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Abstract. Instrumental variable models for discrete outcomes are set,
not point, identifying. The paper characterises identi�ed sets of structural func-
tions when endogenous variables are discrete. Identi�ed sets are unions of large
numbers of convex sets and may not be convex nor even connected. Each of
the component sets is a projection of a convex set that resides in a much higher
dimensional space onto the space in which a structural function resides. The
paper develops a symbolic expression for this projection and gives a constructive
demonstration that it is indeed the identi�ed set. We provide a MathematicaTM

notebook which computes the set symbolically. We derive properties of the set,
suggest how the set can be used in practical econometric analysis when outcomes
and endogenous variables are discrete and propose a method for estimating iden-
ti�ed sets under parametric or shape restrictions..
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1. Introduction

This paper gives new results on the identifying power of single equation instrumental
variable (SEIV) models in which both the outcome of interest and potentially en-
dogenous explanatory variables are discrete. These models generally set rather than
point identify structural functions.1 The paper derives the identi�ed set for the gen-
eral case in which there is an M -valued outcome and there are endogenous variables
with K points of support.

The discrete outcome, discrete endogenous variable case studied here arises fre-
quently in applied econometrics practice. Examples of settings in which the results of
the paper are useful include situations in which a binary or ordered probit, or a logit
or a count data analysis or some semiparametric or nonparametric alternative would
be considered and explanatory variables are endogenous. We study nonparametric
models but, as we show, characterizations of identi�ed sets for nonparametric models
are very useful in constructing identi�ed sets in parametric cases.

In the instrumental variable model studied here anM -valued outcome, Y , is deter-
mined by a structural function characterised byM�1 threshold functions of possibly

�This is a revised and extended version of the paper �Set identifying models with discrete outcomes
and endogenous variables�February 5th 2010. We gratefully acknowledge the �nancial support of the
UK Economic and Social Research Council through a grant (RES-589-28-0001) to the ESRC Centre
for Microdata Methods and Practice (CeMMAP) and the intellectual support of our colleagues at
CeMMAP with whom we have had many useful discussions of this work.

1See Chesher (2010).
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endogenous variablesX. Instrumental variables, Z, are excluded from these threshold
functions. The instrumental variables and the stochastic term whose value relative
to the threshold functions determines the value of Y are independently distributed.
When endogenous variables have K points of support the structural function is char-
acterised by N = K(M � 1) parameters: the values of the M � 1 threshold functions
at the K values of X. A conventional parametric model, for example an ordered
probit model, places restrictions on these N objects.

The model studied here places no restrictions on the process generating values of
the potentially endogenous variables X. It is in this sense that it is a single equation
model.

By contrast the commonly employed control function approach to identi�cation
employs a more restrictive triangular model which places restrictions on the process
generating the potentially endogenous variables.2 That model generally fails to de-
liver point identi�cation when endogenous variables are discrete so the SEIV model
is a leading contender for application in practice.

The single equation approach taken in this paper has some other points to rec-
ommend it. For example, structural simultaneous equations models for discrete en-
dogenous variables throw up coherency issues, �rst studied in Heckman (1978) and
subsequently discussed in, for example, Lewbel (2007). These can be neglected in a
single equation analysis. Economic models involving simultaneous determination of
values of discrete outcomes can involve multiple equilibria. See for example Tamer
(2003). Taking a single equation approach as here one is free to leave the equilibrium
selection process unspeci�ed.

After normalisation the structural function in the discrete-outcome, discrete-
endogenous variable case is characterised a point in the unit N -cube. The set that is
identi�ed by a single equation instrumental variable model is a subset of this space.
We show that the identi�ed set is the union of many convex sets each of which is an
intersection of linear half-spaces. The faces of these component convex polytopes are
arranged either parallel to or at 45� angles to faces of the N -cube. The identi�ed set
may not be convex or even connected.

The convex components of the identi�ed sets are projections of high-dimensional
sets onto the space in which the structural function resides. Direct computation of
these sets is challenging. Calculation for small scale problems can be done using
the method of Fourier-Motzkin elimination. However for M or K larger than 4 the
computations are prohibitively time consuming because of the very large number
of inequalities produced during the process of projection. Almost all of these are
redundant, but determining which are redundant is very computationally intensive.
The key to solving this problem is to make use of the structure placed on the problem
by the SEIV model.

We consider probability distributions for Y and X conditional on Z = z for val-
ues of z in some set of instrumental values Z. We develop a system of inequalities
which must be satis�ed by the N values that characterise a structural function for
all structural functions that are elements of structures admitted by the SEIV model
which generate these probability distributions. The identi�ed set of structural func-

2See for example Blundell and Powell (2003, 2004), Chesher (2003), Imbens and Newey (2009).
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tions must be a subset of the set de�ned by these inequalities. We show using a
constructive proof that the set is precisely the identi�ed set.

Calculation of the convex components of an identi�ed set using the expressions
we present here is very easy. The remaining, non-trivial, computational challenge
is to deal with the very large number of convex components that arises when M or
K is large. This problem disappears if su¢ ciently strong shape restrictions can be
invoked. Parametric models are useful in providing these. An alternative is to employ
shape constrained sieve approximations.

We show how recently developed results on set estimation and inference when sets
are de�ned by intersection bounds can be used to operationalise the results given here.

The restrictions of the SEIV model are now set out and then the results given
here are set in the context of earlier work.

1.1. The single equation instrumental variable model. In the SEIV model
a scalar discrete outcome, Y , is determined by a structural function h as follows.

Y = h(X;U) (1)

Here U is a scalar unobservable continuously distributed random variable and X is
a list of explanatory variables. These explanatory variables may be endogenous in
the sense that U and X may not be independently distributed. The focus is on
identi�cation of the structural function h.

In practice there may be variables appearing in h that are restricted to be ex-
ogenous (distributed independently of U) and the results of the paper are easily
extended to accommodate these but for simplicity we proceed with the structural
function speci�ed as in equation (1).

The structural function h is restricted to be monotone in U for all values of X. It
is normalized weakly increasing in what follows and the marginal distribution of U
is normalized uniform on the closed unit interval [0; 1]. The support of X is denoted
by X .

The discrete outcome Y has M �xed points of support and without loss of gener-
ality these are taken to be the integers 1; : : : ;M . Since h varies monotonically with
U there is the following threshold crossing representation of the structural function:
for m 2 f1; : : : ;Mg:

h(x; u) = m if and only if hm�1(x) < u � hm(x)

with h0(x) = 0 and hM (x) = 1 for all x 2 X . In this paper we study the case in
which X is discrete with a �nite number, K, of points of support: X = fx1; : : : ; xKg.

In this set-up a standard parametric probit model for Y 2 f1; 2g would have
threshold functions as follows:

h0(x) = 0 h1(x) = �(�0 + �1x) h2(x) = 1

where �(�) is the standard normal distribution function. A standard logit model
would have h1(x) = (1 + exp(�0 + �1x))�1.

If the model restricted X to be exogenous then it would identify the threshold
functions at each point in the support of X because in that case Pr[Y � mjX = x] =
hm(x).
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The SEIV model does not require X to be exogenous but admits instrumental
variables, one or many, discrete or continuous, arranged in a vector Z which takes
values in a set Z. The instrumental variables Z and U are independently distrib-
uted and Z is excluded from the structural function.3 The model set identi�es the
structural function.

1.2. Relation to earlier work. The SEIV model studied here is an example of
the sort of nonseparable model studied in Chernozhukov and Hansen (2005), Blundell
and Powell (2003, 2004), Chesher (2003) and Imbens and Newey (2009).

All but the �rst of these papers study complete models which specify triangular
equation systems in which there are structural equations for endogenous explanatory
variables as well as for the outcome of interest. When endogenous variables are
continuous these models can point identify structural functions but when endogenous
variables are discrete they do not. Dealing with the discrete endogenous variable case,
Chesher (2005) introduces an additional restriction on the nature of the dependence
amongst unobservables providing a set identifying triangular model with discrete
endogenous variables. Jun, Pinkse and Xu (2009) provide some re�nements. Point
identi�cation can be achieved under parametric restrictions such as those used in
Heckman (1978).

Discreteness of endogenous variables is not a problem for SEIV models, indeed
it brings simpli�cations - for example eliminating the �ill posed inverse problem�
which arises when endogenous variables are continuous. This is shown clearly in Das
(2005) where additive error nonparametric models with discrete endogenous variables
and instrumental variable restrictions are considered. Because of the additive error
restrictions this construction is not well suited to modelling discrete outcomes which
sit more comfortably in the nonseparable error setting studied here.

Chernozhukov and Hansen (2005) study a nonadditive-error SEIV model like that
considered here, focussing on the case in which the outcome is continuous. The
identi�cation results of that paper are built around the following equality which,
when Y is continuous, holds for all � 2 (0; 1) and all z 2 Z.

Pr[Y = h(X; �)jZ = z] = � (2)

Additional (completeness) conditions are provided under which the model point iden-
ti�es the structural function.

The condition (2) does not hold when Y is discrete. Instead, as shown in Cher-
nozhukov and Hansen (2001), there are the following inequalities which hold for all
� 2 (0; 1) and z 2 Z.

Pr[Y < h(X; �)jZ = z] < � � Pr[Y � h(X; �)jZ = z]

These imply that the inequalities:

max
z2Z

Pr[Y < h(X; �)jZ = z] < � � min
z2Z

Pr[Y � h(X; �)jZ = z] (3)

3At no point in the development is Z required to be a random variable. It could for example
be a variable whose values are set by an experimenter. The key requirement is that the conditional
distribution of U given Z = z be invariant with respect to changes in z within the set Z.
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hold for all � 2 (0; 1) as shown in Chesher (2007, 2010). The result is that the SEIV
model generally fails to point identify the structural function when the outcome Y
is discrete. However the model can be informative about the structural function as
long as Z is not a singleton.

To see this suppose that for some value m and two values in Z, z1 and z2,
Pr[Y � mjZ = z1] 6= Pr[Y � mjZ = z2]. The restrictions of the model imply
that in this case hm(x) is not constant for variations in x in admissible structures
which generate the probability distribution under consideration. This is so because
if hm(x) were constant, equal say to h�m, then for all z 2 Z, Pr[Y � mjZ = z] = h�m
so any variation in Pr[Y � mjZ = z] with z rules out the possibility that hm(x) is
constant for variations in x.4 At least the set of structural functions identi�ed by
the SEIV model excludes structures with constant threshold functions if the outcome
and instruments are not independently distributed.

