED when an individual �rst enters the sample (see the Data Section).

The results for the models A.2 and B.1 are similar.

5.3.2 Comparison of Regression Relationships Among Key Variables

Tables 3a-3d report a series of regressions. The �a�columns are based on the PSID sample, and the

�b�and �c�columns are based on data simulated using the estimates of Model A.3 and Model B.1.

We also report robust panel standard errors for the PSID estimates.38 Columns 1a and 1b of Table

3a report regressions of Et on (ti�1)=10; (ti�1)2=100, and EDt�1 conditional on Et�1 = 1. This is

a stripped down version of the EE equation in the structural model. There are some di¤erences in

the experience pro�les. The coe¢ cient on EDt�1 is .0025 in the PSID and .0031 in the simulation,

a close correspondence.

Columns 2a and 2b report results for a version of the UE equation. The di¤erences in the

coe¢ cients on the experience pro�le are substantial, a fact that is re�ected in the failure of the model

to �t the experience pro�le. The model understates the degree of persistence in unemployment spells

to some extent. The equations for JC in columns 3a and 3b match fairly closely, although the

weights on the experience terms are somewhat di¤erent.

Table 3b examines the dynamics of wages. When only one lag is included, the coe¢ cient on

wage�t�1 is .885 in the PSID and .905 in the simulation. When two lags are included, the sums of

the coe¢ cients are very close but there is a substantial di¤erence in the coe¢ cient pattern. The

coe¢ cient on JCt is small and negative in the PSID and in the simulated data for A.3. It is small

and positive for B.1.

Table 3c examines hours. The results based on the simulated data and actual data match

reasonably closely, although the sum of the coe¢ cients on the lags of hours is about .6 in the

simulated data and about .55 in the actual data (columns 1a and 1b). The wage coe¢ cient is

essentially 0 in the actual data and -.0191 in the simulated data� a close correspondence.

Finally, in Table 3d we report earnings regressions. Note that all of the dynamics in earnings

stem from dynamics in the wage, hours, and the autoregressive earnings component eit: The sum

of the coe¢ cients on earn�i;t�1 and earn
�
i;t�2 is .873 in the PSID data and .800 in simulated data,

so that the model understates the persistence of earnings by a small amount. There is also some

38For the simulated data the point estimates are based upon a sample 30 times as large as the PSID with the
same demographic structure. The coe¢ cient standard errors reported for the simulated data are based on this large
sample and are intended to provide a sense of numerical accuracy rather than sampling error. We could provide the
latter by estimating the regressions on each of a series of simulated samples that match PSID demographic structure
with only one career per person. One sample in the series would be created using one of the 300 values of the model
parameters obtained through our parametric bootstrap procedure. The PSID standard errors should provide a rough
guide to whether the coe¢ cients based on the simulated data are di¤erent from the PSID regression coe¢ cients.
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di¤erence between the data and the model in the coe¢ cients on wage�t and hours
�
t (Column 2a and

2b).

Overall, the match between the model and the data is good, although there is room for improve-

ment, particularly in the case of UE:

5.4 Mean and Variance Impulse Response Functions

Figures 5a-c report impulse responses to shocks that occur when t = 10. The point estimates are

constructed as follows. First, using the parameter estimates for Model A.3, we simulate a large

number of cases through t = 9. Then we impose the shock indicated in the �gures in period 10.

After that, we continue the simulation in accordance with the model parameters. The �gures show

the mean paths of wages, hours and earnings relative to the base case. The base case represents

the mean of the simulated paths in the absence of the speci�ed intervention in period 10.39

Since wages and hours are re�ected in earnings with coe¢ cients of 1, we focus on earnings to

save space. The diamond line in Figure 5a reports the response of the mean of earnit to a one

standard deviation shock to "!it, the error term in the autoregressive component of wages. Earnings

rise by about .088, and the e¤ect slowly decays, governed by the value .92 for �!w. The pattern

for earnings closely mirrors the response to wages because the coe¢ cient on the wage is 1 and the

response of hours to the wage is small.

The line with circles shows the e¤ect of becoming unemployed when t = 10: The pattern is very

interesting. The log of earnings drops by about -.62, recovers by more than two thirds after one

year, and then slowly returns to the base case. The initial drop is the combination of a drop of

about -.38 in log hours and a drop of about -.25 in the wage. Hours recover almost completely

after one period. The wage increases by about .08 in the �rst year and recovers slowly after that.

The drop in wages is due to three main factors. First, the distributed lag coe¢ cients on un-

employment in the wage equation and �̂! indicate that unemployment reduces !it by -.190 (0.010)

followed by an increase a year later of .104 (0.013) plus .190*(1-.92) if the person leaves unemploy-

ment. After that, the response of !it to unemployment is governed by �̂!. Second, the loss of

tenure lowers the wage by an average of .064 relative to the baseline average for persons at t = 10:

Third, since there is no selectivity in the job change induced by the unemployment spell, on average

workers su¤er a decline in �ij(t) equal to (1� ��)E(�ij(t)jt = 10); or .027. On average, endogenous
mobility following the unemployment spell leads �ij(t) to back up toward the base case mean for a

given value of t:

The pattern of a long-lasting impact of unemployment on earnings is broadly consistent with a

391.984 standard error bands were obtained by computing impulse responses using each of the 300 values of the
model parameters obtained by parametric bootstrap (100 values in the case of B.1). The bands are quite narrow,
and we omit them to avoid cluttering the �gures. They are available upon request.
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number of previous studies, including Jacobson, Lalonde, and Sullivan (1993), who use establish-

ment earnings records. Using the PSID and a �xed e¤ects strategy, Stevens (1997) �nds a 30%

drop in earnings and a 14% drop in wages in the year of a layo¤. Earnings recover substantially

in the �rst year, but wages recover very slowly. Her estimate of the initial earnings loss is smaller

than ours, perhaps because those who are laid o¤ do not necessarily become unemployed, and those

who are unemployed at the survey date tend to be in a long spell. Our model and the PSID data

permit us to examine e¤ects that operate through wages and hours separately, as well as to identify

the speci�c channels of in�uence.40

Finally, the �gures report the response of wages, hours, and earnings to an exogenous job

change. In this case, JCit is set equal to one in period 10 for individuals with Et = Et�1 = 1

which one should think of as resulting from a large positive realization of the iid component "JCit
that negatively a¤ects the relative attractiveness of the current job rather than from a large draw

of �0ij0(t). The line marked with "x" shows the average response. The negative e¤ect on earnings

re�ects the value of lost tenure (.063). Since the job change is not selective on �ij, �ij(t) declines

by (1� ��)E(�ij(t)jt = 10) or .027. The line with triangles is the e¤ect of an exogenous job change
that is accompanied by a value of "�ij(t) that is one standard deviation above its mean, or .269. The

net positive e¤ect is large and highly persistent. These results are mirrored in wages (Figure 5b).

In addition, we show the e¤ect of an exogenous job change that is accompanied by a 1 standard

deviation increase of .157 in the job speci�c hours component �ij(t). This is associated with a

positive increase in hours worked and in earnings that decays in half in the �rst few years but

slowly thereafter. Since �ij(t) is independent across jobs, the persistence stems from the fact that

when t is greater than 10, job changes with or without unemployment are infrequent.41

We also use the model to estimate the e¤ects of an exogenous job loss and an exogenous job

change on earnings risk using the methodology described above. The circle line in Figure 6a graphs

the ratio of var(earnit � earni;t�1) following an exogenous unemployment shock when t = 10 to

the baseline variance for the model. The variance ratio is slightly below 1 when t = 10, it is 1.46

when t = 11; declines to 1.17 when t = 12; and then slowly declines to 1 over the next ten years.

The corresponding ratio for var(earnit) is about .83 when t = 10; presumably because di¤erences

40Kletzer (1998) surveys the literature on job loss and wages. A number of studies examine how employer and
industry tenure a¤ects the size of the loss. When the problem of unobserved worker heterogeneity (but not job
heterogeneity) is addressed there appear to be modest tenure e¤ects of the loss that are consistent with Altonji and
William�s (2005) estimates used here. Neal (1995), Carrington (1993) and Parent (2000) argue that industry tenure
is more important than �rm tenure. Kambourov and Manovskii (2009) argue that occupational tenure is more
important than �rm or industry tenure. As we noted earlier, one could extend the model we consider to include
industry and occupation transition equations, but leave this to future research.
41We also computed, but do not report, the e¤ects of shocks that occur when t = 3. The immediate e¤ect of

unemployment on earnings and wages is somewhat smaller than when t = 10 because the decline in tenure and in
� is smaller. The e¤ects are also less persistent. Job changes accompanied by shocks to � and to � also have less
persistent e¤ects.
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in wages matter less when everyone is unemployed, 1.08 when t = 11, and then slowly declines

to about 1.03. The exogenous job change induces a big spike in the ratio var(earnit � earni;t�1)
when t = 10. The corresponding ratio for var(earnit) rises slowly following the shock, presumably

because in some cases the exogenous job change induces additional ones. We have produced

corresponding �gures for shocks at t = 3 (not shown). The impact on the variance is somewhat

smaller and less persistent.

5.5 Variance Decompositions

We have used our model to measure the relative importance of the initial condition and shocks to

the autoregressive wage component, the iid hours shocks, the iid earnings shocks, job changes and

employment spells and the associated shocks, the permanent heterogeneity components � and �,

and the e¤ects of education and race. However, because the sample overrepresents blacks, we report

variance decompositions using the white sample. To do this, we �rst compute the variance in the

sum of the annual values of earnit, wageit, and hoursit over a 40 year career. We then repeat the

simulation after setting the variance of the particular random component in the model to 0. We

use the drop in the variance relative to the base case as the estimated contribution of the particular

type of shock. Since the model is nonlinear, the contributions do not sum to 100% and may be

negative. We have normalized them to sum to 100. We report results for the levels of variables,

accounting for the experience pro�le in all variables. The decompositions of the sums of the annual

values of logs of earnings, hours, and wages are similar (not reported). We use the parametric

bootstrap distribution of the �̂ to estimate the standard deviation of variance contributions, which

are reported in parentheses. We continue to focus on Model A.3, but also brie�y discuss results

for Model A.2 and B.1.

