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1 Introduction

Underlying most dynamic stochastic general equilibrium models is the strong as-

sumption that all state variables relevant to optimising decisions are directly observ-

able. This can be rationalized, as in Mehra and Prescott (1990) by the assumption

that the states are �...an invertible function of observables�.

In this paper we consider a general linear DSGE model in which optimising

agents use the Kalman �lter to estimate the state variables from their information

set. Both states and observables may in principle be endogenous to the optimising

decisions made in response to this information. We distinguish between three

kinds of information set, examine their properties and show that the nature of

the information set can have important implications, both for the model�s rational

expectations solution and for the time series properties of the economy

1. Instantaneously invertible information sets. The states can be recov-
ered from only t - dated information, the Kalman �lter is redundant and the full

information solution is replicated.

2. Asymptotically invertible information sets. In the limit as the history
of observables becomes in�nite, the Kalman Filter converges to a solution which

replicates full information. We show that the conditions for asymptotic invertibility

can be satis�ed with fewer observables than needed for instantaneous invertibility

and put important additional restrictions on the nature of the measurement process,

and its interaction with the dynamics of the underlying states.

3. Non-invertible information sets. The Kalman �lter can never replicate
the full information solution. We show that the impact of limited information is

transitory, but can be highly persistent, and that the endogenous nature of the �l-

tering problem introduces new (but unobservable) sources of dynamics in response

to structural shocks. The only observable dynamics will however be those of the

estimated, as opposed to the actual states. We show that, with non-invertible infor-

mation sets, the estimated states will follow the same vector autoregressive process

as would the true states in a notional full information economy, but with a di¤erent

covariance pattern of shocks. In this notional economy, pre-determined variables

like capital are subject to �pseudo-shocks�that are logically impossible under full

information.

We also examine the implications of information for the time series properties of

the economy. Invertibility of an information set is closely related to invertibility or

fundamentalness, in time series analysis. The solution to a Kalman �lter problem

always results in a fundamental time series representation of the observables, for

which the innovations can be recovered from the history of the observables. But
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invertibility of the information set implies that the structural innovations that drive

the true states are also fundamental in the time series sense. In contrast, under

non-invertible information sets the structural innovations cannot be recovered from

the history of the observables. Indeed, in the special case of a non-invertible in-

formation set in which the number of observables equals the number of structural

innovations, we show that the latter are also (up to a scaling factor) innovations to

a nonfundamental time series representation of the observables. We also show that

in general the endogenous nature of the �ltering problem leads to nonbasic (Lippi

and Reichlin, 1994) nonfundamental representations of the observables.

To complement the paper we provide a Matlab toolkit which allows the easy

application of our techniques to a wide class of linear rational expectations models.

Our analysis builds on past analysis of macroeconomic models with limited in-

formation (Pearlman et al, 1986; Pearlman, 1992; Svensson and Woodford, 2003,

2004). It also exploits known results in control theory (e.g., Whittle, 1983, Söder-

ström, 1994) and in econometric inference in time series representations (Hansen

and Sargent, 2005; Lippi and Reichlin, 1994; Fernandez-Villaverde et al, 2007), but

which have not, to our knowledge, been applied to the problem we address here.

Limited information sets within macroeconomic models may arise, as in, e.g.

Svensson and Woodford (2003) and Pearlman (1992), where a policymaker sets pol-

icy variables with incomplete information on the underlying state variables in the

economy, or, as in Bom�m (2004), Keen (2004), Collard and Dellas (2006) where

representative consumers are assumed to face informational restrictions. Woodford

(2003), Lorenzoni (2010), Nimark (2007), Graham and Wright (2010) and Pora-

pakkarm and Young (2008) address the problem of heterogeneous agents facing a

symmetric �ltering problem of inferring aggregates which requires them to form es-

timates of a �hierarchy of average expectations� (Townsend, 1983). Graham and

Wright (2010) show that when such models include endogenous states a �ltering

problem of the form discussed in the present paper is central to the solution. We

discuss this particular case further in Section 7.2.

The remainder of the paper is organized as follows. Section 2 summarises

the key properties of the general �ltering problem within a general DSGE model.

In Section 3 we give conditions for asymptotic invertibility and in Section 4 we

discuss non-invertible information sets. Section 5 discusses implications for time

series properties. In Section 6 we show how our techniques can be applied to an

analytical example based on the benchmark stochastic growth model. Section 7

discusses applications and extensions of our results. Appendices provide proofs and

algebraic derivations.
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2 The signal extraction problem

2.1 A general system representation

A linearised structural dynamic stochastic general equilibrium model can be written

as in McCallum (1998) as:

AyyEtyt+1 = Byyyt +Bykkt +Byzzt (1)

kt+1 = Bkyyt +Bkkkt +Bkzzt (2)

zt+1 = Bzzzt + �t+1 (3)

In the �rst block of equations yt is a q�1 vector of non-predetermined variables.
The matrix Ayy may not be invertible. The equations in this �rst block may be �rst-

order conditions (both static and dynamic), identities or production relations. The

second block describes the evolution of an rk � 1 vector of predetermined variables,
kt, while the third describes the evolution of an rz�1 vector of exogenous stochastic
processes, zt, that can be represented by a �rst order vector autoregression, with

�t an rz � 1 vector of iid innovations with covariance matrix Szz = E (�t� 0t) which
we assume is full rank.1 Using results such as those in Hamilton (1994, pp 678-9)

a process as in (3) can also represent a wide range of stochastic processes such as

Markov Chains by an appropriate speci�cation of the process for the innovations.

We assume that agents form expectations based on an information set

It = ffit�j; j � 0g ; �; �0g (4)

where � contains the (time-invariant) structure and parameters of equations (1) to

(4), �0 represents initial estimates of the states and their covariance matrix2, and it
is an n� 1 vector of observed variables

it = Cikkt + Cizzt + Ciyyt + Ciwwt (5)

wt is an rw � 1 vector of measurement errors, with 0 � rw � n:3

For generality we can in principle allow these to be serially correlated by repre-

1Higher order VARMA representations of exogenous variables may in principle be captured by
including lags of zt and current or lagged values of ut in kt; and allowing zt+1 to depend on kt:
With this small amendment there is no loss of generality in assuming that Szz is full rank.

2One value for �0 would be the unconditional properties of the states implicit in �. Under
conditions given in Proposition 2, initial estimates will have no impact on the equilibrium.

3Measurement errors may be of lower dimension than the measured variables themselves if, for
example, some linear combination of kt; zt and yt is measured without error, or if measurement
errors in di¤erent variables are systematically related.
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senting them as a vector autoregression:

wt+1 = Bwwwt + !t+1 (6)

where !t has the full rank covariance matrix S!! = E [!t!0t] : We assume that the

eigenvalues of Bww have real parts less than or equal to unity. The two vectors

of innovations !t and �t may in principle be contemporaneously correlated, with

E (�tw
0
t) = S�!; but are assumed uncorrelated at all other leads and lags.

The nature of the information set (which will be model-speci�c) should ideally

be explicitly related to the underlying structure of the economy.4 It should also be

borne in mind that, as we show in Appendix A, the structure of the model in (1)

to (3) needs to be both informationally consistent and informationally feasible i.e.

any linear combinations of the states appearing in the forward looking equations of

(1) must be observable.

We provide a Matlab toolkit which takes as input a system in the form speci�ed

in equations (1) to (6), and implements all the transformations and solution methods

that follow5.

2.2 The �ltering problem

For compactness of notation we incorporate predetermined and exogenous variables,

kt and zt; together with measurement error, wt; into a vector of state variables �t of

dimension r = rk + rz + rw. We partition yt into two sub-vectors, xt with variables

given by static relationships and ct with observable dynamic choice variables that

satisfy expectational di¤erence equations such as consumption or policy variables.

Note that none of our results depend on this partition.6

In Appendix A we show that we can then use (2) to (5) to derive the following

compact representation of the state evolution and measurement equations:

�t+1 = F��t + Fcct + vt+1 (7)

it = H
0
��t +Hcct (8)

4For example, Graham and Wright (2010) argue that, in an incomplete markets setting, infor-
mation should be assumed to be "market-consistent" - ie agents only obtain information from the
markets they trade in. Porapakkarm and Young (2008) is another example of this approach.

5Available from the authors�websites.
6This is discussed in more detail in Appendix A.
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where

�t =

264 kt

zt

wt

375 ; vt =
264 0

�t

!t

375
Q = E (vtv

0
t) =

"
0rk�rk 0rk�s

0s�rk S

#
; S =

"
S�� S�!

S 0�! S!!

#

De�nitions of the matrices in (7) and (8) are given in Appendix A.

We assume that optimising agents solve the signal extraction problem using

the Kalman �lter. The system in (7) and (8) di¤ers from that underlying standard

derivations of the Kalman �lter used in econometrics (as in, e.g., Harvey, 1981; 1989;

Hamilton, 1994; Hansen and Sargent, 2005) where the system is usually written as

�t+1 = F��t + vt+1 (7a)

it = H 0
��t + wt (8a)

where �t are the state variables. Comparing this with the system in (7) and (8)

reveals a number of di¤erences that are of signi�cance for our results.

First, there are two forms of endogeneity in the system in (7) and (8) since both

equations depend on the dynamic choice variables ct. An important distinction be-

tween the two forms of endogeneity is that the states have only lagged dependence

on ct (the most obvious example being the impact of current consumption deci-

sions on future capital) while the measured variables may have contemporaneous

dependence (for example via intratemporal optimality conditions). Both forms of

endogeneity have important implications for the nature of the �ltering problem, and

its consequences for the economy in which it takes place.7

Second, in econometric applications of the Kalman �lter, where the �t are exoge-

nous state processes, it is typically assumed that these are either stationary or at

worst may have unit roots. Thus the eigenvalues of the matrix F� are assumed to be

not greater than unity in absolute value. In contrast, in the endogenous Kalman �l-

ter problem generated by a typical dynamic stochastic general equilibrium model in

(7), F� will have at least one explosive eigenvalue, due to the dynamics of capital un-

der dynamic e¢ ciency.8 We shall show that this feature interacts in interesting ways

7Endogeneity of this form makes the �ltering problem in the context of a DSGE much closer to
those analysed in control theory, as in eg, Whittle, 1983; Anderson and Moore, 1979; Soderstrom,
1994.

8We give an example of a standard model (based on the linearisation in Campbell, 1994) that
has this property in Section 6.
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with the endogeneity of the Kalman �lter, and indeed requires some endogeneity, if

any latent explosive roots are to be stabilised.

Third, Q; the covariance matrix of the innovations of the rede�ned states, de�ned

after (8), is of rank s = rz + rw � r; with the inequality holding in strict form when
there are pre-determined variables (if rk > 0).

Fourth (and more trivially) the measurement errors, wt; have been absorbed

into the rede�ned states, �t: This allows us to accommodate, in principle, both

serial correlation of measurement errors and contemporaneous correlation with the

structural innovations, ut; it also allows some simpli�cations of the key formulae.

While we have derived the �ltering problem from a standard dynamic stochastic

general equilibrium model, in which the di¤erent elements of the state variables have

a clear interpretation (and imply a number of restrictions on the structure of the

problem) in the remainder of the paper the only features of the system in (7) and

(8) that are crucial to our results are the overall state dimension, given by r; the

stochastic dimension given by s � r; and the number of measured variables, n � r,
along with the endogeneity of both states and measured variables to the dynamic

choice variables, ct.

2.3 Full information solution

The special case of full information provides a crucial analytical building block for

the more general solution under other information sets.

De�nition 1 (Full information) Full information implies the state variables are
known, it = �t.

Full information is a special case of the system (7) and (8) with n = r; H� =

Ir; Hc = 0: The Kalman �lter is therefore redundant.