The set identifying power of the SEIV model when the outcome is discrete was
�rst studied in Chesher (2007). Let H(Z) denote the identi�ed set of structural
functions associated with some probability distribution FY XjZ for Y and X given
Z = z 2 Z.5 Chesher (2007, 2010) develops a set, denoted here by C(Z), based
on the inequalities (3). It is shown that, when Y is binary and X is continuous,
H(Z) = C(Z) and C(Z) provides tight set identi�cation. In other cases it is an outer
set in the sense that it can be that H(Z) � C(Z).

Chesher (2009) studies the binary outcome case, proving H(Z) = C(Z) when
endogenous variables are discrete, considering the impact of parametric restrictions
and shape restrictions, and giving some results on estimation under shape restrictions
employing results on inference using intersection bounds given in Chernozhukov, Lee
and Rosen (2009).

In Chesher and Smolinski (2009) a re�nement6 to C(Z), denoted ~D(Z), is de-
veloped. This delivers the identi�ed set when there is a single binary endogenous
variable no matter how many points of support the outcome Y has. The results are
used in an investigation of the nature of the reduction in extent of the identi�ed set as
the number of points of support of Y increases in an endogenous parametric ordered
probit example.

This paper studies the general �nite M -outcome, K-point of support discrete

4There is the following.

Pr[Y � mjZ = z] =
X
k

Pr[U � h�mjX = xk; Z = z] Pr[X = xkjZ = z]

= Pr[U � h�mjZ = z]
= h�m

Since the model excludes Z from the structural function h and requires U and Z to be independent
the only way in which Z can a¤ect the distribution of Y is through its e¤ect on X and then only if
h is sensitive to variations in X.

5 It would be clearer to give a distinctive symbol to the probability distribution under considera-
tion, e.g. F 0Y XjZ and label the various sets accordingly thus: H0(Z), C0(Z) and so forth. We do not
do this here because the notation quickly becomes cumbersome. However it is important to keep in
mind that each of the sets under discussion is associated with a particular probability distribution.

6By a re�nement we mean that ~D(Z) � C(Z) with the possibility that ~D(Z) � C(Z)
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endogenous variable case and develops a further re�nement7 to C(Z), denoted E(Z)
and shows that E(Z) is precisely the identi�ed set, H(Z).

1.3. Plan of the paper. Section 2 de�nes the set identi�ed by the SEIV model
and reviews its characteristics.

Section 3 develops the new set, E(Z), shows that it contains the identi�ed set,
and then gives a constructive proof that E(Z) is the identi�ed set. This is done by
proposing an algorithm for construction of a proper distribution for the unobservable
U and endogenous X conditional on values of instrumental variables which for any
value of  in E(Z) delivers the probabilities used to construct the set while respecting
the restriction that U and Z be independently distributed.

Section 3.1 develops some properties of the identi�ed set. Section 3.2 presents
the algorithm for constructing the distribution of U and X given Z which is used to
demonstrate that E(Z) is the identi�ed set. Section 3.3 gives an alternative derivation
of the set E(Z) which is useful in linking the results of this paper with earlier results.

Section 3.4 sets out properties of the set E(Z) when the outcome is binary. Section
3.5 shows how the set E(Z) is related to the set de�ned in Chesher (2010). Section
3.6 gives alternative expressions for the inequalities de�ning the new set which help
clarify its relationship to the set de�ned by the inequalities (3).

Section 4 gives some illustrative calculations, describes a Mathematica notebook
which does symbolic calculation of the convex components of the identi�ed set and
discusses estimation and inference. Section 5 concludes.

2. The identified set

In this Section the set identi�ed by the SEIV model is de�ned and notation is intro-
duced.

We consider situations in which X, which may be a scalar or a vector, is discrete
and takes values in the set X = fxkgKk=1. In this case the structural function h is
characterized by N � K(M � 1) parameters as follows,

mk � hm(xk); m 2 f1; : : : ;M � 1g; k 2 f1; : : : ;Kg

which are arranged in a vector , as follows.8

 � [11; : : : ; 1K ; 21; : : : ; 2K ; : : : ; M�1;1; : : : ; M�1;K ]

Identi�cation of the vector  is studied in this paper. Each element of  lies in the
unit interval so each value of  is a point in the unit N -cube. The identi�ed set is a

7Here, by a re�nement we mean that E(Z) � ~D(Z) � C(Z).
8 If � is a matrix with (m; k) element equal to mk then  � vec(�0). Considering r, the rth

element of , there are the following relationships.

r = (m� 1)K + k

k = r modulo K m = (r � k)=K + 1
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subset of the unit N -cube. There are the restrictions lk < mk for l < m and all k.
Henceforth �for all k�means for k 2 f1; : : : ;Kg.

Consider a particular probability distribution for Y and X given Z = z 2 Z.
The identi�ed set of values of  associated with this distribution contains all and
only values of  for which there exist admissible conditional probability distributions
of U and X given Z = z for all values of z in Z such that the resulting structures
deliver the probability distribution under consideration. Notation for that probability
distribution is now introduced.

For values z 2 Z, for m 2 f1; : : : ;Mg and k 2 f1; : : : ;Kg, there are the following
point probabilities:

�mk(z) � Pr[Y = m ^X = xkjZ = z]

and cumulative probabilities:

��mk(z) � Pr[Y � m ^X = xkjZ = z]

and probabilities marginal with respect to Y :

�k(z) � Pr[X = xkjZ = z] = ��Mk(z):

For all k de�ne: 0k = 0, Mk = 1, �0k(z) = ��0k(z) = 0. In what follows �for all
m�means for m 2 f0; : : : ;Mg.

Associated with a particular value of  and each value z 2 Z, de�ne a piecewise
uniform conditional distribution for U and X given Z, such that for all m, k and k0:

��mkk0(z) � Pr[U � mk ^X = xk0 jZ = z]

and let ��(z) denote the complete list of (M � 1)K2 such terms.9

A list of values of (; ��(z)) produced as z varies in Z characterizes a structure
which is admissible if it satis�es the following independence and properness condi-
tions.

[1]. Independence. For all z 2 Z and for all m and k the following equalities
hold.10

KX
k0=1

��mkk0(z) = mk (4)

[2]. Properness. For all z 2 Z and for all j, k, l, m and k0, ��ljk0(z) � ��mkk0(z)
if and only if lj � mk. For all z 2 Z and for all k, k0, ��0kk0(z) = 0. For all z 2 Z
and for all k0

PK
k=1 ��Mkk0(z) = 1.

If in addition the following observational equivalence condition is satis�ed then
the structure generates the probability distribution under consideration.

9Between each pair of adjacent knots, mk, each conditional density function for Y given X and
Z is uniform. The construction is justi�ed in Chesher (2009). The conditional density functions have
a histogram-like appearance.
10The left hand sides are Pr[U � mkjZ = z] which the independence restriction requires to be free

of z. The values mk on the right hand sides arises because of the uniform distribution normalisation
of the marginal distribution of U . See Chesher (2010).
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[3]. Observational equivalence. For all z 2 Z and for allm and k the following
equalities hold.

��mkk(z) = ��mk(z) (5)

All and only structures that obey conditions [1], [2] and [3] are in the set of
structures identi�ed by the model for the probabilities considered. Let S(Z) denote
that set.

The identi�ed set of structural functions, H(Z), is the set of values of  for which
there are values of ��(z) for z 2 Z such that the resulting structure is in the identi�ed
set, S(Z). The identi�ed set for , H(Z), is the projection of S(Z) onto the unit
N -cube within which all values of  lie.

The geometry of these sets is considered in Chesher and Smolinski (2009). A
brief account is given here. Because of the properness condition [2] the order in which
the elements of  lie is an important consideration.

There are
T � (K(M � 1))!= ((M � 1)!)K (6)

admissible arrangements of the elements of .11

In each arrangement, t 2 f1; : : : ; Tg, the set of admissible observationally equiv-
alent structures de�ned by [1], [2] and [3], denoted by St(Z), is either empty or a
convex polytope because it is an intersection of bounded linear half spaces. The
identi�ed set of structures is the union of the sets obtained under each admissible
arrangement.

S(Z) =
T[
t=1

St(Z)

In each arrangement, t, the identi�ed set of structural functions obtained by
projecting away ��(z) for z 2 Z, denoted Ht(Z), is also either empty or a convex
polytope. The complete identi�ed set of structural functions is the union of these
convex sets. The result may not itself be convex, nor even connected.

H(Z) =
T[
t=1

Ht(Z)

In problems in which M or K are at all large computation of an identi�ed set
of structural functions is di¢ cult. A head on attack would consider each admissible
11Arrangements in which there is a pair of indices m and m0 with m > m0 such that for some k,

mk � m0k are inadmissible. The formula for T arises as follows. There are
�

N
M�1

�
ways of placing

11; 21; : : : ; M�1;1 in the N = (M � 1)K places available and only one order in which those values

can lie. There are then
�
N�(M�1)

M�1
�
ways of placing 12; 22; : : : ; M�1;2 in the remaining N� (M�1)

places. Continuing in this way it is clear that there are

KY
k=1

 
N � (k � 1)(M � 1)

M � 1

!

admissible arrangements of  which on simpli�cation yields the formula (6) for T:
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arrangement in turn and use the method of Fourier-Motzkin elimination12 to project
away the (M � 1)K2 elements in ��(z) for each z 2 Z but this is computationally
infeasible when M and K are large.

In the next Section we develop easy-to-compute sets which are shown to be pre-
cisely the identi�ed set of structural functions, H(Z).

3. Sharp set identification of the structural function

Conditions [1] - [3] place restrictions on values of (; ��(z)) for z varying in Z. They
de�ne the identi�ed set of structures: S(Z).

In this Section we develop implications of these restrictions for admissible values
of , that is for values of  that lie in the identi�ed set of structural functions: H(Z).
The result is a list of inequalities that de�ne a set denoted E(Z). We show that this
is the identi�ed set H(Z).

The ordering of the elements of  is important. The set E(Z) is a union of convex
sets, Et(Z), one associated with each admissible arrangement, t, of .

E(Z) =
T[
t=1

Et(Z)

Each set Et(Z) is de�ned as an intersection of linear half spaces.
We proceed to develop a de�nition of a set Et(Z) obtained under a particular

arrangement, t, of the elements of . First it is necessary to develop notation and
functions for dealing with arrangements.