The results for Model A.3 are in Table 4a. The �rst row refers to the sum of lifetime earnings.

The earnings shocks "eit account for 6.6% of the variance in lifetime earnings even though they

account for about 17% of var(earnit) in a given year (Table 4b). The reason for the relatively

small contribution is that the shocks are not very persistent. Similarly, the value in column II

indicates that iid hours shocks "hit contribute only 2.4% of the variance in lifetime earnings but

account for between 7.7% and 9.3% in annual earnings (Table 4b). One can easily self-insure

against these shock categories. In contrast, in column III, the initial condition "!i1 and the iid

shocks to !it are together responsible for 12.4% of the variance in lifetime earnings. The earnings

results re�ect the fact that these shocks account for 20.6% of the variance in lifetime wages. They

contribute little to the variance in hours because the response of hours to wages is small.

The most striking result is in Column IV, which shows the collective impact of job speci�c hours

and wage components, unemployment spells, and job changes. Altogether, mobility and unem-
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ployment related shocks account for 36.7%, 48.2%, and 46.8% of the variance in lifetime earnings,

wages, and hours, respectively. Given the interactions among the job change and employment

related factors, we break down their relative contributions by �rst turning o¤ the job speci�c hours

shocks, then turning o¤ both hours and job speci�c wage shocks, then turning o¤ hours, wage, and

unemployment shocks, and �nally turning o¤hours, wage, and unemployment and the idiosyncratic

job change shocks ("JCit ). The estimates are reported in columns VIII, IX, X, and XI. For earnings,

job speci�c wage shocks are more important than hours shocks. Job speci�c wage shocks dominate

for wages, while job speci�c hours shocks dominate for hours.42

Finally, we turn to the three permanent heterogeneity components for whites: �, �, and EDUC.

Surprisingly, the estimates in column V indicate that the mobility preference component � does not

play much of a role. The point estimate is actually negative. However, � accounts for 11.4%

of the variance in lifetime earnings and 46.2% of the variance in work hours but explains none of

the variance in wages.43 The positive direct e¤ect that � has on the wage variance is o¤set by

its role in reducing transitions into unemployment and job changes. Education is very important,

contributing 31.4% of the variance in lifetime earnings and 34.6% of the variance in lifetime wages

but only 4.9% of the variance in lifetime hours.

The results for Model A2 (not reported) are basically similar to those for Model A3, except

that � plays a somewhat larger role in the variance of earnings and wages. The results for Model

B.1 are in Tables 5a and 5b. Model B.1 does not include job speci�c wage or hours components.

Without these features, the interpretation of the results in terms of underlying economic factors

is less transparent than those for A3. However, job changes with and without unemployment are

associated with reduced persistence and large innovations in !it. This is re�ected in the fact that

the initial condition for !it and the "!it shocks account for 24.6% of the variance in lifetime earnings

and 45.59% of the variance in lifetime wages, respectively. The two unobserved heterogeneity

components � and � together account for about 30% of the earnings variance, 12% of the wage

variance, and 85% of the hours variance. Education is also very important for both wages and

earnings. Education, �, and � are much less important for variance in a given year. Note that

one can use the model to examine the contributions of the shocks between, for instance, t and

t + 5 to the variance in earnings over the same period or subsequent periods, but we exclude such

computations.

42A few of the estimated variances contributions are negative. We have veri�ed that this re�ects nonlinearity in
the model. Variance in one shock can reduce the in�uence of other shocks.
43Note that because the lifetime variance of log hours is lower than the lifetime variance of log wages, the 46.2%

impact of � on work hours translates into only an 11.4% impact on the variance in lifetime earnings.
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6 Results for Other Samples

In this section we brie�y summarize results using the full SRC sample, the SRC sample of whites

with some college or more, and the SRC sample of whites with a high school degree or less and no

post secondary vocational education. We estimate wage, hours, and earnings residuals separately

for each sample, removing the race dummies from the models for whites. We use the tenure pro�le

from Altonji and Williams (2005) for all subsamples. In the case of Model A.3 we continue to use

�! = :92 for the full SRC sample and the SRC sample of whites. For the SRC samples of whites

by educational attainment we use �! = :90 because the evidence based on (17) pointed to a slightly

lower value. Columns 1b and 2b of Table 6 report estimates of Model A.3 and Model B.1 for the

full SRC sample. Because of the computational burden, we have only computed standard errors

for the full SRC sample. For ease of comparison, we report estimates for the combined SRC-SEO

sample in Columns 1a and 2a, which are the same as Columns 3a and 3c of Table 2 .

Overall, the point estimates for the SRC sample are very similar to those for the SRC-SEO

sample. The coe¢ cient on BLACK is smaller in the SRC sample, which may re�ect the fact that

the SEO sample was drawn from households in low income areas. Individual heterogeneity plays a

somewhat more important role in the wage equation.

Figure 7a reports the average response of earnings to shocks at t=10 and may be compared to

Figure 5a for the SRC-SEO sample. The results are very similar to those for the full sample. Panel

A of Table 7 reports variance decompositions of lifetime earnings, wages, and hours. The results

are also quite similar to those for the SRC-SEO sample in Table 4a.

Columns 1d and 1e in Table 6 report model estimates for SRC subsamples of whites with a high

school degree or less and whites with some college or more. (Individuals with a high school degree

and some postsecondary vocational education are excluded from both samples.) For comparison,

we also report estimates for the full SRC sample of whites in column 1c. The point estimates are

quite similar overall. However, a few di¤erences are worth noting. First, mobility is less sensitive

to seniority for the high education sample than for the low education sample. Second, JC is more

responsive to outside o¤ers in the case of the high education sample. Third, unemployment is less

common for the high education sample. These facts are re�ected in the decompositions of the

experience pro�le of wages in Appendix Figures B1 and B2, which show little growth in � with t

for the less educated sample. We also �nd that �! is considerably larger for the high education

sample� .100 versus .075. The standard deviation of the iid component of hours is much larger

for the less educated sample, which probably re�ects greater variation in overtime hours and in

unemployment spells between surveys.

The variance decompositions in Panel B and Panel C of Table 7 indicate that the persistent

productivity component !it is more important for the high education sample than the low education
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sample for wages and earnings. Employment shocks, iid hours shocks, within group heterogeneity

in education, and � are more important for the low education sample. The job speci�c hours

component � is more important for the high education sample.

7 Conclusion

In this paper, we study earnings across individuals and over careers. To this end, we construct a

model of earnings dynamics from equations governing employment transitions, job changes with-

out unemployment, wages, and work hours. Since both state dependence and heterogeneity are

important and one cannot determine the role of one without accounting for the other, our models

incorporate state dependence in employment, job changes, and wages, while also including mul-

tiple sources of unobserved heterogeneity as well as job-speci�c error components in both wages

and hours. These turn out to play an important role in the variance of lifetime earnings. The

equations of our model provide a rich statistical description of the earnings process but can also be

viewed as �rst approximations to the decision rules suggested by structural models of employment

transitions, job search, and labor supply. Our simulation based estimation strategy permits us to

handle a highly unbalanced sample in the context of a model that mixes discrete and continuous

variables and allows for both state dependence and multifactor heterogeneity and for measurement

error. Vidangos (2008) shows the potential for using models of the type we develop by studying

the implications of a related multi-equation model of family income for precautionary behavior and

welfare within the context of a lifecycle consumption model.44

Our results address many important questions concerning wages, hours and earnings over a

career. In keeping with many other studies, we �nd that education, race, and unobserved perma-

nent heterogeneity all play an important role in employment transitions and job changes and that

labor supply of male household heads is inelastic. By accounting for both unobserved individual

heterogeneity and job speci�c heterogeneity, we are able to show that a substantial portion of the

strong negative relationship between job seniority and job mobility found in many previous studies

is causal. Job changes are induced by high outside o¤ers and deterred by the job speci�c wage

component of the current job. Job o¤ers are strongly positively related to the job speci�c compo-

nent on the current job, in contrast to the usual assumption in the search literature that o¤ers are

drawn at random. We discuss a number of possible explanations in the text.

Overall, wages are highly persistent but do not contain a random walk component. The persis-

44He allows for additional sources of variation in family income such as health and disability shocks. The con-
sumption model is used to quantify the welfare e¤ects of uncertainty generated by each source of variation and to
measure the contribution of each source to the accumulation of precautionary savings. Perhaps surprisingly, he �nds
that for plausible values of the coe¢ cient of relative risk aversion, consumers would be willing to give up only a small
percentage of consumption to eliminate risks. Low et al�s (2008) estimates of the value of insurance are larger.

37



tence results from permanent heterogeneity, the job speci�c wage component, and strong persistence

in the stochastic component that re�ects the value of the worker�s general skills.

We also contribute to the displaced workers literature by providing a full decomposition of

earnings losses from unemployment. We �nd that short-term earnings losses from unemployment

are dominated by hours and the long-term costs are dominated by wages, with lost tenure, movement

to a lower paying job, and a drop in the autoregressive skill component all playing a role. We �nd

general human capital accumulation is the dominant source of wage growth over a career, although

job tenure and job mobility both play signi�cant roles.

Finally, job mobility and unemployment play a key role in the variance of career earnings. They

operate primarily by leading to large changes in job speci�c components of wages and hours rather

than through their direct e¤ects on wages and hours. For whites in our full sample, job speci�c

hours and wage components, unemployment shocks, and job shocks together account for 36.7%,

48.2%, and 46.8% of the variance in lifetime earnings, wages, and hours, respectively. Job speci�c

wage shocks are more important than job speci�c hours shocks for earnings. Job speci�c wage

shocks dominate for wages, with employment shocks also playing a substantial role. For hours,

job speci�c hours shocks dominate. Education accounts for about 1/3 of the variance in lifetime

earnings and wages but makes little di¤erence for hours. In our full sample, unobserved permanent

heterogeneity accounts for about 11% of the variance in earnings and about 46% of the variance of

hours but matters little for wages, although this breakdown is somewhat sensitive to the model and

sample used.