The solution for the dynamic choice variables under full information that satis�es

the expectational di¤erence equations in (1) can then be expressed in the form

c�t = �
0��t (9)

where for any variable xt; x�t denotes its value under full information. The matrix

�; depends in general on all structural and preference parameters of the model,

and can be computed using standard techniques (e.g. Blanchard and Kahn, 1980 ;

McCallum, 1998).9 For the rest of the paper we assume it to be unique and treat

9Note that all elements in the ith row of � are zero for i > rk + rz (measurement errors have
no impact on ct under full information).
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it as parametric. Given (9), the full information states follow a �rst order vector

autoregressive process in reduced form:

��t+1 = G�
�
t + vt+1 (10)

where

G = F� + Fc�
0 (11)

The behaviour of the dynamic choice variables, ct; under full information turns out

to be crucial for the stability of the states under any information set. As noted in the

previous section, in a model with endogenous capital F� will usually have at least one

explosive eigenvalue. This latent explosive property can only be controlled by the

behaviour of the dynamic choice variables. Under full information this stabilisation

follows directly from the standard rational expectations solution. Under standard

conditions the matrices � and Fc always satisfy the following conditions:

Assumption 1. All the eigenvalues of the matrix G = F�+Fc�0 have real parts
less than or equal to unity

Assumption 2. Let G = V �V �1 where � is a diagonal matrix of eigenvalues
and V the corresponding matrix of eigenvectors. For any strictly unit eigenvalue in

� the corresponding row of Fc is zero.

Assumption 1 rules out explosive rational expectations solutions;10 Assumption

2 states that, to the extent that any innovations have permanent e¤ects, these are

innovations to strictly exogenous processes (e.g., there may be a unit root component

in technology).11 These features of the solution under full information turn out to

be equally crucial for the stability of the solution even when the information set is

non-invertible, and thus does not replicate full information.

2.4 Instantaneous invertibility

The full information solution is replicated under the following conditions:

De�nition 2 (Instantaneous invertibility): An information set is instantaneously
invertible if n = r, the number of observables is equal to the state dimension, and

10Note that there is no direct link between the explosive eigenvalues in the rational expecta-
tions solution of (1) to (3) (which are set to zero in solving the model and deriving � under full
information), and those of F�, except to the extent that, by inspection of (11), the stability of the
rational expectations solution requires that the explosive eigenvalues of F� be \switched o¤�by
the behaviour of consumption.
11Assumption 2 follows naturally from the underlying structural model in (1) to (3), since the

dependence of state variables on ct is only via kt+1; hence all elements of the ith row of Fc are zero
for i > r � s:

7



H� in the measurement equation (8) is invertible, and hence full information can be

replicated using only t - dated information.

In this case the state variables can be obtained by inverting the measurement

equation (8) to give

�t =
�
H 0
�

��1
(it �Hcct) (12)

hence again the Kalman �lter is redundant, as is all lagged information on the

observables fit�jg for j > 0.

2.5 The Kalman �lter

For the remainder of the paper we shall assume that the information set is not

instantaneously invertible. We therefore need to apply the Kalman �lter.

Given the linear structure of the model we follow standard practice12 and con-

jecture that optimal choices will be �certainty-equivalent�i.e.

ct = �
0b�t (13)

where b�t = E�tjIt is the optimal estimate of the current state vector given the
available information set It and � is identical to the matrix for the full information

case in (9). We show in the discussion of Corollary 2 that this conjecture is veri�ed.

We �rst de�ne two key matrices that characterise the properties of the state

estimates and state forecasts.

Mt = E

��
�t � b�t���t � b�t�0� (14)

is the covariance matrix of the �ltering errors of the state estimates, and

Pt+1 = E
h�
�t+1 � Et�t+1

� �
�t+1 � Et�t+1

�0i
(15)

is the covariance matrix of the one-step ahead state forecast errors.13

The following proposition shows that despite the endogeneity of both states and

measured variables to the dynamic choice variables, the solution to the �ltering

problem can be related to standard results:

12See, for example, Pearlman (1992); Svensson and Woodford (2004), who in turn are simply
applying standard results in control theory as in, eg, Whittle (1983), Sodestrom (1994)
13For compactness of notation we write the period t estimate of the states as b�t; whereas the

standard Kalman �lter literature commonly uses b�tjt. For the forecast at time t of the states at

period t+1 we write Et�t+1
�
= Etb�t+1� instead of the standard b�t+1jt. Pt+1 is commonly denoted

Pt+1jt; and using the same notation Mt = Ptjt; but we separate the two for clarity.
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Proposition 1 (The parallel problem). In the solution to the �endogenous�Kalman
�lter problem given by (7) and (8), the mean squared error matrices Pt+1 and Mt

are identical to those derived from a parallel exogenous Kalman �lter problem

e�t+1 = F�e�t + vt+1eit = H 0
�
e�t

(i.e., setting Fc = Hc = 0 in (7) and (8)) so are given by the standard Kalman �lter

recursion

Pt+1 = F�MtF
0
� +Q (16)

Mt =
h
Ir � e�tH 0

�

i
Pt (17)e�t = PtH�

�
H 0
�PtH�

��1
(18)

In the solution to the actual problem, the estimated states follow the process

b�t+1 = Gb�t + �t"t+1 (19)

where G is as de�ned in (11), "t is the vector of innovation to the observables,

"t+1 � it+1 � Etit+1 (20)

and

�t = e�t hIn +Hc�0e�ti�1 (21)

Proof. See Appendix B.
The �ltering problem set out in equations (7) and (8) displays two forms of

endogeneity: the dependence of the states on the lagged dynamic control variables,

via Fc in (7) and the dependence of the measured variables on the contemporaneous

dynamic control variables, via Hc in (8). Proposition 1 states that the solution to

this problem can be derived from the solution to a parallel �ltering problem for a

notional state process e� and a notional set of measured variables eit for which both
e¤ects are absent, so that the standard exogenous Kalman �lter formulae can be

applied.14

We can derive the Kalman �lter from the properties of the parallel, rather than

the true process, because, while the dynamic choice variables determine future states

in the true problem via the matrix Fc; this does not impact on one-step ahead

14Our formulae for Pt+1 and e�t are more compact than the more common formulation, given
our absorption of measurement error into the states, but can be easily shown to be identical.
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uncertainty (since the marginal impact of today�s choices on tomorrow�s states is

known today even if current states are unknown). As a result the expression for Pt+1
only allows for the direct impact of uncertainty about today�s states transmitting to

uncertainty about tomorrow�s states, via the matrix F�: Since the matrix Fc does not

a¤ect the solution to the �ltering problem, it can be solved under the assumption

that Fc = 0:

The Kalman gain15 matrix �t for the true problem is not however the same as its

counterpart e�t in the parallel problem because the signal conveyed by innovations to
the measured variables also a¤ects the dynamic choice variables ct. But this has no

impact on the mean squared error matricesMt and Pt+1; hence these can be derived

under the assumption that Hc = 0:

Proposition 1 shows that, conditional upon the solution for �t in (21), the es-

timated states b�t follow the process given by (19) with the same non-explosive au-
toregressive matrix G as for the true states under full information, in (10). In the

parallel problem, in contrast, the notional state process e�t has autoregressive matrix
F�; which, as noted above may have explosive eigenvalues. We shall see below that

this rather unusual feature of the state process in the parallel problem has interesting

implications for the nature of information processing.

In Appendix B we show that the solution to the �ltering problem given by

Proposition 1 is implied by standard results in control theory (see, for example,

Söderström, 1994, Ch. 6); it is also equivalent to that in Svensson and Woodford

(2003) and in Pearlman et al (1986). However the speci�cation in terms of the

parallel problem has, as far as we know, thus far gone unremarked; and it is this

feature that provides the basis for many of the results that follow.

2.6 The steady state Kalman �lter

Equations (16) to (18) are a set of recursive matrix equations, for which it is natural

to look for a stable steady state. The re-statement of the endogenous Kalman �lter

problem in Proposition 1 in terms of the parallel exogenous problem means that this

becomes an application of existing results.

15We use the de�nition of the Kalman gain as in, eg, Harvey (1981), in which it can be interpreted
as a matrix of regression coe¢ cients updating current state estimates in response to forecast errors
in predicting measured variables (Soderstrom (1994) refers to this as the ��lter gain�) . The
term is also frequently applied (as in for example, Hamilton, 1994) to a matrix, often denoted K;
that updates forecasts of the states in response to the same forecast errors (Soderstrom (op cit)
refers to this de�nition as the �predictor gain�). In the parallel exogenous problem eK = F�e�t
in our notation, however in the actual endogenous problem K = G�t; since it would incorporate
the endogenous response of dynamic choice variables both in �t but also in the autoregressive
representation in (19).
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Proposition 2 (steady-state Kalman �lter). If the parallel problem in Proposition
1 is stabilisable and detectable in the sense of Anderson and Moore (1979), then for

any initial positive de�nite matrix P0; a unique stable steady state of the endogenous

Kalman �lter problem exists, with matrices �; P and M that satisfy the steady state

of equations (16) to (18).

Proof. See Appendix C.
The twin conditions of stabilisability and detectability can both be related to the

nature of the shock processes driving the underlying DSGEmodel. If the innovations

to the state process in (7) are expressed in the form

vt = Fuut (22)

where Fu =

"
0(r�s)�s

Is

#
; ut =

"
�t

!t

#
;E (utu

0
t) = S

(where the �rst block of zeros re�ects the presence of pre-determined variables) then

the two conditions can be written as

stabilisability: j�i (F� + FuL01) j < 1 8i
detectability: j�i

�
F� + L2H

0
�

�
j < 1 8i

where the two conditions are satis�ed for some matrices L1 and L2 of dimensions

r� s and r�n respectively, and where �i(A) denotes the ith eigenvalue of a matrix
A. Note that these conditions apply to the parallel problem, and hence are entirely

una¤ected by endogeneity in the true �ltering problem.

The �rst condition is trivial if there are no pre-determined variables, and hence

ut the underlying innovations in (22) are of dimension s = r, since in that case

Fu is a full rank r � r matrix. Where there are pre-determined variables (s < r)

it is not so straightforward. In this case Fu will usually contain a row of zeros in

exactly the row corresponding to an explosive eigenvalue in F�, so that the condition

for stabilisability can only be met if the relevant row of F� contains o¤-diagonal

elements. A simple example might be that capital must depend not only on lagged

consumption, but also on lags of stochastic exogenous state variables (for example

technology).

The second condition requires that there must be some observable indicator,

however poor, of any state variables with associated explosive or unit eigenvalues.

Note that, as is standard in all applications of the Kalman �lter, the recursion in

equations (16) to (18) does not depend on the data. It is common practice to solve

the model using steady-state values of � and P: It should be borne in mind, however,
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that this methodology makes the implicit assumption that there is a su¢ ciently long

history of it in the information set for the Kalman �lter to have converged.16

3 Asymptotic invertibility

We have derived the Kalman �lter for a general signal extraction problem where

we have assumed only that the information set is not instantaneously invertible

as in De�nition 2 (if it were, as we saw in Section 2.4, the Kalman �lter would be

redundant). In general the information set will be non-invertible: i.e. state estimates

will di¤er from the true states. However, under certain conditions we now show that

the Kalman �lter will converge to a steady state which replicates full information.

De�nition 2 showed that instantaneous invertibility requires that n; the number

of measured variables, equal r; the number of states. In most standard exogenous

Kalman �lter problems, in which the stochastic dimension, s; equals the state di-

mension, r; this is the only way that full information can be replicated. However,

the endogenous nature of the states in in the context of a DSGE model implies that

this condition is su¢ cient, but not necessary.

The dynamic endogeneity of some of the states (the kt) in the DSGE framework

means that, because they are pre-determined, the stochastic dimension s; is less

than r; the state dimension. Under conditions which we shall state below, there

may as a result be cases in which the Kalman �lter can become arbitrarily close to

replicating full information as the history of the information set increases over time.

This property can be de�ned formally in three ways that are all logically equivalent.

De�nition 3 (asymptotic invertibility) An information set It is asymptotically in-
vertible if

M � lim
t!1

Mt (It) = 0() P � lim
t!1

Pt (It) = Q() lim
t!1

[��t � �t (It)] = 0

where, from Proposition 2, M and P satisfy the steady state of the recursion in (16)

and (17).

The de�nition explicitly notes the dependence of Mt; Pt and �t on the entire

history of observables, It. If the information set satis�es this de�nition, Mt; the

16While the recursion does not depend on the data, it does depend on the passage of time,
re�ecting the fact that away from steady state (ie, conditional upon some initial estimate of the
states) the covariance matrix of innovations to the measured variables is time-varying: vart ("t) =
H 0PtH; and strictly greater than at steady state, with implications for the optimal value of the
Kalman gain matrix, �t:
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mean squared error matrix of state �ltering errors converges to a steady state value

of zero; and Pt; the covariance matrix of one-period-ahead state forecast errors,

tends to its irreducible minimum of Q: Given the nature of the recursion in for Mt

and Pt in (16) and (17) asymptotic invertibility depends potentially on the entire

structure of the model and its interaction with the measurement process.

