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1. Introduction
We establish upper and lower bounds on the predictability of a time series

generated by a set of p AR(1) state variables so that the reduced form is an
ARMA(p, p).

2. The Predictive System
Consider the following system of equations

yt = β1x1t−1 + β2x2t−1 + . . .+ βpxpt−1 + ut

x1t = λ1x1t−1 + v1t

x2t = λ2x2t−1 + v2t
...

xpt = λpxpt−1 + vpt

or concisely

yt = β
′
xt−1 + ut

xt = Λxt−1 + vt

where xt = (x1t, . . . xpt)
′
is a p×1 vector of predictor variables, β = (β1, . . . βp)

′

a p× 1 vector of coefficients, Λ = diag{λ1, . . . , λp} a p× p diagonal matrix and
we assume |λi| < 1 for all i, vt = (v1t, . . . vpt)

′
and (ut, v

′

t)
′
is a (p+1)×1 vector

of white noise errors with covariance matrix Ω where

Ω =


σ2
u σ2

u1 σ2
up

σ2
u1 σ2

11 · · · σ2
1p

...
. . .

σ2
up σ2

1p σ2
pp


Denote the R2 in this predictive regression by R2

x = 1− σ2
u

σ2
y
.

The reduced form for yt is an ARMA(p, p)

yt = β
′
(I − ΛL)−1vt−1 + ut

= (β1, . . . βp)


1− λ1L 0 · · · 0

0
. . . 0

...
0 1− λpL


−1

v1t−1

v2t−1

vpt−1

+ ut
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where L is the backward shift operator.
This gives

p∏
i=1

(1− λiL)yt =

p∑
j=1

βj

(∏p
i=1(1− λiL)

(1− λjL)

)
vjt−1 +

p∏
i=1

(1− λiL)ut

which can usefully be written in an invertible ARMA form as

yt =

∏p
i=1(1− θiL)∏p
i=1(1− λiL)

εt

for some white noise process εt where theMA coefficients are derived by match-
ing the autocorrelation structure on the right hand side and we choose these
coefficients to satisfy |θi| < 1 for all i. Note that the AR coefficients match
the diagonal elements of Λ. We call this the fundamental ARMA representa-
tion. Denote the R2 that one would obtain in this ARMA by R2

ε = 1− σ2
ε

σ2
y
. In

principle the set {λi, θi} can be derived from observations on yt alone.
An alternative non-invertible ARMA representations replaces each θi by its

inverse.

yt =

∏p
i=1(1− θ−1

i L)∏p
i=1(1− λiL)

ηt

We call this the major-non-fundamental ARMA representation (note that there
are a number of other non-fundamental representations). Note that σ2

η < σ2
ε

(see Hamilton (1994) pages 66-68 for discussion). Denote the R2 that one would

obtain in this ARMA by R2
η = 1− σ2

η

σ2
y
(note that since the ηt cannot be obtained

from the history of the process yt one could never in fact run this regression but
that does not prevent us calculating its properties).

3. Fundamental and Non-Fundamental Predictive Sys-
tems

It is possible to write the fundamental ARMA model as a system of the
same form as the original predictive system

yt = βε1x
ε
1t−1 + βε2x

ε
2t−1 + . . .+ βεpx

ε
pt−1 + εt

xε1t = λ1x
ε
1t−1 + εt

xε2t = λ2x
ε
2t−1 + εt

...
xεpt = λpx

ε
pt−1 + εt

where note that the R2 in this predictive regression will equal R2
ε. Note carefully

that the processes xε1t, etc. differ from the original x1t etc. The coefficients βε1
etc differ from the original β1 etc. and the covariance matrix here is singular
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since the innovations are identical. The autoregressive parameters λ1 etc are
the same as in the original formulation.

The coefficients βεi can be derived from the θi by equating coefficients (of
Lj) in the relation

1 +
βε1L

1− λ1L
+ . . .+

βεpL

1− λpL
=

(1− θ1L) (1− θ2L) . . . (1− θpL)

(1− λ1L) (1− λ2L) . . . (1− λpL)

Likewise we can write the major-non-fundamental ARMA as a system

yt = βη1x
η
1t−1 + βη2x

η
2t−1 + . . .+ βηpx

η
pt−1 + ηt

xη1t = λ1x
η
1t−1 + ηt

xη2t = λ2x
η
2t−1 + ηt

...
xηpt = λpx

η
pt−1 + ηt

where note that the R2 in this predictive regression will equal R2
η. Note carefully

that the processes xη1t, etc. differ from the original x1t etc. The coefficients βη1
etc differ from the original β1 etc. and the covariance matrix here is singular
since the innovations are identical. The autoregressive parameters λ1 etc are
the same as in the original formulation.