There are number of extensions to the model that would be worth exploring. Thus far, we simply

remove year e¤ects from wages, hours, and earnings, but it would be natural to add aggregate shocks

to the model. It would also be natural to extend the model to explore changes in the stability

of earnings, building on work by Gottschalk and Mo¢ tt (1994, 2008), Haider (2001), Shin and

Solon (2008) and others. This would require a very di¤erent auxiliary model. With matched

employer-employee data such as those used by Abowd et al (1999) and Bagger et al (2007), one

could distinguish �rm speci�c risk associated with observed as well as unobserved variables from

job match speci�c risk. A much more ambitious extension would be to construct a model of the

household income of an individual that incorporates marriage, divorce, and death of a spouse. This

will be pursued in separate work.

Given the large number of issues that the paper already addresses, we do not attempt the

formidable task of seeking to identify how much of the stochastic variation in earnings that we

analyze is anticipated by agents, how far in advance they anticipate it, or how much is insured.

Adding a family income model (with private and public transfers) as in Vidangos (2008) gets

partially at the question of insurance. Dealing with expectations is more di¢ cult. One needs
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either data on expectations or an expanded model that incorporates decisions that depend on

and/or reveal the information set of the agent, such as consumption choices. Work by Blundell and

Preston (1998), Blundell, Pistaferri, and Preston (2008), Cunha, Heckman, and Navarro (2005),

Cunha and Heckman (2006), and Guvenen and Smith (2008) illustrate the latter approach.
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9 Appendix 1: AMoment Condition for �1 and �2 in Model
B

Recall that the autoregressive wage component in equation (14) is:

!
it
= �![1 + �1Sit]!i;t�1 + 

!
JCJCit + 

!
1�Et(1� Eit) + 

!
1�Et�1(1� Eit�1)

+[1 + �2Sit]"
!
it

Using the equation for the observed wage wage�it, de�ne

~wage�
it
� [wage�it � w0 � wXXit � [!JCJCit + !1�Et(1� Eit) + 

!
1�Et�1(1� Eit�1))]

= wres�it � [!JCJCit + !1�Et(1� Eit) + 
!
1�Et�1(1� Eit�1))]

= !
it
� (!JCJCit + !1�Et(1� Eit) + 

!
1�Et�1(1� Eit�1)) + �

!
��i +m

w
it:

Using the above equations, :

~wage�
it
� �!(1 + �1Sit) ~wage�it�1

= �!�(1� �!(1 + �1Sit))�i + (1 + �2Sit)"!it +mw
it � �!(1 + �1Sit)mw

i;t�1:(19)

Let Zit =[wres�it; JCit; (1 � Eit); (1 � Eit�1))] and 	 = [1;�!JC ;�!1�Et ;�!1�Et�1 ]. One may

rewrite the above equation as

[	0;��!	0;��!�1	0][Z 0it; Z 0it�1; SitZ 0it�1]0(20)

= �!�(1� �!(1 + �1Sit))�i + (1 + �2Sit)"!it +mw
it � �!(1 + �1Sit)mw

i;t�1

Denote the left-hand side of (20) by L(�!; �1;	; Data), and the right-hand side by

R(�!�; �!; �1; �2; �!; �mw).

Now, consider the following variances of R(�!�; �!; �1; �2; �!; �mw) conditional on Sit:

V R1 � V ar[R(:)jSit = 1] = [�!�(1��!(1+�1))]2var(�ijSit = 1)+(1+�2)2�2!+�2mw+�2!(1+�1)2�2mw

and

V R0 � V ar[R(:)jSit = 0] = (�!�(1� �!))2var(�ijSit = 0) + �2! + �2mw + �2!�2mw .

Assuming that [var(�ijSit = 1)� var(�ijSit = 0)] is small, the di¤erence is:
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DR(�!; �1; �2; �!; �mw) � V R1 � V R0 ' [2�1�!(�! � 1) + �2!�21)](�!�)2�2�(21)

+[(1 + �2)
2 � 1]�2! + �2![(1 + �1)2 � 1]�2mw:

The corresponding conditional variances of L(�!; �1;	; Data) are

V L1 � [	0;��!	0;��!�1	0]V ar([[Z 0it; Z 0it�1; SitZ 0it�1]0jSit = 1][	0;��!	0;��!�1	0]0

and

V L0 � [	0;��!	0;��!�1	0]V ar([[Z 0it; Z 0it�1; SitZ 0it�1]0jSit = 0][	0;��!	0;��!�1	0]0

Note that wres�it is not observed when Eit = 0 and wres
�
it�1 is not observed when Eit�1 = 0: Con-

sequently, the elements of V ar([[Z 0it; Z
0
it�1; SitZ

0
it�1]

0jSit = 1]) and V ar([[Z 0it; Z 0it�1; SitZ 0it�1]0jSit = 0])
that involve Eit and Eit�1 are 0. We are assuming that selection on Eit and Eit�1 does not a¤ect

the variance of �i very much.

Let DL(�!; �1;	; DATA) � V L1 � V L0 : At each stage of iteration, given estimates b�!; b�1; 	̂, and
the moments from the PSID data, we compute bDL = DL(b�!; b�1; 	̂; DATA). We set bDL equal to

the expression for DR(�!; �1; �2; �!; �mw; ��; �
!
�) in (21), evaluated at b�!; b�1; b�!; b�mw, and solve for

�̂2.

This yields:

(22) b�2(b�!; b�1; 	̂; b�!; b�mw; �̂�; �̂!�) =
s bDL � b�2!b�2mwb�1(b�1 + 2)� b�!b�1[b�!b�1 � 2(1� b�!)](�̂!�)2�̂2�b�2!

One can see that b�2 is increasing in bDL:

10 Appendix 2: Decomposing Career Wage Growth into
the E¤ects of General Human Capital, Tenure, and Job
Shopping

The experience pro�le of wages E(wageitjt) is the sum of the e¤ect of general human capital accu-

mulation, the accumulation of job tenure and the gains from job shopping. That is,

E(wageitjt) = hc(t) + wTENE(P (TENit)jt) + E(vij(t)jt)

where , hc(t); is the value of general human capital, wTENE(P (TEN it)jt) is the expected value of
the terms of the tenure polynomial, and E(vij(t)jt) is the expected value of the job match component.
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We approximate E(wageitjt) using a cubic polynomial in t and obtain estimates from the regression
of wage�it on a cubic in t, education, race, and a set of year dummies. The coe¢ cients of the

experience polynomial are reported in Table 2. Note that in the estimation of Model A.3 but

not the other models, we account for the fact that wTENE(P (TEN it)jt) + E(vij(t)jt) is removed
from the PSID wage residuals that are used with our I-I estimator by adding a quadratic in t to

the wage equation. This polynomial is a quadratic approximation to �[wTENE(P (TEN it)jt) +
E(vij(t)jt)]:Failure to include t and t2 when estimating the other model parameters is likely to bias
the parameters involving the job match coe¢ cient.

We simulate data from the model to compute the values of E(�ij(t)jt) and ̂wTENE(P (TEN it)jt),
where ̂wTEN is taken from Altonji and Williams (2005). In �gure 1 we graph

E(wageitjt); hc(t); wTENE(P (TENit)jt) and E(�ij(t)jt):

As one can see, most of the return to potential experience is due to general skill accumulation or

the e¤ect of age. Job shopping and the accumulation of tenure account for 14.6 percent and 13.5

percent, respectively, of the overall growth of wages over the �rst ten years. They account for 12.1

percent and 15.8 percent of growth over the �rst 35 years. In thinking about this, one should keep

in mind that job losses counter the e¤ects of selective mobility on growth in E(�ij(t)jt). The fact

that we exclude the �rst three years of labor market experience in the I-I estimator and miss job

changes probably leads to an understatement of the return to job shopping.
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Table 1a
Descriptive Statistics - PSID Sample

Variable Obs. Mean StDev Min Max

Et 33,933 0.97 0.18 0 1
Et | Et-1 = 1 32,868 0.98 0.15 0 1
Et | Et-1 = 0 1,065 0.71 0.45 0 1
JCt 33,933 0.08 0.28 0 1
EDt 33,933 11.58 7.45 0 42.25
UDt 33,933 0.05 0.31 0 8
TENt 33,933 9.34 7.81 0 42.25
wage*t 32,889 2.73 0.49 1.25 4.98
hours*t 33,933 7.73 0.29 5.30 8.34
earn*t 33,933 3.53 0.67 -5.19 6.49
wt

(a) 32,828 0.03 0.39 -2.00 2.22
ht

(a) 33,933 0.04 0.28 -2.51 0.87
et

(a) 33,933 0.06 0.57 -8.91 2.44

Table 1b
Additional Descriptive Statistics - PSID sample

Variable Obs. Mean StDev Min Max

Potential Experience 33,933 19.34 8.80 4 40
Education (years) 33,933 12.94 2.38 6 17
Black 33,933 0.29 0.45 0 1
Calendar Year 33,933 1987.5 5.25 1978 1996
The table presents descriptive statistics for additional variables describing the 
PSID sample. Lead values are excluded. 

(a) Variable is the residual from a 1-st stage least-squares regression against 
race, years of education, a cubic in potential experience, and year indicators.

The table presents descriptive statistics for variables used in the structural and 
auxiliary models. All variables are constructed from the PSID. Lead values are 
excluded for sample statistics. 



Table 2
Point Estimates - Various Specifications

Column 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c

Equation / Variable Parameter Point Est. MC Mean S.E. Point Est. MC Mean S.E. Point Est. MC Mean S.E. Point Est. MC Mean S.E.