The �rst two conditions taken in isolation require only that the estimated states

must converge on the true states, whereas the third condition appears stronger,

since it states that the true states in turn must converge on their full information

values (initial errors in estimating the states must have strictly transitory impact).

However we show below that the three features are in fact logically identical.17

This implies signi�cant restrictions on the nature of the information set, and its

relation to the underlying structural model, which we summarise in the following

proposition:

Proposition 3 (conditions for asymptotic invertibility). Assume that the Kalman
�lter of Proposition 1 satis�es the conditions for convergence given by Proposition

2. Necessary and su¢ cient conditions for an information set It to be asymptotically

invertible are

1. n = s

2.
��H 0

�Fu
�� 6= 0

3.
����i ��I � e� (Q)H 0

�

�
F�

���� < 1 8i

where n is the number of observed variables; s =rank(S) =rank(Q) is the "sto-

chastic dimension" of the state variables; H� and Fu are as given in equations (8)

and (22); �i (A) are the eigenvalues of a matrix A; and e� (Q) =Fu �H 0
�Fu

��1
satis-

�es (18) setting P = Q:

Proof. See Appendix E.
To illustrate, assume that all three conditions in Proposition 3 hold, and that

there is a su¢ ciently long history of the observables that state estimates in period

t have converged on their true values. Since all the conditions relate to features

of the parallel problem as de�ned in Proposition 1 we can ignore both forms of

endogeneity and set Fc = Hc = 0.18 Manipulation of equations (7), (8), (20) and

17See Corollary 3 below. Note however that the states will usually converge to their full infor-
mation values more slowly than Pt and Mt because past errors will have a persistent e¤ect on the
true states (see discussion below in Section 4).
18This assumption is made purely to simplify the algebra; the same qualititative properties hold

with both forms of endogeneity.
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(22) then implies that in period t+1; the innovations "t+1 in the observables (de�ned

in (20)) relate to the underlying structural innovations, ut+1 by

"t+1j�t=b�t = H 0
�

�
�t+1 � Et�t+1j�t=b�t

�
= H 0

�vt+1 = H
0
�Fuut+1 (23)

So, if the �rst two conditions hold, such that H 0
�Fu is both square (given n = s)

and invertible, then if the Kalman �lter reveals the true states in period t; the

structural innovations can be derived from the innovations to the observables by

inverting (23), and hence the states will also be known in period t + 1; and so on

inde�nitely.

However, this simply tells us that if the �rst two conditions in Proposition 3 are

satis�ed, then P = Q is a �xed point of the Kalman �lter. The third condition tells

us whether this �xed point is stable, and shows that the nature of the measurement

process, and its interaction with the dynamics of the underlying states, is crucial.

Recall that the assumption underpinning equation (23) was that the true states

were known in period t: But we shall show below19 that if the third condition in

Proposition 3 does not hold, then any errors in state estimates in period t will

be locally explosive in the neighbourhood of full information, thus rendering the

assumption invalid, since state estimates can never converge on full information.20

The conditions set by Proposition 3 state the minimal assumptions necessary

for the assumption of full information to be at least asymptotically valid given a

su¢ ciently long history of observables in the information set. All three conditions

can be related to interesting economic features of DSGE models.

1. Asymptotic invertibility is only of interest in the case that s; the stochastic

dimension of an economic system, is lower than r; the dimension of the states.

The benchmark stochastic growth model, for example, is driven by a single

stochastic process for technology. The �rst condition in Proposition 3 im-

plies that in this economy (subject to the other two conditions also holding)

full information can be replicated, at least asymptotically, with only a single

observable variable. We illustrate this property in Section 6.

2. A long - recognized inference problem, dating back at least to Muth (1961), and

re-visited more recently by Bom�m (2004), arises when technology is subject

to shocks with di¤erent persistence properties: e.g. if there are both transitory

19See discussion after Corollary 3.
20In Appendix E we show that the three conditions in Proposition 3 have a precise mathematical

counterpart to an invertibility condition for an econometrician stated in Fernandez-Villaverde et
al (2007).
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and persistent shocks. Since such shocks have an identical initial impact on

technology, they will also typically a¤ect all observable variables identically on

impact. In such cases, even if the �rst condition in Proposition 3 is satis�ed,

so that there are as many observable variables as shocks, the second condition

will not be satis�ed (i.e.,
��H 0

�Fu
�� = 0). Thus inference problems of this type

will never disappear, however long the history of the observables.

3. Even if both the �rst two conditions are satis�ed, the third condition, relating

to the nature of the measurement process, can also be crucial. In Section 6 we

give an example, again in the context of the stochastic growth model, in which

the information set satis�es conditions 1 and 2, but does not satisfy condition

3, and therefore is not asymptotically invertible.

4 Non-invertible information sets

We now address the implications of an information set being non-invertible. We

�rst show that even in this case the observable dynamics of the economy can be

represented by those of a notional full information economy, but with a di¤erent

covariance pattern of innovations; we then examine the implied true (but, in real

time, intrinsically unobservable) dynamics of the economy, which are more complex.

4.1 An isomorphic representation

Corollary 1 Assuming convergence of the Kalman �lter, the behaviour of the es-
timated states b�t is isomorphic to the behaviour of the true states, �t under full
information, if Q; the covariance matrix of underlying structural innovations in (7),

is replaced by the matrix Q+F�MF 0��M: In this representation there will in general
be pseudo-shocks to states that are in reality pre-determined.21

Proof. See Appendix C
This property follows directly from the representation of the state estimates in

(19), which shows that the b�t have an autoregressive representation which is identical
that of the full information states, ��t in (10) except in terms of its innovations. The

innovations to the estimated states, which are a linear combination of the innovations

to the observables, are vector white noise conditional upon the t - dated information

set, and, if the Kalman �lter has converged to its steady state, these innovations

have a time-invariant distribution. And, given the certainty equivalent nature of

21Note that Corollary 1 subsumes both instantaneous and asymptotic invertibility as special
cases since both imply M = 0:
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the optimal choices of the dynamic choice variables in (13) the estimated states are

su¢ cient for a time series representation of the dynamic choice variables, just as the

true states are under full information.22

However, despite its identical autoregressive representation, the notional full in-

formation economy described by Corollary 1 will have di¤erent dynamic properties,

due to the nature of its innovations. Most notably, as stated in Corollary 1, there

will in general be pseudo-shocks to predetermined variables that are logically im-

possible under full information. Thus analysis of an economy with a non-invertible

information set may require the derivation of impulse responses to, for example,

�capital shocks�that are never considered in the standard analysis of models where

agents actually have full information.23

Given certainty equivalence, any di¤erences in the dynamics of the states in

the isomorphic representation in Corollary 1 in turn determine the impact of non-

invertible information sets on the time series properties of dynamic choice variables.

The additional terms in the innovation covariance matrix of the isomorphic repre-

sentation do not always sum to a positive de�nite matrix. Hence non-invertibility of

an information set can in principle result in a process for dynamic choice variables

with higher, or lower, variance than under full information.24

4.2 True state dynamics and the implications of non-invertibility

While there is, as stated in Corollary 1, an autoregressive representation of the state

estimates in terms of observable innovations, this representation does not describe

the dynamics of the true states, except of course in the special case of invertibil-

ity. For the general non-invertible case the true (but unobservable) dynamics of

the economy are richer once expressed in terms of the true structural innovations.

Analysis of these dynamics provides further important insights.

De�ne the vector of state �ltering errors as

ft � �t � b�t (24)

We show in Appendix D that, conditional upon convergence of the Kalman �lter, the

22This reduced form representation of the estimated states has a precise econometric parallel in
the �Innovations Representation�of Hansen and Sargent (2005, p 191).
23In reality these are of course not true shocks, but an amalgam of true shocks and revisions

to past estimates of the states: but Corollary 1 implies that the responses of the dynamic choice
variables, and hence of the states, to these pseudo-shocks will be identical to the full information
response, if such shocks were actually possible.
24A point also made by Pearlman et al (1986) and Pearlman (1992), and relevant to the results

of Bom�m (2004).

16



joint process for ft and the true states �t can be expressed in the vector autoregressive

form "
�t+1

ft+1

#
=

"
G �Fc�0

0
�
I � e�H 0

�

�
F�

#"
�t

ft

#
+

"
I

I � e�H 0
�

#
vt+1 (25)

The top block is entirely independent of �ltering parameters, and transparently

reduces to the full information process (10) for invertible cases in which �ltering error

disappears. In general, however,with dynamic endogeneity, (Fc 6= 0) �ltering error
�contaminates� state dynamics via the o¤-diagonal element of the autoregressive

matrix for the joint process for �t and ft: In contrast the process for the vector of

state �ltering errors ft is block recursive. Furthermore, consistent with Proposition

1, ft follows an identical process to the state �ltering error in the parallel exogenous

problem (i.e., it does not depend on Fc or Hc) and hence is also invariant to the

properties of the ct, the dynamic choice variables.

Proposition 2 has an important corollary that is crucial to the time series prop-

erties summarised in (25):

Corollary 2 In the autoregressive representation (25), the autoregressive matrix�
I � e�H 0

�

�
F� of the �ltering errors, ft � �t�b�t; has at most r� n non-zero eigen-

values, all of which have real parts strictly less than unity in absolute value.

Proof. See Appendix C.
Thus convergence of the Kalman �lter to a unique steady state automatically

implies that �ltering errors are stationary (and vice versa).

Corollary 2 also sheds light on the third condition for asymptotic invertibility

in Proposition 3. If the �rst two conditions are satis�ed there is a �xed point of

the Kalman �lter that replicates full information. But, using Corollary 2 the third

condition in Proposition 3 can be interpreted as a condition on the eigenvalues of

the autoregressive matrix of �ltering errors in the neighbourhood of the solution

that replicates full information. If these eigenvalues are not stable then, even if

full information is a �xed point of the Kalman �lter, it will not be stable. State

estimates in period t will be locally explosive in the neighbourhood of full information

so estimates of the states can never converge on their true values. Assuming the

conditions in Proposition 2 hold, there will still be a stable steady state Kalman �lter,

in the neighbourhood of which, from Corollary 2, �ltering errors will be stationary,

but it will not be one that replicates full information.

The joint process for �t and ft in (25) provides a complete description of the

true process for the dynamic choice variables ct; since, using (13) we can write

ct = �
0b�t � �0 (�t � ft) : thus with a non-invertible information set the process for ct
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di¤ers from the process under full information both because of the direct e¤ect of

�ltering error on the estimated states and because the true states di¤er from their

full information values.25 The more persistent is the �ltering error process (the

closer are the non-zero eigenvalues of
�
I � e�H 0

�

�
F� to unity), the more prolonged

will be the additional dynamics introduced by the �ltering problem.

Note that, while �ltering errors will contaminate the true state dynamics, they

will not do so in expectation, since Etft = 0 by de�nition. Given this, at any point

in time the expected process for the states has an identical form to that of the true

states under full information, hence the undetermined coe¢ cients problem to which

� is the solution is identical to that under full information. This feature veri�es

the assumption of certainty equivalence used in specifying the optimal values of the

dynamic choice variables, ct; in (13).26

The representation in (25), together with Corollary 2, also implies a number

of further features of non-invertible information sets that are direct corollaries of

Propositions 1 and 2, given Assumptions 1 and 2.

Corollary 3 Non-invertibility of an information set has no permanent e¤ects, even
when there are permanent structural shocks (i.e., if Bzz has one or more unit eigen-

values).

Proof. See Appendix D
This Corollary implies that impulse responses under full information and non-

invertible information must converge. Thus while short-run dynamics may be sig-

ni�cantly a¤ected by informational problems, longer-run responses (especially those

to permanent shocks) derived from models that assume full information will approx-

imate those from models with non-invertible information sets. This has potentially

important implications for econometric analysis: it means, for example, that iden-

tifying assumptions for vector autoregressive models based on long-run restrictions

predicated on theoretical models assuming full information are equally applicable

under imperfect information.