Let [n] be the nth largest value in an arrangement. Recall there are N � (M �
1)K elements in . We adopt the notation used in the literature on order statistics
to denote the ordered values of :

[1] � [2] � � � � [N�1] � [N ]

and we de�ne [0] � 0 and [N+1] � 1.13
De�ne functions m(n) and k(n) such that m(n)k(n) = [n]. De�ne m(0) = 0.

With M = 3 and K = 3, for which N = 6 and

 = [11; 12; 13; 21; 22; 23]

and for the arrangement
[11; 12; 21; 13; 23; 22] (7)

12See Zeigler (2007).
13A more precise notation would carry an identi�er of the arrangement t under consideration

and when stating formal results we do employ such a notation, for example denoting the ordered
elements of an arrangement t by t[1]; : : : ; 

t
[N ]. During the exposition, while it is clear that a partic-

ular arrangement is under consideration, we simplify notation and do not make dependence on the
arrangement under consideration explicit.
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the functions m(�) and k(�) are as shown below. We will work with this example
throughout this Section.

n m(n) k(n)

1 1 1

2 1 2

3 2 1

4 1 3

5 2 3

6 2 2

Figure 1 shows a con�guration of threshold functions that is consonant with this
arrangement. In this case M = 3 so there are two threshold functions, h1(x) and
h2(x).

Values of X are measured along the horizontal axis in Figure 1 and three points
of support, x1, x2 and x3 are marked. Values of threshold functions are measured
along the vertical axis which is the unit interval [0; 1]. This axis also measures values
of the unobservable variable U .

At any value of x, values of U falling on or below the lowest threshold function
deliver the value 1 for Y , values of U falling between the two threshold functions or
on the highest threshold function deliver the value 2 for Y and values of U falling
above the highest threshold deliver the value 3 for Y . Notice that the upper threshold
function is not monotone in x re�ecting the inequality 23 < 22.

Now de�ne an inverse function n(m; k) such that mk = [n(m;k)] and note that
n(m(n); k(n)) = n. For all k de�ne n(0; k) = 0.

For the arrangement (7) considered above the function n(�; �) delivers values as
shown below.

k = 1 k = 2 k = 3

m = 1 1 2 4

m = 2 3 6 5

The functions m(�), k(�) and n(�; �) are speci�c to the particular arrangement under
consideration and we could make this dependence explicit by writing mt(�), kt(�) and
nt(�; �) but for the most part this is not done in order to avoid excessively complex
notation.

We use an abbreviated notation as follows: ��[n] denotes ��m(n)k(n), thus:

��[n] � ��m(n)k(n) = Pr[Y � m(n) ^X = xk(n)jZ = z]

and ��[n]k0 denotes ��m(n)k(n)k0 thus.

��[n]k0 � ��m(n)k(n)k0 = Pr[U � m(n)k(n) ^X = xk0 jZ = z]

There are associated non-cumulative probabilities as follows.14

�[n] = Pr[Y = m(n) ^X = xk(n)jZ = z]
14Here too we could make dependence on the arrangement under consideration explicit in the

notation, e.g. writing �t[n] and �
t
[i]k, but do not do so until we come to formal statements of results.
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�[n]k0 = Pr[U 2 ([n�1]; [n]] ^X = xk0 jZ = z]
It is important to understand that ��[n]k0 =

Pn
j=1 �[j]k0 but in general ��[n] 6=

Pn
j=1 �[j]

rather:

��[n] =

m(n)X
j=1

�jk(n) =

m(n)X
j=1

�[n(j;k(n))]:

All these probabilities depend on the instrumental value z under consideration but
this dependence is not made explicit in the notation for the moment. De�ne �[0] =
��[0] = 0, �[n]k = ��[n]k = 0.

It is helpful to extend the de�nitions to cover probability masses associated with
the Mth point of support of Y so for all k de�ne

n(M;k) = N + k

and

m(N + k) = M

k(N + k) = k

which lead to
�[N+k] = Pr[Y =M ^X = xkjZ = z]

with associated cumulative probabilities

��[N+k] = Pr[Y �M ^X = xkjZ = z] = Pr[X = xkjZ = z] = �k.

Table 1 exhibits the probability masses �[n]k for a general case with an M -valued
outcome and endogenous variables with K points of support and N = K(M�1). All
values are non-negative, values in column k sum to �k and the sum of all K(N + 1)
probability masses in the table is 1. We will make extensive reference to tables like
this in what follows.

We consider a particular value z 2 Z and construct a set Et(z), de�ning Et(Z) as
the intersection of such sets for z varying in Z.

Et(Z) �
\
z2Z

Et(z)

To avoid cumbersome notation we do not make the dependence of probabilities on
the chosen value z explicit in the notation for the moment.

Each set Et(z) is obtained by considering restrictions that Conditions [1] - [3]
place on the elements of  when they are in arrangement t. The restrictions arise
because for all values of  (see the �nal column of the Table) that lie in the identi�ed
set there exist values of the probability masses �[n]k such that:

1. the sum of probability masses lying in rows 1 through n is equal to [n], equiv-
alently, the sum of probability masses in row n is equal to [n] � [n�1],

nX
i=1

KX
k=1

�[i]k = [n]
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Value of x Ordered
n x1 x2 � � � xK values of 

0 0 0 � � � 0 [0]
1 �[1]1 �[1]2 � � � �[1]K [1]
2 �[2]1 �[2]2 � � � �[2]K [2]
...

...
...

...
...

n �[n]1 �[n]2 � � � �[n]K [n]
...

...
...

...
...

N �[N ]1 �[N ]2 � � � �[N ]K [N ]
N + 1 �[N+1]1 �[N+1]2 � � � �[N+1]K [N+1]

Table 1: Piece-wise uniform joint distribution of U and X conditional on a value of
Z arranged by ordered values of  (rows) and points of support of the endogenous
variable X (columns).

KX
k=1

�[i]k = [n] � [n�1] � �[n]

2. all probability masses are non-negative,

3. probability masses sum over appropriate blocks of cells in the table to deliver
the observed probabilities �[1]; : : : ; �[n].

Table 2 exhibits the blocks of cells over which probability masses must be aggre-
gated for the arrangement shown in equation (7). Table 3 shows the values that must
be achieved when summing within blocks if the observational equivalence condition
is to be satis�ed. For example in the arrangement considered there is m(4) = 1,
k(4) = 3 and

�[4] = Pr[Y = 1 ^X = x3jZ = z] =
4X
i=1

�[i]3 = Pr[U � [4] ^X = x3jZ = z]

must hold if the observational equivalence restriction is to be satis�ed. Another
example: m(7) = 3, k(7) = 1 and so observational equivalence requires that the
following equalities hold.

�[7] = Pr[Y = 3 ^X = x1jZ = z] =
7X
i=4

�[i]1 = Pr[[3] < U � [7] ^X = x1jZ = z]:

In general there areM blocks in each column of the table. In each row exactly one
block terminates. The block of cells in which the mass �[n] must lie is in the column
of the table associated with xk(n) and in the rows that end at n(m(n); k(n)) = n and
start at n(m(n) � 1; k(n)) + 1. So the observational equivalence restriction requires
that the conditions:

�[n] =

nX
i=n(m(n)�1;k(n))+1

�[i]k(n)
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Value of x Di¤erences of ordered Ascending list
n x1 x2 x3 values of  of elements in 

0 0

1 �[1]1 �[1]2 �[1]3 [1] � [0] 11
2 �[2]1 �[2]2 �[2]3 [2] � [1] 12
3 �[3]1 �[3]2 �[3]3 [3] � [2] 21
4 �[4]1 �[4]2 �[4]3 [4] � [3] 13
5 �[5]1 �[5]2 �[5]3 [5] � [4] 23
6 �[6]1 �[6]2 �[6]3 [6] � [5] 22
7 �[7]1 �[7]2 �[7]3 [7] � [6] 1

Table 2: Conditional mass function values arranged by ordered values of  and values
of the conditioning variable X showing blocks of cells whose mass must be aggregated
when considering the observational equivalence condition.

Value of x Di¤erences of ordered List of elements of 
n x1 x2 x3 values of  in ascending order

0 0

1 �[1] [1] � [0] 11
2 �[2] [2] � [1] 12
3 �[3] [3] � [2] 21
4 �[4] [4] � [3] 13
5 �[5] [5] � [4] 23
6 �[6] [6] � [5] 22
7 �[7] �[8] �[9] [7] � [6] 1

Table 3: Sums of probability masses in blocks of cells must aggregate to the indicated
probabilities if the observational equivalence condition is to be satis�ed.

hold for n = 1; : : : ; N +K.
A particular value of  in arrangement t can only support an allocation of prob-

ability mass satisfying Conditions (1) - (3) if the elements [1]; : : : ; [N ] are spaced
su¢ ciently far apart to permit the allocation of probability mass in the required
amounts in the blocks of cells that arise in the arrangement. For example, in the
arrangement (7), considering Table 3, [1] must be at least equal to �[1], [2] must be
at least equal to �[1] + �[2] and so forth.

There are additional restrictions. For example [5] � [3] must be at least equal
to �[5] and [7] � [4] = 1� [4] must be at least �[5] + �[8] + �[9]. We now develop a
complete characterisation of these inequalities which determine the spacing between
elements of  under a particular arrangement such that the allocation of probability
mass to blocks of cells that is required to deliver observational equivalence is feasible.

To proceed we introduce the idea of the active indexes in a row. The active
indexes in row n are K distinct elements of the list f1; 2; : : : ; N +Kg. These are the
indexes, i, of probabilities �[i] to which cells in row n contribute. The active index
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for column k of row n is de�ned as follows.

ank � min fi : (n � i � N +K) ^ (k(i) = k)g

The active index list for row n is de�ned thus: an � fan1; : : : ; anKg. Clearly amk �
ank for all m � n and k. For all k de�ne a0k = 0. Each active index list an has n as
a member and it is always the smallest member.

For the arrangement given in (7) there are, on considering Table 3, the following
active index lists.

n an
0 f0; 0; 0g
1 f1; 2; 4g
2 f3; 2; 4g
3 f3; 6; 4g
4 f7; 6; 4g
5 f7; 6; 5g
6 f7; 6; 9g
7 f7; 8; 9g

We now introduce the idea of last-discharged indexes for a row. The last dis-
charged index for column k in row n is the index, i, of the probability �[i] falling
in column k whose block of cells was most recently completed at row n. The last-
discharged index for column k in row n is de�ned for all k and n 2 f1; : : : ; Ng as
follows.

dnk � max fi : (0 � i � n) ^ (k(i) = k)g

For all k de�ne d0k � 0 and dN+1;k � N + k. Clearly dmk � dnk for all m � n and k.
The row n last-discharged index list is de�ned as dn � fdn1; : : : ; dnKg. Each list

dn has n as a member and, except in row N + 1, it is the largest member. For the
arrangement (7) there are, on considering Table 3, the following last-discharged index
lists.

n dn
0 f0; 0; 0g
1 f1; 0; 0g
2 f1; 2; 0g
3 f3; 2; 0g
4 f3; 2; 4g
5 f3; 2; 5g
6 f3; 6; 5g
7 f7; 8; 9g

For a pair of indexes, (r; s) 2 f0; 1; : : : ; N + 1g with r < s there is a minimal
probability mass required to fall between [r] and [s] if observational equivalence is
to be achieved.