E-E Equation
(cons) γEE

0 0.9360 0.6855 (0.1878) 0.9366 0.6624 (0.2186) 1.0141 0.7833 (0.1853) 1.0309 0.8374 (0.1359)
(ti-1)/10 γEE

t -0.6208 -0.3675 (0.1453) -0.8330 -0.5520 (0.1639) -0.3707 -0.1664 (0.0976) -0.5654 -0.3432 (0.1225)

(ti-1)2/100 γEE
t2 0.2242 0.1590 (0.0408) 0.2714 0.1963 (0.0414) 0.1465 0.0927 (0.0231) 0.1908 0.1289 (0.0342)

(EDt-1) γEE
ED 0.0211 0.0186 (0.0217) 0.0298 0.0310 (0.0246) 0.0440 0.0439 (0.0176) 0.0711 0.0740 (0.0086)

BLACK γEE
BLACK -0.2910 -0.2670 (0.0529) -0.3047 -0.2671 (0.0646) -0.3608 -0.3261 (0.0571) -0.3117 -0.2724 (0.0429)

EDUC γEE
EDUC 0.1096 0.1063 (0.0190) 0.1264 0.1186 (0.0246) 0.0801 0.0758 (0.0159) 0.0694 0.0621 (0.0102)

(wage't) γEE
w' -0.2169 -0.1877 (0.0941) -0.0582 -0.0217 (0.0763)

(μ) δEE
μ 0.4574 0.4275 (0.0678) 0.5833 0.5117 (0.1049) 0.4426 0.3921 (0.0936) 0.3427 0.3076 (0.0333)

(η) δEE
η 0.1949 0.1809 (0.0930) 0.1102 0.1140 (0.1062) -0.2370 -0.1868 (0.1070) 0.1005 0.0750 (0.0366)

U-E Equation
(cons) γUE

0 -0.0264 -1.0104 (0.8326) -0.6039 -1.4430 (0.7368) 0.0771 -0.9389 (0.8416) -0.1514 -0.9070 (0.7311)
(ti-1)/10 γUE

t -0.8677 -0.5467 (0.4987) -0.0218 0.0824 (0.4277) -1.0505 -0.5641 (0.4892) -0.5021 -0.2730 (0.3896)

(ti-1)2/100 γUE
t2 0.2608 0.2115 (0.1350) 0.0699 0.0702 (0.1195) 0.3330 0.2339 (0.1358) 0.1696 0.1322 (0.1040)

BLACK γUE
BLACK -0.5375 -0.4685 (0.1212) -0.6158 -0.5488 (0.1493) -0.4860 -0.4123 (0.1325) -0.4810 -0.4424 (0.1253)

EDUC γUE
EDUC 0.1798 0.2132 (0.0503) 0.1600 0.1985 (0.0619) 0.1742 0.2009 (0.0537) 0.1510 0.1746 (0.0490)

(μ) δUE
μ 0.2570 0.2548 (0.1696) 0.2118 0.1879 (0.1546) 0.6372 0.5434 (0.1281) 0.2276 0.2053 (0.1591)

(η) δUE
η 0.5789 0.4650 (0.1233) 0.6204 0.4967 (0.1140) 0.2218 0.1257 (0.1873) 0.5889 0.4830 (0.0943)

JC Equation
(cons) γJC

0 -0.3114 -0.2486 (0.1523) -0.3781 -0.3414 (0.1429) -0.6264 -0.5177 (0.1628) -0.5048 -0.4706 (0.1725)
(ti-1)/10 γJC

t -0.2132 -0.2615 (0.1116) 0.0018 -0.0775 (0.1261) -0.0983 -0.2112 (0.1062) -0.2125 -0.3026 (0.1579)

(ti-1)2/100 γJC
t2 -0.0134 0.0049 (0.0271) -0.0637 -0.0368 (0.0316) -0.0455 -0.0113 (0.0247) -0.0137 0.0144 (0.0388)

(TENt-1) γJC
TEN -0.0786 -0.0705 (0.0149) -0.1138 -0.1065 (0.0159) -0.0673 -0.0544 (0.0156) -0.0767 -0.0612 (0.0166)

BLACK γJC
BLACK 0.0885 0.0924 (0.0390) 0.0538 0.0629 (0.0333) 0.1658 0.1839 (0.0554) 0.1033 0.1165 (0.0407)

EDUC γJC
EDUC -0.0325 -0.0328 (0.0104) -0.0222 -0.0206 (0.0087) -0.0184 -0.0205 (0.0108) -0.0189 -0.0174 (0.0102)

(υt-1) δJC
υ-1 -0.5082 -0.4801 (0.0697) -0.9230 -0.9187 (0.1274)

(υt) δJC
υ 0.2101 0.2333 (0.0659) 0.5936 0.6155 (0.1410)

(μ) δJC
μ -0.5491 -0.5357 (0.0651) -0.3522 -0.3503 (0.0681) -0.2796 -0.2935 (0.1362) -0.5449 -0.5587 (0.0707)

(η) δJC
η 0.0650 0.0827 (0.0890) 0.1446 0.1414 (0.0845) 0.5308 0.5209 (0.0995) 0.1270 0.1409 (0.0692)

(i) Estimate obtained in first-stage least-squares regression.
(ii) Estimate obtained using additional moment conditions. See discussion in Section 4.
(iii) Imposed.

The table presents estimates and standard errors for models A.1, A.2, A.3, and B.1. Estimates were obtained by Indirect Inference, unless indicated otherwise. Parametric bootstrap standard errors are in parentheses. 
Bootstraps are based on 100 replications, except for model A.3 which uses 300 replications.

Model A.1 Model A.2 Model A.3 Model B.1



Table 2 (cont.)
Point Estimates - Various Specifications

Column 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c

Equation / Variable Parameter Point Est. MC Mean S.E. Point Est. MC Mean S.E. Point Est. MC Mean S.E. Point Est. MC Mean S.E.

Wage Equation
BLACK γw

BLACK (i) -0.2048 (0.0038) -0.2048 (0.0038) -0.2048 (0.0038) -0.2048 (0.0038)
EDUC γw

EDUC (i) 0.1049 (0.0008) 0.1049 (0.0008) 0.1049 (0.0008) 0.1049 (0.0008)
Tenure polynomial no no yes no
(ti-1)/10 (*) γw

t 
(i) 0.7514 (0.0211) 0.7514 (0.0211) 0.7514 (0.0211) 0.7514 (0.0211)

(ti-1)2/100 γw
t2 

(i) -0.2430 (0.0118) -0.2430 (0.0118) -0.2430 (0.0118) -0.2430 (0.0118)
(ti-1)3/1000 γw

t3 
(i) 0.0278 (0.0019) 0.0278 (0.0019) 0.0278 (0.0019) 0.0278 (0.0019)

(μ) δw
μ 0.1264 0.1297 (0.0124) 0.0633 0.0653 (0.0218) 0.0490 0.0477 (0.0278) 0.1505 0.1512 (0.0118)

(JCt) γυ0 0.0420 0.0442 (0.0074) 0.0355 0.0359 (0.0068)
(υt-1) ρυ 0.5651 0.5867 (0.0215) 0.5962 0.6142 (0.0227) 0.6252 0.6399 (0.0224)
(ευ) συ 0.2656 0.2765 (0.0064) 0.2710 0.2820 (0.0063) 0.2686 0.2775 (0.0070)
(ευ1) συ1 0.1443 0.1528 (0.0315) 0.1833 0.1943 (0.0162) 0.1967 0.2103 (0.0205)
(ωt-1) ρω 0.9200 (ii) 0.9200 (ii) 0.9200 (ii) 0.9577 0.9603 (0.0027)
(ωt-1) φ1 -0.2379 -0.2339 (0.0115)
(1-Et) γω1-Et -0.2016 -0.2016 (0.0100) -0.2317 -0.2298 (0.0104) -0.1895 -0.1877 (0.0102) -0.1858 -0.1866 (0.0099)
(1-Et-1) γω1-Et-1 0.0978 0.0997 (0.0121) 0.1010 0.1017 (0.0121) 0.1041 0.1052 (0.0132) 0.0626 0.0630 (0.0110)
(εω) σω 0.0954 0.0916 (0.0026) 0.0929 0.0891 (0.0025) 0.0950 0.0922 (0.0029) 0.0934 0.0904 (0.0017)
(εω) φ2 2.1000 2.1969 (0.0553)
(εω1)  (Black, Low Educ) σω1 

(ii) 0.2572 0.2477 (0.0177) 0.2557 0.2450 (0.0142) 0.2488 0.2343 (0.0195) 0.2834 0.2827 (0.0063)
(εω1)  (Black, High Educ) σω1 

(ii) 0.2836 0.2751 (0.0159) 0.2822 0.2727 (0.0127) 0.2760 0.2632 (0.0171) 0.3076 0.3070 (0.0058)
(εω1)  (White, Low Educ) σω1 

(ii) 0.2563 0.2467 (0.0178) 0.2547 0.2440 (0.0142) 0.2478 0.2333 (0.0196) 0.2826 0.2819 (0.0063)
(εω1)  (White, High Educ) σω1 

(ii) 0.3133 0.3057 (0.0142) 0.3120 0.3034 (0.0114) 0.3064 0.2950 (0.0152) 0.3351 0.3345 (0.0053)

Hours Equation
(cons) γh

0 -0.3630 -0.3737 (0.0084) -0.3609 -0.3710 (0.0081) -0.3632 -0.3747 (0.0076) -0.3633 -0.3745 (0.0081)
BLACK γh

BLACK (i) -0.1055 (0.0043) -0.1055 (0.0043) -0.1055 (0.0043) -0.1055 (0.0043)
EDUC γh

EDUC (i) 0.0178 (0.0007) 0.0178 (0.0007) 0.0178 (0.0007) 0.0178 (0.0007)
(Et) γh

E 0.4104 0.4114 (0.0082) 0.4110 0.4122 (0.0070) 0.4129 0.4142 (0.0075) 0.4157 0.4168 (0.0074)
σξ 0.1631 0.1802 (0.0143) 0.1611 0.1762 (0.0131) 0.1574 0.1726 (0.0136)