Corollary 4 The �ltering errors ft satisfy H 0
�ft = 0:

25Note that only �ltering errors in the underlying states kt and zt have any direct impact on ct
since, as noted previously, � has zeros in its ith row for i > rk + rz:
26Certainty equivalence is of course a standard result that arises from the fact that we �rst

linearise the model (including Euler equations) and then solve the �ltering problem. To the extent
that state uncertainty introduces new sources of variance in dynamic choice variables (an issue we
discuss in Section 4.3) incorporation of state uncertainty into the optimisation problem before lin-
earisation would presumably result in e¤ects analogous to those in the precautionary consumption
literature.
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Proof. See Appendix D
Linear dependence between the elements of the vector of �ltering errors arises

from the e¢ cient use of the structural knowledge of the economy that underpins the

Kalman �lter. To see the intuition for this result, note that, if we take t - dated

expectations of the measurement equation (8), using (9) this implies

it = H��t +Hc�
0b�t = (H� +Hc�0)b�t

) H 0
��t = H

0
�
b�t ) H�ft = 0 (26)

thus agents know that �ltering errors for any given state variable must be precisely

o¤set by some combination of other �ltering errors. By implication neither the

innovation matrix of the vector of �ltering errors, ft; nor its autoregressive matrix

can be of full rank, and thus the n - dimensional vector ft can always be expressed

in terms of a sub-vector of dimension r � n:

Corollary 5 Let � =
h
�k �z �w

i0
: If F� has explosive eigenvalues, �k = 0 can

never be a convergent solution of the Kalman �lter problem.

Proof. See Appendix D
This result follows directly from the stationarity of the �ltering error process.

When F� has explosive eigenvalues associated with the evolution of the pre-determined

variables, kt; the autoregressive matrix of the �ltering error in (25),
�
I � e�H 0

�

�
F�;

could not have stable eigenvalues with e�k = 0: Since, from Corollary 2, stability of

the �ltering errors is directly equivalent to convergence of the Kalman �lter, this

in turn implies that in this case �k 6= 0 can never be a solution of the �ltering

problem. This has interesting implications for the nature of the optimal response

to information, as the quality of that information deteriorates.

In standard exogenous Kalman �lter problems, in which Fc = 0 and F� usually

has at worst borderline unit eigenvalues, the lower the quality of the information, the

smaller is the optimal response to that information. The same feature applies in our

problem when F� has stable or unit eigenvalues.27 In contrast, if F� has explosive

eigenvalues, so does the state process in the parallel problem of Proposition 1, so

for �k su¢ ciently close to zero, the �ltering error process would itself be explosive,

contradicting Corollary 2. In this case, as S!! tends to in�nity, �k tends to a �xed,

non-zero matrix. Thus however poor the information, it is always optimal to respond

to it.28

27This feature is noted in Svensson and Woodford (2003, p711) where it appears to be presented
as a general result.
28Since this feature derives from the parallel problem it clearly also applies to any exogenous
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4.3 A caveat on impulse responses

The joint process for �t and ft in (25) discussed in the previous section shows that

non-invertible information introduces more complicated dynamics than under full

information. However, impulse responses derived from the full reduced form repre-

sentation in (25) would not be observable in real time. The only observable impulse

responses would be those to the isomorphic representation of Corollary 1, in which,

as already discussed, the innovation covariance properties of this notional economy

may be very di¤erent from those of the true structural shocks.29

5 Time series representations of the observables

It is a standard result (see Hamilton, 1994, p 391) that, conditional upon convergence

of the Kalman �lter, the innovations "t to the observable variables it must also be

the innovations to an invertible, or fundamental, time series representation of it The

key characteristic of fundamental innovations is that they can be recovered from,

and are white noise conditional upon, the history of it: The link with the Kalman

�lter is evident from the fact that the same applies for the innovations that condition

upon state estimates, b�t:
Another standard result in time series analysis (Hamilton, 1994, pp 67-68; Lippi

and Reichlin, 1994) is that for any fundamental autoregressive moving average rep-

resentation of an observable vector process such as it there is a �nite set of alter-

native representations of the same ARMA order, but each with a di¤erent set of

nonfundamental innovations. These nonfundamental representations have the same

autocovariance properties as the fundamental representation, but the associated in-

novations are not recoverable from the history of it.

A further feature of time series representations noted by Lippi and Reichlin

(1994) is that for any fundamental representation there is a potentially in�nite set of

nonfundamental representations of arbitrarily higher ARMA order, which they term

non-basic. Lippi and Reichlin conclude however that such non-basic representations

Kalman �ltering problem where the autoregressive representation is explosive. There appears to
be little discussion of this feature in the existing Kalman �lter literature, presumably because
explosive representations are rather unusual. For example, Anderson and Moore (1979) dismiss
even the borderline unit root case as of limited interest. The closest parallel that we can �nd is in a
worked example in Whittle (1983) p 126, where, for a control problem with a potentially explosive
state process, optimal responses are never zero; but interestingly in the context of optimal control
rather than optimal �ltering. However, given the duality of the �ltering and control problems the
result is conceptually very close.
29There is a clear counterpart here with the econometric invertibility problem in Fernandez-

Villaverde et al (2007).
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are �not likely to occur in models based on economic theory�(Lippi and Reichlin

1994, p. 315).30

These characteristics of the time series representation of it are invariant to the

nature of the information set or of the underlying structural model. Where the

nature of the information set and the structural model does make a di¤erence is in

the nature of the link between the alternative time series representations of it and

the underlying structural innovations, ut to the true state process. The following

proposition summarises the nature of this link.

Proposition 4 (time series representations and structural innovations) For any
n�1 vector of observables, it that satis�es the measurement equation (8), and given
convergence of the Kalman �lter to its steady state:

a)For any information set It there exists a fundamental vector autoregressive

moving average VARMA(n; p; q) representation of it with autoregressive order p �
r � n+ 1 and moving average order q � r � n:
b) If It is invertible, the structural innovations ut are, up to a scaling factor, the

innovations to this fundamental representation.

c) If It is non-invertible and n = s =rank
�
H 0
�Fu
�
the ut are, up to a scaling

factor, innovations to a non-fundamental representation of it
d) If It is non-invertible and n < s; the innovations to nonfundamental rep-

resentations can in general only be recovered from an information set consisting of

both the history and future of the structural innovations, ut:

e) If It is non-invertible and there is dynamic endogeneity (Fc 6= 0); the true

process for it implies a nonbasic nonfundamental VARMA representation with recip-

rocal autoregressive roots given by the eigenvalues of G and the eigenvalues of�
I � e�H 0

�

�
F�:

Proof. See Appendix F
30The intuition for non-basic representations can be demonstrated by noting that any univariate

white noise process can in principle by written as a nonfundamental ARMA(1,1) in terms of
another white noise process with lower variance. For example, if !t is univariate white noise, for
any arbitrary  2 (�1; 1) we can write

!t =

�
1�  �1L
1�  L

�
�t

with �2� =  2�2!: The fundamental representation has MA parameter equal to  ; and hence the MA
and AR components cancel, which indeed they must, since !t is univariate white noise. Thus the the
history of !t can be consistent with any value of  and hence any value of �2� : Furthermore, for any
arbitrary choice of  6= 0 the nonfundamental innovation �t can in turn be given a nonfundamental
representation, and so on ad in�nitum. Hence in principle there is an in�nite set of nonfundamental
representation of !t; of arbitrary order, but they are all nonbasic.
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Table 1 summaries the properties of the information set and the resulting time

series representation of it.

Part a of the proposition states that the fundamental time series representation

of the observables has autoregressive and moving average orders reducing in n; the

dimension of the observables. In the special case of instantaneous invertibility (r =

n) Table 1 shows that both the states and the observables have a �rst order VAR

representation, the reciprocal autoregressive roots of which are the eigenvalues of G,

de�ned in (11).

Part b covers the cases of both instantaneous and asymptotic invertibility. In the

�rst case, we can recover the true states, �t from (12), substitute for ct, and re-write

the law of motion for �t (7) as a vector autoregression for it. In the second case of

asymptotic invertibility (as in Proposition 3), since the ut can be recovered from the

"t; then we can re-write the fundamental VARMA representation by substituting for

"t in terms of ut using (23). In both cases, since ut can be recovered from the history

of the observables, it; invertibility of the information set and fundamentalness of the

ut are two sides of the same coin.

If the information set is non-invertible, the vector of structural innovations ut
cannot be recovered from the history of the observables. Part c of highlights an in-

teresting special case: when the number of structural innovations equals the number

of linearly independent observables, but the information set is not asymptotically

invertible (because the third condition in Proposition 3 is not satis�ed), a VARMA

representation of it with innovations given by some scaling of ut does exist, but

these innovations must be nonfundamental. The nonfundamentalness of ut in this

case is similarly just another way of saying that, despite the fact that both sets of

innovations have the same dimension, the ut cannot be recovered from the history

of the observables. As a consequence, there is no static, invertible transformation

of the form "t = Aut for some matrix of scalars, A, as there is in the limiting case

of asymptotic invertibility. Instead we have "t = A (L)ut; where A (L) is a matrix

polynomial in non-negative powers of the lag operator that maps a vector white

noise process to another vector white noise process of the same dimension. In this

case the mapping is provided by the true state process represented in (25), but it

is non-invertible using the history of the observables. The inversion of A (L) would

result in terms in the forward operator, de�ned such that, Fxt = L�1xt; hence to

recover ut requires information on the future, as well as the history of "t; and hence

of the observables.

This linkage between innovations is less straightforward in the more general

non-invertible case, summarised in part d. As in the special case in part c, the
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true process provides a mapping between the structural and observable innovations:

"t = A (L)ut; but A (L) is no longer square since the structural innovations are of

higher dimension than the observable innovations (s > n). Any nonfundamental

VARMA representation also has a set of innovations �t of the same dimension as "t
such that "t = B (L) �t; where B (L) is square, and also contains only non-negative

powers of the lag operator. Thus �t = B (L)
�1A (L)ut; where the inversion of B (L)

again involves term in L�1 = F; and hence �t depends in general on both the history

and the future of the structural innovations. Only in the special case in part c, where

n = s; do we have B (L) = A (L) ; so that these additional dynamics cancel out.

Part e reveals an aspect of the time series properties of the observables that

is speci�c to the endogenous Kalman Filter. As discussed in Section 4, the true

state process in (25) contains additional dynamics due to the contamination of the

state process by �ltering error due to dynamic endogeneity (when Fc 6= 0). These
additional dynamics are not observable: so the fundamental reduced form VARMA

representation is of the same order as the reduced form of the system under full

information (since it can be written in terms of the isomorphic state representation

of Corollary 1). However, there is a nonfundamental VARMA representation that

contains these additional dynamics: as a result this representation is not only non-

fundamental, but also nonbasic in Lippi and Reichlin�s (1994) terminology. Thus, in

contrast, to Lippi and Reichlin�s conclusion that nonbasic nonfundamental represen-

tations are unlikely to occur in models based on economic theory, part e shows that,

on the contrary, they are an intrinsic feature of models that combine endogenous

states with non-invertible information sets. When the states are exogenous, however

(ie, if Fc = 0), this feature disappears. The last two rows of Table 1 illustrate the

contrast between the cases of exogenous and endogenous states.

The nonbasic nature of these representations is not just of theoretical interest.

If nonfundamental representations are at least basic, this implies that, while the

structural innovations themselves cannot be derived from the history of the observ-

ables, it is at least possible for an econometrician to identify from the data some

of the characteristics of these unobservable structural innovations, from the char-

acteristics of the observable fundamental representation: for example, some of their

covariance properties, and some qualitative features of impulse responses.31 The

non-basic characteristic of VARMA representations that arise from non-invertible

31For example, Robertson & Wright (2010) show that observable properties of basic nonfunda-
mental representations can be used to put bounds on the variances of the observables, conditioning
on the true states. Lippi & Reichlin (1994) analyse the properties of impulse responses in basic
nonfundamental representations, which, as Proposition 4c shows, nest one representation in terms
of the true structural innovations, but, from Proposition 4e, this is only the case if the states are
exogenous.
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information sets with endogenous states rules out even this possibility.

6 Example: information in the stochastic growth

model

In this section we present an analytical example that shows how our techniques can

be applied to the benchmark stochastic growth model. We consider three aggre-

gate information sets corresponding to the three cases of instantaneous invertibility,

asymptotic invertibility and non-invertibility.

Following Campbell (1994) the aggregate state evolution equations are

kt+1 = �1k2 + �2at + (1� �1 � �2) ct (27)

at+1 = �at + ut+1 (28)

where capital kt is pre-determined, at is aggregate technology and ct is consumption.

The �rst equation comes from combining the linearised forms of the aggregate capital

evolution equation and the aggregate resource constraint32.

Implicitly underlying the aggregates is a heterogeneous agent model in which

each agent faces a budget constraint of the form (27) but in idiosyncratic variables.