This minimal mass is calculated as follows. In a column, k, there is a probability
mass equal to ��[dsk] required to lie below [s] because dsk is the discharged index
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associated with row s and column k. From this must be removed any probability
mass associated with the active index in column k of row r, ark, and any probability
mass associated with active indexes for rows prior to r in column k (and so discharged
by row r). This mass is given by ��[ark]. This can exceed ��[dsk] so the minimal
probability mass required to fall in the interval ([r]; [s]] associated with X = xk is
max(0; ��[dsk]� ��[ark]) and the total (across all values of X) minimal probability mass
required to fall in the interval ([r]; [s]] is

PK
k=1max(0; ��[dsk] � ��[ark]).

By way of example consider the arrangement (7) used before and the cases con-
sidered earlier.

1. [1] � [0]. The last-discharged indexes in row 1 are f1; 0; 0g and the active
indexes in row 0 are f0; 0; 0g. Only column 1 delivers a positive value and,
noting that �[0] = 0 there is:

[1] � [0] = [1] � ��[1] = �[1]:

2. [2] � [0]. The last-discharged indexes in row 2 are f1; 2; 0g and the active
indexes in row 0 are f0; 0; 0g. Columns 1 and 2 deliver a positive value and,
there is:

[2] � [0] = [2] � ��[1] + ��[2] = �[1] + �[2]:

3. [5] � [3]. The last-discharged indexes in row 5 are f3; 2; 5g and the active
indexes in row 3 are f3; 6; 4g. Notice that d52 = 2 < a32 = 6 so column 2
produces no positive contribution. Only column 3 delivers a positive value and
there is:

[5] � [3] � ��[5] � ��[4] = �[5].

4. [7] � [4]. The last-discharged indexes in row 7 are f7; 8; 9g and the active
indexes in row 4 are f7; 6; 4g. Columns 2 and 3 produce positive values and
there is:

[7] � [4] = 1� [4] �
�
��[8] � ��[6]

�
+
�
��[9] � ��[4]

�
= �[8] + �[5] + �[9].

From the argument so far it follows that for every pair of indexes

(r; s) 2 f0; 1; : : : ; N + 1g

with r < s the following inequality must hold if the value of  in the arrangement un-
der consideration is to allow the allocations of non-negative probability mass required
to satisfy the observational equivalence restriction.

[s] � [r] �
KX
k=1

max(0; ��[dsk] � ��[ark]) (8)

This system of (N + 1)(N + 2)=2 inequalities de�nes a set of values of  denoted by
Et(z) associated with arrangement t and instrumental value z.

All values of  in Ht(z) must satisfy these inequalities, so Ht(z) � Et(z).
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We can now give a formal statement regarding the convex components of the
identi�ed set of structural functions. At this point we make explicit in the notation
the dependence of objects on the arrangement under consideration, t, and on the
instrumental value, z.

Theorem 1: Consider an arrangement t of

 � [11; : : : ; 1K ; 21; : : : ; 2K ; : : : ; M�1;1; : : : ; M�1;K ]

with ith largest element t[n] such that

0 � t[0] � 
t
[1] � � � � � 

t
[N ] � 

t
[N+1] � 1

where N � K(M � 1). The correspondence between elements of the ordered and
unordered lists is given by arrangement-speci�c functions mt(�), kt(�) and an inverse
function nt(�; �) which are such that for n 2 f1; : : : ; Ng, k 2 f1; : : : ;Kg and m 2
f1; : : : ;M � 1g:

t[n] = mt(n)kt(n)

mk = t[nt(m;k)]:

For all arrangements de�ne mt(0) � 0 and for all k: mt(N + k) �M , kt(N + k) �
k; nt(M;k) � N + k, nt(0; k) � 0. For n 2 f1; : : : ; N +Kg de�ne:

��t[n](z) � Pr[Y � mt(n) ^X = xkt(n)jZ = z]

with ��t[0](z) � 0. For all k and n 2 f1; : : : ; Ng de�ne

atnk(z) � minfi : (n � i � N + k) ^ (kt(i) = k)g

dtnk(z) � maxfi : (0 � i � n) ^ (kt(i) = k)g

and for all k de�ne d0k � 0 and dN+1;k � N + k. De�ne a set of values of , Et(z),
determined by the intersection of the following (N + 1)(N + 2)=2 linear half spaces:

t[s] � 
t
[r] �

KX
k=1

max(0; ��t[dsk(z)](z)� ��
t
[ark(z)]

(z)) (9)

with (r; s) 2 f0; 1; : : : ; N + 1g and s > r.
Then:

1. The set Ht(z) is a subset of Et(z).

2. For every  2 Et(z) there exists a distribution of U and X given Z = z which
is piecewise uniform for variations in U that:

(a) is proper,
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(b) satis�es the independence condition: for all i 2 f1; : : : ; Ng

iX
j=1

KX
k=1

�t[j]k(z) = 
t
[i]

(c) delivers the probabilities ��t[i](z) for all i 2 f1; : : : ; Ng and so satis�es the
observational equivalence property.

Result 1 of the Theorem has already been demonstrated to be true because we
showed that all  2 Ht(z) satisfy the inequalities that de�ne the polytope Et(z). It
remains to show how to construct the distribution referred to in Result 2. That is the
subject of Section 3.2. First two corollaries are stated and proved and simple upper
and lower bounds on the elements of  are derived.

Corollary 1: For all t and z, Et(z) = Ht(z).

Proof: Result 1 of the Theorem states that Et(z) � Ht(z) and Result 2 implies
that Ht(z) � Et(z), from which it follows that Et(z) = Ht(z).

Corollary 2: The set of values of the structural function identi�ed by the SEIV
model is as follows.

H(Z) =
T[
t=1

 \
z2Z

Et(z)
!

Proof: This follows directly from Corollary 1 on noting the composition of the
identi�ed set, H(Z).

H(Z) =
T[
t=1

 \
z2Z

Ht(z)
!

For a particular arrangement many of the inequalities de�ning a set Et(z) will be
redundant. The inequality given by setting s = N+1 and r = 0 is always redundant15

so that there are at most (N + 1)(N + 2)=2 � 1 inequalities de�ning the polytope
Et(z) and often far fewer. This is investigated further in Section 4.

The identi�ed set is determined by a large number of elementary inequalities which
either place upper or lower bounds on elements of  or lower bounds on di¤erences
of pairs of elements of . The convex polytope within which identi�ed values of 
lie in any particular arrangement is a facetted N -orthotope lying in the unit N -cube
with all facets taken at angles of 45� to the faces of the unit N -cube.

3.1. Upper and lower bounds. The inequalities (9) deliver simple upper and
lower bounds on elements of  speci�c to an arrangement t and an instrumental
value.

Suppressing dependence on the arrangement, t, and the instrumental value, z,
and setting r = 0 in (8) and noting that [0] = 0 and for all k, a0k = 0 and ��[0] = 0,

15 In this case the inequality (8) is 1 � 1.
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there is for all s 2 f1; : : : ; N + 1g the lower bound:

[s] �
KX
k=1

��[dsk] (10)

which can be expressed in terms of non-cumulative probabilities as follows.

[s] �
sX
i=1

�[i]:

Setting s = N+1 in (8) and noting that [N+1] = 1 there is for all r 2 f1; : : : ; N+
1g:

1� [r] �
KX
k=1

�
�k � ��[ark]

�
and so the following upper bound.

[r] �
KX
k=1

��[ark] (11)

These are the bounds given in Chesher (2007, 2010).

3.2. Construction of a joint distribution of U and X. We propose an algo-
rithm for constructing a joint distribution for U and X given Z = z for any value of
 that lies in a set Et(z) constructed using a sequence of probabilities �[1]; : : : ; �[N ].
We then prove Result 2 of Theorem 1 by showing that the distribution has the re-
quired properties, namely that it is proper, that it satis�es observational equivalence,
delivering the probabilities �[1]; : : : ; �[N ] that determine Et(z), and that it satis�es the
independence restriction as expressed in (4).

While setting up notation and giving the details of the workings of the algorithm
dependence of objects such as �[n], ]n], �[n]k, ank and dnk on the arrangement under
consideration and the instrumental value is suppressed in the notation.16 In what
follows sums from a to b,

Pb
i=a(�)i, with b < a are by convention equal to zero.

We have introduced the active index lists an and we now make use of ordered
active index lists aon � fan[1]; : : : ; an[K]g where:

minfan1; : : : ; anKg � an[1] < an[2] < � � � < an[K] � maxfan1; : : : ; anKg:

Note that for all n 2 f1; : : : ; N + 1g, an[1] = n. The ordered active index list for the
16Of course the IV restriction ensures that [n] does not vary with the instrumental value z.
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arrangement (7) is as follows.
n aon
0 f0; 0; 0g
1 f1; 2; 4g
2 f2; 3; 4g
3 f3; 4; 6g
4 f4; 6; 7g
5 f5; 6; 7g
6 f6; 7; 9g
7 f7; 8; 9g

For i passing through the sequence: 1; 2; : : : ; N + 1 and, at each value of i, for j
passing through the ascending sequence: 1; 2; : : : ;K the algorithm produces values
�[i]k calculated recursively as follows:

�(i; j) = min(G(i; j);max (0; R(i; j))): (12)

with component objects de�ned as follows.

�(i; j) � �[i]k(ai[j])

G(i; j) � �[i] �
j�1X
j0=1

�(i; j0)

R(i; j) � �[ai[j]] �
i�1X

i0=n(m(ai[j])�1;k(ai[j]))+1
�[i0]k(ai[j])

It will shortly be shown that for every value of  that lies in the set Et(z) this
algorithm �lls the cells of a table with probability masses which are (i) non-negative
while (ii) delivering total masses within groups of cells that respect the observational
equivalence restriction and (iii) allocating a total mass of exactly �[i] in row i for
each i 2 f1; : : : ; N + 1g.