(wt) γh
w -0.0680 -0.0681 (0.0128) -0.0698 -0.0682 (0.0139) -0.0692 -0.0670 (0.0148) -0.0929 -0.0921 (0.0148)

(μ) δh
μ 0.0707 0.0714 (0.0170) 0.0894 0.0846 (0.0188) 0.1248 0.1204 (0.0135) 0.0929 0.0935 (0.0188)

(η) δh
η 0.0991 0.0953 (0.0198) 0.0848 0.0888 (0.0224) 0.0145 0.0200 (0.0304) 0.1545 0.1539 (0.0102)

(εh) σh 0.1676 0.1654 (0.0026) 0.1679 0.1659 (0.0024) 0.1686 0.1667 (0.0023) 0.1800 0.1802 (0.0009)

Earnings Equation
(cons) γe

0 -0.0043 -0.0059 (0.0026) -0.0047 -0.0061 (0.0026) -0.0061 -0.0071 (0.0024) -0.0044 -0.0060 (0.0022)
(wt) γe

w (iii) 1.0000 1.0000 1.0000 1.0000
(ht) γe

h 
(iii) 1.0000 1.0000 1.0000 1.0000

ρe 0.5510 0.5508 (0.0084) 0.5498 0.5506 (0.0073) 0.5527 0.5528 (0.0068) 0.5481 0.5476 (0.0072)
(εe) σe 0.2110 0.2108 (0.0015) 0.2105 0.2103 (0.0015) 0.2109 0.2107 (0.0016) 0.2109 0.2106 (0.0014)

(i) Estimate obtained in first-stage least-squares regression.
(ii) Estimate obtained using additional moment conditions. See discussion in Section 4.
(iii) Imposed.

(*) The potential-experience profile estimated in the first-stage regression reflects the effects of general human capital accumulation, job tenure accumulation, and job shopping.  Since the effects of job shopping are 
endogenously accounted for in model A.3, by the inclusion of a job-specific wage component that affects job mobility, model A.3 includes a "correction term" in the wage model, estimated by indirect inference. The 
correction term is a quadratic in potential experience. The estimated correction term is: -0.0343 - 0.0753*(ti-1)/10 + 0.0072*(ti-1)2/100, with corresponding standard errors (0.0340), (0.0344), and (0.0075).

The table presents estimates and standard errors for models A.1, A.2, A.3, and B.1. Estimates were obtained by Indirect Inference, unless indicated otherwise. Parametric bootstrap standard errors are in parentheses. 
Bootstraps are based on 100 replications, except for model A.3 which uses 300 replications.

Model A.1 Model A.2 Model A.3 Model B.1



Table 3a
Regressions Comparing PSID Sample and Data Simulated from Models A.3 and B.1
Employment and Job Change Regressions

1a  (1) 2a (2) 3a (3) 1b  (1) 2b (2) 3b (3) 1c  (1) 2c (2) 3c (3) 

Variable Et Et JCt Et Et JCt Et Et JCt

PEt-1 /10 -0.0069 0.1446 -0.0702 -0.0348 -0.2304 -0.0420 -0.0415 -0.1189 -0.0541
(0.0050) (0.0901) (0.0090) (0.0010) (0.0154) (0.0018) (0.0010) (0.0156) (0.0018)

PE2
t-1 /100 -0.0003 -0.0319 0.0169 0.0052 0.0632 0.0107 0.0070 0.0296 0.0135

(0.0011) (0.0217) (0.0020) (0.0002) (0.0038) (0.0004) (0.0002) (0.0039) (0.0004)
EDt-1 0.0025 0.0031 0.0030

(0.0002) (0.0000) (0.0000)
UDt-1 -0.1071 -0.0559 -0.0498

(0.0181) (0.0011) (0.0011)
TENt-1 /10 -0.0803 -0.0912 -0.0922

(0.0026) (0.0004) (0.0004)
Constant 0.9638 0.7453 0.2173 0.9691 0.9647 0.2159 0.9759 0.8808 0.2266

(0.0047) (0.0866) (0.0086) (0.0010) (0.0142) (0.0017) (0.0010) (0.0145) (0.0017)

Observations 27651 708 27055 816079 34691 793445 816281 34489 793549
R-squared 0.01 0.05 0.05 0.02 0.08 0.07 0.02 0.06 0.07
RMSE 0.14 0.44 0.26 0.16 0.45 0.28 0.16 0.45 0.28

Table 3b  
Regressions Comparing PSID Sample and Data Simulated from Models A.3 and B.1 - Wage Regressions

1a 2a 3a 4a 1b 2b 3b 4b 1c 2c 3c 4c

Variable wt wt wt wt wt wt wt wt wt wt wt wt 

wt-1 0.8850 0.6173 0.6142 0.9051 0.7261 0.7256 0.9010 0.7240 0.7244
(0.0029) (0.0063) (0.0063) (0.0005) (0.0012) (0.0012) (0.0005) (0.0012) (0.0012)

wt-2 0.3164 0.3172 0.1984 0.1979 0.1964 0.1973
(0.0063) (0.0063) (0.0012) (0.0012) (0.0012) (0.0012)

JCt -0.0389 -0.0129 0.0185
(0.0044) (0.0007) (0.0007)

PEt-1 /10 (0.2209) (0.1395) (0.1002)
(0.0378) (0.0074) (0.0072)

PE2
t-1 /100 0.0615 0.0456 0.0179

(0.0188) (0.0037) (0.0036)
PE3

t-1 /1000 (0.0074) (0.0061) (0.0028)
(0.0028) (0.0006) (0.0005)

TENt-1 /10 0.3944 0.4107 0.2519
(0.0175) (0.0029) (0.0028)

TEN2
t-1 /100 (0.1600) (0.2207) (0.0882)

(0.0138) (0.0023) (0.0022)
TEN3

t-1 /100 0.0249 0.0342 0.0136
(0.0029) (0.0005) (0.0005)

Constant 0.0132 0.0147 0.0175 0.0591 0.0058 0.0059 0.0070 -0.0010 0.0043 0.0041 0.0025 0.0200
(0.0011) (0.0011) (0.0012) (0.0223) (0.0002) (0.0002) (0.0002) (0.0044) (0.0002) (0.0002) (0.0002) (0.0043)

Observations 27055 22587 22587 32828 793445 652618 652618 976539 793549 652765 652765 976949
R-squared 0.77 0.8 0.8 0.07 0.83 0.84 0.84 0.04 0.82 0.83 0.83 0.05
RMSE 0.18 0.17 0.17 0.37 0.17 0.16 0.16 0.4 0.17 0.16 0.16 0.39

PSID Model A.3 Model B.1

The table presents least-squares regression results comparing PSID data and data simulated from estimated models A.3 and B.1. Regressions on 
simulated data are based on a simulated sample which is 30 times as large as the PSID sample, but has the same demographic structure (by potential 
experience) as the PSID sample. Standard errors are in parentheses.

Model B.1

The table presents least-squares regression results comparing PSID data and data simulated from estimated models 
A.3 and B.1.  Regressions on simulated data are based on a simulated sample which is 30 times as large as the PSID 
sample, but has the same demographic structure (by potential experience) as the PSID sample.  Standard errors are in 
parentheses.  
(1) Sample restricted to observations where Et-1=1.
(2) Sample restricted to observations where Et-1=0.
(3) Sample restricted to observations where Et=1 and Et-1=1.

PSID Model A.3



Table 3c
Regressions Comparing PSID Sample and Data Simulated 
from Models A.3 and B.1 - Hours Regressions

PSID Model A.3 Model B.1

1a 1b 1c

Variable ht ht ht 

PEt-1 /10 -0.0081 0.0084 0.0069
(0.0086) (0.0018) (0.0018)

PE2
t-1 /100 0.0006 -0.0021 -0.0019

(0.0018) (0.0004) (0.0004)
ht-1 0.3697 0.3236 0.2758  

(0.0067) (0.0011) (0.0011)
ht-2 0.1826 0.2741 0.2748

(0.0065) (0.0011) (0.0011)
wt -0.0005 -0.0191 -0.0113

(0.0036) (0.0007) (0.0007)
Constant 0.0368 0.0219 0.0276

(0.0091) (0.0019) (0.0019)

Observations 23322 689672 689749
R-squared 0.23 0.28 0.24
RMSE 0.21 0.24 0.23

Table 3d
Regressions Comparing PSID Sample and Data Simulated from Models A.3 and B.1 -
Earnings Regressions

1a 2a 1b 2b 1c 2c

Variable et et et et et et 

PEt-1 /10 0.0304 -0.0105 -0.0113
(0.0130) (0.0029) (0.0029)

PE2
t-1 /100 -0.0078 0.0023 0.0025

(0.0028) (0.0006) (0.0006)
et-1 0.6873 0.5488 0.5330

(0.0069) (0.0011) (0.0011)
et-2 0.1859 0.2513 0.2684

(0.0070) (0.0011) (0.0011)
wt 0.9232 0.9601 0.9624

(0.0043) (0.0008) (0.0008)
ht 0.7701 0.8757 0.8703

(0.0068) (0.0011) (0.0012)
Constant -0.0214 0.0214 0.0137 0.0007 0.0169 0.0039

(0.0137) (0.0017) (0.0030) (0.0003) (0.0030) (0.0003)

Observations 23915 32828 717450 976539 717450 976949
R-squared 0.65 0.65 0.57 0.69 0.57 0.69
RMSE 0.32 0.3 0.39 0.31 0.38 0.3
The table presents least-squares regression results comparing PSID data and data simulated from estimated models A.3 
and B.1. Regressions on simulated data are based on a simulated sample which is 30 times as large as the PSID sample, 
but has the same demographic structure (by potential experience) as the PSID sample. Standard errors are in 
parentheses.

The table presents least-squares regression results comparing PSID data 
and data simulated from estimated models A.3 and B.1. Regressions on 
simulated data are based on a simulated sample which is 30 times as 
large as the PSID sample, but has the same demographic structure (by 
potential experience) as the PSID sample. Standard errors are in 
parentheses.

