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Abstract

To avoid possible distortions introduced by seasonal adjustment, econometricians may
want to work with non seasonally adjusted data. Without a prioris on the DGP of
the seasonal features, this involves numerous seasonal and non seasonal unit root and
cointegration rank tests that may imply pretest biases. Drawing on Toda and Yamamoto
(1995) lag-augmented approach, we show how we can estimate VAR’s formulated in levels
and test for general restrictions on the matrix parameters when the processes may be
integrated or cointegrated at various frequencies and of various orders. When introducing
in a levels VAR for each variable at least as many additional lags as the number of unit
roots present in its individual data generating process, we show that the Wald test statistic
associated to nonlinear constraints on the initial VAR parameters is asymptotically chi-
squared distributed. Size and power properties of this approach are illustrated with a
Monte Carlo exercise

Key-words : test, seasonal unit roots, seasonal cointegration, seasonal adjustment
JEL code :C12, C32, E32

1 Introduction

Many macroeconomic and financial intra-annual time series present regular patterns associated
to seasonal causes (biological, meteorological or institutional ones). In their attempt to model
these time series and test for hypotheses about their Data Generating Process, econometricians
can adopt two approaches. They can seasonally adjust them to remove the seasonal patterns
from the data or they can try to explicitly model the seasonal features. Both approaches have
their limits and advantages, particularly when the econometrician wants to model simultane-
ously a set of variables with VAR-type models.

Most practitioners use seasonally adjusted data. They pile up in a vector separately sea-
sonally adjusted components since the usual seasonal adjustment statistical procedures are
univariate. This treatment nevertheless may have altered the original relationships between

∗I thank participants to EC2-2007 conference (Faro, University of Algarve), ESEM2008 (Milan), Toulouse
University seminar for their useful comments. Remaining errors are my sole responsibility.
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the variables. This is a long-standing issue. It was a subject of research in the seventies (Porter
(1975), Geweke (1979), Plosser (1979) and Wallis (1976)) but then sank into oblivion. Today
seasonal adjustment softwares offer a large number of optional statistical treatments that are
applied independently on each time series as well as several different or data-dependent filters.
For instance, seasonally adjusted data in the middle of the sample are obtained by various
linear combinations of past and future values. According to the selected statistical approach,
the choice of these linear combinations can be data driven or data dependent. Sims (1974) and
Wallis (1974) pleaded for the use of the same linear filter to all series appearing in a multiple
regression to avoid distortion in their relationships. Similarly, occurrence of outliers at the same
dates or around the same dates in different time series is an informative feature that may not
be preserved by automatic statistical detection and correction of outliers implemented in these
softwares. At last, most of the filters that are used in this statistical treatment can lead to over
differenced processes at the seasonal frequencies and may lead to the non-existence of finite
order VAR approximation (Maravall (1993)).

When the econometricians work on non-seasonally adjusted data, they have to model their
seasonal features. They can resort to a deterministic modeling of the intra-annual movements
or a periodic stochastic accumulation of shocks, in other words, the introduction of unit-roots at
seasonal frequencies related to the observation frequency. Specification tests have been designed
to discriminate situations in which one approach is more in concordance with the data than the
other one (Canova and Hansen (1995), Caner (1998), Hasza and Fuller (1982), Said and Dickey
(1984), Hylleberg, Engle, Granger and Yoo (1990), Smith and Taylor (1998) among others).
In practice from empirical studies, it seems that numerous time series can be parsimoniously
described as integrated ones but at a subset of the eligible frequencies. Unfortunately, these
tests as well as tests for unit root at zero frequency (Dickey and Fuller (1979), Phillips and
Perron (1988) inter alios) are known to have a low power against their respective alternative
hypothesis. These power properties can be improved (Elliott, Rothenberg and Stock (1996),
Ng and Perron (2001), Gregoir (2006), Rodrigues and Taylor (2007)), but the gain remains
limited. When working simultaneously with several seasonally integrated processes in a multi-
variate set-up, the practitioner is naturally confronted to the problem of cointegration (Granger
(1983)) and seasonal cointegration (Engle, Granger and Hallman (1989)). (S)He must deter-
mine the presence of seasonal cointegration at each possible and reasonable frequency and the
dimension of each cointegration space to be able to specify and estimate a VECM that involves
various error correction terms. Tests and estimations procedure have been developed (e.g.
Johansen (1988,1991), Harris (1997), Phillips and Ouliaris (1990), Stock and Watson (1989),
Lee (1992), Johansen and Schaumburg (1999), Gregoir (1999), Cubbada (2001)). Simulation
studies (Reimers (1992) and Toda (1995) inter alios), have shown that at frequency 0, these
tests for cointegrating ranks in the maximum likelihood framework are sensitive to the values
of nuisance parameters in sample sizes that are typical for economic time series. This means
that standard approach consisting of testing for economic hypotheses conditionally on tests for
the presence of various unit roots and cointegration ranks may suffer from pretest biases.

However the alternative of working directly on level VAR model is not straightforward.
Sims, Stock and Watson (1990) and Toda and Phillips (1993) have shown that the Wald test
statistic of linear constraints based on levels estimation may have non-standard asymptotic
distributions and may depend on nuisance parameters. Toda and Yamamoto (1995), Dolado
and Lütkepohl (1996) and Yamamoto (1996) have proposed a simple way to overcome these
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problems in hypothesis testing when working with levels VAR for VAR processes that may have
unit roots at frequency 0. Toda and Yamamoto (1995) propose to introduce at least as many
additional lags as the highest order of integration at frequency 0 in the model at hand. This
allows for testing for linear and nonlinear restrictions with standard Wald test statistic on the
coefficients by estimating a levels VAR. This is nevertheless at the cost of a possible inefficient
use of the information and may have consequences in terms of size and power of the hypothesis
tests in finite samples (Kurozumi and Yamamoto (2000) ).

We propose to extend their approach to the situation of a DGP with possibly different roots
on the unit circle and cointegration. We first give a simple example with seasonal unit roots
which leads to a situation similar to those illustrated by Sims, Stock and Watson (1990) and
Toda and Phillips (1993). This motivates our interest in a procedure that extends Toda and
Yamamoto (1995) approach to more general DGPs. We then state an algebraic property that
allows us to rewrite a levels VAR model in terms of covariance stationary variables and a set
of integrated variables at each frequency involved in the DGP. This allows us to derive the
asymptotic distribution of a Wald test statistic of non linear restriction on the VAR matrix
coefficients in a lag-augmented regression. As soon as the number of lags is larger than the
original one augmented for each component of the number of unit roots present in their individ-
ual generating process, the Wald statistic is asymptotically chi-squared distributed. This thus
allows the practitioner to run test in a VAR model of non seasonally adjusted data without
testing for the presence of seasonal and non-seasonal unit roots and seasonal and non-seasonal
cointegrating relationships.

2 Introductory example

We first illustrate that the Wald test statistic of linear constraints based on levels estimation
may have non-standard asymptotic distribution and depend on nuisance parameters when some
seasonal unit roots are present in the Data Generating Process. This is quite similar to Sims,
Stock and Watson (1990) and Toda and Phillips (1993) results. We focus on a simple case. Let
us consider the following bivariate VAR(1) model:

yt = φαyt−1 + εt (1)

=

(
0 α
− 1
α

0

)
yt−1 + εt

where α 6= 0 and {εt} is a bivariate strong white noise with V εt = I2. φα (L) = I2−φαL is such
that detφα (L) has two unit roots {i,−i} . It can be shown that the process {yt} is integrated
of order 1 at the two frequencies π

2
and -π

2
and cointegrated at these frequencies (cf. section

6). We are interested for instance in testing for H0 : φα,12 = α and propose to consider the
associated Student test statistic. We have the following result:

Lemma 1 Let φ̂α,12 be the OLS estimate of φα,12 in (1) , then

T
(
φ̂α,12 − α

)
=⇒

<
{(

α 0
) ∫

dW (s)W (s)′ ds

(
1
−αi

)}
1
2

(
1 αi

) ∫
W (s)W (s)′ ds

(
1
−αi

)
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and

φ̂α,12 − α√
V̂φ̂α,12

=⇒
<
{(

α 0
) ∫

dW (s)W (s)′ ds

(
1
−αi

)}
√

1
2

(
1 αi

) ∫
W (s)W (s)′ ds

(
1
−αi

)
where W (s) = WR (s) + iWI (s) with WR (s) and WI (s) two independent bivariate real Wiener
processes whose variance-covariance matrix is equal to I2.

The OLS estimator is superconsistent but its asymptotic distribution is not Gaussian and
depends on the value of α. The Student test statistic is not asymptotically normally distributed
and depends on the value of α. In section 6, we give the form of the VECM satisfied by this
process and use it to study the small sample properties of the test procedure we are now
introducing.

3 General objective

In this section, we introduce the general objective of this paper as well as our framework. This
requires stating some definitions and introducing some notations and assumptions. We start
from the well-known definition of integratedness, then describe the data generating process of
the process under study and the problem we are interested in. We work with complex processes,
this simplifies the notations. The case of real processes is derived in this framework by adding
constraints that will be detailed in a set of footnotes when necessary as we go along.

A purely non deterministic process integrated of order d at the only frequency ω is such
that when we apply the first difference operator at this frequency raised at the power d, we
get a covariance-stationary process (that is not overdifferenced). We denote this first difference
operator δω (L) = (1− e−iωL). This is a complex operator. The definition of a univariate
integrated of order d process at the only frequency ω takes then the following form:

Definition 2 A univariate purely non deterministic process {zt}t∈Z is said to be integrated of
order d ∈ N at the only frequency ω ∈ ]−π, π], if it is such that

(1− e−iωL)
d
zt = ηt

where {ηt}t∈Z is a (complex) purely non deterministic covariance stationary process such that
its spectral density is strictly positive at frequency ω.