In each row G(i; 1) has the value �[i] and for j 2 f2; : : : ;K + 1g there is the
following recursion.

G(i; j) = G(i; j � 1)� �(i; j � 1) (13)

Note that

G(i;K + 1) = �[i] �
KX
j=1

�(i; j) = �[i] �
KX
k=1

�[i]k

so when G(i;K + 1) = 0 for all i the algorithm delivers probabilities that satisfy the
independence restriction.

In each row i the �rst cell to be addressed is the one with the smallest active index
in that row. This is the cell that completes in row i the block of cells in column k(i)
which must contain probability mass �[i] if the observational equivalence condition
is to be satis�ed. R(i; 1) is the mass to be allocated to that cell to bring the total
to �[i]. The next cell to be addressed is the one in the column k(ai[2]) corresponding
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to the next active index to be discharged. Up to an amount R(i; 2) is allocated in
this cell. This is the mass which, if allocated to that cell, would bring the mass in
the block of cells in which the cell appears up to �[ai[2]]. The process proceeds with j
incrementing until j = K with probability mass being allocated to cells until all the
mass �[i] has been allocated after which (as will be shown) zero values appear in
the cells of row i.

We now show that when  lies in the set Et(z) the algorithm delivers probability
masses in each cell such that the observational equivalence condition is satis�ed. Then
we prove that the independence and properness conditions are satis�ed.

If  lies in the set Et(z) then by construction there is su¢ cient probability mass
available between every pair of values [r] and [s] to permit the allocation of prob-
ability masses �[1]; : : : ; �[N ] in their appropriate locations. The probability mass �[i]
is equal to Pr[Y = m(i) ^ X = xk(i)jZ = z]. The cells in which this mass must be
allocated lie in the column associated with xk(i) and terminate in row i. They start
in the row given by n(m(i)� 1; k(i)) + 1. The observational equivalence condition is
therefore: for all i 2 f1; : : : ; Ng

iX
t=n(m(i)�1;k(i))+1

�[t]k(i) = �[i].

The proposed algorithm �ll blocks of cells in index order, �[1] �rst, �[2] second and
so on. At each step of the process the algorithm allocates as much probability mass as
possible to the blocks of cells associated with probabilities �[i] which have the lowest
values of i accessible at that point.17 The algorithm delivers the required allocations
of probability mass for values of  that lie in Et(z) because such values have elements
that are su¢ ciently separated to permit the required allocation of probability masses.

It is shown in the Proposition below that whether or not the value of  lies in
Et(z) the algorithm (i) allocates non-negative probability mass in every cell and (ii)
never allocates more than an amount �[i] in row i, for i 2 f1; : : : ; Ng. When the
value of  lies in Et(z), a total mass of 1 is allocated by the algorithm because the
observational equivalence condition is satis�ed. Since, as shown below, an allocation
exceeding �[i] cannot occur for any i and

PN+1
i=1 �[i] = 1, when the value of 

lies in Et(z) the algorithm must place a probability mass exactly equal to �[i] in
each row i 2 f1; : : : ; Ng, thus satisfying the independence condition. The properness
conditions is satis�ed because (i) all probability masses allocated are non-negative
and (ii) since the observational equivalence condition is satis�ed a total mass of 1 is
allocated.

Here is the Proposition setting out some properties of the algorithm. These obtain
whether or not  2 Et(z).

Proposition 1:

1. For all i and j:

(a) �(i; j) � G(i; j),
17This occurs because the algorithm uses ordered active indexes.
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(b) G(i; j) � 0,
(c) �(i; j) � 0,
(d) G(i; j) is a non-increasing function of j.

(e) If for some j, G(i; j) > �(i; j) then for all j0 � j, G(i; j0) > �(i; j0) and
�(i; j0) = max(0; R(i; j0)).

2. The algorithm allocates a probability mass of at most �[i] in row i, that is:

KX
k=1

�[i]k � �[i]:

The proof is in Annex 1.

3.3. An alternative derivation of the set Et(z). In order to relate the inequal-
ities that de�ne the set Et(z) to the inequalities given in Chesher (2010) and Chesher
and Smolinski (2009) it is useful to give an alternative derivation and expression for
the set Et(z).

Associated with the lists of active and last-discharged indexes there are arrays
of cumulative probabilities which are useful in the subsequent analysis. They also
provide an alternative characterisation of the set Et(z).

Consider the ith largest element [i]. If this lies in the identi�ed set then for each
i 2 f1; : : : ; Ng there exist non-negative values of the cumulative probabilities ��[i]k
which sum to [i] across k 2 f1; : : : ;Kg. The set Et(z) is derived by �nding lower
and upper bounds for each term ��[i]k in the sum, producing bounds on di¤erences of
elements of  by combining the bounds.

Each cumulative probability ��[i]k is bounded below by the maximum of the terms
��[j] that appear in rows 1 through i of the column associated with xk. That bound
is �ik � ��[dik] where dik is the last-discharged index in column k of row i.

Each term ��[i]k is bounded above by the minimum of the terms ��[j] that appear
in rows i through N + 1 of column k. That bound is �ik � ��[aik] where aik is the
active index in column k of row i.

Combining results there are the following bounds for all i and k:

�ik � ��[i]k � �ik (14)

and on summing and noting that for  in the identi�ed set the independence condition
holds so that [i] =

PK
k=1 ��[i]k there are the following lower and upper bounds.

�i �
KX
k=1

�ik � [i] �
KX
k=1

�ik � �i (15)

Making explicit dependence on the arrangement under consideration, t, and the
instrumental value, z, de�ning

�tik(z) � ��t[dtik](z) �tik(z) � ��[atik](z)
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�ti(z) �
KX
k=1

�tik(z) �ti(z) �
KX
k=1

�tik(z)

and intersecting the bounds (20) across z 2 Z gives the following inequalities which
hold for each arrangement t and for all i 2 f1; : : : ; Ng.

max
z2Z

�
�ti(z)

�
� [i] � min

z2Z

�
�ti(z)

�
(16)

The inequalities (14) can also be used to place bounds on di¤erences, [s] � [r],
as follows. For all s and r in f0; : : : ; N + 1g and for all k there are bounds on ��[s]k
and on ���[r]k as follows:

�sk � ��[s]k � �sk
��rk � ���[r]k � ��rk

and on adding there are the following bounds.

�sk � �rk � ��[s]k � ��[r]k � �sk � �rk (17)

Summing across k there are the following inequalities.

�s � �r =
KX
k=1

(�sk � �rk) � [s] � [r] �
KX
k=1

(�sk � �rk) = �s � �r (18)

This is nothing more than a direct implication of (15) but the lower bound here
can be improved upon by exploiting the properness condition [2]. Thus, consider
values s and r such that s > r. If  is in the identi�ed set then for all s > r the
inequality ��[s]k � ��[r]k � 0 holds. The lower bound in (17) can therefore be tightened
as follows.

max(0; �sk � �rk) � ��[s]k � ��[r]k � �sk � �rk (19)

Summing across k gives the following bounds which hold for all s > r 2 f0; : : : ; N+1g.

KX
k=1

max(0; �sk � �rk) � [s] � [r] � �s � �r (20)

The set de�ned by these bounds is precisely the set Et(z).
Making explicit the dependence of the terms in these bounds on the arrangement

under consideration, t, and the instrumental value z, and intersecting the bounds
(20) across z 2 Z gives the following inequalities which hold for each arrangement t
and for all N + 1 � s � r � 0.

�t
sr
(Z) � max

z2Z

 
KX
k=1

max(0; �tsk(z)� �trk(z))
!
� t[s]�

t
[r] � min

z2Z

�
�ts(z)� �tr(z)

�
� ��tsr(Z)

(21)
These bounds de�ne Et(Z), the component of the identi�ed set in which  is in
arrangement t. The union of these sets,

ST
t=1 Et(Z), is the set E(Z), previously

de�ned, which is equal to the identi�ed set H(Z).



Sharp identified sets for discrete variable IV models 23

Value of X Ordered
n x1 x2 x3 x4 x5 x6 values of   k(n)

0 0 0 0 0 0 0 [0] 0

1 ��[1] �[1]2 �[1]3 �[1]4 �[1]5 �[1]6 [1] 11 1

2 �[2]1 ��[2] �[2]3 �[2]4 �[2]5 �[2]6 [2] 12 2

3 �[3]1 �[3]2 ��[3] �[3]4 �[3]5 �[3]6 [3] 13 3

4 �[4]1 �[4]2 �[4]3 ��[4] �[4]5 �[4]6 [4] 14 4

5 �[5]1 �[5]2 �[5]3 �[5]4 ��[5] �[5]6 [5] 15 5

6 �[6]1 �[6]2 �[6]3 �[6]4 �[6]5 ��[6] [6] 16 6

7 �1 �2 �3 �4 �5 �6 [7] 1

Table 4: Conditional distribution-mass function values for a binary outcome example
with observational equivalence restrictions imposed.

3.4. Binary outcomes. When Y is binary there is just one threshold function
and the parameters of interest are 11; 12; : : : ; 1K . We now show that in this case
the lower bound in (21) is zero when a > 0 so these bounds place no restrictions on
 additional to those de�ned by (16).

Without loss of generality we consider an arrangement t in which the elements of
 are arranged in the order of the index k. The situation for a case in which K = 6 is
as pictured in Table 4. Notice that with the given arrangement of  for every value
of n, k(n) = n, so the values ��[n] lie on the diagonal in Table 4. Because Y is binary
there is only one such entry in each column.

We now show that for all indices s > r > 0 the terms �sk��rk are zero or negative
for all k from which it follows that the lower bound in (21) is zero.

Consider some value k and the di¤erence �sk��rk with s � r. Referring to Table
4 it can be seen that values taken by �sk and �rk are as follows.

�sk =

�
0 ; s < k
��[k] ; s � k �rk =

�
��[k] ; r � k
�k ; r > k

The resulting values of �sk � �rk are therefore as shown below.