We do not need to give details of this model (although we discuss it further in section

6.4) since we are only concerned with the circumstances under which information on

aggregate prices, assumed to be common knowledge, is, or is not su¢ cient to reveal

aggregate states.

Note that the aggregate budget constraint will hold at all times and in all states

of nature irrespective of how individual consumption is determined and whatever the

level of aggregate consumption. Even if this means linearised capital falls without

bound, aggregate capital in levels is bounded below by zero.

If we de�ne the state vector as �t =
h
kt at

i0
, we can rewrite (27) and (28),

using (22), in the form of (7) as:

�t+1 = F��t + Fcct + Fuut+1 (29)

32We simplify the speci�cation of the law of motion of capital and the measurement process by
following Campbell�s assumption in the �rst half of his paper that labour supply is �xed. This
means that we have only one of the two potential forms of endogeneity in the �ltering problem
(Hc = 0 but Fc 6= 0):Given that we can exploit the �parallel problem�of Proposition 1 in solving
the �ltering problem, setting Hc = 0 has no qualitative impact on the results. Note that there is
no source of extraneous noise.
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where

F� =

"
�1 �2

0 �

#
;Fc =

"
1� �1 � �2

0

#
;Fu =

"
0

1

#
(30)

Using Campbell�s (1994, p. 469) derivation of the linearisation constants from un-

derlying structural parameters, we have �2 = � (r + �) = ((1 + g) (1� �)) > 0; where
r is the steady state value of the return on capital, g is the growth rate, � is the

depreciation rate, and � is the exponent on labour in a Cobb-Douglas production

function. The eigenvalues of F� are � 2 [0; 1] ; and �1 = 1+r
1+g
: Under the standard

assumptions of dynamic e¢ ciency, therefore, r > g ) �1 > 1 hence F�; the au-

toregressive matrix of the states in the parallel problem of Proposition 1, has one

explosive eigenvalue.

We now consider what information is available to agents in the model. The

standard assumption that kt and at can both be directly measured is arguably a

questionable one33. It appears more reasonable to assume that the information

set is �market-consistent�, that agents have information based on the prices in the

markets they trade in. Using this assumption, the vector of possible observable

aggregate variables is: "
wt

rt

#
=

"
1� � �

��3 �3

#"
kt

at

#
(31)

,where wt is the aggregate wage, rt is the aggregate return on capital, and �3 > 0

is Campbell�s third linearisation parameter. The �rst line of (31) is the marginal

product relation for labour, the second uses Campbell�s linearisation of the return

on capital.

We now consider the implications of three possible information sets. The �rst

assumes that both possible measured variables are observable. The other two are

censored versions of the information set, in which there is only a single observable

variable.

The apparently arbitrary nature of these censored information sets can be jus-

ti�ed on several grounds. First, they provide a technical illustration that contrasts

two simple cases in which asymptotic invertibility does and does not hold, which

we show relates to the nature of the measurement process, and its interaction with

the evolution of the states. Second, they are of some independent interest, since in

any solution that does asymptotically replicate full information the pre-determined

nature of capital in this model means that innovations to the two measured variables

33For a discussion of this assumption, see, eg, Bom�m (2004), Porapakarrm and Young (2008)
and Graham and Wright (2010).
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will be perfectly correlated. The examples therefore allow us to identify which of

the two observable variables will be informationally redundant if full information

can be replicated. Third, as we discuss in section 6.4, each restricted information

set can be derived as a special case of fully speci�ed models.

6.1 An instantaneously invertible information set

In the �rst case we assume that it =
h
wt rt

i0
. Given this information set, we have

n = r = 2 and by inspection of (31) the conditions for instantaneous invertibility

in De�nition 2 are satis�ed: Thus factor prices provide su¢ cient information to

infer the state vector from t - dated information (and hence the Kalman �lter is

redundant).

6.2 An asymptotically invertible information set

We �rst consider it = wt; hence H 0 =
h
1� � �

i
: With a single shock, we thus

have n = s = 1, hence the �rst condition in Proposition 3 is satis�ed. The second

is also satis�ed, since
�
H 0
�Fu
��1

=

�h
1� � �

i h
0 1

i0��1
= ��1 6= 0: For the

third condition, we have, using the formulae in the Proposition,

e� (Q) = Fu
�
H 0
�Fu
��1

=

"
0

1

#
1

�
=

"
0
1
�

#
�
I � e� (Q)H 0

�

�
F� =

 "
1 0

0 1

#
�
"
0
1
�

# h
1� � �

i!" �1 �2

0 �

#

�
��
I � e� (Q)H 0

�

�
F�

�
= �1 �

�
1� �
�

�
�2 (32)

and thus, again, using Campbell (1994) the single critical eigenvalue34 is, in terms

of structural parameters,

� = �1 �
�
1� �
�

�
�2 =

1� �
1 + g

< 1

Hence the �xed point is stable, or, equivalently, using Corollary 2, �ltering errors

converge to zero in the neighbourhood of the full information equilibrium. Since it

can also be shown that the model satis�es the conditions in Proposition 2, it follows

that this is the unique steady state of the Kalman �lter.

34Recall that, from Corollary 2, the autoregressive matrix of �ltering errors will have only r�n =
1 non-zero eigenvalue.
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Thus the information set is asymptotically invertible: full information can be

replicated from a su¢ ciently long history of the aggregate wage alone, and hence

the history of returns is informationally redundant.

6.3 A non-invertible information set

We now consider the alternative censored information set, it = rt, hence H 0 =h
��3 �3

i
: The �rst two conditions in 3 are again trivially satis�ed, with n =

s = 1; and
�
H 0
�Fu
��1

=

����h ��3 �3

i h
0 1

i0���� = ��13 6= 0: Thus full information

is again a �xed point of the Kalman �lter given this information set. However the

third condition is not satis�ed: it is not a stable �xed point. To see this, we again

use the formulae in the Proposition to give

e� (Q) = Fu
�
H 0
�Fu
��1

=

"
0

1

#
1

�3
=

"
0
1
�3

#
�
I � e� (Q)H 0

�

�
F� =

 "
1 0

0 1

#
�
"
0
1
�3

# h
��3 �3

i!" �1 �2

0 �

#

�
��
I � e� (Q)H 0

�

�
F�

�
= �

 "
�1 �2

�1 �2

#!
= �1 + �2 > 1 (33)

Hence this restricted information set is non-invertible.

To see the intuition for this result, and for the contrast with the previous exam-

ple, recall that, from the representation in (25), the matrices in (32) and (33) are

both the autoregressive matrices of the �ltering error ft in the neighbourhood of an

equilibrium that replicates full information. In the information set with only the

history of wages �ltering errors are stationary, hence any initial error in estimating

the state decays back to zero. When the information set consists only of the history

of the return on capital, �ltering errors are explosive in the neighbourhood of full

information and the history of the aggregate wage, however poorly measured, is

never informationally redundant.

For this example it can again be shown that the information set does satisfy the

two conditions in Proposition 2 for the existence of a unique steady state Kalman

�lter; but the non-invertibility of the information set rules out the possibility that

this can replicate full information. In Section 7.2 we discuss the qualitative nature

of the equilibrium for the economy that arises from this non-invertible information

set.

The solution to the �ltering problem in this third example implies that, using
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Proposition 4a the single observable variable rt has a fundamental ARMA(2; 1)

representation. The order of this representation, and its autoregressive roots, are

identical to those under full information (and hence to the two preceding invertible

cases). The moving average roots will however di¤er, as will the innovation "t: In the

invertible cases this will simply be a scaling of the productivity shock, ut; whereas in

this case it will be a composite of current and lagged values of ut: However, since n =

s ; Proposition 4c implies that there will be an alternative nonbasic nonfundamental

ARMA(3; 2) representation of rt; the innovation to which will simply be a scaling

of ut:35

6.4 Discussion

Although we have discussed the three cases purely in terms of the aggregate economy,

each of the three examples can be related to an underlying economy with many

agents. Note that, given symmetry of information sets on the aggregate economy,

it is the nature of the parallel problem that allows us to focus on aggregates, since

the solution to the �ltering problem is independent of exactly how any particular

agent determines their consumption.

The �rst example can be derived from an economy with many identical agents

earning the same wage and the same return. The example shows that even if these

agents cannot measure the aggregate states directly, the information in the market

prices they observe is su¢ cient to recover the states. Graham and Wright (2010)

show that the same information set, de�ned in terms of the average wage and the

return on capital, will also be common knowledge in a heterogeneous economy with

complete markets.

The second example shows that, given a su¢ ciently long history of the economy,

market-consistent information sets reveal more information than is actually required

to replicate full information, since in the limit the history of the return on capital

becomes informationally redundant. This example can be seen as the limiting case

of a model with noise in measuring aggregate returns on capital, due for example,

to market frictions or noise traders in �nancial markets, and shows that such noise

will have no impact on the equilibrium of the stochastic growth model, as long as

the history of the aggregate wage is observable. The assumption of frictionless and

complete �nancial markets is thus not of itself a necessary condition for replication

of full information.
35The AR roots in the fundamental representaiton will be the eigenvalues of G; hence will

depend on the nature of the consumption function. The additional autoregressive root in the
nonfundamental representation will be the autoregressive parameter of the single �ltering error,
ft = kt � bkt:
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However, some forms of market incompleteness can imply that the market-

consistent information set is non-invertible. Our third example can be derived from

the framework of Graham and Wright (2010), who analyse an incomplete markets

version of the stochastic growth model in which there is a uni�ed market for capi-

tal, but households earn a wage with an idiosyncratic component. As a result their

(agent-speci�c) market-consistent information set does not contain the history of

the aggregate wage.36 In a limiting case in which each household�s individual wage

is an arbitrarily poor signal of the aggregate wage, it is possible to show that the

(common) information set on the aggregate economy consists only of the history of

the return on capital, and hence is non-invertible, as in our third example.37

7 Extensions and Applications

7.1 Data Vintages

A common assumption (see for example Collard and Dellas, 2006) is that data

quality may improve over time, such that lagged values of state variables may be

measured with less error than current values There is also some evidence for this

as an empirical phenomenon with published data (see, e.g., Orphanides and Van

Norden, 2002).

Data vintages can be incorporated into our framework by extending the state

space to include lags of the underlying states, with any associated measurement

error in the relevant line of the measurement equation having lower variance than

in the line relating to current states. However, this begs the question of how any

such improvement in data quality may arise. One answer may be that statistical

o¢ ces e¤ectively engage in an informal version of �backward-smoothing�, whereby

the Kalman �lter can be used to derive improved estimates of underlying states by

working backwards in time (see for example, Harvey, 1989, Section 3.6) and thus

exploiting the bene�ts of hindsight. But, to the extent that this is the explanation,

it clearly should have no impact on forward-looking behaviour at all since (at best)

it implies that later vintages of data simply exploit the same information set that

is used in deriving the best estimates of the current state variables and thus cannot

improve the accuracy of these estimates.

Some form of backward-smoothing by statistical o¢ ces may also mean that

36We discuss the properties of this economy further below, in Section 7.2.
37It is also possible to show that in this limiting case there is a modi�ed law of motion of aggregate

capital; but it is still of the same general form as (27). Furthermore, aggregate consumption can
be written as the optimising decision of a single representative agent. Details of the derivation of
this limiting case are available from the authors.
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econometric impulse responses estimated using historic data may be closer to true

impulse responses (i.e., including the impact of the �ltering process), but, as dis-

cussed in Section 4.3 this does not mean that such impulse responses would be

observable in real time.

7.2 Heterogeneous information

Our framework has considered a class of models where the signal extraction problem

is either that of a single optimising agent, or a set of such agents who share the same

information set. The two types of problem are mathematically identical, since, if,

for example, agents A and B both know the structural model and have the same

information set, agent A does not need to observe Agent B�s behaviour: A can

simply infer it from the common information set and structural properties.38

There is potentially a much wider class of models in which individual agents,

or types of agent, have overlapping, but not common information sets. In such

models the techniques outlined in this paper are still a crucial part of the solution

when states are endogenous; and limiting cases can have an identical form to the

symmetric information equilibrium set out in this paper.

Graham and Wright (2010), for example, solve an incomplete markets stochastic

growth model with a large number of heterogeneous households. In this economy

each household faces a symmetric �ltering problem of the same general form as (7)

and (8). Each household has an idiosyncratic capital stock which is endogenous to

their own consumption and labour supply choices, and faces idiosyncratic labour

supply shocks; all other elements of the state vector are aggregate, and hence ex-

ogenous, and common to each agent�s �ltering problem. Each household�s �ltering

problem is solved as a parallel problem as in Proposition 1, taking the dynamics of

the aggregate economy as given.