In practice, univariate processes can be integrated of various orders at various frequencies,
in particular non-seasonally adjusted processes may parsimoniously be described as processes
simultaneously integrated at various seasonal frequencies. This is the framework used in stan-
dard seasonal adjustment procedure such as X12 or TRAMO-SEATS. The appropriate set of
first difference operators must then be applied to get a covariance stationary process that is
not overdifferenced1.

1When the process under study is real, if ω /∈ {0, π} is a frequency of integration of order d, then necessary
so is −ω with the same order d (see Gregoir (1999a)). In these circumstances, to obtain a stationary process
we must apply to the integrated process the first difference operator at both frequencies raised at the power d.
The corresponding real first difference operator is equal to δω(L)δ−ω(L) =

(
1− 2 cos ωL + L2

)
.
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In this paper, we consider a n-dimensional process {yt}t∈Z whose data generating process is
given by: for t > −p,

yt = d (t) + xt (2)

where

(i) d (t) is a deterministic function that involves trend and sinusoidal polynomials of various
degrees at D different frequencies: for each frequency ω̃j in {ω̃1, . . . , ω̃D} ∈ ]−π, π]D we
denote qj the degree of its polynomial,

d (t) =
D∑
j=1

(
qj∑
k=0

βjkt
ke−iω̃jt

)
(3)

with
{

(βjk)k∈{0,...,qj}

}
j∈{1,...,D}

a set of n-dimensional vectors

(ii) {xt}t∈Z is a n-dimensional process that satisfies a pth-order vector autoregression

xt = φ (L)xt + εt (4)

=

p∑
j=1

φjxt−j + εt

where p is supposed to be known, we initialize (4) at t = −p+1, . . . , 0 with Op (1) random
vectors and the process {εt}t∈Z satisfies the following property:

Assumption 3 : {εt}t∈Z is n-dimensional martingale difference satisfying E (εt |Ft−1 ) = 0,

E (εtε
′
t |Ft−1 ) = Ω > 0 and suptE

(
maxa∈{1,..,n} |εa,t|2+δ |Ft−1

)
< +∞ a.s. for some δ > 0,

where Ft−1 is the σ-field generated by {εt−τ , τ = 1, 2, ...} .

(iii) {xt}t∈Z is integrated of various orders at S different frequencies {ω1, . . . , ωS} ∈ ]−π, π]S

and may be cointegrated at each frequency. This means that the polynomial det (I − φ (u))
has several roots on the unit circle.

For sake of simplicity, we assume that all the components of xt are integrated of the same
order at the same frequency. It is possible to consider situations in which each component is
integrated of different orders at each frequency, this makes the notations more cumbersome. In
the sequel, we detail in a set of remarks how the results can be generalized to this situation
since we refer to this situation in the introduction and abstract. For each frequency ωj ∈
]−π, π] , we denote dj the order of integration common to all the components. The integration
structure is therefore summarized by the set Ix = {(ωj, dj) ∈ ]−π, π]× N,j = 1, ..., S} . For the
process {xt}t∈Z characterized by Ix, we introduce the generalized difference operator ∆x (L) =∏S

j=1 δ
dj
ωj (L) that is such that ∆x (L)xt is a n-dimensional covariance stationary process whose

spectral density of each component at each frequency ωj, j = 1, . . . , S is strictly positive. We

denote dx =
∑S

j=1 dj the degree of this polynomial ∆x (L) .
Substituting xt = yt − d (t) into (4) , we get

yt = d̃ (t) + φ (L) yt + εt (5)
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where the vector coefficients of d̃ (t) are functions of {βjk}k∈{0,...,qj} , j ∈ {1, . . . , D} and φl,

l ∈ {1, . . . , p} . Note that if some frequency ω̃j in the deterministic part d (t) is a frequency of

integration of {xt}t∈Z , the degree q̃j in d̃ (t) of the associated deterministic sinusoidal polynomial
might be lower than the degree qj in (3) . For instance, when D = 1, S = 1, ω̃1 = ω1 and the
process is integrated of order d1, but not cointegrated at this frequency, we have In − φ (L) =
δd1ω (L) (In − φ1 (L)) and the degree of the deterministic function at this frequency is q̃1 = q1−d1

(when q1−d1 ≥ 0). In the sequel, we denote q̃ =
∑D

j=1 q̃j the number of the linearly independent

deterministic functions that span the vector space in which d̃ (t) takes its values

d̃ (t) =
D∑
j=1

 q̃j∑
k=0

β̃jkt
ke−iω̃jt


Our interest does not lie in whether the process {yt}t∈Z is integrated or cointegrated at the

different frequencies, but in testing the following hypothesis:

H0 : f (vecφ) = 0 (6)

where vecφ is the vector obtained in stacking the columns of the (n× np) matrix
(
φ1 . . . φp

)
from equation (5) and f (.) is a m-vector valued function satisfying the following assumptions

Assumption 4 : f (.) is a twice continuous differentiable function which is such that in the
neighborhood of the true value of vecφ, the jacobian matrix ∂f

∂vecφ
is full rank.

Drawing on Toda and Yamamoto (1995) lag-augmented VAR approach, we consider esti-
mating by ordinary least squares (OLS) a levels VAR

yt = d̃ (t) +

p∑
j=1

φjyt−j +

pa∑
k=p+1

φkyt−k + εt (7)

where pa ≥ p + dx to test for H0 with the p OLS estimates of the {φj}j=1...p in (7) . Our main
objective is therefore to show that the standard Wald statistic of H0 based on OLS estimates in
(7) is asymptotically chi-square distributed with m degrees of freedom as soon as pa ≥ p+ dx.
Our result relies on algebraic and statistical properties. The next section is devoted to algebraic
properties of matrix polynomials that allow us to reformulate the test problem under study and
the following one deals with statistical properties of the OLS estimators. For sake of simplicity,
in this latter section, we limit our attention to at most I (1) processes at a set of a priori
known frequencies with linear trend and seasonal dummies. I (2) processes at frequency 0
were considered by Toda and Yamamoto (1995) as they sometimes are used to describe some
macroeconomic nominal variables, but I (2) processes at seasonal frequencies do not seem to
be used in practice.

4 Algebraic results and reformulation of the null hypoth-

esis

We first work on a reparameterization of the matrix polynomial associated to the VAR(p) model
and then illustrate this reparameterization in some standard examples. Finally, we show that
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the Wald statistic of H0 can take two equivalent forms, one of them involving matrix coefficients
associated to covariance stationary regressors, which is an indication that standard asymptotics
applies.

4.1 Polynomial factorization

We first rewrite the matrix polynomial φ (L) under a form that involves p lagged values of
covariance-stationary processes and a set of dx processes that are integrated at each frequency
and each intermediate order of integration of the data generating process. Furthermore, we show
that the p matrix coefficients associated to the covariance-stationary processes obtained in this
reparameterization are in a one-to-one correspondence with the p initial matrix coefficients
{φj}j=1,...,p , so that it is possible to translate a set of constraints on the latter in an equivalent
one on the former. These results are presented in a Theorem and a Lemma. Their proofs are
given in Appendix. Toda and Yamamoto (1995) approach corresponds to a particular case of
this algebraic framework.

Theorem 5 Let φ (L) be a (n× n) matrix polynomial of degree p

φ (L) = φ1L+ . . .+ φpL
p

where the (φj)j=1,...,p are (n× n) possibly complex matrices. There exist two (n× n) matrix
polynomials ψ (L) (the quotient) and R (L) (the remainder) of respective degree p and dx − 1
such that

φ (L) = ∆x (L)ψ (L) + Lp+1R (L)

ψ (L) = ψ1L+ . . .+ ψpL
p

and there exists M a full-rank upper triangular (p× p) matrix such that(
ψ1 . . . ψp

)
=
(
φ1 . . . φp

)
M ⊗ In

We emphasized that the matrix coefficients {ψj}j=1,...,p are linear functions of the initial
matrix coefficients {φj}j=1,...,p , but this also holds for the matrix coefficients of R (L). The
relationship between the two sets of parameters is linear.

Remark 6 When the components of {xt}t∈Z have various orders of integration at various
frequencies, we have to introduce the sets Ix,a, a ∈ {1, . . . n} , associated to the integration
structure of each component {xa,t}a∈{1,...,n},t∈Z and the related generalized difference operators{

∆
(a)
x (L)

}
a∈{1,...,n}

such that ∆
(a)
x (L)xa,t is a univariate covariance stationary process with

a nonzero spectral density at the associated frequencies. We note d
(a)
x the degree of ∆

(a)
x (L).

We then apply the above Theorem when n = 1 on each polynomial coefficient of the matrix
polynomial φ (L) = [φba (L)](b,a)∈{1,...,n}2 in the following way:

φba (L) = ψba (L) ∆(a)
x (L) + Lp+1Rba (L)
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where ψba (L) and Rba (L) are of respective degree p and d
(a)
x − 1. We set all these equations

in a matrix equation where ∆
(0)
x (L) stands for the diagonal matrix whose elements are equal to

∆
(a)
x (L) as follows

φ (L) = ψ (L) ∆(0)
x (L) + Lp+1R (L)

where the degree of the polynomials in the ath column of R (L) is d
(a)
x − 1.