Values of �sk � �rk
s < k s = k s > k

r < k ���[k] ���[k] 0

r = k � 0 0

r > k � � ��[k] � �k

All the values are zero or negative and the result is that the lower bounds �t
sr
(Z) are

zero. Therefore in the binary Y case the restrictions imposed by the bounds (21) for
r 6= 0 have no force. It is shown in the next Section that the bounds obtained from
(21) setting r = 0, equivalently the bounds (16), are identical to the bounds given
in Chesher (2009, 2010) which are shown in those papers to de�ne the identi�ed set
H(Z).
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3.5. Relationship to earlier results. It is shown in Chesher (2010) that all
structural functions h that lie in the set identi�ed by a SEIV model given a particular
probability distribution FY XjZ with Z = z 2 Z satisfy the following inequalities for
all � 2 (0; 1).

max
z2Z

Pr[Y < h(X; �)jZ = z] < � � min
z2Z

Pr[Y � h(X; �)jZ = z] (22)

Here probabilities are calculated using the distribution FY XjZ .
The inequalities generated by (22) as � varies over (0; 1) de�ne a set of structural

functions referred to as C(Z) in Chesher and Smolinski (2009). When X is discrete
and characterized by a vector  as in the previous discussion the set C(Z) is a union
of convex sets, Ct(Z), one associated with each arrangement, t, of .

C(Z) =
T[
t=1

Ct(Z)

Each set Ct(Z) is an intersection of sets obtained as z varies within Z.

Ct(Z) =
\
z2Z

Ct(z)

We now show that the bounds (22) are identical to those generated by (16) as
n varies over f1; : : : ; Ng. Chesher and Smolinski (2009) show that in the discrete
endogenous variable case considered here the bounds (22) hold for all � 2 (0; 1) if
and only if the following inequalities hold for all l 2 f1; : : : ;M�1g and s 2 f1; : : : ;Kg.

max
z2Z

KX
k=1

M�1X
m=1

�mk(z)1(mk � ls) � ls � min
z2Z

KX
k=1

MX
m=1

�mk(z)1(m�1;k < ls)

Consider a particular arrangement of  and its nth largest element, [n]. Substituting
[n] for ls above gives the following.

max
z2Z

KX
k=1

M�1X
m=1

�mk(z)1(mk � [n]) � [n] � min
z2Z

KX
k=1

MX
m=1

�mk(z)1(m�1;k < [n]) (23)

Comparing this with (16) it can be concluded that the bounds are identical because
both of the following equations are satis�ed:

��[dnk](z) � �nk(z) =
M�1X
m=1

�mk(z)1(mk � [n]) (24)

��[ank](z) � �nk(z) =
MX
m=1

�mk(z)1(m�1;k < [n]) (25)

and on the right hand side of (24) and (25) are the expressions summed over k to
produce the bounds in (23).
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3.6. Alternative expressions for the bounds. The objects �nk(z) and �nk(z)
can be expressed in terms of probabilities involving the structural function as follows.

�nk(z) = Pr[Y < h(xk; [n+1]) ^X = xkjZ = z] (26)

�nk(z) = Pr[Y � h(xk; [n]) ^X = xkjZ = z] (27)

Here, to accommodate the case n = N + 1, we adopt the convention that, for all
k, h(xk; [N+2]) denotes a quantity exceeding 1 which ensures that, for all k, (26)
delivers �N+1;k = ��Mk = �k.

18 The de�nitions already in hand ensure that for all k,
(27) delivers �N+1;k = ��Mk = �k.

With these expressions in hand the bounds (16) can be written as follows:

�n(Z) � max
z2Z

�
Pr[Y < h(X; [n+1])jZ = z]

�
� [n] � min

z2Z

�
Pr[Y � h(X; [n])jZ = z]

�
� �n(Z)

and the term
KX
k=1

max(0; �tsk(z)� �trk(z))

in the expression (21) can be written as follows.X
k

max
�
0;
n
Pr[Y < h(xk; [s+1]) ^X = xk)jZ = z]� Pr[Y � h(xk; [r]) ^X = xkjZ = z]

o�
Table 5 shows the values of �nk and �nk in the arrangement used in the example

considered earlier in the paper. Dependence on the value z is no longer made explicit
in the notation.

Table 6 shows the value of the structural function h(x; u) for all the combinations
of x and u that arise in (26) and (27) in this example. For example the entry for
n = 3 (row) and k = 2 under the heading �n2 is h(x2; [3]) = h(x2; 21) = 2. The
entries in this Table are easily veri�ed by referring to Figure 1.

Consider for example �42. From (26) we have

�42 = Pr[Y � h(x2; [5]) ^X = x2jZ = z]

and since [5] = 23 there is, from Table 6, h(x2; 23) = 2. Accordingly

�42 = Pr[Y < 1 ^X = x2jZ = z]

which is equal to ��12 as shown in Table 5 in the entry for n = 4 and k = 2.
Consider for example �33. From (27) we have

�33 = Pr[Y � h(x3; [3]) ^X = x3jZ = z]

and since [3] = 21 there is, from Table 6, h(x3; 21) = 1. Accordingly

�33 = Pr[Y � 1 ^X = x3jZ = z]

which is equal to ��13 as shown in Table 5 in the entry for n = 3 and k = 3.

18Equivalently we can de�ne �N+1;k(z) as follows:

�N+1;k(z) = Pr[Y � h(xk; [N+1]) ^X = xkjZ = z]

leaving equation (26) to apply for n 2 f0; 1; : : : ; Ng.



Sharp identified sets for discrete variable IV models 26

k = 1 k = 2 k = 3

n (n) (n+1) �n1 �n1 �n2 �n2 �n3 �n3

0 0 11 0 ��11 0 ��12 0 ��13
1 11 12 ��11 ��11 0 ��12 0 ��13
2 12 21 ��11 ��21 ��12 ��12 0 ��13
3 21 13 ��21 ��21 ��12 ��22 0 ��13
4 13 23 ��21 ��31 ��12 ��22 ��13 ��13
5 23 22 ��21 ��31 ��12 ��22 ��23 ��23
6 22 1 ��21 ��31 ��22 ��22 ��23 ��33
7 1 ��31 ��31 ��32 ��32 ��33 ��33

Table 5: Values of �nk and �nk in the arrangement used in the example.

k = 1 k = 2 k = 3

n (n) (n+1) A: �n1 B: �n1 A: �n2 B: �n2 A: �n3 B: �n3
0 0 11 1 1 1 1 1 1

1 11 12 2 1 1 1 1 1

2 12 21 2 2 2 1 1 1

3 21 13 3 2 2 2 1 1

4 13 23 3 3 2 2 2 1

5 23 22 3 3 2 2 3 2

6 22 1 3 3 3 2 3 3

7 1 3 3 3 3 3 3

Table 6: For the arrangement used in the example these are the values of A:
h(xk; [n+1]) appearing in the de�nition of �nk and of B: h(xk; [n]) appearing in
the de�nition of �nk.
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4. Illustrative calculations, computation and estimation

4.1. Examples of bounds. We enumerate the bounds for a case with M = 3
and K = 3 and the arrangement of  shown in equation (7) that has been considered
throughout the paper.

Table 7 shows the values of lower bounds on [s]�[r] for s (columns) and r (rows)
varying in f1; : : : ; 7g. For example the entry in the row for [1] and the column for
[3] gives the bound

[3] � [1] � �[2]
that is

21 � 11 � �21
and note that this must hold for all z 2 Z. As z varies �21 varies and making this
dependence explicit and dependence on the arrangement explicit too there is the
bound

21 � 11 � max
z2Z

�t21(z)

which contributes to the bounds de�ning Et(Z).
The model places no restrictions on some of the di¤erences other than those

arising because of the ordering in the arrangement under consideration. An example
is [4] � [2] which is only required to be non-negative. Some of the restrictions that
de�ne a set Et(Z) render others redundant. For example in Table 7 there is the
restriction

[5] � [4] � �[5] (28)

which when satis�ed ensures that two other restrictions are satis�ed as follows.

[5] � [3] � �[5]

[5] � [2] � �[5]

The restrictions [6] � [3] � �[5] and [6] � [4] � �[5] are also redundant, both being
implied by the restriction (28).

In the �nal column lies [7] which is equal to 1. The entries in this column
give lower bounds on 1� [r] where r varies from 1 to 6 down the rows of the Table.
Subtracting these entries from 1 (i.e. eliminating the leading unit terms and changing
the signs of what remains) delivers upper bounds on [r] for r 2 f1; : : : ; 6g.

Lower bounds on the [r]�s are simply, for each r 2 f1; : : : ; 6g

rX
r0=1

�[r0] � [r]

as shown in Section 3.1.
Adding the negative of the upper bound for [r] to the lower bound for [s] delivers

a lower bound on [s] � [r] which we can compare with the bounds shown in Table
7. Doing this we �nd that the lower bounds on [4] � [1], [5] � [1], [6] � [1] and
[6] � [2] in Table 7 are exactly the bounds obtained by comparing lower and upper
bounds on individual elements of .
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The only inequality in Table 7 that survives these various eliminations is [5] �
[4] � �[5]. So for this arrangement the set Et(Z) is de�ned by this inequality and
the lower and upper bounds on the individual elements of  and the inequalities that
express the ordering of the elements of  in this arrangement.

In the M = 3, K = 3 example considered in detail in this paper there are 90
admissible arrangements of  of which 15 are fundamental in the sense that each of
these 15 generates 3! = 6 arrangements by permuting the index identifying the three
values of the conditioning variable. Annex 2 shows the bounds on [s] � [r] just as
in Table 7 for each of these 15 fundamental arrangements. In the sequence presented
there the arrangement considered in this Section is number 8.

Comparisons amongst the inequalities on di¤erences of elements of  and compar-
ing those inequalities with the implications of the lower and upper bounds on elements
of  leads to elimination of large numbers of the entries in the tables that refer to
di¤erences [s] � [r] for s and r in f1; : : : ; 6g. In Arrangement 1 all such inequali-
ties on di¤erences disappear. In Arrangement 2 only the inequality [5] � [3] � �[5]
remains. In Arrangement 3 only the inequality [4] � [2] � �[4] remains. In other
cases there are more survivors. For example in Arrangement 11 the following three
inequalities on di¤erences of elements of  survive.

[3] � [2] � �[3]

[5] � [4] � �[5]

[6] � [2] � �[5] + �[6]

In the example considered here the number of discrete outcomes is M = 3 and the
number of points of support of the endogenous variables is K = 3. When M or K
are larger there are many more contributions to the de�nitions of sets Et(Z) coming
from inequalities involving di¤erences of elements of .

4.2. A Mathematica notebook. This paper is accompanied by a Mathematica
notebook which is viewable in the freeware Math Player 7.19 The notebook does
symbolic calculation of bounds as set out in Table 7. The user provides values for
M , the number of discrete outcomes and K the number of points of support of the
endogenous variables. A stylised graphical display of the M � 1 threshold functions
appears with the values associated with the K points of support of an endogenous
variable X highlighted. The user can manipulate these thereby generating particular
arrangements of . For each arrangement t selected, the notebook produces a table
like Table 7 showing in symbolic form the inequalities de�ning a set Et(z).