The attraction of this approach is that the �ltering problem arises from the

structure of the economy, rather than from any extraneous noise or an assumption

of exogenous informational restrictions. But a signi�cant complication is that, if

all households know that all other households are solving the same problem, each

household also knows that the dynamics of the aggregate economy must be a¤ected

(via the aggregate capital stock) by the dynamic choices of consumers in aggregate.

This aggregate behaviour is unobservable to any individual household; but house-

holds can infer the nature of the choices (and hence the dynamics of the aggregate

economy) from their own behaviour. Graham and Wright show that the result-

ing solution requires each household to form estimates of a �hierarchy of average

38This is the basis for the solution method used by Svensson and Woodford (2004).
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expectations� (Townsend, 1983, Woodford, 2003, Nimark, 2007) of the underlying

non-expectational states, resulting in an in�nite dimensional state vector. However,

extending new techniques developed by Nimark (2008), the model can be solved, to

an arbitrary degree of precision, with a �nite state vector.

In this economy optimal behaviour for each household remains, as in this paper,

certainty-equivalent with respect to the full state vector (including the hierarchy

of expectations), but is not, in general, certainty-equivalent with respect to the

underlying non-expectational states. Thus in contrast to the solution here, the

aggregate economy cannot in general be given an isomorphic representation in terms

of a notional full information economy with a di¤erent set of innovations, as in

Corollary 1. However, if there is su¢ cient heterogeneity, there is a limiting case

that is certainty-equivalent, and which therefore does have such a representation.

Furthermore, on available evidence on the relative variance of idiosyncratic versus

aggregate shocks, the calibrated economy is very close to this limiting case. Thus

certainty equivalence appears to provide at least a reasonable approximation even

of an economy with both structural and informational heterogeneity. The �ltering

problem in this limiting case is of the same form as that of the benchmark stochastic

growth model with an arti�cially censored non-invertible information set that we

analysed in Section 6.3.

Graham andWright (2010) show that in this framework the steady-state Kalman

�lter implies a positive aggregate productivity shock is interpreted on impact largely

as indicating that capital has previously been over-estimated, which therefore causes

aggregate consumption to fall, rather than rise, as it would under full information.

Given the closeness of the economy to the limiting case of extreme heterogeneity

discussed above, impulse responses can be well approximated by certainty-equivalent

responses to state estimates, as in (13); or equivalently by responses in an isomorphic

full information (and in this context, complete markets) economy (as in Corollary

1) that is regularly hit by pseudo-shocks to capital.

8 Conclusions

In this paper we have presented a general method of solving the signal extraction

problem in linearised DSGE models, which allows for endogeneity between dynamic

choice variables and both measured and state variables. We derive a number of

key features of such economies, that relate to the nature of the solution of the

Kalman �lter, focussing in particular on whether the information set is invertible,

i.e., whether it can replicate full information, at least asymptotically. We have
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emphasised the application of our techniques to DSGE models. However most of

our results are quite general, and in principle applicable in a wide variety of contexts

where dynamic optimisation problems involve states that are both endogenous, and

not directly observable. As such the techniques set out in this paper broaden out

further the already wide scope for application of the Kalman �lter.
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Table 1.  Time Series Properties of Observables 

 

 

 

 

Number of Non-Zero Eigenvalues of State 

Representation 

VARMA(n,p,q) order of 

observables, it (p=autoregressive 

order, q = moving average order) 

True Process Observable 

Process 

Nature of Information Set 

Full 

Information, 

equation (10) 

True 

Process, 

equation 

(25) 

Estimated 

Process, 

equation (19) p q p q 

Instantaneously Invertible r r r 1 0 1 0 

Asymptotically Invertible r r r r-n+1 r-n r-n+1 r-n 

Non-invertible, 

exogenous state process 

(Fc=0) 

r r r r-n+1 r-n r-n+1 r-n 

Non-invertible, 

dynamically endogenous 

state process( Fc ≠ 0) 

r 2r - n r 2(r-

n)+1 

2(r-n) r-n+1 r-n 

 



Appendix

A Derivation of Equations (7) and (8)

We �rst stack equations (2) on top of (3) and (6) to derive the law of motion for

the state variables, �t =
h
kt zt wt

i0
; and respecify (5) accordingly,

�t+1 = D���t +D�yyt + vt+1 (A.1)

it = Di��t +Diyyt (A.2)

where

D�� =

264 Bkk Bkz 0

0 Bzz 0

0 0 Bww

375 ; D�y =

264 Bky0
0

375 ; Di� =
h
Cik Ciz Ciw

i
; Diy = Ciy;

Q = E (vtv
0
t) = E (vtv

0
t) =

"
0rk�rk 0rk�s

0s�rk S

#
; S =

"
S�� S�!

S 0�! S!!

#

We next partition yt as yt =
h
c0t x0t

i0
and express (1) conformably as:1

"
Acc Acx

0 0

#
Et

"
ct+1

xt+1

#
=

"
Bcc Bcx

Bxc Bxx

#"
ct

xt

#
+

"
Bc�

Bx�

#
�t (A.3)

where the �rst block of equations are expectational di¤erence equations and thus rep-

resent dynamic choice variables such as consumption or policy variables The second

block of equations represent purely static relationships (for example, intratemporal

optimality conditions, production functions, identities, etc) that can be substituted

out. Using these, assuming B�1xx exists
2 we can substitute out using

xt = �B�1xx [Bxcct +Bx��t] = Dxcct +Dx��t (A.4)

and write the state and measurement equation in their �nal form in the main text

1This form for Ayy will usually follow naturally from the structure of the model, but as long
as Ayy is singular (if it is not, then the vector xt will be empty) this structure can always be
achieved by an appropriate linear re-weighting of the elements of yt: The sub-matrix Acx may also
in principle contain columns of zeros.

2The case where B�1xx does not exist implies that some elements of xt can be expressed as linear
combinations of other elements, and can thus be trivially dealt with by substitution.
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as

�t+1 = F��t + Fcct + vt+1 (A.5)

it = H
0
��t +Hcct (A.6)

where D�y =
h
D�c D�x

i
; Diy =

h
Dic Dix

i
; etc, and

F� = D�� +D�xDx�; Fc = D�c +D�xDxc; (A.7)

H 0
� = Di� +DixDx� Hc = Dic +DixDxc (A.8)

Note that the substitutions involved in deriving (7) and (8) are by no means

innocuous in informational terms.

First, even static relationships may require informational assumptions. Since

they may involve linear combinations of state variables it may be of considerable

importance whether these combinations, or the elements of xt themselves, are in the

information set It: The form of the measurement equation allows for the possibility

that elements of xt may be observable, whether directly or indirectly, but there are

interesting cases where they are not.3

The nature of the expectational di¤erence equations satis�ed by ct; the dynamic

choice variables, may also have important informational implications. While this

framework can in principle accommodate any structure to the top block of equa-

tions in (A.3), certain structures may require assumptions about the nature of the

information set. Thus if we substitute out for xt using (A.4) and (7) and use (13)

we can write the top block, applying the law of iterated expectations, as

fAcc�0 + Acx (Dxc�
0 +Dx�)gGb�t = fBcc +BcxDxcg �0b�t + fBc� +BcxDx�g �t

which depends on �t as well as b�t: For such a formulation to be informationally feasi-
ble in this precise form, the linear combination of states given by fBc� +BcxDx�g �t
must be observable, and therefore should also be an element of it: In principle this

may signi�cantly alter the information set and hence the nature of the �ltering prob-

lem (although the rationale for this combination being observable should be justi�-

able). However, it will not alter the certainty-equivalent nature of the consumption

function. If this linear combination is indeed observable, then (from Corollary 4)

e¢ ciency of the state estimates requires that they satisfy the adding up constraint

fBc� +BcxDx�g �t = fBc� +BcxDx�gb�t thus allowing the top block to be written
3In Graham and Wright (2009a), for example, the aggregate wage is an element of xt that is

not observable, given heterogeneous labour and incomplete markets.
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entirely in terms of state estimates, as

fAcc�0 + Acx (Dxc�
0 +Dx�)gGb�t = [fBcc +BcxDxcg �0 +Bc� +BcxDx�]b�t

which results in an undetermined coe¢ cients problem identical to that under full

information. Note also that the nature of the undetermined coe¢ cients problem is

unchanged if this linear combination of states is not observable, but is replaced by

the same combination of state estimates.

This issue does not, of course, arise if, as in many contexts (for example con-

sumption Euler equations) Bcx and Bc� are zero.

B Proof of Proposition 1

For completeness, and because some elements of the proof are of relevance to later

analysis, we present a full proof of the Proposition. Most strictly algebraic elements

of the proof are however to be found in the existing literature on optimal control.

For example, Söderström (1994, Ch. 6) derives the solution to a �ltering problem

with what we refer to here as �dynamic endogeneity�(i.e. Fc 6= 0). His solution is
identical to ours if we set Hc = 0, once we allow for di¤erences in notation; he does

not however explicitly draw out the link with the �parallel problem�. We also show

in Section B.3 of this appendix that our approach yields identical answers to those

derived in Svensson and Woodford (2003), despite their rather unusual statement of

the �ltering process.

We assume that in some period t� 1 initial estimates of the states �t and Pt are
available, that must satisfyEt�1b�t = Et�1�t by the law of iterated expectations, given
the de�nition of b�t: This condition will always be satis�ed if, at t = 0; E0b�1 = E0�1:
B.1 Forecasting it

Using (8)

Et�1it = H
0
�Et�1�t +Hc�

0Et�1b�t (B.1)

where the second line follows by the law of iterated expectations. The error of this

forecast is, using (20)

"t � it � Et�1it = H 0
�

h
�t � Et�1b�ti+Hc�0 hb�t � Et�1�ti (B.2)

We then treat (19), the process for the estimated states, as a conjectured solution

to the �ltering process, which we show below be veri�ed by the actual solution.
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Conditional upon this conjectured solution

"t = J
0
t [�t � Et�1�t] (B.3)

where

J 0t = [In �Hc�0�t]�1H 0
� (B.4)

Thus we have, using (B.3) and (15)

E ["t"
0
t] = J

0
tE
�
(�t � Et�1�t) (�t � Et�1�t)

0� Jt = J 0tPtJt (B.5)

B.2 Deriving �t; Mt and Pt.

Since (conditional upon �t and hence Jt) innovations to it depend only on unobserv-

able errors in forecasting the states, the Kalman Gain matrix, �t in the updating

equation (19) is

�t = fE [(�t � Et�1�t) "0t]g fE ["t"0t]g
�1 (B.6)

hence, using (B.3), (15), and (B.5),

�t = PtJt [J
0
tPtJt]

�1 (B.7)

and the MSE of the state estimates can be written as

Mt = E

��
�t � Et�1b�t���t � Et�1b�t�0�� �tE �"t ��t � Et�1b�t�0� (B.8)

= Pt � �tJ 0tPt = [Ir+n � �tJ 0t]Pt

however these do not yet constitute closed form solutions since, via (B.4), Jt depends

on �t:

To show that the recursion for Pt+1 is Fc-independent, note that the forecast

error in predicting the states in period t+ 1 is, using (11), and (7),

�t+1 � Etb�t+1 = F��t + Fc�
0b�t + vt+1 � (F� + Fc�0)b�t

= F�

�
�t � b�t�+ vt+1 (B.9)

and is thus independent of Fc: Hence, using the orthogonality assumptions and (14),

Pt+1 = F�MtF
0
� +Q: (B.10)
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To show that Pt+1 and Mt are Hc-independent, de�ne

J
0

t = K
�1
t H

0

�; (B.11)

where Kt is the (as yet unknown) matrix that satis�es

Kt = (In �Hc�0�t) : (B.12)

) (J 0tPtJt)
�1
=
�
K�1
t H

0
�PtH�

�
K�1
t

�0��1
= K 0

t

�
H 0
�PtH�

��1
Kt (B.13)

and hence, substituting (B.11) and (B.13) into (B.7), we obtain

�t = PtH�
�
H 0
�PtH�

��1
Kt (B.14)

and thus

�tJ
0
t = H�

�
K�1
t

�0
K 0
t

�
H 0
�PtH�

��1
KtK

�1
t H

0
�

= H�
�
H 0
�PtH�

��1
H 0
�: (B.15)