We now introduce a set of difference operators that when applied on {xt}t∈Z give integrated

processes at a single frequency. For j = 1, . . . S, we put ∆x,−j (L) =
∏S

k=1,k 6=j δ
dk
ωk

(L) , that
is such that {∆x,−jxt}t∈Z is Iωj

(dj). An algebraic result allows us to decompose the remain-
der R (L) into the sum of polynomials that when applied on {yt}t∈Z involve processes that
are integrated at an only frequency and are therefore constructed with the set of operators

{∆x,−j}j∈{1,...S}. This corresponds to the property that

{(
∆x,−j (L) δωj

(L)k
)
k=0,...dj−1

}
j=1,...S

is a basis of the polynomials of degree at most dx − 1. We state a general result.

Lemma 7 For any polynomial matrix Q (L) of degree dx − 1, there exist S unique matrix
polynomials of respective degree (dj − 1), j = 1, ..., S

Qj (L) =

dj−1∑
k=0

Qj,kL
k

such that the matrix polynomial Q (L) can be rewritten under the following form:

Q (L) =
S∑
j=1

Qj

(
δωj

(L)
)
∆x,−j (L)

It follows from Lemma 7 that the polynomial matrix R (L) introduced in Theorem 5 can be
rewritten under the following form:

R (L) =
S∑
j=1

Rj

(
δωj

(L)
)
∆x,−j (L)

where the Rj’s are polynomial matrices of respective degree dj − 1. When R (L) is applied
to yt, the vector space spanned by yt and the dx − 1 lagged variables can be decomposed into
the direct sum of S subspaces, each of them generated by processes integrated at one of the
frequencies under study, say ωj, with orders from 1 to dj.

Remark 8 When the components of {xt}t∈Z have various orders of integration at various fre-
quencies, we have to complete the notations introduced in Remark 6 . Let Sa the number of
integration frequencies of the ath component and d

(a)
j their respective order of integration, j ∈

{1, ...Sa} . We then introduce the sets of operators

{(
∆

(a)
x,−j (L) =

∏Sa

k∈Ix,a,k 6=j δ
dk
ωk

(L)
)
j∈Ix,a

}
a∈{1,...n}
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, that is such that
{

∆
(a)
x,−jxa,t

}
t∈Z

is Iωj

(
d

(a)
j

)
. Lemma 7 can be used but on the column struc-

ture of R (L) . For the ath column, there exist Sa unique vector polynomials of respective degree(
d

(a)
j − 1

)
, j = 1, ..., Sa

Rj,a (L) =

d
(a)
j −1∑
k=0

Rj,kaL
k

such that the ath column of the matrix polynomial R (L) can be rewritten under the following
form:

R.,a (L) =
∑
j∈Ix,a

Rj,a

(
δωj

(L)
)
∆

(a)
x,−j (L)

4.2 Examples

We illustrate the above results with simple examples associated to quarterly and monthly
data. First, we consider a real n-dimensional process whose components are supposed to be
integrated of order 1 at each seasonal frequencies associated to quarterly observations, namely{
0, π

2
,−π

2
, π
}

= {ω1, ω2, ω3, ω4}. We limit the deterministic terms to seasonal dummies and a
constant term. It is well-known that the space generated by these deterministic functions is also
spanned by the four real functions

{
1, cos π

2
t, sin π

2
t, cos πt

}
. Using the relationships cos π

2
t =

1
2

(
ei

π
2
t + e−i

π
2
t
)

and sin π
2
t = 1

2i

(
ei

π
2
t − e−i

π
2
t
)
, we parameterize the deterministic function as

follows
d (t) = β0 + β−π

2
ei

π
2
t + βπ

2
e−i

π
2
t + βπ (−1)t

with β−π
2

= βπ
2

to ensure that d (t) is real. We start from

yt = d (t) + xt

xt =

p∑
j=1

φjxt−j + εt

The generalized first difference operator is the usual seasonal first difference operator

∆x (L) = (1− L)
(
1− e−iπL

) (
1− ei

π
2L
) (

1− e−i
π
2L
)

=
(
1− L2

) (
1 + L2

)
=

(
1− L4

)
It is such that ∆x (L) d (t) = 0. Equation (5) takes the following form

yt = (I − φ (L)) d (t) +

p∑
j=1

φjyt−j + εt

Theorem 5 and Lemma 7 can be applied to φ (L) and (I − φ (L)) . We keep to the notations
introduced above for φ (L) and set

I − φ (L) = ζ (L) ∆x (L) + Lp+1

4∑
j=1

Qj∆x,−j

9



It is such that Qj∆x,−j (e−iωj) = I − φ (e−iωj) and therefore

(I − φ (L)) d (t) = (I − φ (1)) β0 + (I − φ (−1)) βπ (−1)t−p−1

+ (I − φ (i)) β−π
2
ei

π
2
(t−p−1) + (I − φ (−i)) βπ

2
e−i

π
2
(t−p−1)

= d̃ (t)

This allows us to rewrite the DGP equation as follows

yt =

p∑
j=1

ψj (yt−j − yt−j−4) +
(
R1

(
1 + L+ L2 + L3

)
yt−p−1

+R2

(
1− iL− L2 + iL3

)
yt−p−1 +R3

(
1 + iL− L2 − iL3

)
yt−p−1

+ R4

(
1− L+ L2 − L3

)
yt−p−1

)
+ εt + d̃ (t)

where
{(1 + L+ L2 + L3) yt}t∈Z,
{(1− iL− L2 + iL3) yt}t∈Z,
{(1 + iL− L2 − iL3) yt}t∈Z
and
{(1− L+ L2 − L3) yt}t∈Z

are respectively integrated of order 1 at frequencies 0, π
2
, −π

2
and π. For instance, when p = 1,

we have

yt = φyt−1 + d̃ (t) + εt

= φ (yt−1 − yt−5) + φyt−5 + d̃ (t) + εt

= φ (yt−1 − yt−5) + εt + d̃ (t)

+
1

4
φ (yt−2 + yt−3 + yt−4 + yt−5)

− i
4
φ (yt−2 − iyt−3 − yt−4 + iyt−5)

+
i

4
φ (yt−2 + iyt−3 − yt−4 − iyt−5)

−1

4
φ (yt−2 − yt−3 + yt−4 − yt−5)

10



and when p = 4, we have

yt =
4∑
j=1

φj (yt−j − yt−j−4) +
4∑
j=1

φjyt−j−4 + d̃ (t) + εt

=
4∑
j=1

φj (yt−j − yt−j−4) + d̃ (t) + εt

+
1

4

(
4∑
j=1

φj

)
(yt−5 + yt−6 + yt−7 + yt−8)

+
1

4

(
4∑
j=1

ei(j−1)π
2 φj

)
(yt−5 − iyt−6 − yt−7 + iyt−8)

+
1

4

(
4∑
j=1

e−i(j−1)π
2 φj

)
(yt−5 + iyt−6 − yt−7 − iyt−8)

+
1

4

(
4∑
j=1

ei(j−1)πφj

)
(yt−5 − yt−6 + yt−7 − yt−8)

Second, we consider a real n-dimensional process whose components are supposed to be
integrated of order 1 at each seasonal frequencies associated to monthly observations, namely{
−5π

6
,−2π

3
,−π

2
,−π

3
,−π

6
, 0, π

6
, π

3
, π

2
, 2π

3
, 5π

6
, π
}

= {ωj}j=1,...,12. We limit our attention to a DGP
without deterministic terms

yt =

p∑
j=1

φjyt−j + εt

The generalized first difference operator is the usual seasonal first difference operator

∆x (L) =
12∏
j=1

(
1− e−iωjL

)
=

(
1− L12

)
and the family of difference operators that define processes integrated of order 1 at each par-
ticular frequency, say ωj, is given by

∆x,−j (L) =
11∑
k=0

e−ikωjLk

Theorem 5 and Lemma 7 allow us to rewrite this equation as follows

yt =

p∑
j=1

ψj (yt−j − yt−j−12) +
12∑
j=1

Rj

(
11∑
k=0

e−ikωjLk

)
yt−p−1 + εt

=

p∑
j=1

ψj (yt−j − yt−j−12) + Lp+1

11∑
j=0

(
12∑
k=1

e−i(j−1)ωkRk

)
Ljyt + εt

11



When p = 12, we get

yt =
12∑
j=1

φj (yt−j − yt−j−12) +
12∑
j=1

1

12

(
12∑
l=1

ei(l−1)ωjφl

)(
11∑
k=0

e−ikωjLk

)
yt−13 + εt

4.3 General test procedure

Testing for H0 with OLS estimates derived from (7) will correspond to testing with stan-
dard Wald statistic ignoring the under the null zero matrix coefficients introduced in the
lag augmented regression. The Wald test statistic can be derived from iterative applica-
tions of Frisch-Waugh Theorem. It is convenient to write (7) with matrix notations as fol-

lows: Let τ be the d̃ × T matrix whose columns τt are equal to
(
τ1,t . . . τD,t

)′
where

τj,t =
(
e−iω̃jt te−iω̃jt . . . td̃je−iω̃jt

)
for j = 1, ...D, y−1 the np × T matrix whose columns

are equal to
(
y′t−1 . . . y′t−p

)′
and y−pa the n (pa − p) × T matrix whose columns are equal

to
(
y′t−p−1 . . . y′t−p−pa

)′
and y and ε the n× T matrices whose columns are equal to yt and

εt, then
y = β̃τ + φy−1 + Φy−pa + ε (8)

with β̃
(n×d̃)

=
(
β̃10 . . . β̃Dd̃D

)
, φ

(n×np)
=
(
φ1 . . . φp

)
and Φ

(n×n(pa−p))
=
(
φp+1 . . . φpa

)
.