4.3. Computation and estimation. When M and K are both large computa-
tion of the set E(Z) is challenging because of the large number of potential arrange-
ments of , that is of the K values of the M � 1 threshold functions, that may arise.
For example when M = K = 4 there are 369; 600 admissible arrangements rising to
over 300 billion when M = K = 5. Shape restrictions are helpful in reducing the
scale of the problem.

19The notebook can be downloaded from www.cemmap.ac.uk/wps/seiv.nb. Math Reader 7 is
available at: http://www.wolfram.com/products/player/download.cgi .
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11 12 21 13 23 22 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 �[2] �[3] �[3] + �[5] �[3] + �[5] + �[6] 1� �[1] � �[2] � �[4]
12 [2] � � 0 0 �[5] �[5] + �[6] 1� �[1] � �[2] � �[3] � �[4]
21 [3] � � � 0 �[5] �[5] 1� �[1] � �[2] � �[3] � �[4] � �[6]
13 [4] � � � � �[5] �[5] 1� �1 � �[2] � �[4] � �[6]
23 [5] � � � � � 0 1� �1 � �[2] � �[4] � �[5] � �[6]
22 [6] � � � � � � 1� �1 � �3 � �[2] � �[6]

Table 7: Values of lower bounds on [s] � [r] for s (in columns) and r (in rows) for
the example arrangement.

In the binary outcome SEIV model a monotonicity restriction coupled with a sin-
gle index restriction, requiring that the threshold function is a monotone function of
a scalar valued function of endogenous and exogenous variables, brings great simpli-
�cation as shown in Chesher (2009). The use and bene�t of restrictions on threshold
functions such as monotonicity, concavity, convexity and single-peakedness coupled
with index restrictions is the subject of current research.

Shape restrictions can also be introduced by employing constrained sieve approxi-
mations. Parametric restrictions cut down the scale of the problem and provide a link
to classical likelihood based analysis of discrete outcome data. This is illustrated in
Chesher and Smolinski (2009) where ordered probit structural functions are employed
with a coe¢ cient on a scalar endogenous variable X that is common across threshold
functions whose �intercept terms�di¤er. This model embodies strong shape restric-
tions, requiring threshold functions to be monotone in X and parallel after applying
the inverse normal distribution function transformation.

As a prelude to consideration of methods for estimating identi�ed sets in para-
metric or otherwise shape constrained models, �rst consider a theoretical analysis in
which one has to hand probability distributions Pr[Y = m ^X = xkjZ = z] for each
value z 2 Z. Suppose there is a parametric model or sieve approximating model
for the structural function with parameter vector �. For any value � there is an
associated value of  denoted by (�) which is in some arrangement denoted by t(�).
The values of (�) and t(�) are easy to compute. The value � is in the identi�ed set
of parameter values, denoted by H�(Z), if and only if (�) 2 Et(�)(Z).

De�ne the non-negative valued distance measure D(�) as follows.

D(�) � min
w2Et(�)(Z)

�
( (�)� w)0 ((�)� w)

�
(29)

This is the squared Euclidean distance from  (�) to the point in the set Et(�)(Z)
closest to  (�) as the crow �ies. The measure is zero if and only if (�) 2 Et(�)(Z)
and so zero if and only if � 2 H�(Z). The value of D(�) is easily found using
a quadratic programming algorithm and the expressions for the linear half spaces
de�ning the sets Et(Z) that we have given in this paper.20 The set of values of � that
20An L1 norm and a linear programming calculation could be employed instead.
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minimise the function D(�) is the identi�ed set H�(Z).

H�(Z) = f� : � = argmin
s
D(s)g = f� : D(�) = 0g:

In applied econometric work there will be estimates of the probability distribu-
tions, Pr[Y = m ^X = xkjZ = z] for z 2 Z, and so estimates of the sets Et(Z). Let
D̂(�) be the distance measure arising when Et(Z) in (29) is replaced by an estimate
Êt(Z). The distance measure D̂(�) has the properties required of Chernozhukov,
Hong and Tamer�s (2007) �econometric criterion function�Q(�) and their methods
can be employed to estimate, and develop con�dence regions for, the set H�(Z).

It will be prudent to use bias corrected estimates of the sets Et(Z). Bias arises
because the sets Et(Z) arise as intersections of sets Et(z) across values z 2 Z. The
issue is explained in Chernozhukov, Lee and Rosen (2009) (CLR) where a solution is
proposed. This is directly applicable in the case that arises here.

De�ne �t(z) � f�t[1](z); : : : ; �
t
[N ](z)g. With [0] � 0 and [N+1] � 1 all the con-

straints de�ning a set Et(Z) have the form

[s] � [r] � max
z2Z

�
�sr � �t(z)

�
(30)

for certain pairs of indices s > r selected from f0; 1; : : : ; N +1g. Here �sr is a vector
of integers speci�c to the s� r comparison.

The proposal in CLR is to calculate an estimate of lt(�sr;Z) � maxz2Z
�
�sr � �t(z)

�
by calculating the maximum over z 2 Z of precision corrected estimates as follows.

l̂t(�sr;Z) = max
z2Ẑ

�
�sr � �̂t(z) + ��t(�sr; z)

�
Here �t(�sr; z) is the standard error of �sr � �̂t(z), Ẑ is a data dependent set of
values of z that converges in probability to a non-stochastic set which contains
argmaxz2Z

�
�sr � �t(z)

�
and � is an estimate of

median

�
inf
z2Ẑ

�sr � �t(z)� �sr � �̂t(z)
�t(�sr; z)

�
proposals for which are given in CLR.

The result is an asymptotically upward median unbiased estimate of the bound in
(30). Proceeding in this way gives bias corrected estimates of all bounds and thus bias
corrected estimated sets Êt(Z) which will be used in the calculation of the distance
measure D̂(�). An example of inference using the CLR method in a binary outcome
case is given in Chesher (2009).

5. Concluding remarks

We have studied identi�cation of a nonparametrically speci�ed structural function
in a discrete outcome - discrete endogenous variable setting. The single equation
instrumental variable (SEIV) model we have considered is attractive because it places
no restrictions on the process generating values of endogenous variables. Commonly
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used control function alternatives based on triangular models do not deliver point
identi�cation when, as here, endogenous variables are discrete unless there are strong
parametric restrictions.

The SEIV model set identi�es the structural function. In the M outcome case
the structural function is characterised by M � 1 threshold functions. In general the
identi�ed set is a union of a large number of convex sets. In principle there is one
such set associated with each admissible ordering of the K values taken by M � 1
threshold functions as endogenous variables pass across their K points of support.

Each convex component of the identi�ed set is the intersection of collections of
linear half spaces, each value of the instrumental variables generating one such collec-
tion. The number and extent of the convex components of the identi�ed set depends
on the strength and support of the instrumental variables. When these are good
predictors of the values of endogenous variables the identi�ed set may comprise just
a small number of convex components, perhaps just one.

We have developed expressions for a set E(Z) which can be calculated for any
probability distribution of the outcome Y and endogenous variables X given instru-
ments Z taking values in a set Z. We have shown that the set identi�ed by the SEIV
model, H(Z), is equal to E(Z). We provide a Mathematica notebook which conducts
symbolic calculation of convex components of the identi�ed set.

Unrestricted nonparametric estimation and inference pose challenging problems
once M or K are at all large. Parametric restrictions or shape restrictions reduce
the scale of the estimation problem. We have de�ned an easy-to-compute crite-
rion function which can be employed in estimation using the methods proposed in
Chernozhukov, Hong and Tamer (2007) with bias corrected estimates of bounds as
proposed in Chernozhukov, Lee and Rosen (2009).
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Annex 1: Proof of Proposition 1

1. (a) This follows directly from (12) which states that for all i and j, �(i; j) is
either equal to G(i; j) or, equal to max(0; R(i; j)) if this is less than G(i; j).

(b) For any i and j, if G(i; j) � 0 then �(i; j) � 0 because (12) states
that �(i; j) is at least equal to G(i; j) or a non-negative quantity, namely
max(0; R(i; j)). The recursion (13) taken together with (a) and G(i; j) �
0 =) �(i; j) � 0 implies that, for any i and j, if G(i; j � 1) � 0 then
G(i; j) � 0. Since for all i, G(i; 1) = �[i] � 0, the result follows by
induction letting j pass from 2 to K.

(c) As noted in the proof of (b), for all i and j, G(i; j) � 0 =) �(i; j) � 0
and the result follows because the result (b) states that for all i and j,
indeed, G(i; j) � 0.

(d) This follows directly from (13) and (a) and (c).

(e) If G(i; j) > �(i; j) then G(i; j) > 0 and since G(i; j) is a non-increasing
function of j, for all j0 � j, G(i; j0) > 0. Therefore, for all j0 < j, from
(13), G(i; j0) > �(i; j0) which by assumption also holds for j0 = j. From
(12), if G(i; j0) > �(i; j0) then �(i; j0) = max(0; R(i; j0)).