We thus have

Mt =
�
Ir � PtH�

�
H 0
�PtH�

��1
H 0
�

�
Pt; (B.16)

Pt+1 = F�

�
Ir � PtH�

�
H 0
�PtH�

��1
H 0
�

�
PtF

0
� +Q; (B.17)

Thus the recursions for Mt and Pt do not depend on Fc or Kt (and hence Hc) and

can thus be derived by setting Hc = Fc = 0 as in the parallel problem. If we de�nee�t as in (18) then the above formulae are identical to (16) and (17) in Proposition
1. We also have, using (B.15)

�tJ
0
t =

~�tH
0
� (B.18)

Finally we need to obtain an expression for Jt itself, and hence for �t. Equations

(B.4) and (B.7) imply the seemingly nonlinear equation

J 0t =
�
In �Hc�0PtJt

�
JtPtJ

�1
t

���1
H 0
�:

However, using (B.11) and (B.14), we obtain

K�1
t H

0

� = J
0
t =

�
In �Hc�0PtH�

�
H 0
�PtH�

��1
Kt

��1
H 0
�; (B.19)

) K�1
t H

0
� �Hc�0PtH�

�
H 0
�PtH�

��1
H 0
� = H

0
�: (B.20)
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Recalling (B.11) once again, we �nd

J 0t = H
0
� +Hc�

0PtH�
�
H 0
�PtH�

��1
H 0
�

=
�
In +Hc�

0PtH�
�
H 0
�PtH�

��1�
H 0
� (B.21)

) Kt =
h
In +Hc�

0PtH�
�
H 0
�PtH�

��1i�1
(B.22)

Using (18), these can be expressed as

J 0t =
�
In +Hc�

0e�t�H 0
� (B.23)

Kt =
�
In +Hc�

0e�t��1 (B.24)

which, after substituting from (B.24) into (B.14) gives (21), completing the proof of

Proposition 1.�

B.3 Comparison with Svensson and Woodford (2003) and

Pearlman et al (1986)

Svensson and Woodford (2003) have a structural model which in reduced form is

extremely close to ours. Their equations (15) and (16) correspond directly to our

state and measurement equations (7) and (8), after substituting from (13). Using

their notation their equation (22) is

Xtjt = Xtjt�1 +K
�
L
�
Xt �Xtjt�1

�
+ vt

�
(B.25)

where, Xtjt in their notation corresponds to b�t in ours, and Zt to our it: They then
assert that this allows them to identifyK as "(one form of) the Kalman GainMatrix"

(which they assume, without proof, will converge to a �xed matrix). However, by

the usual convention in the literature the Kalman gain updates in response to a

forecast error. The square bracketed expression is not a forecast error. Using their

(16), the true forecast error in their framework is

Zt � Et�1Zt = L
�
Xt �Xtjt�1

�
+M

�
Xtjt �Xtjt�1

�
+ vt (B.26)

where the endogeneity of the measured variables to the response of the estimated

states is evident.

However, it turns out that, despite the somewhat unusual basis for their deriva-

tion, their �nal result is in fact identical to our own. If we re-express their (22) in
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our own notation (apart from the matrix K); it becomes

b�t � Et�1b�t = K hH 0
�

�
�t � Et�1b�t�i (B.27)

whereas we show that, in our notation, from (B.3), after substituting from the

endogenous response of ct; and assuming convergence, the updating rule in response

to the forecast error in the measured variables is given by

b�t � Et�1b�t = �"t = �J 0 ��t � Et�1b�t� (B.28)

But using their equations (24) and (25) (noting that we absorb the covariance

matrix of measurement errors into Q; and hence P ); their derivation implies, in our

notation,

K = e�
thus in our notation K is identical to the Kalman gain matrix in the parallel, rather

than the actual problem. But, from (B.18), we have �J 0 = e�H 0
�; hence

b�t � Et�1b�t = �J 0 ��t � Et�1b�t� = e�H 0
�

�
�t � Et�1b�t� (B.29)

thus Svensson and Woodford�s updating rule is in fact identical to our own. An

equivalent updating rule is also given in Pearlman et al (1986) equation (39). How-

ever, neither of these papers note the equivalence of Mt and Pt+1 in the parallel

problem, nor do they derive convergence conditions.

C Proof of Proposition 2 and Corollary 2.

C.1 Proof of Proposition 2

Since �t and Mt can both be expressed in terms of Pt and structural parameters a

necessary and su¢ cient condition for convergence of all three matrices to a unique

steady state is convergence of Pt to a unique steady state. Since Pt can be derived

from the the parallel problem of Proposition 1 in which the states are exogenous

we only need be concerned with the stability properties of that problem. Anderson

and Moore (1979, pp 77-81) provide a proof of a unique stable steady state given

controllability and detectability as de�ned in the main text for any invertible P0.
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C.2 Proof of Corollary 2

We �rst restate (16), writing F � F�, H � H� in this section, for brevity, as

Pt+1 = F
�
Ir � PtH (H 0PtH)

�1
H 0
�
PtF

0 +Q: (C.1)

In other words, we are iterating the function g : Pr ! Pr, where Pr denotes the set
of all non-negative de�nite symmetric, real r � r matrices, and

g(Pt) = F
�
Ir � PtH (H 0PtH)

�1
H 0
�
PtF

0 +Q; Pt 2 Pr: (C.2)

If the conditions set by Proposition 2 are satis�ed, then this iteration is stable

around a unique �xed point P

We �rst note a convenient simpli�cation. Let

bF (Pt) = F �Ir � PtH (H 0PtH)
�1
H 0
�
= F

�
Ir � e�(Pt)H 0

�
(C.3)

(where the second expression uses (18)) then:

Lemma 1 The function g : Pr ! Pr de�ned by (C.2) can be expressed; using (C.3),
in the symmetric form

g(Pt) = bF (Pt)P bF (Pt)0 +Q; (C.4)

Proof. Using (C.3), we have

g(Pt) = bF (Pt)PtF 0 +Q (C.5)

bFP bF 0 = bFPF 0 � F �Ir � e�H 0
�
PHe�0F 0 (C.6)

but�
Ir � e�H 0

�
PHe�0 = PHe�0 � e�H 0PHe�0 = PHe�0 � PH (H 0PH)

�1
H 0PHe�0 = 0

(C.7)

As is usual in the analysis of �xed point iteration, we must calculate the (Fréchet)

derivative of g at the �xed point P:

Lemma 2 If E 2 Pr, then, letting bFP = bF (P )
g(P + E) = g(P ) + bFPE bF 0P +O(E2): (C.8)
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Thus if we let DgP denote the Fréchet derivative of the matrix function g at the

point P 2 Pr, then
DgP (E) = bFPE bF 0P E 2 Pr: (C.9)

Proof. We have, using (C.2)

g(P + E)

= F (P + E)F 0 � F (P + E)H(H 0PH +H 0EH)�1H 0(P + E)F 0 +Q

= F (P + E)F 0 � F (P + E)H
�
(H 0PH)(I + (H 0PH)�1(H 0EH))

��1
H 0(P + E)F 0 +Q

= :::� F (P + E)H
�
I � (H 0PH)�1(H 0EH)

�
(H 0PH)�1H 0(P + E)F 0 +Q+O(E2)

(C.10)

= g(P ) + bFPE bF 0P +O(E2): (C.11)

It is useful to restate (C.8) and (C.9) in Kronecker product notation, as

vec(g(P + E)) = vec(g(P )) + bFP 
 bFP vec(E) +O(vec(E2))
hence, in this form the Frechet derivative is (using (C.3))

DgP = bFP 
 bFP = F �Ir � e�(P )H 0
�

 F

�
Ir � e�(P )H 0

�
(C.12)

and thus as a corollary of Proposition 2, stability of the steady state implies that

the matrix F�
�
Ir � e�(P )H 0

�

�
must have eigenvalues with real parts strictly less than

one in absolute value. Since products of matrices have common non-zero eigenvalues

irrespective of order of multiplication this condition must also apply to the matrix�
Ir � e�(P )H 0

�

�
F�: The proof of Corollary 4 shows that this matrix will be of rank

r � n: �

C.3 Proof of Corollary 1.

From the autoregressive representation of the estimated states in (19) it is evident

that they have the same autoregressive form as the true states under full information

in (10). To derive the implied innovation covariance matrix we have, using (20),

(B.3), (B.5) and (B.18),

E

��b�t+1 � Etb�t+1��b�t+1 � Etb�t+1�0� = �E
�
"t+1"

0
t+1

�
�0

= �J 0PJ�0 = e�H 0
�PH�

e�0 (C.13)
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but hence, using (16), (18), (17), and exploiting symmetry of P and M

E

��b�t+1 � Etb�t+1��b�t+1 � Etb�t+1�0� = PH�
�
H 0
�PH�

��1
PH�e�0

= PH�e�0 = (�H 0P )
0

= (P �M)0 = Q+ F�MF 0� �M �(C.14)

D Derivation of joint process for �t and ft in (25)

and proofs of corollaries 3 to 5

D.1 Derivation of (25).

Using (7), (13) and (24) we have

�t+1 = F��t + Fc�
0b�t + vt+1 = (F� + Fc�0) �t � Fc�0ft + vt+1 (D.1)

= G�t � Fc�0ft + vt+1 (D.2)

For the estimated states we have, using (19), the de�nition of G in (10), (B.3) and

(7)

b�t+1 = Gb�t + �"t+1 = Gb�t + �J 0 h�t+1 �Gb�ti
= Gb�t + �J 0 h�t+1 � (F� + Fc�0)b�ti (D.3)

= Gb�t + �J 0 h�t+1 � F��t � Fc�0b�t + F� ��t � b�t�i (D.4)

= Gb�t + �J 0 [vt+1 + F�ft] (D.5)

hence, using (11) and (B.18),

ft+1 = (G� Fc�0 � �J 0F�) ft + (I � �J 0) vt+1 (D.6)

= [I � �J 0]F�ft + (I � �J 0) vt+1 (D.7)

=
h
I � e�H 0

�

i
F�ft +

�
I � e�H 0

�

�
vt+1

Stacking (D.1) above (D.6) gives the joint process for �t+1 and ft+1 in (25).
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D.2 Proof of Corollary 3

Since the �ltering error process ft is block recursive we can write the top block of

equations as

�t+1 = [I �GL]�1 vt+1 � [I �GL]�1 Fc�0ft = ��t+1 � [I �GL]
�1 Fc�

0ft

= ��t+1 � [I �GL]
�1 Fc�

0 [I � (I � �J 0)F�L]�1 (I � �J 0) vt (D.8)

where ��t+1; the full information state process, is as given by (10), and the last line

uses the lower block of (25). The incomplete information states are thus equal to

the full information states plus a lag polynomial in the �ltering error (itself a lag

polynomial in the underlying shocks). Since the �ltering error is stationary (from

Corollary 2) and the full information process is non-explosive (from Assumptions 1

and 2) the incomplete information process is also non-explosive. Since there may

be permanent productivity or other shocks, G may have unit eigenvalues, implying

permanent e¤ects of these shocks. But permanent e¤ects will only arise with respect

to rows of vt for which the relevant rows of Fc are, by Assumption 1, zero (the shock

processes are exogenous). Hence �ltering error will only cause transitory deviations

from the full information outcome, proving the Corollary.�

D.3 Proof of Corollary 4

Using (18) we have

H 0
�
e� = H 0

�PH�
�
H 0
�PH�

��1
= In (D.9)

If we pre-multiply (D.6) by H 0
� and use (D.9) we have

H 0
�ft+1 = H

0
�

h
I � e�H 0

�

i
F�ft +H

0
�

�
I � e�H 0

�

�
vt+1 = 0 (D.10)

thus proving Corollary 4, and at the same time showing that the matrix
h
I � e�H 0

�

i
F�

is of rank � r � n; completing the proof of Corollary 2.�

D.4 Proof of Corollary 5

By inspection of (25), if F� has explosive eigenvalues in its sub-matrix Fkk and �k =

0; then the matrix
�
I � e�H 0

�
F� will also have explosive eigenvalues, which, from

Corollary 2, contradicts stability of the recursion for Pt+1, thus proving Corollary

5.�
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E Proof of Proposition 3

E.1 Proof of Proposition 3

Using (B.6) our original de�nition of �t; and (20), we have

�t = E
��
�t+1 � Et�t+1

�
"0t
� �
E
�
"t+1"

0
t+1

���1
(E.1)

Conjecture that the proposition is correct, and thus a �xed point exists with P =

Q) M = 0: Recall that since both conditions are identical in the parallel problem

of Proposition 1, so we set Fc = Hc = 0: Since this �xed point replicates full

information, we have, using (22), and (18)

� (Q) = FuSF
0
uH�

�
H 0
�FuSF

0
uH�

��1
(E.2)

= FuSF
0
uH� (F

0
uH�)

�1
S�1

�
H 0
�Fu
��1

= Fu
�
H 0
�Fu
��1

and hence

� (Q)H 0
�Q = Fu

�
H 0
�Fu
��1

H 0
�FuSF

0
u = FuSF

0
u = Q (E.3)

) M(Q) =
�
Ir � � (Q)H 0

�

�
Q = 0 (E.4)

) P = Q (E.5)

hence n = s and
��H 0

�Fu
�� 6= 0 are necessary conditions for P = Q to be a �xed point.