Let Pτ = IT − τ ′ (ττ ′)−1 τ and

Py−pa
= Pτ − Pτy−pa

′ (y−paPτy−pa

′)−1
y−paPτ

the Wald statistic is equal to

ξW = f
(
vecφ̂

)′ [ ∂f

∂vecφ′

{(
y−1Py−pa

y′−1

)−1 ⊗ Ω̂ε

} ∂f

∂vecφ

′]−1

f
(
vecφ̂

)
(9)

with φ̂ = yPy−pa
y′−1

(
y−1Py−pa

y′−1

)−1
and Ω̂ε = 1

T
ε̂ε̂

′
.

From Theorem 5, we know that we can rewrite (5) under the form

yt = d̃ (t) + ψ (L) ∆xyt +R (L) yt−p−1 + εt

where ψ (L) = ψ1L+ . . .+ ψpL
p and(

ψ1 . . . ψp
)

=
(
φ1 . . . φp

)
M ⊗ In

with M a full ranked matrix. It follows that f (vecφ) = 0 can be expressed with this new set of
parameters under the form f

((
(M−1)

′ ⊗ In
)
⊗ Invecψ

)
= g (vecψ) = 0. In the neighborhood

of the true value of vecφ, the jacobian matrix ∂f
∂vecφ

is assumed to be full rank which ensures

that the jacobian matrix ∂g
∂vecψ

= ∂f
∂vecφ

((
(M−1)

′ ⊗ In
)
⊗ Invecψ

) (
(M−1)

′ ⊗ In
)
⊗ In is also full

rank.
From Lemma 7, we can rewrite (5) under the form

yt = d̃ (t) + ψ (L) ∆xyt +
S∑
j=1

Rj

(
δωj

)
∆x,−jyt−p−1 + εt (10)

12



which we also write with matrix notations as follows : Let ∆xy be the np × T matrix whose
columns are equal to ∆xy

t−1
t−p =

(
∆xy

′
t−1 . . . ∆xy

′
t−p

)′
and z−p the ndx × T matrix whose

columns zt are equal to
(
z1,t . . . zS,t

)′
with

zj,t =
(

∆x,−jy
′
t−p−1 ∆x,−jδωj

y′t−p−1 . . . ∆x,−jδ
dj−1
ωj y′t−p−1

)
,

then
y = β̃τ + ψ∆xy +Rz−p + ε (11)

with ψ
(n×np)

=
(
ψ1 . . . ψp

)
and R

(n×ndx)
=
(
R1 . . . RS

)
with Rj

(n×ndj)

=
(
Rj,0 . . . Rj,dj−1

)
.

When pa ≥ p + dx, we apply the algebraic reparameterization of Theorem 5 and Lemma 7 to
a matrix polynomial of degree pa − dx ≥ p obtained by introducing pa − p− dx additional lags
with zero matrix coefficients. Equation (10) takes the following form

yt = d̃ (t) + ψ (L) ∆xyt + Lp+1ξ (L) ∆xyt +
S∑
j=1

Rj

(
δωj

)
∆x,−jyt−pa−1 + εt (12)

where ξ (L) is a polynomial matrix of degree (pa − p− dx − 1) . Since the matrix M in The-
orem 5 is an upper triangular matrix, the linear relationship between

(
ψ1 . . . ψp

)
and(

φ1 . . . φp
)

is preserved. Similarly, the space spanned by the regressors in (7) is the same
one as that spanned by the regressors in (12) , it follows that the OLS residuals and the esti-

mate Ω̂ε are equal in both regressions. With obvious matrix notations, equation (11) takes the
following form

y = β̃τ + ψ∆xy + ξ∆xy−p +Rz−pa + ε

or equivalently
y = β̃τ + ψ∆xy + R̃z̃ + ε (13)

with z̃ =
(

∆xy
′
−p z′−pa

)′
and R̃ =

(
ξ R

)
.

We can now show that testing for H0 : f (vecφ) = 0 is equivalent to testing for H ′
0 :

g (vecψ) = 0. The Wald test statistic can again be derived from iterative applications of Frisch-
Waugh Theorem. This gives:

Lemma 9 Let Pτ = IT − τ ′ (ττ ′)−1 τ and Pz̃ = Pτ − Pτ z̃
′ (
z̃Pτ z̃

′)−1

z̃Pτ , we get that the

standard Wald test statistic in (9) is such that

g
(
vecψ̂

)′ [ ∂g

∂vecψ′

{(
∆xyPz̃∆xy

′
)−1

⊗ Ω̂ε

}
∂g

∂vecψ

′]−1

g
(
vecψ̂

)
= ξW (14)

with ψ̂ = yPz̃∆xy
′
(
∆xyPz̃∆xy

′
)−1

.

We now turn to the analysis of the asymptotic distribution of (14) which is also that of (9) .
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5 Asymptotic analysis

The formal asymptotic analysis of H0 testing in VAR’s relies on the asymptotic behavior of the
partial sums of the process

z̃t =
(

∆xy
′
t−p−1 . . . ∆xy

′
t−pa

z′t−pa+p

)′
introduced in (13) and its cross-product. We limit our attention to processes that are at most
integrated of order one at the various frequencies present in the DGP, possibly cointegrated
at each frequency in presence of a deterministic trend and a set of seasonal dummies. Toda
and Yamamoto (1995) consider VAR processes that are integrated at most of order two at
frequency 0, which allows for polynomial cointegration and makes the analysis more worked
out. Empirically, cases of polynomial seasonal cointegration introduced by Gregoir (1999) do
not seem frequent and for sake of simplicity we do not consider this situation. The basic
arguments are nevertheless quite similar and could be extended to deal with this situation. We
start by describing the DGP of the multivariate process under study, we then introduce some
operators that allow us to summarize under a convenient form in three Lemmata the asymptotic
properties of regressor cross-products. At last, we establish that as soon as pa ≥ p+S, the Wald
test statistic (14) is χ2−distributed with the usual degrees of freedom, invariant to whether the
process is covariance stationary, integrated of order one or cointegrated at the set of frequencies
under scrutiny.

5.1 The data generating process

The DGP we deal with in this section is given by (3) with D = S, {ω̃1, . . . , ω̃D} = {ω1, . . . , ωS},
ω1 = 0, q1 = 1, ∀j 6= 1, qj = 0

d (t) = β10 + β11t+
S∑
j=2

βj0e
−iωjt

where d (t) is real so that ∀ωj ∈ ]0, π[ ,∃k ∈ {2, ..., S} , such that ωk = −ωj and βk0 = βj0 and
(4) where the real process {xt}t∈Z may be I (0), integrated and cointegrated at the frequencies
{ω1, . . . , ωS}, technically speaking we write

xt =

pa∑
j=1

φjxt−j + εt (15)

where the roots of the polynomial det
(
In −

∑pa

j=1 φju
j
)

have moduli larger than one or are in

{eiωj}j=1,...S. This last equation can be written in a VECM format in applying Theorem 5 to

the matrix polynomial I −
∑pa−S

j=1 φjL
j = ψ (L) ∆x + Lpa−S+1R (L) with ∆x = 1 − LS. This

gives

∆xxt = ψ (L) ∆xxt + Lpa−S+1R (L)xt +

pa∑
j=pa−S+1

φjxt−j + εt

with

Lpa−S+1R (L) +

pa∑
j=pa−S+1

φjL
j = Lpa−S+1Π (L)
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where Π (L) is a matrix polynomial of degree S − 1 than can be decomposed by Lemma 7 into
the basis of polynomials {∆x,−j}j=1,...S . This gives the following VECM equation:

∆xxt =

pa−S∑
j=1

ψj∆xxt−j +
S∑
k=1

πk∆x,−kxt−pa+S−1 + εt

where all the matrix coefficients {ψj}j=1,...pa−S are real and some matrices πk associated to
frequencies different from 0 and π are complex and such that if πk is associated to ωk then πk
is associated to −ωk. This equation is similar to those proposed by Johansen and Schaumburg
(1999) or Gregoir (1999a) with different notations. In particular, since the last equation is just
a rewriting of (15) , we have

πk = −e
−i(pa−S+1)ωk

∆x,−k (eiωk)

(
In −

pa∑
j=1

φje
ijωk

)

When eiωk is a root of the polynomial det
(
In −

∑pa

j=1 φju
j
)
, the rank of πk or equivalently that

of
(
In −

∑pa

j=1 φje
ijωk

)
is necessarily less than n. The matrix πk is such that πk = αkβ

′
k for

some αk and βk that are n × rk matrices of rank rk. Notice that πk can be equal to 0; in this
case, we set rk = 0 and there is no cointegration at this frequency. To ensure that the order
of integration is at most 1 at each frequency, we must rule out polynomial cointegration, this
corresponds to the following set of conditions (Johansen and Schaumburg (1999)): for all k

α′k,⊥

(
pa∑
j=1

jφje
ijωk

)
βk,⊥ is full rank

where αk,⊥ and βk,⊥ are full rank (n× n− rk) matrices such that α′k,⊥αk = 0 and β
′
k,⊥βk = 02.

In the sequel, we assume that the above conditions are satisfied. In the matrix notations of (13) ,

for the DGP under study, we have z̃ =
(

∆xy
′
−p z′−pa

)′
where columns of ∆xy−p are equal to(

∆xy
′
t−p−1 ... ∆xy

′
t−pa+S

)′
and those of z−pa to

(
∆x,−1y

′
t−pa−1+S . . . ∆x,−Sy

′
t−pa−1+S

)′
.

5.2 Invariance principle and asymptotic distributions of cross-products

To present the asymptotic convergence of the regressor cross-products, we introduce now an
integral operator which plays the role of the inverse of the first difference operator at frequency
ω, namely δω = (1− e−iωL) .