The coefficients βηi can be derived from the θi by equating coefficients (of
Lj) in the relation

1 +
βη1L

1− λ1L
+ . . .+

βηpL

1− λpL
=

(
1− θ−1

1 L
) (

1− θ−1
2 L

)
. . .
(
1− θ−1

p L
)

(1− λ1L) (1− λ2L) . . . (1− λpL)

4. Bounds on the Predictive R2

We have the following:

Proposition
(i) In the regression

yt = γ1x1t−1 + . . .+ γpxpt−1 + δ1x
ε
1t−1 + . . .+ δpx

ε
pt−1 + ξt

then δ1 = . . . = δp = 0.
(ii) In the regression

yt = γ̃1x1t−1 + . . .+ γ̃pxpt−1 + δ̃1x
η
1t−1 + . . .+ δ̃px

η
pt−1 + ζt

then γ̃1 = . . . = γ̃p = 0.

Proof
First note that in the regression

yt = γ1x1t−1 + . . .+ γpxpt−1 + δ1x
ε
1t−1 + . . .+ δpx

ε
pt−1 + ξt
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we will have δ1 = . . . = δp = 0 if we establish that xε1t−1, . . . , x
ε
pt−1 are orthog-

onal to ut , since ut = yt − β1x1t−1 + β2x2t−1 + . . .+ βpxpt−1.
We have

yt =

∏p
i=1(1− θiL)∏p
i=1(1− λiL)

εt = β1x1t−1 + β2x2t−1 + . . .+ βpxpt−1 + ut

= β1
v1t−1

1− λ1L
+ β2

v2t−1

1− λ2L
+ . . .+ βp

vpt−1

1− λpL
+ ut

So we may write

xεjt−1 =
εt−1

1− λjL
=

(
L

1− λjL

) ∏p
i=1(1− λiL)∏p
i=1(1− θiL)

(
β1

Lv1t
1− λ1L

+ β2
Lv2t

1− λ2L
+ . . .+ βp

Lvpt
1− λpL

+ ut

)
Given the assumed white noise property of (ut, v

′

t)
′
, ut will be orthogonal to

xεjt−1 =

(
L

1− λjL

) ∏p
i=1(1− λiL)∏p
i=1(1− θiL)

(
β1

Lv1t
1− λ1L

+ β2
Lv2t

1− λ2L
+ . . .+ βp

Lvpt
1− λpL

+ ut

)
since this expression involves only u’s and v’s dated t − 1 and earlier. This
establishes the first part of the Proposition.

Secondly note that in the regression

yt = γ̃1x1t−1 + . . .+ γ̃pxpt−1 + δ̃1x
η
1t−1 + . . .+ δ̃px

η
pt−1 + ζt

we will have γ̃1 = . . . = γ̃p = 0 if we establish that x1t−1, . . . , xpt−1 are orthog-
onal to ηt, since ηt = yt − βη1x

η
1t−1 + βη2x

η
2t−1 + . . .+ βηpx

η
pt−1

We have

yt =

∏p
i=1(1− θ−1

i L)∏p
i=1(1− λiL)

ηt = β1x1t−1 + β2x2t−1 + . . .+ βpxpt−1 + ut

= β1
v1t−1

1− λ1L
+ β2

v2t−1

1− λ2L
+ . . .+ βp

vpt−1

1− λpL
+ ut

So

ηt =

∏p
i=1(1− λiL)∏p
i=1(1− θ−1

i L)

(
β1

v1t−1

1− λ1L
+ β2

v2t−1

1− λ2L
+ . . .+ βp

vpt−1

1− λpL
+ ut

)
We can write

1

1− θ−1
i L

=
−θiF

1− θiF

where F is the forward shift operator.
So

ηt = F p

(
p∏
i=1

θi

)(∏p
i=1(1− λiL)∏p
i=1(1− θiF )

)(
β1

v1t−1

1− λ1L
+ β2

v2t−1

1− λ2L
+ . . .+ βp

vpt−1

1− λpL
+ ut

)
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Now

F p
∏p
i=1(1− λiL)∏p
i=1(1− θiF )

vkt−1

(1− λkL)
= vkt + c1vkt+1 + c2vkt+2+ . . .

for some c1, c2, . . . and

F p
∏p
i=1(1− λiL)∏p
i=1(1− θiF )

ut = ut + b1ut+1 + b2ut+2 . . .

for some b1, b2, . . .. So ηt involves only forward values of ut and vt and will thus
be orthogonal to any vjt−1

1−λjL by the assumed white noise properties of (ut, v
′

t)
′
.

This establishes the second part of the Proposition.

Since least squares seeks to minimises the variance of the residual we imme-
diately obtain

Corollary
R2
ε ≤ R2

x ≤ R2
η

5. Conclusion
In a predictive system with an ARMA(p, p) reduced form the fundamental

and non-fundamental ARMA representations place bounds on the predictability
of any valid representation of the data (ie any representation consistent with the
univariate ARMA). Since both fundamental and non-fundamental representa-
tions depend only on the set of coefficients {λi, θi}, knowledge of the univariate
properties of the series allows one to infer the possible degree of predictability.
Time series properties that place bounds on the set {λi, θi}, for instance the
univariate R2 or the variance ratio as defined by Cochrane (1988), can therefore
also give information about predictability.
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