PSID Model A.3 Model B.1



Table 4a
Decomposition of Cross-Sectional Variance in Lifetime Earnings, Wage, and Hours - Model A.3.
Shocks turned off one at a time (for all t).

I II III IV V VI VII VIII IX X XI

Variable εe εh εw Composite η μ Educ ξ υ E JC

Lifetime Earnings 6.56 2.35 12.41 36.65 -0.78 11.42 31.38 7.80 27.58 1.71 -0.44

(SE) (0.18) (0.07) (0.93) (2.42) (2.18) (4.04) (0.91) (1.36) (2.29) (0.28) (0.17)

Lifetime Wage 0 0 20.61 48.18 -3.06 -0.29 34.56 0 47.14 1.69 -0.64

(SE) (0.00) (0.00) (1.29) (2.28) (1.32) (2.77) (1.01) (0.00) (2.43) (0.37) (0.28)

Lifetime Hours 0 4.49 0.45 46.81 -2.78 46.17 4.86 42.65 0.61 3.73 -0.18

(SE) (0.00) (0.13) (0.17) (7.48) (4.22) (7.73) (0.42) (7.27) (0.29) (0.46) (0.06)

column XI displays the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment.  Bootstrap 
standard errors are in parentheses.

Column

Shock Breakdown of Composite 'Shock'

Entries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings, wage, and hours, and 
are expressed as a percentage of the lifetime variance in the basecase. In the basecase we simulate of the full estimated model. To 
compute the contribution of a particular shock, we simulate the model again, setting the variance of a given shock to zero for all t. We 
then compute the variance of the appropriate variables. The difference relative to the basecase is the contribution of the given shock. 
Since the model is nonlinear, the contributions don't sum up to 100%. We normalize columns I to VII to sum to 100.  Column IV is the 
combined contribution of the job match wage and hours components, employment and unemployment shocks, and job change 
shocks. In columns VIII through XI we decompose Column IV. Column VIII shows the marginal contribution of ξ, IX the marginal 
contribution of υ with var(ξ) set to 0, X the marginal contribution of unemployment spells with Var(ξ) and Var(υ) set to 0, and 



Table 4b
Decomposition of Cross-Sectional Variance in Earnings, Wage, and Hours at different t - Model A.3.  
Shocks turned off one at a time (for all t).

I II III IV V VI VII VIII IX X XI

Variable/Horizon εe εh εw Composite η μ Educ ξ υ E JC

Earnings
t =  1 14.0 9.3 23.4 19.0 0.1 10.0 24.2 8.4 10.5 0.2 0

(0.28) (0.28) (2.44) (2.59) (0.57) (2.64) (0.37) (1.50) (2.32) (0.07) (0.00)
t =  5 17.7 7.7 17.9 26.1 0.3 8.5 21.9 7.8 18.8 0.9 -1.5

(0.38) (0.27) (1.54) (2.07) (1.05) (2.59) (0.37) (1.35) (1.95) (0.22) (0.19)
t = 10 17.9 8.5 15.8 28.6 0.4 8.0 20.8 7.6 21.9 0.9 -1.8

(0.37) (0.27) (1.15) (1.98) (1.33) (2.89) (0.50) (1.28) (1.89) (0.22) (0.20)
t = 20 17.0 8.3 14.7 32.2 -0.1 7.2 20.7 6.5 25.6 1.1 -0.9

(0.45) (0.26) (0.98) (2.03) (1.39) (3.03) (0.56) (1.26) (1.96) (0.19) (0.15)
t = 30 16.8 8.7 13.1 32.6 2.5 6.6 19.7 6.9 25.4 0.7 -0.4

(0.42) (0.34) (0.91) (1.99) (1.74) (3.19) (0.59) (1.22) (1.91) (0.14) (0.12)
t = 40 17.5 7.9 14.5 34.0 1.5 5.6 19.0 7.0 26.9 0.3 -0.2

(0.46) (0.32) (0.89) (1.84) (2.02) (2.70) (0.54) (1.19) (1.88) (0.08) (0.09)
Wage

t =  1 0 0 45.1 22.7 0 1.7 30.4 0 22.7 0 0
(0.00) (0.00) (4.50) (4.60) (0.00) (1.77) (0.11) (0.00) (4.60) (0.00) (0.00)

t =  5 0 0 35.7 36.5 -0.1 1.0 27.0 0 37.4 0.7 -1.5
(0.00) (0.00) (2.52) (2.77) (0.50) (1.55) (0.47) (0.00) (2.72) (0.24) (0.26)

t = 10 0 0 31.4 42.5 -0.8 0.7 26.2 0 43.2 1.0 -1.7
(0.00) (0.00) (1.84) (2.29) (0.80) (1.77) (0.61) (0.00) (2.31) (0.31) (0.31)

t = 20 0 0 27.8 48.1 -1.6 0.0 25.8 0 47.3 1.6 -0.8
(0.00) (0.00) (1.55) (2.14) (1.05) (2.09) (0.73) (0.00) (2.22) (0.32) (0.24)

t = 30 0 0 26.8 49.7 -0.7 -0.9 25.1 0 48.8 1.2 -0.3
(0.00) (0.00) (1.56) (2.02) (1.08) (1.90) (0.74) (0.00) (2.08) (0.26) (0.19)

t = 40 0 0 27.8 49.8 0.2 -1.5 23.8 0 49.4 0.6 -0.1
(0.00) (0.00) (1.58) (1.94) (1.04) (1.84) (0.87) (0.00) (1.96) (0.16) (0.12)

Hours
t =  1 0 39.5 0.5 35.8 0.3 21.8 2.0 33.9 0.3 1.7 0

(0.00) (1.31) (0.19) (5.27) (1.97) (4.33) (0.07) (5.54) (0.12) (0.64) (0.00)
t =  5 0 36.5 0.5 37.4 0.3 23.1 2.3 32.3 0.1 4.9 0.1

(0.00) (1.31) (0.19) (4.93) (1.97) (3.94) (0.38) (5.07) (0.14) (0.83) (0.03)
t = 10 0 37.1 0.4 36.9 0.5 22.5 2.6 32.3 0.0 4.5 0.1

(0.00) (1.42) (0.16) (4.88) (2.03) (3.86) (0.35) (4.84) (0.17) (0.52) (0.04)
t = 20 0 37.1 0.4 36.7 0.6 22.5 2.7 31.9 0.0 4.8 0.0

(0.00) (1.31) (0.16) (5.10) (1.98) (4.00) (0.38) (5.11) (0.21) (0.49) (0.03)
t = 30 0 39.5 0.5 36.0 -0.5 22.4 2.1 34.1 -0.1 2.1 0.0

(0.00) (1.44) (0.18) (5.46) (2.23) (4.24) (0.30) (5.47) (0.20) (0.32) (0.02)
t = 40 0 40.3 0.3 35.1 -0.6 23.0 1.8 35.0 -0.1 0.2 0.0

(0.00) (1.50) (0.17) (5.59) (2.37) (4.40) (0.37) (5.55) (0.19) (0.22) (0.02)

contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment.  Bootstrap standard errors are in parentheses.

Column

Shock Breakdown of Composite 'Shock'

Entries in columns I to VII display the contribution of a given type of shock to the variance in earnings, wage, and hours for a cross 
section of simulated individuals with potential experience t.  The contribution is expressed as a percentage of the variance in the 
basecase. In the basecase we simulate the full estimated model. To compute the contribution of a particular shock, we simulate the 
model again, setting the variance of the given shock to zero for all t. We then compute the variance of the appropriate variables at the 
specified value of t. The difference relative to the basecase is the contribution of the given shock. Since the model is nonlinear, the 
contributions don't sum up to 100%. We have normalized columns I to VII to sum to 100.  Column IV is the combined contribution of the 
job match wage and hours components, unemployment shocks, and job change shocks. In columns VIII through XI we decompose 
Column IV. Column VIII is the marginal contribution of ξ, IX is the marginal contribution of υ with var(ξ) set to 0, X is the marginal 
contribution of eliminating unemployment spells with Var(ξ) and Var(υ) set to 0, and column XI is the marginal  



Table 5a
Decomposition of Cross-Sectional Variance in Lifetime Earnings, Wage, and Hours - Model B.1
Shocks turned off one at a time (for all t).

I II III IV V VI VII VIII

Variable εe εh εw J E η μ Educ

Lifetime Earnings 6.85 2.66 24.62 2.35 1.88 11.53 18.76 31.35

(SE) (0.13) (0.03) (1.61) (0.56) (0.29) (1.36) (3.13) (0.76)

Lifetime Wage 0 0 45.59 3.46 1.83 0.75 11.46 36.90

(SE) (0.00) (0.00) (2.09) (0.88) (0.50) (0.25) (1.89) (0.83)

Lifetime Hours 0 4.98 1.87 0.23 3.03 64.61 20.39 4.91

(SE) (0.00) (0.09) (0.52) (0.09) (0.40) (8.28) (7.96) (0.29)

Column

Shock

Entries in columns I to VIII display the contribution of a given type of shock to the variance of lifetime 
earnings, wage, and hours, and are expressed as a percentage of the lifetime variance in the basecase. In 
the basecase we simulate of the full estimated model.  To compute the contribution of a particular shock, we 
simulate the model again, setting the variance of a given shock to zero for all t.  We then compute the 
variance of the appropriate variables.  The difference relative to the basecase is the contribution of the given 
shock.  Since the model is nonlinear, the contributions don't sum up to 100%.  We normalize columns I to VIII 
to sum to 100.



Table 5b
Decomposition of Cross-Sectional Variance in Earnings, Wage, and Hours at different t - Model B.1
Shocks turned off one at a time (for all t).