Definition 10 The integral operator Sω associates to any sequence εt = (εt, t = ...− 1, 0, 1, ....)
of real numbers a (complex) sequence Sωεt defined by :

Sωεt =


∑t

τ=1 ετe
−iω(t−τ) for t > 0

0 for t = 0

−
∑t+1

τ=0 ετe
−iω(t−τ) for t < 0

2This can also be characterized in this case by assuming that the order of multiplicity of each unit root eiωj

in det
(
In −

∑pa

j=1 φju
j
)

is equal to n− rank (πj) (Gregoir (1999a)).
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Its algebraic properties are summed up in the following statement (Gregoir (1999a)):

Corollary 11
(i)δωSω = Id, (16)

(ii)∀ (yt)t , Sωδωyt = yt − y0e
−iωt (17)

We stress that the operator δω and Sω do not commute. The constant term which appears
in (ii) in the above Corollary is due to our definition of the integral operator that constructs
integrated of order 1 processes that are always equal to 0 at t = 0. Alternative definitions with
different conventions are possible.

Under assumption 3, Chan and Wei (1988) and Tsay and Tiao (1990) have shown that when
T goes to infinity and ω /∈ {0, π}, the following multivariate convergence in distribution holds :

1√
T

[Tt]∑
τ=1

eiωτετ =
eiω[Tt]

√
T
Sωε[Tτ ] =⇒ 1√

2
Wω (t)

where [Tt] is equal to the integer part of Tt and Wω (t) = Wω,R (t) + iWω,I (t) and Wω,R (t)
and Wω,I (t) are two real independent Wiener processes whose variance-covariance matrix is Ω.
This presentation with complex number is a convenient way to state the joint convergence of

1√
T

∑[Tt]
τ=1 ετ cosωτ and 1√

T

∑[Tt]
τ=1 ετ sinωτ. When ω ∈ {0, π} , we have

1√
T

[Tt]∑
τ=1

eiωτετ =
eiω[Tt]

√
T
Sωε[Tτ ] =⇒ Wω (t)

where Wω (t) is a real Wiener process whose variance-covariance matrix is Ω.
We now partition the set of regressors z̃ in two sets, the first one is composed of covariance

stationary processes, the second one of integrated of order one processes: for each frequency,
we have

∆x,−jxt =
(
βj

(
β
′
jβj

)−1

βj,⊥

(
β
′
j,⊥βj,⊥

)−1 )( β
′
j∆x,−jxt

β
′
j,⊥∆x,−jxt

)

= Aj

(
β
′
j∆x,−jxt

β
′
j,⊥∆x,−jxt

)

= Aj

(
w0,j,t

w1,j,t

)
where ∆x,−jxt is integrated of order one at the frequency ωj, β

′
j∆x,−jxt is a complex rj-dimensional

covariance stationary process and β
′
j,⊥∆x,−jxt is integrated of order one at ωj. When the process

is not cointegrated, the covariance-stationary term collapses. Let A be a n (pa − p)×n (pa − p)
block diagonal matrix whose pa− p− S first (n× n) blocks are equal to In and for j = 1, ..., S,
the pa − p + jth one to Aj, P be a n (pa − p) × n (pa − p) matrix that reorders the rows of

z̃ to collect in the n (pa − p− S) +
∑S

j=1 rj first positions the covariance-stationary compo-

nents, i.e.
(

∆xx
′
t−p−1 ... ∆xx

′
t−pa+S

)′
and the w0,j,t , and in the nS−

∑S
j=1 rj last ones, the

non-stationary components w1,j,t. We note

PAz̃t =

(
w0,t

w1,t

)
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It is relatively cumbersome to work with this vector completed with
(

∆xx
′
t−1 ... ∆xx

′
t−p

)′
to get the set of regressors. We propose in the statement of the properties used in the derivation
of the asymptotic distribution to work with a set of S covariance stationary processes composed
of the n (pa − p− S) +

∑S
j=1 rj + n− rk-dimensional processes

uk,t =
(

∆xx
t−1′
t−p w′0,t δωk

w′1,k,t
)′

for k = 1, ...S. These processes satisfy a FCLT as follows (cf. Gregoir (2010)): when ωk /∈ {0, π}

eiωk[Tt]

√
T

Sωk
uk,[Tτ ] =⇒ 1√

2
Bk (t)

where Bk is a complex Wiener process and when ωk ∈ {0, π}

eiωk[Tt]

2
√
T

Sωk
uk,[Tτ ] =⇒ Bk (t)

where Bk is a real Wiener process. In both cases, the variance of Bk is equal to the spectral
density matrix of {uk,t} at frequency ωk

dk (ωk) =
1

2π

+∞∑
j=−∞

e−ijωEuk,tu
′
k,t+j

=
1

2π

(
Σk + Λk,ωk

+ Λ
′
k,ωk

)
with Σk = Euk,tu

′
k,t and Λk,ωk

=
∑+∞

j=1 e
−iωjEuk,tu

′
k,t+j . We partition Bk,Σk, Λk,ωk

et dk (ωk)
conformally with uk,t with indexes x, 0 and 1, for instance

Bk =
(
B′
k,x B′

k,0 B′
k,1

)′
Furthermore, from Chan and Wei (1988), an orthogonality property between two integrated
processes at two different frequencies

1

T 2

∑
w1,k,tw

′
1,j,t → 0

allows us to derive the asymptotic behavior of the regressor cross-products.We now summarize
the asymptotic behavior of the sample moment matrices that appear in the Wald test statistic
in three lemmata. The first one is similar to Lemma 2 in Toda and Yamamoto (1995).

Lemma 12 Under assumption 3, for the DGP under study, for all k ∈ {1, ..., S}

1

T

T∑
t=1

(
∆xx

t−1
t−p

w0,t

)(
∆xx

t−1
t−p

w0,t

)′
→P Σx0,x0 ≡

(
Σxx Σx0

Σ0x Σ00

)
and when ωk /∈ {0, π} eiωk[Tt]

√
T
Sωk

ε[Ts]

1√
T

∑T
t=1

(
∆xx

t−1
t−p

w0,t

)
⊗ εt

 =⇒

 1√
2
Wωk

(t)

ζx
ζ0


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and when ωk ∈ {0, π} eiωk[Tt]
√
T
Sωk

ε[Ts]

1√
T

∑T
t=1

(
∆xx

t−1
t−p

w0,t

)
⊗ εt

 =⇒

 Wωk
(t)

ζx
ζ0


where ζ is a normal random vector with mean zero and covariance matrix Σx0,x0 ⊗ Ω and ζ,
Wωk

and Wωj
(j 6= k) are independent.

The second Lemma is a restatement of a particular case of Theorem 6 in Gregoir (2010).

Lemma 13 Under assumption 3, for the DGP under study, for all k ∈ {1, ..., S} , when ωk /∈
{0, π}

1

T

T∑
t=1

w1,k,tw
′
0,t =⇒ 1

2

∫ 1

0

Bk,1 (t) dBk,0 (t) + Σk,10 + Λk,10

and when ωk ∈ {0, π}

1

T

T∑
t=1

w1,k,tw
′
0,t =⇒

∫ 1

0

Bk,1 (t) dBk,0 (t) + Σk,10 + Λk,10

The third Lemma summarizes the asymptotic behavior of the sample moments.

Lemma 14 Under assumption 3, for the DGP under study,

• (i) when ωj /∈ {0, π},

– 1
T 1/2

∑T
t=1 e

iωjtw0,t =⇒ 1√
2
Bj,0 (1)

– 1
T 3/2

∑T
t=1 e

iωjtw1,j,t =⇒ 1√
2

∫ 1

0
Bj (s) ds

– j 6= k, 1
T 3/2

∑T
t=1 e

iωktw1,j,t =⇒ 0

– 1
T 2

∑T
t=1w1,j,tw

′
1,j,t =⇒ 1

2

∫ 1

0
Bj (s)Bj (s)′ ds

– j 6= k, 1
T 2

∑T
t=1w1,j,tw

′
1,k,t =⇒ 0

• (ii) when ωj ∈ {0, π},

– 1
T 2

∑T
t=1w1,j,tw

′
1,j,t =⇒

∫ 1

0
Bj (s)Bj (s)′ ds

– j 6= k, 1
T 2

∑T
t=1w1,j,tw

′
1,k,t =⇒ 0

• (iii) for ω1 = 0,

– 1
T 3/2

∑T
t=1 tεt =⇒

∫
sdW0 (s)

– 1
T 3/2

∑T
t=1 tw0,t =⇒

∫
sdB0 (s)

– 1
T 5/2

∑T
t=1 tw1,1,t =⇒

∫ 1

0
sB1 (s) ds

– j 6= 1, 1
T 5/2

∑T
t=1 tw1,j,t =⇒ 0
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5.3 Asymptotic distribution of the Wald statistic

We now turn to the analysis of the asymptotic distribution of ξW in (14). We first note that

∆xyt = Sβ11 + ∆xxt

∆x,−1yt = S

[
β10 + β11

(
t− S − 1

2

)]
+ ∆x,−1xt

∆x,−jyt = Sβj,0e
−iωjt + β11

S−1∑
k=0

ke−iωjk + ∆x,−jxt

whence ∆xyPτ = ∆xxPτ and ∀j ∈ {1, ..S} ,∆x,−jyPτ = ∆x,−jxPτ . From usual algebra and the
standard OLS estimator definition in a complex number framework