However, using our proof of Corollary 2, stability of a �xed point that repli-

cates full information requires the third condition in Proposition 3, that the matrix�
Ir � e�(Q)H 0

�

�
F� have eigenvalues with real parts strictly less than one in absolute

value to ensure stability of the recursion (and hence, via Corollary 2, of the �ltering

errors, ft): This condition is non-trivial because the same Corollary shows that this

matrix may have up to n� r non-zero eigenvalues.�

E.2 Equivalence of Proposition 3 with Fernandez-Villaverde

et al (2007)

Fernandez-Villaverde et al (2007) analyse the problem of econometric invertibility:

ie, whether an econometrician can infer true structural shocks and impulse responses

from an estimated vector autoregressive representation. It turns out that the con-

ditions in which their �square case�is invertible correspond precisely to those given

in Proposition 3. They do not, however, draw out the link with pre-determined
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variables, nor with the stability of the Kalman �lter in the neighbourhood of the

�xed point corresponding to full information.

To show the correspondence, Fernandez-Villaverde et al have

xt+1 = Axt +Bwt+1 (E.6)

yt+1 = Cxt +Dwt+1 (E.7)

where xt is n�1; yt is k�1 and wt is m�1: Note that the timing convention in (E.7)
is somewhat unusual compared to the standard Kalman �lter state space representa-

tion, in which the measured variables are normally related to the contemporaneous

states (possibly plus noise).4 They then assume

m = k (E.8)

jDj 6= 0 (E.9)

implying

wt+1 = D
�1 [yt+1 � Cxt] (E.10)

which gives, after substitution into (E.6),

xt+1 =
�
A�BD�1C

�
xt +BD

�1yt+1 (E.11)

which gives the third condition (their Condition 1, since the �rst two conditions are

taken as implicit) ���i �A�BD�1C
��� < 1 (E.12)

where the �i are eigenvalues. If satis�ed, this means that xt+1 can be recovered

from the in�nite history of yt+1 (implicitly, even if n > m = k; which will be the

case, as we note, if there are predetermined variables).

We have (using (6) and (20)), for the states,

�t+1 = F��t + Fuut+1 (E.13)

which with appropriate relabelling of variables and matrices is precisely the same as

(E.6). Our measurement equation can be written as

yt+1 = H��t+1 (E.14)

4This is however the same timing convention as used by, eg, Whittle, 1983, p 146.
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which, substituting from (E.13) gives

yt+1 = H
0
�F��t +H

0
�Fuut+1

which, with appropriate relabelling (ie, C = H 0
�F�; D = H

0
�Fu) is identical to (E.7).

The relabelling makes it clear that their �rst two conditions are identical to ours.

Our third condition relates to the eigenvalues of

�
I � � (Q)H 0

�

�
F� (E.15)

but in (67) of our appendix we show that

� (Q) = Fu
�
H 0
�Fu
��1

(E.16)

ie, can be derived directly from structural matrices. Substituting the crucial matrix

becomes

F� � Fu
�
H 0
�Fu
��1

H 0
�F� (E.17)

which given the relabelling can be written as

A�BD�1C: (E.18)

F Proof of Proposition 4

F.1 Proof of Part a)

We �rst exploit the diagonalisation G = V �V �1 used in Assumption 2, which

allows us to represent the process for the estimated states (19), conditional upon

the Kalman Filter having converged, in the diagonalised autoregressive form

Xt � V �1b�t = �Xt�1 + �"t (F.1)

with � = V �1�: Note that this subsumes all invertible cases in which we can writeb�t = �t; �"t = Fuut; hence applies irrespective of the nature of the information set.
We assume in what follows, without loss of generality, that the diagonal elements of

�; the eigenvalues of G; are non-zero and distinct (ie that we have a minimal state

variable representation). We can then rewrite the measurement equation (8) as

it = 	
0Xt (F.2)
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where, exploiting Corollary 4, 	0 =
�
H 0
� +Hc�

0�V: Note that we have, using (21)
and (D.9),

�
H 0
� +Hc�

0� � = �H 0
� +Hc�

0� e� hI +Hc�0e�i�1 = hI +Hc�0e�i hI +Hc�0e�i�1 = I
and hence

	0� = I (F.3)

Partition 	0 and order the elements of Xt such that we can write

	0 =

�
n�n
	1

n�(r�n)
	2

�
; j	1j 6= 0) X1t = 	

�1
1 [it �	2X2t]

hence, exploiting the property that � is diagonal,

it = 	0

("
�11 0

0 �22

#"
	�11 [it�1 �	2X2t�1]

X2t�1

#
+

"
�1

�2

#
"t

)

=
h
	1 	2

i(" ��11	�11 	2
�22

#
[I � �22L]�1 �2"t�1 +

"
�11	

�1
1

0

#
it�1

)
+ "t

= �1 [I � �22L]�1 �2"t�1 + �2it�1 + "t (F.4)

where the last two lines use (F.3), and

�1 = 	
0

"
��11	�11 	2

�22

#
; �2 = 	1�11	

�1
1 (F.5)

Hence we can write

it =
�1�

�
22 (L)

det [I � �22L]
�2"t�1 + �2it�1 + "t (F.6)

where ��22 (L) = adj [I � �22L] : Note that det [I � �22L] is a scalar polynomial of
order r�n; and the elements of the (diagonal) matrix polynomial ��22 (L) are scalar
polynomials of order r � n� 1:5 Hence

� (L) it = � (L) "t (F.7)

5Letting f�ig
r�n
i=1 be the eigenvalues of �22; then det [I � �22L] =

Qr�n
i=1 (1� �iL) ; and the ith

diagonal element of [I � �22L] �1 = (1� �iL)
�1, hence the ith diagonal element of ��22 (L) equalsQ

j 6=i
�
1� �jL

�
; a polynomial of order r � n� 1:
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where

� (L) = det [I � �22L] (In � �2L) (F.8)

� (L) = det [I � �22L] In + �1��22 (L) �2L (F.9)

which is a VARMA(n; p; q) representation with p = r � n + 1 and q = r � n with
both holding with equality because, as assumed at the outset, the diagonal elements

of � (the eigenvalues of G) are real and distinct. If this is not the case, but G haser < r distinct non-zero eigenvalues, the argument goes through replacing r wither throughout. The values of p and q given in the Proposition are the maximal
orders of the minimal VARMA representation, in which the both the autoregressive

and moving average matrix lag polynomials are in general non-diagonal. If these

polynomials are restricted to be diagonal (ie, the system is a set of univariate ARMA

representations with correlated innovations) this is equivalent to setting n = 1:�

F.2 Proof of Part b)

In the case of instantaneous invertibility we can derive the states using (12), then

substitute into (7) giving a vector autoregression for it: with innovations given by

"t =
�
H 0
� +Hc�

0�Fuut; where "t and ut are both of dimension r: In the case of
asymptotic invertibility we have a generalised version of (23), given Hc 6= 0; of the
form

"t+1 = H
0
�

�
�t+1 � Et�t+1

�
+Hc (ct+1 � Etct+1) =

�
H 0
� +Hc�

0�Fuut
where the only di¤erence is that "t and ut are in this case both of dimension n < r:�

F.3 Proof of Parts c), d) and e).

We �rst derive a (non-invertible) VARMA representation in terms of the vector of

underlying structural innovations ut by exploiting the structure of the proof of Part

a) of the Proposition, with a relatively small number of changes.

Rede�ne Xt in (F.1) to be the minimal state vector for the true process in (25),

which is driven by the true structural innovations ut: Thus we now write

Xt = �Xt�1 + �ut (F.10)

From Corollary 2 the autoregressive matrix
�
I � e�H 0

�

�
F� of the �ltering error

process ft has at most r � n non-zero eigenvalues. Hence for Fc 6= 0; Xt will be of

16



dimension 2r � n; and we can rede�ne V and � such that"
�t

ft

#
= V Xt; (F.11)

V �V �1 =

"
G �Fc�0

0
�
I � e�H 0

�

�
F�

#
(F.12)

where V is now 2r� (2r � n) and hence V �1 is a generalised inverse. The diagonal
elements of � (which become the reciprocal autoregressive roots of the VARMA

representation) are given by the non-zero eigenvalues of G and of
�
I � e�H 0

�

�
F�:We

rede�ne � consistently with (25) such that

� = V �1

"
I�

I � e�H 0
�

� #Fu (F.13)

We also need to rede�ne 	0 in (F.2), using (13) to write ct = �0 (�t � ft), giving

	0 =
h
H 0
� +Hc�

0 �Hc�0
i
V (F.14)

As a result (F.3) no longer holds, but becomes

	0� =
h
H 0
� +Hc�

0 �Hc�0
i " I�

I � e�H 0
�

� #Fu (F.15)

re�ecting the impact of structural shocks on both states and �ltering errors.

Note that in the restricted case that the states are dynamically exogenous (Fc =

0) by inspection of (F.12) the true states are block recursive (there is no "contami-

nation" of state dynamics by �ltering errors), hence the minimal state vector of the

true process remains of dimension r; as for the observable process.

Given the rede�nitions above we can proceed as in the proof of Part a), which

allows us to derive a representation of the form6

� (L) it = [det [I � �22L] � + �1��22 (L) �2L]ut (F.16)

where now for the general case with Fc 6= 0; the autoregressive polynomial � (L) is
of order 2 (r � n) + 1 The right-hand side de�nes a vector moving average process
of order 2 (r � n) ; of dimension n; in terms of an underlying vector of innovations
ut of dimension s � n

6Which implicitly de�nes A (L) in the exposition in the main text.
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The proof of Part c) of the proposition is now straightforward. A non-fundamental

VARMA representation takes the general form

� (L) it = �
nf (L) �t (F.17)

where �t is an n�vector of innovations that cannot be recovered from the history of
it (ie, �

nf (L) is non-invertible in non-negative powers of L); and � (L) and �nf (L)

are both �nite order polynomials. For the case where n = s = rank(H 0Fu); it follows

immediately, by comparison of (F.16) and (F.17), that ut is (up to a scaling factor)

the vector of innovations to a non-fundamental VARMA representation.�
By substitution from (F.17) into (F.16) we have, for any nonfundamental repre-

sentation of the same moving average order7

�nf (L) �t = [det [I � �22L] � + �1��22 (L) �2L]ut (F.18)

For the case in Part c) where n = s; this simply de�nes a particular �t and �
nf (L) :

For the general case with n < s; inversion of �nf (L) involves terms in powers of

F = L�1; the forward shift operator. Hence non-fundamental innovations can only

be recovered from an information set consisting of both the history and future of ut;

thus proving part d) of the Proposition.�
Following Lippi & Reichlin�s (1994) terminology, if the representation is of higher

autoregressive moving average order than the fundamental representation it is a

"nonbasic" representation. By comparison of the order of the representations in

(F.7) and (F.16) it is evident that for the general case (ie, with Fc 6= 0) the true

process results in a VARMA(n; 2 (r � n) + 1; 2 (r � n)) representation, hence there
is an associated set of non-fundamental representations of the same order, de�ned by

(F.18). By comparison the fundamental representation in (F.7) is VARMA(n; r � n+ 1; r � n) ;
hence the non-fundamental representations de�ned by (F.18) are also non-basic,

proving Part e) of the Proposition. �

7Note that even if we �x the moving average order there are still in general multiple (but a
�nite number of) non-fundamental representations, that can be generated by sequentially replacing
a single MA root with its reciprocal, but in which at least one such root is less than unity in
absolute value (the representation with all roots greater than unity in absolute value is the unique
fundamental representation).
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