2. Suppose that for some j � K, G(i; j) � max(0; R(i; j)). Then �(i; j) = G(i; j)
and from (13) G(i; j+1) = 0 and by repeated application of (13), for all j0 > j,
�(i; j0) = G(i; j0) = 0 and so

G(i;K + 1) = �[i] �
KX
k=1

�[i]k = 0:

Suppose that there is no j � K such that G(i; j) � max(0; R(i; j)). Then,
considering j = K,

G(i;K) > max(0; R(i;K))

so
�(i;K) = max(0; R(i;K))

and so from (13)

G(i;K + 1) = �[i] �
KX
k=1

�[i]k = G(i;K)� �(i;K) > 0

and so
KX
k=1

�[i]k < �[i]:
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Annex 2

This Annex provides tables like Table 7 giving lower bounds on di¤erences [s] �
[r] for the 15 fundamental arrangements of  in the M = 3, K = 3 case. In each
case the �nal column gives lower bounds on 1� [r] for r 2 f1; : : : ; 6g. Subtracting 1
from each of these expressions and changing sign gives upper bounds on [r]. Lower
bounds are simply [r] �

Pr
r0=1 �[r0].
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A:1 11 12 13 21 22 23 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 0 �[4] �[4] + �[5] �[4] + �[5] + �[6] 1� �[1] � �[2] � �[3]
12 [2] � � 0 0 �[5] �[5] + �[6] 1� �[1] � �[2] � �[3] � �[4]
13 [3] � � � 0 0 �[6] 1� �[1] � �[2] � �[3] � �[4] � �[5]
21 [4] � � � � 0 0 1� �[1] � �[2] � �[3] � �[4] � �[5] � �[6]
22 [5] � � � � � 0 1� �[1] � �[2] � �[3] � �[5] � �[6]
23 [6] � � � � � � 1� �[1] � �[2] � �[3] � �[6]

A:2 11 12 13 21 23 22 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 0 �[4] �[4] + �[5] �[4] + �[5] + �[6] 1� �[1] � �[2] � �[3]
12 [2] � � 0 0 �[5] �[5] + �[6] 1� �[1] � �[2] � �[3] � �[4]
13 [3] � � � 0 �[5] �[5] 1� �[1] � �[2] � �[3] � �[4] � �[6]
21 [4] � � � � 0 0 1� �[1] � �[2] � �[3] � �[4] � �[5] � �[6]
23 [5] � � � � � 0 1� �[1] � �[2] � �[3] � �[5] � �[6]
22 [6] � � � � � � 1� �[1] � �[3] � �[2] � �[6]

A:3 11 12 13 22 21 23 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 0 �[4] �[4] + �[5] �[4] + �[5] + �[6] 1� �[1] � �[2] � �[3]
12 [2] � � 0 �[4] �[4] �[4] + �[6] 1� �[1] � �[2] � �[3] � �[5]
13 [3] � � � 0 0 �[6] 1� �[1] � �[2] � �[3] � �[4] � �[5]
22 [4] � � � � 0 0 1� �[1] � �[2] � �[3] � �[4] � �[5] � �[6]
21 [5] � � � � � 0 1� �[2] � �[1] � �[3] � �[5] � �[6]
23 [6] � � � � � � 1� �[1] � �[2] � �[3] � �[6]

Table 8:
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A:4 11 12 13 22 23 21 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 0 �[4] �[4] + �[5] �[4] + �[5] + �[6] 1� �[1] � �[2] � �[3]
12 [2] � � 0 �[4] �[4] + �[5] �[4] + �[5] 1� �[1] � �[2] � �[3] � �[6]
13 [3] � � � 0 �[5] �[5] 1� �[1] � �[2] � �[3] � �[4] � �[6]
22 [4] � � � � 0 0 1� �[1] � �[2] � �[3] � �[4] � �[5] � �[6]
23 [5] � � � � � 0 1� �[2] � �[1] � �[3] � �[5] � �[6]
21 [6] � � � � � � 1� �[2] � �[3] � �[1] � �[6]

A:5 11 12 13 23 21 22 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 0 �[4] �[4] + �[5] �[4] + �[5] + �[6] 1� �[1] � �[2] � �[3]
12 [2] � � 0 �[4] �[4] �[4] + �[6] 1� �[1] � �[2] � �[3] � �[5]
13 [3] � � � �[4] �[4] �[4] 1� �[1] � �[2] � �[3] � �[5] � �[6]
23 [4] � � � � 0 0 1� �[1] � �[2] � �[3] � �[4] � �[5] � �[6]
21 [5] � � � � � 0 1� �[3] � �[1] � �[2] � �[5] � �[6]
22 [6] � � � � � � 1� �[1] � �[3] � �[2] � �[6]

A:6 11 12 13 23 22 21 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 0 �[4] �[4] + �[5] �[4] + �[5] + �[6] 1� �[1] � �[2] � �[3]
12 [2] � � 0 �[4] �[4] + �[5] �[4] + �[5] 1� �[1] � �[2] � �[3] � �[6]
13 [3] � � � �[4] �[4] �[4] 1� �[1] � �[2] � �[3] � �[5] � �[6]
23 [4] � � � � 0 0 1� �[1] � �[2] � �[3] � �[4] � �[5] � �[6]
22 [5] � � � � � 0 1� �[3] � �[1] � �[2] � �[5] � �[6]
21 [6] � � � � � � 1� �[2] � �[3] � �[1] � �[6]

Table 9:
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A:7 11 12 21 13 22 23 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 �[3] �[3] �[3] + �[5] �[3] + �[5] + �[6] 1� �[1] � �[2] � �[4]
12 [2] � � 0 0 �[5] �[5] + �[6] 1� �[1] � �[2] � �[3] � �[4]
21 [3] � � � 0 0 �[6] 1� �[1] � �[2] � �[3] � �[4] � �[5]
13 [4] � � � � 0 �[6] 1� �[1] � �[2] � �[4] � �[5]
22 [5] � � � � � 0 1� �[1] � �[2] � �[4] � �[5] � �[6]
23 [6] � � � � � � 1� �[1] � �[2] � �[4] � �[6]

A:8 11 12 21 13 23 22 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 0 �[3] �[3] + �[5] �[3] + �[5] + �[6] 1� �[1] � �[2] � �[4]
12 [2] � � 0 0 �[5] �[5] + �[6] 1� �[1] � �[2] � �[3] � �[4]
21 [3] � � � 0 �[5] �[5] 1� �[1] � �[2] � �[3] � �[4] � �[6]
13 [4] � � � � �[5] �[5] 1� �[1] � �[2] � �[4] � �[6]
23 [5] � � � � � 0 1� �[1] � �[2] � �[3] � �[5] � �[6]
22 [6] � � � � � � 1� �[1] � �[3] � �[2] � �[6]

A:9 11 12 21 22 13 23 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 �[3] �[3] + �[4] �[3] + �[4] �[3] + �[4] + �[6] 1� �[1] � �[2] � �[5]
12 [2] � � 0 �[4] �[4] �[4] + �[6] 1� �[1] � �[2] � �[3] � �[5]
21 [3] � � � 0 0 �[6] 1� �[1] � �[2] � �[3] � �[4] � �[5]
22 [4] � � � � 0 �[6] 1� �[1] � �[2] � �[4] � �[5]
13 [5] � � � � � �[6] 1� �[1] � �[2] � �[5]
23 [6] � � � � � � 1� �[1] � �[2] � �[5] � �[6]

Table 10:
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A:10 11 12 22 13 21 23 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 �[3] �[3] �[3] + �[5] �[3] + �[5] + �[6] 1� �[1] � �[2] � �[4]
12 [2] � � �[3] �[3] �[3] �[3] + �[6] 1� �[1] � �[2] � �[4] � �[5]
22 [3] � � � 0 0 �[6] 1� �[1] � �[2] � �[3] � �[4] � �[5]
13 [4] � � � � 0 �[6] 1� �[2] � �[1] � �[4] � �[5]
21 [5] � � � � � 0 1� �[2] � �[1] � �[4] � �[5] � �[6]
23 [6] � � � � � � 1� �[1] � �[2] � �[4] � �[6]

A:11 11 12 22 13 23 21 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 �[3] �[3] �[3] + �[5] �[3] + �[5] + �[6] 1� �[1] � �[2] � �[4]
12 [2] � � �[3] �[3] �[3] + �[5] �[5] + �[6] 1� �[1] � �[2] � �[4] � �[6]
22 [3] � � � 0 �[5] �[5] 1� �[1] � �[2] � �[3] � �[4] � �[6]
13 [4] � � � � �[5] �[5] 1� �[2] � �[1] � �[4] � �[6]
23 [5] � � � � � 0 1� �[2] � �[1] � �[3] � �[5] � �[6]
21 [6] � � � � � � 1� �[2] � �[3] � �[1] � �[6]

A:12 11 12 22 21 13 23 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 �[3] �[3] + �[4] �[3] + �[4] �[3] + �[4] + �[6] 1� �[1] � �[2] � �[5]
12 [2] � � �[3] �[3] �[3] �[3] + �[6] 1� �[1] � �[2] � �[4] � �[5]
22 [3] � � � 0 0 �[6] 1� �[1] � �[2] � �[3] � �[4] � �[5]
21 [4] � � � � 0 �[6] 1� �[2] � �[1] � �[4] � �[5]
13 [5] � � � � � �[6] 1� �[1] � �[2] � �[5]
23 [6] � � � � � � 1� �[1] � �[2] � �[5] � �[6]

Table 11:
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A:13 11 21 12 13 22 23 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � 0 �[2] �[2] �[2] + �[5] �[2] + �[5] + �[6] 1� �[1] � �[3] � �[4]
21 [2] � � 0 0 �[5] �[5] + �[6] 1� �[1] � �[2] � �[3] � �[4]
12 [3] � � � 0 �[5] �[5] + �[6] 1� �[1] � �[3] � �[4]
13 [4] � � � � 0 �[6] 1� �[1] � �[3] � �[4] � �[5]
22 [5] � � � � � 0 1� �[1] � �[3] � �[4] � �[5] � �[6]
23 [6] � � � � � � 1� �[1] � �[2] � �[4] � �[6]

A:14 11 21 12 13 23 22 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � �[2] �[2] �[2] �[2] + �[5] �[2] + �[5] + �[6] 1� �[1] � �[3] � �[4]
21 [2] � � 0 0 �[3] + �[5] �[5] + �[6] 1� �[1] � �[2] � �[3] � �[4]
12 [3] � � � 0 �[5] �[5] + �[6] 1� �[1] � �[3] � �[4]
13 [4] � � � � �[5] �[5] 1� �[1] � �[3] � �[4] � �[6]
23 [5] � � � � � 0 1� �[1] � �[3] � �[4] � �[5] � �[6]
22 [6] � � � � � � 1� �[1] � �[3] � �[3] � �[6]

A:15 11 21 12 22 13 23 1
[1] [2] [3] [4] [5] [6] [7]

11 [1] � �[2] �[2] �[2] + �[4] �[2] + �[4] �[2] + �[4] + �[6] 1� �[1] � �[3] � �[5]
21 [2] � � 0 �[4] �[4] �[4] + �[6] 1� �[1] � �[2] � �[3] � �[5]
12 [3] � � � �[4] �[4] �[4] + �[6] 1� �[1] � �[3] � �[5]
22 [4] � � � � 0 �[6] 1� �[1] � �[3] � �[4] � �[5]
13 [5] � � � � � �[6] 1� �[1] � �[2] � �[5]
23 [6] � � � � � � 1� �[1] � �[2] � �[5] � �[6]

Table 12:
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Figure 1: Examples of two threshold functions for the case M = 3 and K = 3 that
are consonant with the arrangement of elements of  shown on the vertical axis. The
outcome Y takes the value 1 below the lowest threshold in the dark shaded region
and the value 3 above the highest threshold in the light shaded region. The vertical
scale is the unit interval [0; 1].