ψ̂ = yPz̃∆xy
′ (∆xyPz̃∆xy

′)
−1

= yP˜̃z∆xx
′ (∆xxP˜̃z∆xx

′)−1

with ˜̃z =
(

∆xx
′
−p z′x,−pa

)′
and

zx,−pa =
(

∆x,−1x
′
t−pa−1+S . . . ∆x,−Sx

′
t−pa−1+S

)′
we get that

ψ̂ − ψ = εP˜̃z∆xx
′ (∆xxP˜̃z∆xx

′)−1

and

Pz̃ = P˜̃z
= Pτ − Pτ ˜̃z′(˜̃zPτ ˜̃z′)−1 ˜̃zPτ
= Pτ − Pτ ˜̃z′A′

P ′
(
PA˜̃zPτ ˜̃z′A′

P ′
)−1

PA˜̃zPτ
where PA˜̃z is the T × n (pa − p) matrix whose elements are

(
w′0,t w′1,t

)′
. To obtain the

limit distribution of the OLS estimator of ψ we use the limits described in the previous set
of lemmata. We introduce two block diagonal matrices with the rates of convergence of the
different terms, D1,T is associated to the deterministic terms and D2,T to the stochastic ones:

D1,T =

(
T−1 0
0 T−1/2IS

)
and

D2,T =

(
T−1/2In(pa−p−S)+

∑S
j=1 rj

0

0 T−1InS−
∑S

j=1 rj

)
We have

D1,T ττ
′D1,T −→

(
1
2

0
0 IS

)
Relying on the three previous lemmata, we can state the following convergences
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Lemma 15 Under assumption 3, for the DGP under study,

D2,TPA˜̃zPτ ˜̃z′A′
P ′D2,T =⇒

(
Σ00 0

0 diag
(∫ 1

0
B∗
jB

∗′
j ds
) )

where diag
(∫ 1

0
B∗
jB

∗′
j ds
)

is a
(
nS −

∑S
j=1 rj

)
×
(
nS −

∑S
j=1 rj

)
block diagonal matrix whose

blocks are equal to 1
2

∫ 1

0
B∗
j (s)B∗

j (s)′ ds when ωj /∈ {0, π} and to
∫ 1

0
B∗
j (s)B∗

j (s)′ ds when

ωj ∈ {0, π} with B∗
j (s) = Bj (s) −

∫ 1

0
Bj when j 6= 1 and B∗

1 (s) = B1 (s) − (4− 6s)
∫
B1 −

6 (2s− 1)
∫
tB1

T−1/2vec (εPτ∆xx
′) =⇒ ζx

vec

(
εPτ ˜̃z′A′

P ′D2,T

)
=⇒

(
ζ0

vec
(∫

dWkB
∗′
k

) )

where
∫
dWkB

∗′
k is a nS ×

(
nS −

∑S
j=1 rj

)
block matrix whose the kth block is a n × (n− rk)

matrix equal to 1
2

∫
dWk (s)B

∗
k (s)′ ds when ωj /∈ {0, π} and to

∫
dWk (s)B∗

k (s)′ ds when ωj ∈
{0, π}

T−1∆xxPτ∆xx
′ −→ Σxx

T−1∆xxP˜̃z∆xx
′ −→ Σxx − Σx0Σ

−1
00 Σ0x

T−1/2∆xxPτ ˜̃z′A′
P ′D2,T −→

(
Σx0 0

)
We now can derive the asymptotic distribution of ψ̂ :

√
Tvec

(
ψ̂ − ψ

)
=

√
Tvec

[
εP˜̃z∆xx

′ (∆xxP˜̃z∆xx
′)−1

]
=

(
1

T

(
∆xxP˜̃z∆xx

′)−1 ⊗ In

)
1√
T
vec
(
εP˜̃z∆xx

′)
=⇒

((
Σxx − Σx0Σ

−1
00 Σ0x

)−1 ⊗ In

) (
In2p −Σx0Σ

−1
00 ⊗ In

)( ζx
ζ0

)
=⇒ N

(
0,
(
Σxx − Σx0Σ

−1
00 Σ0x

)−1 ⊗ Ω
)

We use the standard argument of applying a Taylor expansion to g (.) in the neighborhood of
vecψ under the null H ′

0 : g (vecψ) = 0. This gives

√
Tg
(
vecψ̂

)
=⇒ N

(
0,

∂g

∂vecψ′

[(
Σxx − Σx0Σ

−1
00 Σ0x

)−1 ⊗ Ω
] ∂g

∂vecψ

′)
From Lemma 15, we conclude that ψ̂ is consistent and so is Σ̂ε. It follows that

ξW =⇒ χ2 (dim g (.))

From Lemma 9, we can claim that testing H0 with a Wald test statistics based on OLS estimates
in levels VAR is χ2 (dim f (.)) as soon as pa ≥ p+ S.
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Remark 16 This result can be extended to situations in which the variables are integrated of
different orders at different frequencies. If we introduce for a given variable at least as many
additional lags as the number of unit roots present in its individual data generating process, we
preserve the fact that the Wald statistic is asymptotically chi-squared distributed.

We can now turn to the finite sample properties of this test procedure.

6 Finite-sample properties

We propose to illustrate the size and power properties of this approach on a particular DGP.
We first consider the size and power properties of a standard lag order test procedure and then
turn to the size and power properties of Student and Fisher test statistics to test for linear
constraints. The lag selection procedure we consider is based on the usual sequence of nested
Fisher tests for the nullity of the matrices associated to the largest lags. In our approach, these
tests are carried out in a model in which for each variable, additional lags equal to the number
of unit roots present in their individual data generating process have been introduced. In a
model of order p, we first test for null hypothesis that the pth matrix is equal to 0, then when
accepted, we test for the null hypothesis that the pth and (p − 1)th matrices are jointly equal
to zero and so on.

We consider a particular case of the DGP introduced in the second section, we set α = 1 :(
1 −L
L 1

)(
y1t

y2t

)
=

(
ε1t

ε2t

)
The determinant of the matrix polynomial associated to this VAR process is equal to 1 + L2,
whose roots are the two unit roots {i,−i} . Theorem 5 and Lemma 7 allow us to rewrite the
DGP as follows(

1 −L
L 1

)
=

(
1 −L
L 1

)(
1 + L2 0

0 1 + L2

)
+ L2

(
−1 L
L −1

)
=

(
1 −L
L 1

)(
1 + L2 0

0 1 + L2

)
+L2

{
1

2

(
−1 −i
i −1

)
(1 + iL) +

1

2

(
−1 i
−i 1

)
(1− iL)

}
Since (

−1 −i
i −1

)
=

(
−1
i

)(
1 i

)
and (

−1 i
−i −1

)
=

(
−1
−i

)(
1 −i

)
this last matrix polynomial corresponds to the VECM representation of {yt} whose components
are integrated of order 1 at frequencies π

2
and −π

2
and cointegrated at these frequencies:(

1 −L
L 1

)(
(1 + L2) y1t

(1 + L2) y2t

)
=

1

2

{(
1
−i

)(
1 i

)( (1 + iL) y1,t−2

(1 + iL) y2,t−2

)
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+

(
1
i

)(
1 −i

)( (1− iL) y1,t−2

(1− iL) y2,t−2

)}
+ εt

In short, the unconstrained VAR representation of this DGP involves one lag. Its VECM
representation shows that the associated processes are integrated of order 1 at frequency π

2
and

−π
2

and cointegrated. There are two unit roots in their individual DGP and two additional lags
must be introduced in the model to test for the lag length of the VAR representation.

Starting from a lag order equal at most to 8, we run a Monte Carlo exercise to measure
the size of each Fisher tests involved in the sequential testing (i.e. sequence of null hypotheses:
H0,k : ∀j ∈ {k, k + 1, ..., 8} , Φj = 0, ; Ha,k : ∃ j ∈ {k, k + 1, ..., p} , Φj 6= 0. We consider
Gaussian innovations with a variance-covariance matrice equal to(

1 0.5
0.5 1

)
and various specifications without or with deterministic terms (constant, sine and cosine func-
tions at frequency π

2
, both). Results are presented in Table 1. When the sample size is small

(T=50), the size of each test is significantly larger than the nominal level (5%) and this distor-
tion is larger when deterministic terms are introduced in the specification. When the sample
size gets larger, the empirical size gets closer to the nominal one. The empirical size is close to
the nominal one when T is larger than 250. We can also in this exercise produce the empirical
distribution of the lag lengths obtained in this iterative procedure. They are given in Table 2.
When the sample size is small, we observe that we obtain the correct lag order in at most 75%
of the simulations when there is no deterministic term in the regression. Due to the dependence
of the tests, the decisions we take at various steps of the procedure lead to an underrepresen-
tation of the correct lag length. When the sample size is larger, the correct lag order is more
frequently selected (about 87% when T=500).

We then propose to test for the following set of null hypotheses on this DGP for various
sample sizes and values of the variance-covariance matrix of the error terms:

H01 : φ12 = 1

H02 : φ21 = −1

H03 : φ12 = 1 and φ21 = −1

We first simulate the size of these tests in the same situations as those considered above
and then move to the power properties. The empirical sizes are given in Table 3. They have
been computed without imposing the lag length but with the lag length selected with the above
iterative procedure. We observe that the empirical size is larger than the nominal one when T is
small and in this case, it is more over-sized in presence of deterministic terms in the regressions.
When T gets larger, the empirical size gets closer to the nominal one. It can be over or under
the nominal one.