I II III IV V VI VII VIII

Variable/Horizon εe εh εw J E η μ Educ

Earnings
t =  1 14.8 10.9 25.4 0.0 0.2 8.3 17.3 23.1

(0.23) (0.15) (1.40) 0.00 (0.06) (1.07) (2.52) (0.30)
t =  5 17.6 9.9 26.3 6.2 1.0 8.1 11.8 19.1

(0.31) (0.20) (1.13) (0.69) (0.22) (0.71) (2.09) (0.30)
t = 10 17.1 8.7 26.7 7.6 1.4 7.1 12.0 19.3

(0.27) (0.16) (1.12) (0.81) (0.20) (0.69) (2.01) (0.30)
t = 20 17.0 9.8 25.9 6.1 1.2 7.6 11.7 20.6

(0.31) (0.15) (1.19) (0.68) (0.24) (0.72) (2.04) (0.35)
t = 30 17.3 9.4 25.3 4.4 1.1 8.2 13.9 20.4

(0.33) (0.15) (1.31) (0.53) (0.21) (0.77) (2.04) (0.36)
t = 40 18.1 10.3 25.2 2.3 0.5 7.8 14.0 21.9

(0.36) (0.17) (1.35) (0.45) (0.15) (0.76) (2.01) (0.35)
Wage

t =  1 0 0 56.0 0 0 0 13.5 30.6
(0.00) (0.00) (1.99) (0.00) (0.00) (0.00) (2.11) (0.12)

t =  5 0 0 54.5 11.6 0.8 0.5 8.1 24.5
(0.00) (0.00) (1.48) (1.01) (0.29) (0.27) (1.35) (0.42)

t = 10 0 0 53.2 13.6 1.5 0.6 7.5 23.5
(0.00) (0.00) (1.45) (1.04) (0.38) (0.25) (1.14) (0.41)

t = 20 0 0 52.5 11.3 2.2 0.6 8.2 25.2
(0.00) (0.00) (1.46) (0.84) (0.41) (0.27) (1.02) (0.48)

t = 30 0 0 51.3 7.6 2.6 1.7 11.0 25.8
(0.00) (0.00) (1.51) (0.70) (0.42) (0.35) (1.17) (0.54)

t = 40 0 0 53.9 4.0 1.6 0.6 11.8 28.2
(0.00) (0.00) (1.67) (0.77) (0.35) (0.23) (1.40) (0.65)

Hours
t =  1 0 47.8 1.5 0 2.0 35.6 11.1 2.1

(0.00) (0.92) (0.44) (0.00) (0.69) (4.68) (4.42) (0.08)
t =  5 0 44.7 1.6 0.0 5.1 34.5 11.3 2.6

(0.00) (1.05) (0.48) (0.08) (0.90) (4.39) (4.24) (0.35)
t = 10 0 44.3 1.8 0.0 5.1 34.4 11.6 2.8

(0.00) (0.81) (0.53) (0.11) (0.45) (4.51) (4.26) (0.31)
t = 20 0 44.1 1.7 0.0 5.1 34.1 12.0 3.0

(0.00) (0.86) (0.53) (0.12) (0.53) (4.63) (4.39) (0.28)
t = 30 0 47.2 1.7 0.0 2.1 35.9 10.7 2.5

(0.00) (0.91) (0.50) (0.09) (0.40) (4.57) (4.27) (0.14)
t = 40 0 49.0 1.8 0.1 0.0 36.0 10.7 2.4

(0.00) (0.89) (0.52) (0.09) (0.29) (4.65) (4.36) (0.11)

Column

Shock

Entries in columns I to VIII display the contribution of a given type of shock to the variance in earnings, wage, and hours for a 
cross section of simulated individuals with potential experience t.  The contribution is expressed as a percentage of the 
variance in the basecase. In the basecase we simulate the full estimated model. To compute the contribution of a particular 
shock, we simulate the model again, setting the variance of the given shock to zero for all t. We then compute the variance of 
the appropriate variables at the specified value of t. The difference relative to the basecase is the contribution of the given 
shock. Since the model is nonlinear, the contributions don't sum up to 100%. We have normalized columns I to VIII to sum to 
100.



Table 6
Point Estimates - Models A.3 and B.1 on SRC sample and subsamples

Column 1a 1b 1c 1d 1e 2a 2b

Equation / Variable Parameter

White Low Educ High Educ SRC+SEO All SRC
E-E Equation
(cons) γEE

0 1.0141 (0.1853) 0.8305 (0.1683) 0.6175 0.5553 0.7246 1.0309 0.8617
(ti-1)/10 γEE

t -0.3707 (0.0976) -0.5002 (0.1393) -0.5523 -0.4733 -0.8043 -0.5654 -0.5832
(ti-1)2/100 γEE

t2 0.1465 (0.0231) 0.1953 (0.0385) 0.2080 0.1633 0.2691 0.1908 0.1893
(EDt-1) γEE

ED 0.0440 (0.0176) 0.0746 (0.0186) 0.0893 0.0758 0.0966 0.0711 0.0795
BLACK γEE

BLACK -0.3608 (0.0571) -0.1691 (0.0914)  -0.3117 -0.3176
EDUC γEE

EDUC 0.0801 (0.0159) 0.0742 (0.0155) 0.0856 0.1065 0.0809 0.0694 0.0777
(wage't) γEE

w' -0.0582 (0.0763) -0.0796 (0.1070) -0.1007 -0.2954 -0.2639
(μ) δEE

μ 0.4426 (0.0936) 0.3816 (0.0820) 0.3582 0.4245 0.3805 0.3427 0.3537
(η) δEE

η -0.2370 (0.1070) -0.2110 (0.0719) -0.1944 -0.2066 -0.1539 0.1005 0.0693

U-E Equation  
(cons) γUE

0 0.0771 (0.8416) 0.9653 (0.5116) 1.8163 2.8077 0.5927 -0.1514 0.7095
(ti-1)/10 γUE

t -1.0505 (0.4892) -1.3641 (0.5706) -0.7142 -1.7540 -0.5310 -0.5021 -0.9452
(ti-1)2/100 γUE

t2 0.3330 (0.1358) 0.3695 (0.1685) 0.2603 0.6474 0.1059 0.1696 0.2968
BLACK γUE

BLACK -0.4860 (0.1325) -0.1473 (0.2112) -0.4810 -0.1374
EDUC γUE

EDUC 0.1742 (0.0537) 0.0946 (0.0336) -0.0239 -0.0809 0.1000 0.1510 0.0805
(μ) δUE

μ 0.6372 (0.1281) 0.2948 (0.1530) 0.3484 0.3444 0.4068 0.2276 0.1685
(η) δUE

η 0.2218 (0.1873) 0.1227 (0.1537) 0.2701 0.0448 -0.0836 0.5889 0.3212

JC Equation
(cons) γJC

0 -0.6264 (0.1628) -0.3423 (0.1876) -0.6065 -0.2481 -1.8496 -0.5048 -0.3078
(ti-1)/10 γJC

t -0.0983 (0.1062) -0.1509 (0.1432) 0.2697 -0.1849 0.7347 -0.2125 -0.1783
(ti-1)2/100 γJC

t2 -0.0455 (0.0247) -0.0445 (0.0332) -0.1415 -0.0028 -0.2748 -0.0137 -0.0178
(TENt-1) γJC

TEN -0.0673 (0.0156) -0.0528 (0.0194) -0.0863 -0.1237 -0.0570 -0.0767 -0.0605
BLACK γJC

BLACK 0.1658 (0.0554) -0.0665 (0.1307) 0.1033 -0.0796
EDUC γJC

EDUC -0.0184 (0.0108) -0.0368 (0.0133) -0.0262 -0.0201 0.0204 -0.0189 -0.0383

(υt-1) δJC
υ-1 -0.9230 (0.1274) -0.8088 (0.1402) -0.5495 -0.3932 -0.4633

(υt) δJC
υ 0.5936 (0.1410) 0.7846 (0.1545) 0.5035 0.1717 0.8330

(μ) δJC
μ -0.2796 (0.1362) -0.3175 (0.1012) -0.1943 -0.2007 -0.2534 -0.5449 -0.5133

(η) δJC
η 0.5308 (0.0995) 0.5071 (0.1012) 0.3593 0.3599 0.3607 0.1270 0.1834

(i) Estimate obtained in first-stage least-squares regression.
(ii) Estimate obtained using additional moment conditions. See discussion in Section 4.
(iii) Imposed.

The table presents estimates for models A.3 and B.1 restricting the PSID to the SRC sample and subsamples.  Estimates were obtained by Indirect Inference, unless indicated 
otherwise.  Parametric bootstrap standard errors are presented in parentheses for the SRC+SEO and the SRC samples.  Bootstraps are based on 300 replications for the 
SRC+SEO sample and on 100 replications for the SRC sample (we limit the latter to 100 because of the computational cost of the calculations).  

Model B.1Model A.3

SRC+SEO All SRC



Table 6 (cont.)
Point Estimates - Models A.3 and B.1 on SRC sample and subsamples

Column 1a 1b 1c 1d 1e 2a 2b

Equation / Variable Parameter

SRC+SEO All SRC White Low Educ High Educ SRC+SEO All SRC

Wage Equation
BLACK γw

BLACK (i) -0.2048 (0.0038) -0.2350 (0.0085) -0.2048 -0.2350
EDUC γw

EDUC (i) 0.1049 (0.0008) 0.1083 (0.0011) 0.1069 0.0948 0.1271 0.1049 0.1083
Tenure polynomial yes yes yes yes yes yes yes no no 
(ti-1)/10 γw

t 
(i) 0.7514 (0.0211) 0.8028 (0.0270) 0.8182 0.8038 0.8027 0.7514 0.8028

(ti-1)2/100 γw
t2 

(i) -0.2430 (0.0118) -0.2644 (0.0151) -0.2714 -0.2768 -0.2478 -0.2430 -0.2644
(ti-1)3/1000 γw

t3 
(i) 0.0278 (0.0019) 0.0305 (0.0025) 0.0312 0.0334 0.0248 0.0278 0.0305

cons. (*) a0 -0.0343 (0.0340) -0.0542 (0.0447) -0.0514 -0.1077 0.0486
(ti-1)/10  (*) a1 -0.0753 (0.0344) -0.0816 (0.0462) -0.0505 0.0671 -0.1910
(ti-1)2/100  (*) a2 0.0072 (0.0075) 0.0092 (0.0103) 0.0052 -0.0194 0.0334
(μ) δw