We then turn to the analysis of the power properties when the lag length has been selected
with the above iterative procedure. Nevertheless to keep to a finite order VAR representation,
we keep to processes that are cointegrated at frequencies π

2
and −π

2
but change the value of the

cointegrating vector. To do so, we consider the DGPs introduced in the introductory example
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Table 1: Lag selection procedure (pmax = 8, 5000 simulations)
H0,2 H0,3 H0,4 H0,5 H0,6 H0,7 H0,8

T=500
no deterministic term 0.0478 0.0476 0.0524 0.0520 0.0518 0.0516 0.0546

constant term 0.0488 0.0476 0.0532 0.0510 0.0530 0.0512 0.0532
sine and cosine functions 0.0502 0.0494 0.0542 0.0528 0.0534 0.0520 0.0552

all terms 0.0512 0.0510 0.0540 0.0534 0.0540 0.0522 0.0538
T=250

no deterministic term 0.0592 0.0558 0.0498 0.0498 0.0510 0.0498 0.0512
constant term 0.0620 0.0588 0.0546 0.0538 0.0528 0.0540 0.0504

sine and cosine functions 0.0612 0.0578 0.055 0.0548 0.0540 0.0516 0.0532
all terms 0.0614 0.0606 0.0596 0.0568 0.0558 0.0538 0.0578
T=100

no deterministic term 0.0754 0.0710 0.0688 0.0660 0.0606 0.0586 0.0616
constant term 0.0786 0.0746 0.0714 0.0686 0.0634 0.0616 0.0642

sine and cosine functions 0.0906 0.0876 0.0822 0.0762 0.0670 0.0640 0.0690
all terms 0.0876 0.0852 0.0822 0.0770 0.0666 0.0668 0.0770

T=50
no deterministic term 0.1526 0.1412 0.1324 0.1210 0.1010 0.0892 0.0830

constant term 0.1634 0.1502 0.1452 0.1320 0.1140 0.1006 0.0890
sine and cosine functions 0.2246 0.2088 0.1886 0.1708 0.1432 0.1220 0.1034

all terms 0.2190 0.2024 0.1880 0.1720 0.1352 0.1254 0.1238
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Table 2: Empirical distribution of the selected lag orders.

Proportion of lag order selected p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
T=500

no deterministic term 0.8684 0.0054 0.0066 0.0086 0.0138 0.0170 0.0256 0.0546
constant term 0.8714 0.0050 0.0064 0.0090 0.0130 0.0162 0.0258 0.0532

sine and cosine functions 0.8658 0.0058 0.0068 0.0092 0.0140 0.0172 0.0260 0.0552
all terms 0.8694 0.0050 0.0068 0.0088 0.0132 0.0174 0.0256 0.0538
T=250

no deterministic term 0.8532 0.0104 0.0138 0.0128 0.0132 0.0186 0.0268 0.0512
constant term 0.8492 0.0096 0.0142 0.0144 0.0136 0.0186 0.0300 0.0504

sine and cosine functions 0.8466 0.0110 0.0134 0.0138 0.0146 0.0200 0.0274 0.0532
all terms 0.8422 0.0076 0.0140 0.0158 0.0156 0.0202 0.0268 0.0578
T=100

no deterministic term 0.8344 0.0124 0.0116 0.0156 0.0194 0.0208 0.0242 0.0616
constant term 0.8296 0.0118 0.0130 0.0160 0.0190 0.0208 0.0256 0.0642

sine and cosine functions 0.8144 0.0154 0.0134 0.0176 0.0222 0.0220 0.0260 0.0690
all terms 0.8124 0.0124 0.0120 0.0172 0.0232 0.0208 0.0250 0.0770

T=50
no deterministic term 0.7592 0.0148 0.0162 0.0252 0.0294 0.0302 0.0420 0.0830

constant term 0.7436 0.0154 0.0170 0.0266 0.0296 0.0338 0.0450 0.0890
sine and cosine functions 0.6820 0.0214 0.0234 0.0296 0.0390 0.0436 0.0576 0.1034

all terms 0.6826 0.0194 0.0222 0.0296 0.0396 0.0350 0.0478 0.1238
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Table 3: Empirical Size.
tα t1/α F

T=500
no deterministic term 0.0518 0.0550 0.0500

constant term 0.0528 0.0542 0.0500
sine and cosine functions 0.0514 0.0544 0.0496

all terms 0.0514 0.0532 0.0506
T=250

no deterministic term 0.0534 0.0586 0.0584
constant term 0.0532 0.0584 0.0558

sine and cosine functions 0.0518 0.0578 0.0572
all terms 0.0562 0.0614 0.0576
T=100

no deterministic term 0.0632 0.0690 0.0686
constant term 0.0640 0.0682 0.0686

sine and cosine functions 0.0594 0.0662 0.0662
all terms 0.0674 0.0760 0.0786

T=50
no deterministic term 0.0846 0.0940 0.1026

constant term 0.0878 0.0940 0.1104
sine and cosine functions 0.0790 0.0860 0.0948

all terms 0.0992 0.1044 0.1230
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in Section 2 associated to various values of α and test for the capacity to reject the null that
α = 1. The results are given in Figure 1. The results are not size-adjusted. We observe that
the power properties are relatively satisfactory, increasing with the size sample and somewhat
asymmetric.

7 Conclusion

We extend the lag-augmented approach introduced by Toda and Yamamoto (1995), Dolado and
Lütkepohl (1996) and Yamamoto (1996) to the situation in which seasonal unit roots are present
in the data generating process. This allows the econometrician to test in a VAR framework
for linear constraints such as for instance Granger-Causality relationships with non-seasonally
adjusted data. This is of practical interest as we know that separate seasonal adjustment
may introduce some distortion in the relationships between the variables the economist wants
simultaneously study. The rule we obtain is that if we introduce for a given variable at least
as many additional lags as the number of unit roots present in its individual data generating
process, we preserve the fact that the Wald statistic is asymptotically chi-squared distributed.
The simulation exercise illustrates that as soon as the sample size is large enough (more than
250), size and power properties are satisfactory.
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9 Appendix

Proof of Theorem 5: The proof is by induction and relies on a polynomial division by ascending
order. We denote ∆x,j the coefficients of the polynomial ∆x (L)

∆x (L) =
dx∑
j=0

∆x,jL
j

where ∆x,0 = 1. By convention, when the index j is larger than dx, ∆x,j = 0. We set φ(1) (L) =
φ (L) and R(1) (L) = 0. The first step consists of computing the first order polynomial remainder
defined by

φ (L)− φ1∆ (L)L =

p∑
j=1

φjL
j − φ1

dx∑
l=0

∆x,lL
l+1

=

p∑
j=1

(φj − φ1∆x,j−1)L
j −

dx+1∑
l=p+1

φ1∆x,l−1L
l

=

p∑
j=2

(φj − φ1∆x,j−1)L
j − Lp+1

(
dx−p∑
l=0

φ1∆x,p+lL
l

)
where the second term in the right-hand side of the last equation is equal to 0 if dx ≤ p . Let
us denote

φ(2) (L) =

p∑
j=2

(φj − φ1∆x,j−1)L
j

=

p∑
j=2

φ
(2)
j Lj

a polynomial matrix whose minimal degree is equal to 2 and maximal one to p, and

R(2) (L) = −

(
dx−p∑
l=0

φ1∆x,p+lL
l

)
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a polynomial matrix of degree at most dx − p− 1, we have

φ (L) = φ(1) (L) + Lp+1R(1) (L)

= φ
(1)
1 ∆ (L)L+ φ(2) (L) + Lp+1R(2) (L)

and (
φ

(1)
1 φ

(2)
2 . . . φ

(2)
p

)
=
(
φ

(1)
1 φ

(1)
2 . . . φ

(1)
p

)
N (1) ⊗ In

where

N (1)

(p×p)
=


1 −∆x,1 −∆x,p−1

0 1 0 0
...

. . .
...

0 · · · 0 1


We now define (i) a sequence of polynomial matrices

{
φ(j) (L)

}
j=2,...,p

whose matrix coefficients

are given by the following recurrence equation

φ
(j)
k = 0 for 1 ≤ k ≤ j − 1

φ
(j)
k = φ

(j−1)
k − φ

(j−1)
j−1 ∆x,k−j+1 for j ≤ k ≤ p

or similarly(
φ

(j−1)
j−1 φ

(j)
j . . . φ

(j)
p

)
=
(
φ

(j−1)
j−1 φ

(j−1)
j . . . φ

(j−1)
p

)
N (j−1) ⊗ In

where

N (j−1)

(p−j+2×p−j+2)
=


1 −∆x,1 −∆x,p−j+1

0 1 0 0
...

. . .
...

0 · · · 0 1


(ii) a sequence of polynomial matrices

{
R(j) (L)

}
j=2,...,p

given by the following recurrence equa-
tion

R(j) (L) = R(j−1) (L)−
dx+j−p−2∑

k=0

φ
(j−1)
j−1 ∆x,p−j+kL

k

where the degree of the second term of the right-hand side of the last equation is at most
dx + j − p− 2, which is increasing with j.