μ 0.0490 (0.0278) 0.1015 (0.0269) 0.0796 0.1006 0.1827 0.1505 0.1420
(JCt) γυ0 0.0355 0.0327
(υt-1) ρυ 0.6252 (0.0224) 0.6041 (0.0366) 0.6136 0.5902 0.6513
(ευ) συ 0.2686 (0.0070) 0.2739 (0.0089) 0.2776 0.2690 0.2942
(ευ1) συ1 0.1967 (0.0205) 0.1048 (0.0206) 0.1318 0.1696 0.0947
(ωt-1) ρω 0.9200 (ii) 0.9200 (ii) 0.9200 (ii) 0.9000 (ii) 0.9000 (ii) 0.9577 0.9567
(ωt-1) φ1 -0.2379 -0.2015
(1-Et) γω1-Et -0.1895 (0.0102) -0.1485 (0.0122) -0.1370 -0.1866 -0.1740 -0.1858 -0.1561
(1-Et-1) γω1-Et-1 0.1041 (0.0132) 0.0744 (0.0153) 0.0372 0.0737 0.0548 0.0626 0.0246
(εω) σω 0.0950 (0.0029) 0.0937 (0.0032) 0.0937 0.0753 0.1004 0.0934 0.0929
(εω) φ2 2.1000 2.1303
(εω1)  (Black, Low Educ) σω1 

(ii) 0.2488 (0.0195) 0.2858 (0.0126) 0.2816 0.2532 0.2462 0.2834 0.2878
(εω1)  (Black, High Educ) σω1 

(ii) 0.2760 (0.0171) 0.3098 (0.0116) 0.3059 0.2800 0.2737 0.3076 0.3116
(εω1)  (White, Low Educ) σω1 

(ii) 0.2478 (0.0196) 0.2850 (0.0127) 0.2807 0.2522 0.2452 0.2826 0.2869
(εω1)  (White, High Educ) σω1 

(ii) 0.3064 (0.0152) 0.3371 (0.0106) 0.3335 0.3100 0.3043 0.3351 0.3388

Hours Equation
(cons) γh

0 -0.3632 (0.0076) -0.4116 (0.0095) -0.4112 -0.3902 -0.4627 -0.3633 -0.4022
BLACK γh

BLACK (i) -0.1055 (0.0043) -0.0636 (0.0096) -0.1055 -0.0636
EDUC γh

EDUC (i) 0.0178 (0.0007) 0.0136 (0.0009) 0.0139 0.0226 0.0197 0.0178 0.0136
(Et) γh

E 0.4129 (0.0075) 0.4384 (0.0096) 0.4417 0.4305 0.4698 0.4157 0.4362
σξ 0.1574 (0.0136) 0.1632 (0.0140) 0.1628 0.1426 0.1873

(wt) γh
w -0.0692 (0.0148) -0.1024 (0.0151) -0.0943 -0.1672 -0.1224 -0.0929 -0.1032

(μ) δh
μ 0.1248 (0.0135) 0.0947 (0.0152) 0.0892 0.1195 0.0873 0.0929 0.0812

(η) δh
η 0.0145 (0.0304) 0.0290 (0.0220) 0.0306 0.0251 0.0238 0.1545 0.1403

(εh) σh 0.1686 (0.0023) 0.1402 (0.0027) 0.1360 0.1664 0.0926 0.1800 0.1545

Earnings Equation
(cons) γe

0 -0.0061 (0.0024) -0.0005 (0.0032) -0.0053 0.0038 -0.0083 -0.0044 -0.0005
(wt) γe

w (iii) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(ht) γe

h 
(iii) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρe 0.5527 (0.0068) 0.6178 (0.0095) 0.6251 0.5793 0.6849 0.5481 0.6132
(εe) σe 0.2109 (0.0016) 0.1715 (0.0018) 0.1662 0.1785 0.1419 0.2109 0.1720

Number of individuals 4,632 2,651 2,455 1,143 1,027 4,632 2,651
Number of observations 33,933 20,502 19,131 8,446 8,305 33,933 20,502

(i) Estimate obtained in first-stage least-squares regression.
(ii) Estimate obtained using additional moment conditions. See discussion in Section 4.
(iii) Imposed.

(*) The potential-experience profile estimated in the first-stage regression reflects the effects of general human capital accumulation, job tenure accumulation, and job shopping.  
Since the effects of job shopping are endogenously accounted for in model A.3, by the inclusion of a job-specific wage component that affects job mobility, model A.3 includes a 
quadratic in potential experience as an adjustment in the wage model, which is estimated by indirect inference.

Model B.1Model A.3

The table presents estimates for models A.3 and B.1 restricting the PSID to the SRC sample and subsamples.  Estimates were obtained by Indirect Inference, unless indicated 
otherwise.  Parametric bootstrap standard errors are presented in parentheses for the SRC+SEO and the SRC samples.  Bootstraps are based on 300 replications for the 
SRC+SEO sample and on 100 replications for the SRC sample (we limit the latter to 100 because of the computational cost of the calculations).  



Table 7
Decomposition of Cross-Sectional Variance in Lifetime Earnings, Wage, and Hours - Model A.3
SRC Sample and SRC Whites Sample by Education 

I II III IV V VI VII VIII IX X XI

Variable εe εh εw Composite η μ Educ ξ υ E JC

Panel A:  SRC

Lifetime Earnings 5.3 1.6 11.7 35.4 -0.3 12.8 33.4 7.4 26.9 1.5 -0.4

(SE) (0.2) (0.1) (1.0) (2.7) (1.9) (4.1) (1.1) (1.4) (3.0) (0.3) (0.2)

Lifetime Wage 0 0 20.3 45.0 -2.8 3.5 34.0 0 43.5 1.6 -0.2

(SE) (0.0) (0.0) (1.5) (3.6) (1.6) (4.4) (1.4) (0.0) (3.7) (0.3) (0.4)

Lifetime Hours 0 3.5 1.2 57.8 0.0 31.1 6.4 53.2 1.2 3.5 -0.1

(SE) (0.0) (0.2) (0.3) (9.5) (3.9) (8.4) (0.6) (9.3) (0.5) (0.5) (0.1)

 

Panel B:  SRC Whites, Low Education

Lifetime Earnings 5.9 2.5 5.1 41.3 -1.6 33.1 13.7 9.7 26.9 4.8 0.0

Lifetime Wage 0 0 12.2 63.7 -4.6 13.7 14.9 0 57.5 5.7 0.5

Lifetime Hours 0 5.0 1.4 47.5 2.2 41.1 2.8 40.5 4.3 2.9 -0.2

Panel C:  SRC Whites, High Education

Lifetime Earnings 5.7 0.8 10.1 44.4 2.0 29.3 7.6 13.4 29.3 1.6 0.1

Lifetime Wage 0 0 18.3 55.8 -0.1 18.3 7.7 0 53.4 1.9 0.4

Lifetime Hours 0 1.7 0.8 77.2 -0.7 20.2 0.8 73.5 2.4 1.3 -0.1

column XI displays the marginal contribution of job changes with Var(ξ) and Var(υ) set to 0, and no unemployment.  The table 
presents bootstrap standard errors for the full SRC sample (in parentheses).

Column

Shock Breakdown of Composite 'Shock'

Entries in columns I to VII display the contribution of a given type of shock to the variance of lifetime earnings, wage, and hours, and 
are expressed as a percentage of the lifetime variance in the basecase. In the basecase we simulate of the full estimated model. To 
compute the contribution of a particular shock, we simulate the model again, setting the variance of a given shock to zero for all t. We 
then compute the variance of the appropriate variables. The difference relative to the basecase is the contribution of the given shock. 
Since the model is nonlinear, the contributions don't sum up to 100%. We normalize columns I to VII to sum to 100.  Column IV is the 
combined contribution of the job match wage and hours components, employment and unemployment shocks, and job change 
shocks. In columns VIII through XI we decompose Column IV. Column VIII shows the marginal contribution of ξ, IX the marginal 
contribution of υ with var(ξ) set to 0, X the marginal contribution of unemployment spells with Var(ξ) and Var(υ) set to 0, and 



 
 

 



 
 

 
 



 
 

 





 
 

 



 

 
 

 



Table A1
Composition of PSID Sample before Sample 
Selection Based on Employment Status.
Emp. Status Percentage
Working 87.98
Temp. Laidoff 1.48
Unemployed 5.9
Retired 0.87
Disabled 1.85
Housewife 0.19
Student 1.17
Other 0.56

Table A2
Percentage of Observations Excluded Based on Employment Status.

PE Percentage PE Percentage PE Percentage PE Percentage

1 16.6 (a) 11 2.5 21 3.2 31 6.6
2 9.5 12 2.8 22 3.4 32 7.2
3 6.3 13 2.9 23 4.5 33 8.2
4 4.8 14 3.5 24 5.1 34 9.0
5 4.4 15 2.5 25 5.4 35 9.4
6 3.4 16 2.7 26 5.4 36 11.7
7 2.8 17 3.2 27 5.6 37 13.4
8 2.8 18 2.9 28 5.1 38 14.5
9 2.5 19 3.1 29 5.6 39 18.4
10 2.3 20 3.6 30 6.3 40 21.97 (b) 

(a) All students at PE=1.
(b) Of these, 13.5 are retired, 7.5 disabled.

Table A3
Distribution of Number of Observations Contributed Per Individual in PSID Sample.

Percentile Min 5% 25% 50% 75% 95% Max

Number of 
observations 
per individual

1 1 3 6 11 18 19

The table presents the composition of the PSID sample, 
in terms of employment status, before we impose any 
sample restrictions based on employment status. The 
sample here meets all selection criteria which are not 
based on employment status.

The table presents the percentage of observations excluded, based on employment status at the survey date, 
for each value of potential experience (PE).

The table presents the cross-sectional distribution, across individuals, of the number of observations 
contributed to the sample by individual. Lead values are excluded.
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