We claim that for j = 1, . . . , p

φ (L) =

j−1∑
k=1

φ
(k)
k ∆ (L)Lk + φ(j) (L) + Lp+1R(j) (L)
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This holds for j = 1 and j = 2. Let assume that it holds up to order j < p− 1. We then have

φ(j) (L)− φ
(j)
j ∆x (L)Lj =

p∑
k=j

φ
(j)
k Lk − φ

(j)
j

dx∑
l=0

∆x,lL
l+j

=

p∑
k=j

(
φ

(j)
k − φ

(j)
j ∆x,k−j

)
Lk −

dx+j∑
l=p+1

φ
(j)
j ∆x,l−jL

l

=

p∑
k=j

φ
(j+1)
k Lj − Lp+1

(
dx+j−p−1∑

l=0

φ
(j)
j ∆x,p+l+1−jL

l

)

= φ(j+1) (L) + Lp+1

(
−

dx+j−p−1∑
l=0

φ
(j)
j ∆x,p+l+1−jL

l

)

therefore

φ (L) =

j∑
k=1

φ
(k)
k ∆ (L)Lk + φ(j+1) (L)

+Lp+1

(
R(j) (L)−

dx+j−p−1∑
l=0

φ
(j)
j ∆x,p+l+1−jL

l

)

=

j∑
k=1

φ
(k)
k ∆ (L)Lk + φ(j+1) (L) + Lp+1R(j+1) (L)

When j = p, since φ(p+1) = 0, we get

φ (L) =

p∑
k=1

φ
(k)
k ∆ (L)Lk + Lp+1

(
R(p) (L)−

dx−1∑
l=0

φ(p)
p ∆x,l+1L

l

)

We set ψ (L) =
∑p

k=1 φ
(k)
k Lk and R (L) = R(p) (L)−

∑dx−1
l=0 φ

(p)
p ∆x,l+1L

l whose degree is dx− 1.
If we denote M (1) = N (1) and for j > 2

M (j) =

(
Ij−1 0
0 N (j−1)

)
we set M = M (1)...M (p−1), so that(

φ
(1)
1 φ

(2)
2 . . . φ

(p)
p

)
=
(
φ1 φ2 . . . φp

)
M ⊗ In

where M is a full rank matrix as a upper triangular matrix with diagonal terms equal to 1.
Q.E.D.

Proof of Lemma 7: The proof amounts to show that the set of dx polynomials(
∪Sj=1

{
∆x,−j, δωj

∆x,−j, δ
2
ωj

∆x,−j, . . . δ
dj−1
ωj

∆x,−j

})
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is a basis of the polynomials of degree less or equal to dx − 1. Indeed, if this is true, any
polynomial q (L) of degree less or equal to dx − 1 can be decomposed in these basis elements,

i.e. there exists a set of numbers
{

(qjk)k=0,...dj−1

}
j=1,...S

such that

q (L) =
S∑
j=1

dj−1∑
k=0

qjkδ
k
ωj

∆x,−j


=

S∑
j=1

dj−1∑
k=0

qjkδ
k
ωj

∆x,−j

This is true for each coefficient of a polynomial matrix, so it holds for the polynomial matrix
itself. To show that the above set of polynomials is a basis we establish it is a set of linearly
independent elements that generates polynomials of degree less or equal to dx − 1. We start

with the independence property. Let us consider a set of numbers
{

(qjk)k=0,...dj−1

}
j=1,...S

such

that q (L) = 0. We partition the set {1, ..., S} into subsets of index related to frequencies that
have the same order of integration:

{1, ..., S} =

maxj dj⋃
k=1

Jk

with
Jk = {j ∈ {1, ..., S} |dj = k}

and

q (L) =

maxj dj∑
k=1

∑
j∈Jk

(
k−1∑
l=0

qjlδ
l
ωj

)
∆x,−j

We denote Kj = ∪jk=1Jk. We proceed by induction on k. First, we compute the value of q (L)
at each unit root and get ∀j ∈ {1, . . . , S}

q
(
eiωj
)

= qj0∆x,−j
(
eiωj
)

= 0

=⇒ qj0 = 0

since ∀k 6= j, ∆x,−k (eiωj) = 0, then

q (L) =

maxj dj∑
k=2

∑
j∈Jk

(
k−1∑
l=1

qjlδ
l−1
ωj

)
δωj

∆x,−j

If we compute the derivative of this polynomial, we get

q′ (L) =

maxj dj∑
k=2

∑
j∈Jk

(
k−1∑
l=2

(l − 1) qjlδ
l−2
ωj

)
δωj

∆x,−j+

maxj dj∑
k=2

∑
j∈Jk

(
k−1∑
l=1

qjlδ
l−1
ωj

)[
δωj

∆′
x,−j − eiωj∆x,−j

]
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which is equal to zero. We compute the value of q′ (L) at each unit root whose index is in J\K2

we get that ∀j ∈ J\K2

q′
(
eiωj
)

= −qj1eiωj∆x,−j
(
eiωj
)

= 0

=⇒ qj1 = 0

and then

q (L) =

maxj dj∑
k=3

∑
j∈Jk

(
k−1∑
l=2

qjlδ
l−2
ωj

)
δ2
ωj

∆x,−j

+
∑
j∈J2

qj1δωj
∆x,−j

This result holds because the value of the derivative of ∆x,−k at eiωj when j is in J\K2 is zero
due to fact that the monomial associated to this unit root is raised at a power strictly larger
than 1 in ∆x,−k. Let us assume that when we repeat this kind of operations h times, we get
the following form for q (L) :

q (L) =

maxj dj∑
k=h+1

∑
j∈Jk

(
k−1∑
l=h

qjlδ
l−h
ωj

)
δhωj

∆x,−j (18)

+
h∑
k=2

∑
j∈Jk

qj,k−1δ
k−1
ωj

∆x,−j

We compute the derivative of order h. We take in turn each polynomial in this sum and start by
those in the second term. We use the property that when j ∈ J\Kh, the value of the derivative
of order h of ∆x,−k at eiωj for any k 6= j is zero due to fact that the monomial associated to
this unit root is raised at a power strictly larger than h in ∆x,−k. By Leibnitz rule, we get that
for j ∈ Kh,

dh

dLh

(
qj,k−1δ

k−1
ωj

∆x,−j

)
= qj,k−1

h∑
l=0

(
h

l

)
dl

dLl
δk−1
ωj

dh−l

dLh−l
∆x,−j

and conclude that its value at each unit root whose index is in J\Kh is 0 by the above property.
For j ∈ J\Kh, we get

dh

dLh

dj−1∑
g=h

qjgδ
g−h
ωj

 δhωj
∆x,−j

 =
h∑
l=0

(
h

l

)
dl

dLl


dj−1∑

g=h

qjgδ
g−h
ωj

 δhωj

 dh−l

dLh−l
∆x,−j

When we compute the value of the term at a unit root whose index j′ ∈ J\Kh, by the above
property, the only non zero term is the one when l = h and j′ = j. This implies that for
j ∈ J\Kh

dhq (eiωj)

dLh
= h! (−1)h eihωj∆x,−j

(
eiωj
)

= 0

=⇒ qjh = 0
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This ensures that (18) holds at the order h+ 1. By induction, we conclude that

q (L) =

maxj dj∑
k=2

∑
j∈Jk

qj,k−1δ
k−1
ωj

∆x,−j

or

q (L) =

maxj dj∑
k=1

∑
j∈Jk

qj,k−1

∏
l 6=j

δωl

 ∆x

S∏
j=1

δωj

= 0

In this product, the second polynomial is different from 0, the first one is therefore exactly
equal to 0. If we compute its value in each unit root ωj we conclude that qj,dj−1 = 0 . This
family is linearly independent. The dimension of the vector space of polynomials of degree less
that dx − 1 is exactly equal to dx . The above family is composed of dx linearly independent
elements, it is therefore a basis of the space of polynomials of degree less that dx − 1.

Q.E.D.
Proof of Lemma 9: We start from the equivalent representations of the generating equation
with additional lags written with matrix notations in equations (4.3,13)

y = β̃τ + φy−1 + Φy−pa + ε

y = β̃τ + ψ∆xy + ξ∆xy−p +Rz−p + ε

y = β̃τ + ψ∆xy + R̃z̃−p + ε

where according Theorem 5, Lemma 7 and the attached comment we know there exist two
matrices M and K of respective dimensions (pa − dx − 1× pa − dx − 1) and (p× dx − 1) such
that (

φ Φ
)
(M ⊗ In) =

(
ψ ξ

)(
φ Φ

)
(K ⊗ In) = R

and M is upper triangular so that there exists with obvious notations a (p× p) matrix M11

such that
φ (M11 ⊗ In) = ψ

or
vecψ = [(M ′

11 ⊗ In)⊗ In] vecφ

The test statistics have the following form

ζW = f
(
vecφ̂

)′ [ ∂f

∂vecφ′

((
y−1Py−pa

y′−1

)−1 ⊗ Ω̂ε

) ∂f ′

∂vecφ

]−1

f
(
vecφ̂

)
and

ζ ′W = g
(
vecψ̂

)′ [ ∂g

∂vecψ′

((
∆xyPz̃−p∆xy

′
)−1

⊗ Ω̂ε

)
∂g′

∂vecψ

]−1

g
(
vecψ̂

)
.

On the one hand,
∂g

∂vecψ′
=

∂f

∂vecφ′
[(
M−1

11 ⊗ In
)
⊗ In

]
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on the other hand, with obvious notations

φy−1 + Φy−pa = ψ∆xy + ξ∆xy−p +Rz−p

=
(
φ Φ

)
(M ⊗ In)

(
∆xy

∆xy−p

)
+
(
φ Φ

)
(K ⊗ In) z−p

= φ (M11 ⊗ In) ∆xy +
(

(φ (M12 ⊗ In) + Φ (M22 ⊗ In))
(
φ Φ

)
(K ⊗ In)

)( ∆xy−p
z−p

)
= φ (M11 ⊗ In) ∆xy +

(
(φ (M12 ⊗ In) + Φ (M22 ⊗ In))

(
φ Φ

)
(K ⊗ In)

)
z̃−p

and since each component at date t of z̃−p is a linear combination of yt−p−1, .. yt−pa , there exists
a (dx − 1 + pa − p)× (pa − p) matrix H such that

Hy−pa = z̃−p,

it follows that
φy−1Py−pa

= φ (M11 ⊗ In) ∆xyPz̃−p

This holds for any value of φ where y−1Py−pa
y′−1 and ∆xyPz̃−p∆xy

′
are symmetric definite

positive matrices whence the result.
Q.E.D.

Proof of Lemma 15: It is direct application of the joint weak convergences summarized in the
Lemmata of section 5 and the algebraic results.
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